
Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8
http://www.journalofcloudcomputing.com/content/1/1/8

RESEARCH Open Access

Privacy preserving collaborative filtering for
SaaS enabling PaaS clouds
Anirban Basu1*, Jaideep Vaidya2, Hiroaki Kikuchi1, Theo Dimitrakos3 and Srijith K Nair3

Abstract

Recommender systems use, amongst others, a mechanism called collaborative filtering (CF) to predict the rating that
a user will give to an item given the ratings of other items provided by other users. While reasonably accurate CF can
be achieved with various well-known techniques, preserving the privacy of rating data from individual users poses a
significant challenge. Several privacy preserving schemes have, so far, been proposed in prior work. However, while
these schemes are theoretically feasible, there are many practical implementation difficulties on real world public
cloud computing platforms. In this paper, we present our implementation experience and experimental results on
two public Software-as-a-Service (SaaS) enabling Platform-as-a-Service (PaaS) clouds: the Google App Engine for Java
(GAE/J) and the Amazon Web Services Elastic Beanstalk (AWS EBS).a

Keywords: Collaborative filtering, Privacy, Cloud computing, Homomorphic cryptosystem, Slope one

Introduction
Pooling and sharing of resources, broad network access,
rapid elasticity, on-demand service provisioning (with a
strong self-service element), offering of measured service,
supporting (although not necessitating) multi-tenancy,
are some of the features that characterise cloud comput-
ing. Cloud architecture offers a means of delivering ICT
infrastructure, platform (i.e. application execution envi-
ronment) and software as a service. The benefits promised
by this paradigm include cost and performance optimi-
sation, economy of scale, flexible utilisation and charging
model, ease of connectivity and access to shared services,
cost efficient introduction of redundancy and continu-
ity of provision. Security, resilience and compliance are
some of the main concerns that are challenging wider use
of cloud computing and most likely to drive remaining
innovation and market differentiation efforts in this area.
The rapid growth of information services provided over

the World Wide Web has resulted in individuals hav-
ing to sift through overwhelming volumes of information
– the problem of information overload [1]. Recommen-
dation systems have been used as a rescue. Automated

*Correspondence: abasu@cs.dm.u-tokai.ac.jp
1Graduate School of Engineering, Tokai University. 2-3-23 Takanawa,
Minato-ku, Tokyo 108-8619, Japan
Full list of author information is available at the end of the article

recommendation systems employ two techniques: pro-
file analysis and collaborative filtering (CF). The former
matches the items to be recommended using informa-
tion that relate to users’ tastes; while CF makes use of
the recorded preferences of the community. Profile-based
recommendation for a user with rich profile information
is thorough. However, CF is fairly accurate even with-
out the need for the users’ profile information. CF has,
thus, positioned itself as one of the predominant means of
generating recommendations.
Grouped by filtering techniques, numeric rating

based CF is broadly classified into: memory-based or
neighbourhood-based andmodel-based. Inmemory-based
approaches, recommendations are developed from user or
item neighbourhoods, i.e. proximity (or deviation) mea-
sures between the ratings, e.g. cosine similarity, Euclidean
distance and various statistical correlation coefficients.
Memory-based CF can also be distinguished into: user-
based and item-based. In the former, CF is performed
using neighbourhood between users computed from
the ratings provided by them. In item-based schemes,
prediction is obtained using item neighbourhoods, i.e.
proximity (or deviation) of ratings between various items.
Inmodel-based approaches, the original user-item ratings
dataset is used to train a compact model, which is then
used for prediction. The model is developed by methods
borrowed from artificial intelligence, such as Bayesian

© 2012 Basu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 2 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

classification, latent classes and neural networks; or, from
linear algebra, e.g. singular value decomposition (SVD),
latent semantic indexing (LSI) and principal component
analysis (PCA). Model-based algorithms are usually fast
to query but relatively slow to update.
CF based approaches perform better with the avail-

ability of more data. Cross domain recommendations
are possible, if the corresponding data can be utilised
(e.g. a person with a strong interest in horror movies
may also rate certain Halloween products highly). How-
ever, the sharing of user-item preferential (i.e. rating)
data for use in CF poses significant privacy and secu-
rity challenges. Competing organisations, e.g. Netflix and
Blockbuster may not wish to share specific user infor-
mation, even though both may benefit from such shar-
ing. Users themselves might not want detailed informa-
tion about their ratings and buying habits known to any
single organisation. To overcome this, there has been
recent work in privacy-preserving collaborative filter-
ing (PPCF) that can enable CF without leaking private
information. In CF, achieving accuracy and preserving
privacy are orthogonal problems. The two main direc-
tions of research in privacy-preserving collaborative fil-
tering are: encryption-based and randomisation-based. In
encryption-based techniques, prior to sharing individual
user-item ratings data are encrypted using cryptosystems
that support homomorphic properties. In randomisation-
based privacy preserving techniques, the ratings data is
randomised either through random data swapping or data
perturbation or anonymisation.
However, many theoretically feasible collaborative fil-

tering schemes face practical implementation difficulties
in real world computing infrastructures like public cloud
computing platforms. These difficulties include computa-
tional complexity, dataset size and hence scalability, and
dependence on trusted third party amongst others. In
this paper, we re-visit the generalised problem of privacy
preserving collaborative filtering: we present and extend
our previously proposed novel approach [2] and realistic
implementations of a privacy preserving weighted Slope
One scheme on the Google App Engine for Java (GAE/J)
and the Amazon Web Services Elastic Beanstalk (AWS
EBS) – two specialised Platform-as-a-Service (PaaS)
cloud services that enable Software-as-a-Service (SaaS)
construction.

Motivating example
With data about individual’s personal preferences being
increasingly stored by applications built atop various
SaaS and PaaS cloud platforms, there is a growing need
to ensure that privacy of such data is preserved while
enabling efficient statistical operations on the data, even
over multiple cloud applications belonging to multiple
cloud sites. Consider the following example: Alice has

seen and rated a number of films from the Japanese ani-
mation Studio Ghibli on a film rating web application built
on a PaaS cloud. She intends to see the 2011 film: FromUp
on Poppy Hill next and would like the film rating website
to give her a rating prediction for this film based on her
ratings of the other films that she has rated as well as such
ratings from the community. She is completely unaware of
(and does not care) who else has rated the various films in
this way apart from obtaining a reasonable rating for From
Up on Poppy Hill. Alice also is unwilling to send her entire
rating vector for films she has rated to any third party but
is happy to send some in such a way that they are de-linked
from her identity through some anonymising mechanism.
If Alice is to obtain a rating for From Up on Poppy Hill,
she would prefer confidentiality of the information and
also does not want to reveal her identity in the prediction
query. In the future, Alice may also change the ratings for
any of her previously rated films.

Objectives
In short, we aim to build a privacy preserving collaborative
filtering scheme on the cloud for any item such that:

1. a contributing user does not have to reveal his/her
entire rating vector to any other party,

2. any individual parts of information revealed by a user
are insufficient to launch an inference based attack to
reveal any additional information,

3. a trusted third party is not required for either model
construction or for prediction,

4. the scheme is robust to insider threats to data privacy
from the cloud infrastructure itself,

5. the scheme has acceptable efficiency (in terms of
speed) as well as a high prediction accuracy.

We also assume honest but curious user participation,
although we discuss in this paper what happens if we
give up this assumption. The formal problem statement is
presented in Section “Problem Statement”.
To achieve this, in our approach, the user will assume

the presence of anonymising techniques (e.g. IPv4 net-
work address translation and dynamic IPs, anonymiser
networks such as Tor, and pseudonymous identities; see:
[3-9]) to de-identify himself/herself from his/her ratings
sufficiently such that the complete rating vector for a
user cannot be reconstructed. Thus our security guaran-
tees are based upon the security guarantees provided by
the underlying anonymisingmechanism, and are bounded
by it.

Contributions
The main contribution of this paper is that we build
on our previously proposed work [2] and show that it
is feasible to implement on both Amazon and Google

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 3 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Software-as-a-Service enabling Platform-as-a-Service
clouds. We also include discussions on possible exten-
sions of our idea. Note that other existing PPCF schemes
do not have any cloud based implementations, hence our
results are not comparable with implementation results
of such PPCF schemes.
The rest of the paper is organised as follows: in

§“Related Work”, we list some of the related work in pri-
vacy preserving collaborative filtering. In §“Background”,
we introduce the building blocks for our proposed
scheme, which is presented in §“Proposed Scheme”. We
present the comparative evaluation of our implementa-
tion in §“Evaluation” preceded by practical implementa-
tion considerations in §“Implementation Considerations”
before concluding with future directions in §“Conclusion
and Future Work”.

Related work
In recent years, privacy has attracted a lot of atten-
tion. There are a number of existing works on privacy-
preserving collaborative filtering (PPCF). One of the ear-
liest such efforts is due to Canny [10] which uses a partial
Singular Value Decomposition (SVD) model and homo-
morphic encryption to devise amulti-party PPCF scheme.
Canny [11] also proposes a new solution based on a proba-
bilistic factor analysis model that can handle missing data,
and provides privacy through a peer-to-peer protocol.
Polat and Du have also investigated this problem from

several perspectives: in [12], they proposed a random-
ized perturbation technique to protect individual privacy
while still producing accurate recommendations results;
in [13], the authors presented a privacy-preserving pro-
tocol for collaborative filtering over vertically partitioned
data; in [14], a randomisation based SVD approach is
presented, while in [15] the scheme enables recom-
mendations via item-based algorithms using randomized
response techniques.
Berkovsky et al. [16] present a decentralized distributed

storage of user data combined with data modification
techniques to mitigate privacy issues. Tada et al. pre-
sented a privacy-preserving item-based collaborative fil-
tering scheme in [17].
Cissée and Albayrak [18] develop a method for privacy-

preserving recommender systems based on a multi-agent
technology which enables applications to generate recom-
mendations via various filtering techniques while preserv-
ing the privacy of all participants. Ahmad and Khokar
proposed [19] a privacy preserving collaborative filter-
ing schemes for web portals using a trusted third party
for threshold decryption. Kaleli and Polat propose [20] a
naı̈ve Bayesian classifier based CF over a P2P topology
where the users protect the privacy of their data using
masking, which is comparable to randomisation. Another
homomorphic encryption based SVD scheme has been

proposed by Han, et al. [21] but the authors also describe
that their scheme does not scale well for realistic datasets.
Gong et al. [22] present a new collaborative filtering
technique based on randomised perturbation and secure
multiparty computation. However, neither are these tech-
niques built for the cloud, nor are they efficient enough for
large-scale general purpose use.
Our work is the first PPCF scheme that includes a prac-

tical cloud-based implementation and results. In [23], we
have proposed a privacy preserving (using encryption) CF
scheme based on the well known weighted Slope One
predictor [24]. Our prior scheme is applicable to pure hor-
izontal and pure vertical dataset partitions. The scheme
presented in this paper does not consider dataset parti-
tioning in the cloud because user’s rating data are not
stored in the cloud at all. Even so, the general assumption
is that each user knows only his or her own ratings, and
does know all of them – similar to the case of horizon-
tal partitioning of data outside the cloud. We do include a
discussion on the case of vertical partitioning of data out-
side the cloud. We have also experimented with an actual
implementation on the cloud, but since none of the other
existing work has tested their implementation on a cloud
computing environment, we do not provide any explicit
comparative evaluation.

Background
Slope one predictors for collaborative filtering
The Slope One predictors due to Lemire and McLachlan
[24] are item-based collaborative filtering schemes that
predict the rating of an item for a user from a pair-wise
deviations of item ratings. Slope One CF can be evaluated
in two stages: pre-computation and prediction of ratings.
In the pre-computation stage, the average deviations of

ratings from item a to item b is given as:

δa,b = �a,b
φa,b

=
∑

i δi,a,b
φa,b

=
∑

i(ri,a − ri,b)
φa,b

. (1)

where φa,b is the count of the users who have rated both
items while δi,a,b = ri,a − ri,b is the deviation of the rating
of item a from that of item b both given by user i.
In the prediction stage, the rating for user u and item x

using the weighted Slope One is given as:

ru,x =
∑

a|a �=x(δx,a + ru,a)φx,a
∑

a|a �=x φx,a

=
∑

a|a �=x(�x,a + ru,aφx,a)
∑

a|a �=x φx,a
. (2)

The matrices � and φ are called deviation and car-
dinality matrices respectively. These matrices are sparse
matrices. We need to store the upper triangulars only
because the leading diagonal contains deviations and car-
dinalities of ratings between the same items, which are

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 4 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

irrelevant. The lower triangular for the deviation matrix is
the additive inverse of the upper triangular while that of
the cardinality matrix is the same as its upper triangular.

Privacy threats
The two matrices (deviation and cardinality) contain
information about item pairs only computed from ratings
given by all users, so these do not pose any privacy risk to
any particular user’s rating data. However, there is a pri-
vacy threat to individual user’s rating data at the time of
computing deviations and cardinality from plaintext rat-
ings. This is why we ought to de-link the identities of users
from the submitted ratings such that individual users and
their ratings cannot be conclusively linked to each other.
In addition to that, if the user sends his/her rating vector
to the prediction function then there is a privacy threat.
Therefore, we use encrypted rating prediction.

Anonymity and identifiability
The diagram in Figure 1 illustrates why a simple net-
work address translator can provide a certain degree of
anonymity by representing all IP addresses on its LAN
side with just one IP address on its WAN side. A more
complex and cryptographic pseudonymous method of
anonymity was presented in [9].
Despite the importance of anonymity in this privacy

preserving collaborative filtering technique, there is also a
consensus on identifiability if there is a pressing need. In
both the case of NAT and the case of pseudonyms, this
identifiability can be obtained through information that

the NAT administrator or pseudonymous group mem-
bership issuers provide. The process is not straightfor-
ward and requires offline intervention by administrators.
Hence, the support for identifiability does not nullify the
ability to anonymise the data.

Homomorphic cryptosystem
Paillier public-key cryptosystem [25] exhibits addi-
tively homomorphic properties. Denoting encryption and
decryption functions as E() and D() respectively, the
encryption of the sum of two plaintext messages m1 and
m2 is the modular product of their individual ciphertexts:

E(m1 + m2) = E(m1) · E(m2) (3)

and, the encryption of the product of one plaintext mes-
sages m1 and a plaintext integer multiplicand π is the
modular exponentiation of the ciphertext of m1 with π as
the exponent:

E(m1 · π) = E(m1)
π . (4)

The Paillier cryptosystem with optimisations are
described in three steps: key generation (algorithm 1),
encryption (algorithm 2) and decryption (algorithm 3).

Algorithm 1
Paillier cryptosystem key generation.

1: Generate two large prime numbers p and q,
each with half the specified modulus bit
length for the cryptosystem.

Figure 1 Typical anonymity that can be obtained through a network address translator.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 5 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Ensure: gcd(pq, (p − 1)(q − 1)) = 1 and p �= q.

2: Modulus n = pq and pre-compute n2.
3: Compute

λ = lcm(p − 1, q − 1) = (p−1)(q−1)
gcd(p−1,q−1) .

4: g ← (1 + n). {Optimised here but originally:
select random g ∈ Z∗

n2 such that n divides the
order of g.}

Ensure: gcd(L(gλ mod n2), n) = 1 where
L(u) = u−1

n . {Optimisation:
gλ mod n2 = (1 + nλ) mod n2.}

5: Pre-compute the modular multiplicative
inverse μ = L(gλ mod n2)−1 mod n.

6: return Public key: (n, n2, g) and private key:
(λ,μ).

Algorithm 2
Paillier encryption algorithm.

Require: Plaintextm ∈ Zn.

1: Choose random r ∈ Z∗
n.

2: return: Ciphertext c ← (1 + mn) rn mod n2.
{Optimised here but originally:
c ← gmrn mod n2.}

Algorithm 3
Paillier decryption algorithm.

Require: Ciphertext c ∈ Z∗
n2 .

1: return: Plaintext
m ← L(cλ mod n2)μ mod n.

Our implementation of Paillier cryptosystem supports
negative numbers for plaintext because quite often a devi-
ation of two ratings can be negative.We have used an opti-
mised version of a non-threshold Paillier cryptosystem.
Due to the absence of the threshold servers, decryption
is faster than the threshold version. To cater for negative
plaintext inputs, we divide the ring of n in two parts and
consider any plaintextm ≥ n

2 as negative.

Problem statement
The problem can be formally defined in the following
fashion:
Definition [Privacy-Preserving weighted Slope One Pre-
dictor] Given a set of m users u1, . . . ,um that may rate
any number of n items i1, . . . , in, build the weighted Slope
One predictor for each item satisfying the following two
constraints:

• no submitted rating should be deterministically
linked back to any user.

• any user should be able to obtain a prediction
without leaking his/her private rating information.

Note that this closely corresponds to the perfect hor-
izontal partitioning case, wherein each site contains the
data of one single user. However, this is not quite the same,
since each user may not rate all of the items.

Proposed scheme
Akin to the original Slope One CF scheme, our proposed
extension also contains a pre-computation phase and a
prediction phase. Pre-computation is an on-going pro-
cess as users add, update or delete pair-wise ratings or
deviations. The overall user-interaction diagram of our
proposedmodel is presented in Figure 2 showing the addi-
tion of rating data and an example CF prediction query.
It illustrates users, Alice and Bob, each submitting plain-
text (item) pair-wise deviations of ratings of items through
an identity anonymiser to the Software-as-a-Service cloud
application. Another user, Carol, then queries and obtains
a prediction for an arbitrary item (item k, in the exam-
ple) with her encrypted query vector. The SaaS cloud
application computes the prediction using homomorphic
encryption and responds to Carol with an encrypted
answer, which only Carol herself can decrypt.

Pre-computation
In the pre-computation phase, the plaintext deviation
matrix and the plaintext cardinality matrix are com-
puted. In the absence of full rating vectors from users
and consistent user identification, the combination of
the deviation and the cardinality matrices pose no pri-
vacy threat to the users’ private rating data. The col-
lection of the rating data is done pair-wise and after
the user identity is de-linked in the process through
the use of known techniques, such as anonymising net-
works, mixed networks, pseudonymous group mem-
berships, and so on. User submits a pair of ratings
or the corresponding deviation to the cloud applica-
tion at any point in time. Thus, if the user originally
rated n items then n(n−1)

2 pair-wise ratings or devi-
ations should be submitted. Since the user’s identity
(e.g. a pseudonym or an IP address) can (rather, must)
change between consecutive submissions, the cloud can-
not deterministically link the rating vector to a particular
user.

Case of new ratings
In the pre-computation stage, the average deviations of
ratings from item a to item b is given in equation 1.
The cloud application only maintains a list of items;
their pairwise deviations and cardinalities but no other
user data. The process of rating addition is described in
algorithm 4.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 6 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Figure 2 User-interaction diagram of our scheme.

Algorithm 4
An algorithm for the addition of new ratings.

Require: An item pair identified by a and b,
ratings ra and rb, or the deviation δa,b = ra − rb has
been submitted.

1: Find the deviation �a,b and cardinality φa,v.
2: {While looking for deviations and

cardinalities, also look for their inverses, i.e.
�b,a and φb,a because only the upper
triangular is stored. If the inverses are
retrieved then deviation must be inverted
before operating on it.}

3: if �a,b and φa,b not found then
4: �a,b ← 0 and φa,b ← 0.
5: end if
6: Update �′

a,b ← �a,b + δa,b and
φ′
a,b ← φa,b + 1.

7: Store �′
a,b and φ′

a,b.

Ensure:While storing, write to the inverses �′
b,a

and φ′
b,a if these were initially retrieved. {If the

inverses were retrieved then deviation must be
inverted before storing it.}

8: Audit this add operation in the datastore, e.g.
using user’s IP address as the identity. {This
is a typical insider threat in the cloud.}

Updates and deletions
Updates or deletions of existing rating data are possible.
For example, say the user has rated item a and b before-
hand. When it comes to updating, he/she can notify the
cloud of the difference between the new pair-wise rating
deviation and the previous one and flag it to the cloud that
it is an update. The process of rating update is described in
algorithm 5. Similarly, for the delete operation, the addi-
tive inverse of the previous deviation, i.e. −δa,b is sent by
the user to the cloud signifying a deletion. The process of
rating deletion is also described in algorithm 5.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 7 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Algorithm 5
An algorithm for the updates or deletions of existing
ratings.

Require: In case of update, an item pair identified
by a and b, and diffδa,b,δ′

a,b
; or in case of deletion: an

item pair identified by a and b, and −δa,b.

1: Find the deviation �a,b and cardinality φa,b.
2: {While looking for deviations and

cardinalities, also look for their inverses, i.e.
�b,a and φb,a because only the upper
triangular is stored. If the inverses are
retrieved then deviation must be inverted
before operating on it.}

3: if �a,b and φa,b not found then
4: print error!
5: end if
6: In case of an update,

�′
a,b ← �a,b + diffδa,b ,δ′

a,b
; or in case of

deletion: �′
a,b ← �a,b − δa,b and

φ′
a,b ← φx,y − 1.

7: Store �′
a,b and φ′

a,b, if φ
′
a,b was changed in

case of deletion.

Ensure:While storing, write to the inverses �′
b,a

and φ′
b,a if these were initially retrieved. {If the

inverses were retrieved then deviation must be
inverted before storing it.}

8: Audit this update or deletion operation in the
datastore, e.g. using user’s IP address as the
identity. {This is a typical insider threat in the
cloud.}

Prediction
In the prediction phase, the user queries the cloud with
an encrypted and complete rating vector. The encryption
is carried out at the user’s end with the user’s public key.
The prediction query, thus, also includes the user’s public
key, which is then used by the cloud to encrypt the nec-
essary elements from the deviation matrix and to apply
homomorphic multiplication according to the prediction
equation defined in equation 5, where D() and E() are
decryption and encryption operations, �x,a is the devi-
ation of ratings between item x and item a; φx,a is their
relative cardinality and E(ru,a) is an encrypted rating on
item a sent by user u, although the identity of the user is
irrelevant in this process. Note that the final decryption
is again performed at the user’s end with the user’s pri-
vate key, thereby eliminating the need of any trusted third
party for threshold decryption.

ru,x = D(
∏

a|a �=x(E(�x,a)(E(ru,a)φx,a)))
∑

a|a �=x φx,a
. (5)

which is optimised by reducing the number of encryptions
as follows:

ru,x = D(E(
∑

a|a �=x �x,a)
∏

a|a �=x(E(ru,a)φx,a))
∑

a|a �=x φx,a
. (6)

The steps for the prediction is shown in algorithm 6.

Algorithm 6
An algorithm for the prediction of an item.

Require: An item x for which the prediction is to
be made, a vector �RE = E(ra|a �=x) of encrypted
ratings for other items rated by the user (i.e. each
item a|a �= x) and the public key pku of user u.

1: total cardinality: tc ← 0; total deviation:
td ← 0; total encrypted weight: tew ← E(0);
total encrypted deviation: ted ← E(0).

2: for j = 1 → length(�RE) do
3: Find the deviation �x,j and

cardinality φx,j.
4: {While looking for deviations and

cardinalities, also look for their
inverses, i.e. �j,x and φj,x because
only the upper triangular is stored. If
the inverses are retrieved then
deviation must be inverted before
operating on it.}

5: if �x,j and φx,j found then
6: td ← td + �x,j.
7: tc ← tc + φx,j.
8: tew ← E(tew)(E(rj)φx,j).

{This step involves a
homomorphic addition and
a homomorphic
multiplication.}

9: end if
10: end for
11: ted ← (E(tew)E(td)). {This is a

homomorphic addition.}
12: return ted and tc. {User decrypts ted ; the

predicted result is ru,x = D(ted)
tc }

In the scheme described above, there is, in fact, one pri-
vacy leakage in the prediction phase: the number of items
in the user’s original rating vector. This can be addressed
by computing the prediction at the user’s end with the
necessary elements from the deviation and cardinality
matrices obtained from the cloud. The user can mask the
actual rating vector by asking the cloud for an unnecessary
number of extra items. Note that the only privacy leakage
in the prediction stage is the list of items in the query vec-
tor. The corresponding ratings can only be decrypted by
the user’s private key. Further to this, the user is free to use

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 8 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

a different key pair for each prediction request such that
a single public key cannot be used by an adversary to link
the queries together.

Vertical partition across multiple organisations
While the solution presented above works when each
user knows their own ratings, it will not work if there
are two or more cloud applications with disjoint item
and user sets (e.g. Yahoo movies, Netflix and IMDB have
their own cloud applications), the prior PPCF solution will
work if we extend our scheme as follows. For example,
assume the two applications know the values ra and rb
respectively for two different items for the same user. To
compute the deviation ra−rb for that user without reveal-
ing it to either or to any third site, assume that the first
application randomly splits the value ra into two shares
(thus, randomly chooses za1 ∈ Z and compute za2 ∈ Z
such that ra = za1 + za2). Similarly, the other applica-
tion randomly chooses zb1 and computes zb2 such that
rb = zb1 + zb2. The first application sends za2 to the
other, and after receiving −zb1 from it, computes c1 =
za1 − zb1, while the other computes c2 = za2 − zb2.
Finally, both can send c1 and c2 respectively in an unlink-
able fashion to the cloud PPCF application, which obtains
c1 + c2 = za1 − zb1 + za2 − zb2 = ra − rb. It is pos-
sible to do this with k cloud applications as well, where
each value is split into k splits, to make the process more
resistant to collusion. Note that one problem with this
approach is that the same deviation is split over the k
splits – effectively, cardinality is increased by k instead of
by 1. One approximate fix for this is simply to increase
the deviation k-fold. Thus, each application will send in
k ∗ ci, instead of ci. However, this will only approximate
the effect since instead of adding the true deviation and
1, we end up adding k times the true deviation and k.
Alternatively, the cardinalities can be fixed by exposing a
reduction capability, so that anyone can reduce the cardi-
nalities appropriately in an unlinkable fashion. Assuming
semi-honest participants, this works fine. If this is not
suitable, the cardinalities can also be computed correctly
by flagging to the PPCF application that submissions of
all ck splits should be treated as one submission. However,
in this case, the linkage between the splits will be estab-
lished and now the security relies on the lack of collusion
among all k applications. We will explore this issue more
in the future, and also leave the experimental results for it
for future work.

Implementation considerations
In this section, we present the various considerations
and strategies that we have employed in the implemen-
tation of the aforementioned scheme on the Google App
Engine for Java and the Amazon Elastic Beanstalk cloud
platforms.

Database access and configurability
Cache based datastore access in the Google App Engine
From the documentation of Google App Engine for Java
(GAE/J) and from our experiments, we observe that the
I/O operations with the datastore are CPU intensive. To
speed up several concurrent lookup operations, we have
used the GAE/J Memcache API which is a distributed
in-memory cache. In the aforementioned algorithms,
the deviation and cardinality matrices are read from the
cache; and the datastore only if not found in cache. On the
other hand, write operations to those matrices are done
simultaneously to the cache and the datastore to ensure
consistency. Although values in the cache are volatile,
in the case of a cache-hit, the read operation is quicker
than the datastore read operation. For writing, however,
we have to flush the updates to the cache immediately in
order to ensure consistency between the cache and the
datastore. In our experimental implementation, we have
a transactional write-(to-datastore)-immediately strat-
egy. However, with multiple concurrent requests to the
servlets, this may generate performance delays. In future,
we plan to use a mechanism for optimised, consistent
asynchronous writes to the datastore.

Direct database access in the Amazon Elastic Beanstalk
Having noticed that the Amazon Elastic Beanstalk allows
significantly faster access to the database than Google App
Engine, we have used direct access to the database instead
of using Amazon’s distributed cache service – ElastiCache,
which will be considered in our future work.

Deployment configurability
From the perspective of configurability, our deploy-
ment can be made to run on either the Amazon Elastic
Beanstalk or the Google App Engine without changing
any code. We achieved this through modular design of
the backend data access. We used generic data access
techniques and made the data store configuration declar-
ative, which can be changed without affecting the code.
In future, we will extend this capability to facilitate access
to the distributed cache available to Amazon Elastic
Beanstalk.

Efficiency and parallelism
Parallelism in pre-computation
While parallelism is not necessary, it can be of help when
the number of items is large, since effectively the num-
ber of deviations is in order of O(n2). Our scheme is
intrinsically parallel in the pre-computation stage. In the
case of a large number of concurrent user rating pair
addition requests, a MapReduce [26] style parallelism in
pre-computation is achieved at the user’s end because the
user submits an item pair instead of the entire rating vec-
tor and GAE/J handles the user requests concurrently.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 9 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Each item pair ratings can be thought of as the output
of a map function, where the key is composited by the
identities of the two items and the value consists of the
deviation of the ratings and the cardinality of unity. The
reduce function in our implementation combines those
individual item-item pairwise deviation-cardinality tuples
to generate the combined value for each item-item pair.

Parallelism in prediction
In the prediction stage, we do not use concurrency yet in
our current prototype. The speed of this process depends
on the size of the cryptosystem modulus as well as the
number of encrypted ratings provided because comput-
ing the encrypted prediction involves encryption and
homomorphic multiplications, which are computationally
expensive.
Inspecting the original Slope One prediction equation 2,

one can see that both the numerator and the denom-
inator on the right hand side of the equation are just
sums on their own. Since the actual division is not done
on the server, an encrypted numerator and the plaintext
denominator is sent to the client as shown in equation 6.
This means that the client is free to submit more than
one queries with disjoint vectors of items in each query
and combine the results to form the final prediction.
That is a Map-Reduce style parallelism, which we plan
to implement in future prototypes. From a performance
standpoint, this will ensure that the servlet’s response time
will not be dependent on the size of the encrypted rat-
ing vector provided by the user, and therefore will not be
subject to the GAE/J execution deadline of 30s although
Amazon Elastic Beanstalk presents no such execution
deadline.

Attack model: malicious cloud
The implementation of our model accepts, as input from
a user, ratings for a pair of items, or the deviations of
their ratings. The implementation quietly collects the
user’s IP addresses without the user’s permission (con-
stituting an example attack scenario). With the presence
of IP address, a level of linkability between rating pairs
can be attained. However, through the use of a network
address translator (NAT), or an onion routing protocol
(e.g. Tor) or dynamic IP addresses, the user’s IP addresses
act as pseudonyms with amany-to-many relation between
a pseudonym and a real user, i.e. one IP address may
be re-used by many users and one user may have many
IP addresses over time. This makes predictable linkabil-
ity hard and often incorrect. If the user uses different IP
addresses for each separate pair of ratings then at any
point in time, the server can at most link only one pair
of ratings to a user. In reality, it will link more (and these
are wrong) because of the IP addresses being re-used by
other users.

Note that the server can also use browser-based cook-
ies to more uniquely identify a particular browser, hence a
user. However, we limit our discussion of the attack model
to IP addresses only because even with browser cookies,
it is possible for the same user to be identified separately,
e.g. using more than one browsers; or different users iden-
tified by the same browser, e.g. a browser on a publicly
shared user account. In addition browser cookies can be
selectively blocked and the users can be warned of such
cookies, thus making the user identification process less
transparent than the one using IPs.

Potential extension to vertical partitions
While we have not explicitly experimented with an imple-
mentation of the algorithms for vertical partitions (given
in Section “Vertical Partition Across Multiple Organi-
sations”), we now discuss potential implementation and
performance. It is important to note that the communica-
tion between the applications is independent of the PPCF
application residing in the PaaS cloud. The different appli-
cations, holding vertical partitions, will need to follow
some protocol to exchange randomised values between
each other. From the perspective of the PPCF applica-
tion, the performance should be largely unaffected by the
process because the addition of the different randomised
parts can happen in parallel. Once submitted, those parts
are used to update the internal deviation matrix. The
query stage is completely unaffected by this process, and
so is the time performance of the query. The only scope
of a performance slowdown depends on how fast the indi-
vidual applications collaborate with each other to generate
the partial randomised deviations.

Evaluation
We evaluated the aforementioned scheme with an imple-
mentation on the Google App Engine for Java (GAE/J) and
another on the Amazon Web Services Elastic Beanstalk
(AWS/EBS). The two implementations are very similar
and actually their deployments on the two cloud plat-
forms are simply controlled by configuration files that
specify the datastore each should look at and whether
or not to use the distributed in-memory cache. These
two were the only factors that differentiated the two
implementations.
The prototype implementations are available at the

following locations: the GAE/J demo at http://gaejppcf.
appspot.com/ and the AWS/EBS demo at http://gaejppcf.
elasticbeanstalk.com/. We usually keep the backend
database for the AWS/EBS demo switched off, so this
demo will only work fully during certain conferences
where we present this work. For the AWS/EBS demo, we
have used t1.micro EC2 instances.
For the sake of simplicity, we have not considered the

case where there may be more than one applications on

http://gaejppcf.appspot.com/
http://gaejppcf.appspot.com/
http://gaejppcf.elasticbeanstalk.com/
http://gaejppcf.elasticbeanstalk.com/

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 10 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

the SaaS applications which interact with each other to
make a prediction, i.e. the scenario described in § “Ver-
tical Partition Across Multiple Organisations”. Also, for
test use, we have not implemented comprehensive error-
checking on the web front-end. One will notice that while
the web application provides means to perform crypto-
graphic operations, e.g. key generation, encryption and
decryption on the GAE/J and the AWS/EBS. These are
provided only for experimental purposes, and in practice
they should be performed at the client’s end. For browser
compatibility, we have used Google Web Toolkitb to code
the web-based user interface.
Conforming to Google App Engine terminology, we

will call the time taken by the application to respond to
the user request as application latency or simply latency.
This latency does not include network latencies encoun-
tered between our network and Google and Amazon data
centres.

Pre-computation
In the pre-computation stage, there is no cryptographic
operation on the cloud.
In the case of Google App Engine, the application

latency is dominated by the time taken to complete a

datastore write operation. Each such datastore write oper-
ation took between 80ms and 150ms using the High-
Replication datastore and about half that time while using
the Master-Slave datastore. We also performed bulk addi-
tion of pair-wise deviations. Figure 3 is a screenshot of
the Google App Engine control panel showing the typ-
ical load generated during the bulk data addition pro-
cedure. The bulk adding client generated 32 threads to
process a part of the MovieLens 100Kc dataset. The figure
shows data of the 14 automatically allocated applica-
tion instancesd. Each such instance can handle multiple
requests and are pooled in memory. The QPS (queries
per second) column shows the average number of queries
per second an instance received while the latency is the
average time taken by that instance to complete one such
request. This simulates the scenario if many users con-
currently submit many requests to add rating or deviation
data.
In the case of the Amazon Elastic Beanstalk, we adopted

a very different approach to loading the complete Movie-
Lens 100K dataset. We had direct access to port 3306 of
the MySQL server EC2 instance running as part of Ama-
zon Relational Database Service (RDS). Consequently, we
pre-computed the deviation and cardinality matrices from

Figure 3 Typical load during pre-computation on the Google App Engine instances during partial bulk addition of the MovieLens 100K
dataset. Note that even if the latency, for example, in the third row is only 175.3ms, it does not equate to a QPS value of 1

175.3 = 0.0057. The QPS
signifies the number of queries the particular instance receives on an average while the latency signifies how long the instance takes on an average
to process one such query. The fact that the latency is low does not imply that the QPS will be high because the QPS is the result of the queries sent
to the front-end, the speed of which is affected by external factors, such as network latency, GAE/J queue processing speed and so on.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 11 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

the 100K dataset user-item rating matrix and then used
plain SQL to add that data. The process was faster and
more reliable than adding data to Google App Engine’s
datastore.

Prediction
The prediction stage involves one homomorphic encryp-
tion as well as several homomorphic multiplications.
Therefore, increasing the size of the encrypted rating vec-
tor typically linearly increased the time taken to predict.
It is not dependent on the size of the deviation and car-
dinality matrices. This is shown in Tables 1 and 2. Since
the recent version of GAE/J allows front-end instance
class configuration, we have also included prediction
test results with the 1200MHz, 256MB RAM and the
2400MHz and 512MB RAM front-end instance classes
in Tables 3 and 4 respectively. Note that the results pre-
sented in Table 1 were obtained using the previous version
of the GAE/J which did not allow front-end instance class
configuration. The front-end instance class from the pre-
vious version roughly compares to the 600MHz, 128MB
RAM default instance class in terms of performance.
In terms of prediction performance, the less time it

takes, the better. In a realistic example, the prediction of
several items ought to be obtained with the user waiting
to see somemeaningful recommendations.While the pre-
diction may be obtainable in parallel and reported asyn-
chronously to the user (which falls in the remits of future
work), users will still expect meaningful recommenda-
tions presented to them in reasonably quickly, which is
often in order of just few seconds on a web browser or a
mobile application.
Note that given a 2048-bit Paillier cryptosystem, the

total prediction time with 10 encrypted ratings as the
input vector is reasonably fast: about 5 seconds, while
the prediction time improves by almost eight-fold on the
Google App Engine if we use a 1024-bit cryptosystem.
Sometimes, even if the input vector is large, pair-wise rat-
ings between the queried for item and the items in the
input vector may not exist, which will reduce the pre-
diction time. Another factor impacting on performance

Table 1 Comparison of typical prediction timings, based
on the optimised equation 6 on the Google App Engine for
Java

Bit size1 Query vector size2 Typical prediction time

1024 5 500ms

1024 10 650ms

2048 5 3800ms

2048 10 5000ms

1Paillier cryptosystemmodulus bit size, i.e. |n|.
2Size of the encrypted rating vector.

Table 2 Comparison of typical prediction timings, based
on the optimised equation 6 on the AmazonWeb Services
Elastic Beanstalk using the t1.micro instance

Bit size1 Query vector size2 Typical prediction time

1024 5 300ms

1024 10 550ms

2048 5 600ms

2048 10 900ms

1Paillier cryptosystemmodulus bit size, i.e. |n|.
2Size of the encrypted rating vector.

is the availability of the deviation and cardinality matrix
data on the distributed in-memory cache versus the data-
store, although in our Amazon implementation we did
not take advantage of Amazon’s in-memory cache – the
ElastiCache. In addition, GAE/J instances may also per-
form better or worse depending on the shared resources
availability on the Google’s cloud computing clusters. In
contrast with the Google App Engine, the results on the
Amazon Elastic Beanstalk are significantly faster, with
almost a 5.5 fold performance increase for a 2048-bit
cryptosystem and query vector size 10.
In addition, we note that the t1.micro instance on the

AWS/EBS still outperforms the GAE/J 2400MHz front-
end instance class when using the 2048-bit cryptosys-
tem. This is explicable from the description of Amazon’s
micro instancese, which shows that not only do t1.micro
instances have more memory (at 600MB) than the GAE/J
but also have more powerful CPU available in short
bursts. In fact, the micro instances are particularly suit-
able for applications requiring occasional short bursts of
CPU, which is what our experiments do. Figure 4 presents
a performance comparison of the various GAE/J instance
classes as well as the t1.micro of AWS/EBS. The diagram
shows each class has four different performance values.
The leftmost is the one for 1024 bits with a query vector
size of 5; followed by that with the query vector size of 10;
and then followed by that with the query vector size of 5
for the 2048 bit cryptosystem and the rightmost using the
2048 bits cryptosystem with the query vector size 10.

Table 3 Comparison of typical prediction timings, based
on the optimised equation 6 on the Google App Engine for
Java with the 1200MHz front-end instance class

Bit size1 Query vector size2 Typical prediction time

1024 5 450ms

1024 10 600ms

2048 5 2500ms

2048 10 3100ms

1Paillier cryptosystemmodulus bit size, i.e. |n|.
2Size of the encrypted rating vector.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 12 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Table 4 Comparison of typical prediction timings, based
on the optimised equation 6 on the Google App Engine for
Java with the 2400MHz front-end instance class

Bit size1 Query vector size2 Typical prediction time

1024 5 285ms

1024 10 400ms

2048 5 1200ms

2048 10 1750ms

Paillier cryptosystemmodulus bit size, i.e. |n|.
Size of the encrypted rating vector.

Security
Insider threat in the cloud
Our implementation collects the IP address of the user
in an attempt to link the ratings to a particular IP. We
performed rating and deviation submission from a num-
ber of different networks. So long as the same user did
not submit ratings and deviations from the same WAN
IP, the cloud application could do little to conclusively
link that specific user to his/her rating or deviation sub-
missions. The cloud only learns that a pair of ratings or
their deviation by a particular user (provided the user
identity changes in the consecutive submission), which
is even insufficient to launch an offline knowledge based
inference attack on the user’s private rating vector.

What if the user is dishonest?
If the user is dishonest, contrary to our assumption, then
it is evident that automated bot-based addition, updates
and deletions can disrupt the pre-computation stage.
Although we leave this for future work, one possibility is
to use CAPTCHA [27] to require human intervention, and
hence slow down the number of additions, updates and
deletions.

Conclusion and future work
Many existing privacy preserving collaborative filtering
schemes pose challenges with practical implementations
on real world cloud computing platforms. In this paper, we
utilised the well-known weighted Slope One collaborative
filtering predictor to demonstrate a novel approach for
privacy preserving collaborative filtering and its practical
applicability on two public Software-as-a-Service enabling
Platform-as-a-Service clouds: the Google App Engine for
Java and the Amazon Elastic Beanstalk. In our scheme,
user’s rating data is not stored in the cloud. Our scheme
does not rely on any trusted third party for threshold
decryption by allowing the users to encrypt and decrypt a
prediction query and its results respectively. The results of
our experiments show that the user can obtain predictions
quickly despite encrypted rating queries, with results on
the Amazon Elastic Beanstalk outperforming those on the
Google App Engine.

Figure 4 Prediction performance comparison of the different instance classes of the GAE/J and the t1.micro class of AWS/EBS.

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 13 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

The scheme proposed in this paper partly relies on
the security guarantees of existing anonymising tech-
niques, such as NAT, pseudonyms or an anonymiser/mix
network. We discuss the relatively simple NAT-based
anonymity but also mention that it is possible to obtain
identifiability if need be. We also assume that the user is
honest. In future work, we plan to extend our proposed
scheme by discarding those assumptions. We also plan to
run more experiments with exhaustive user studies. We
also plan to enhance the rating query performance further
by optimising our implementation.

Endnotes
a This is an extended journal version of our prior work
“Privacy-preserving collaborative filtering for the cloud”
published in the IEEE Cloudcom 2011.
b See: http://code.google.com/webtoolkit/.
c MovieLens datasets: http://www.grouplens.org/node/
73.
d This is a snapshot of the GAE/J control panel. The
number of instances change over time depending on the
number of user requests.
e See http://docs.amazonwebservices.com/AWSEC2/
latest/UserGuide/concepts micro instances.html.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AB conceptualised the model and implemented it on the SaaS enabling PaaS
cloud platforms. He also contributed to all of the other sections and took the
lead on writing the article. JV primarily contributed to the conceptualisation of
the paper, the analysis of privacy of the proposed scheme, and the related
work. HK contributed to optimising the cryptographic operations in the
prediction stage. TD and SN contributed to the introduction and to the overall
writing of the paper. All authors read and approved the final manuscript.

Authors’ information
Anirban Basu

Post-doctoral researcher (Department of Communication and Network
Engineering), Tokai University
Dr. Anirban Basu is a Post-doctoral Researcher at Kikuchi lab at Tokai University
working on a Japanese Ministry of Internal Affairs and Communications
funded project in collaboration with Waseda University, Hitachi, NEC and
KDDI. He holds a Ph.D. in Computer Science and a Bachelor of Engineering
(Hons.) in Computer Systems Engineering from the University of Sussex. His
research interests are in computational trust management, privacy and
security and peer-to-peer networks. He has several years of experience with
academic research at the University of Sussex where he was involved with two
EPSRC funded and one EU IST FP5 funded research projects alongside his
doctoral research.

Jaideep Vaidya

Associate Professor (Management Science and Information Systems Department),
Rutgers The State University of New Jersey
Dr. Jaideep Vaidya is an Associate Professor of Computer Information Systems
at Rutgers University. He received his Masters and Ph.D. in Computer Science
from Purdue University and his Bachelors degree in Computer Engineering
from the University of Mumbai. His research interests are in Privacy, Security,
Data Mining, and Data Management. He has published over 60 papers in
international conferences and archival journals, and has received three best
paper awards from the premier conferences in data mining, databases, and

digital government research. He is also the recipient of a NSF Career Award
and a Rutgers Board of Trustees Research Fellowship for Scholarly Excellence.

Hiroaki Kikuchi

Professor (Department of Communication and Network Engineering), Tokai
University
Dr. Hiroaki Kikuchi received B.E., M.E. and Ph.D. degrees from Meiji University.
He is currently a Professor in the Department of Communication and Network
Engineering, School of Information and Telecommunication Engineering, Tokai
University. He was a visiting researcher of the School of Computer Science,
Carnegie Mellon University in 1997. His main research interests are fuzzy logic,
cryptographic protocols, and network security. He is a member of the Institute
of Electronics, Information and Communication Engineers of Japan (IEICE), the
Information Processing Society of Japan (IPSJ), the Japan Society for Fuzzy
Theory and Systems (SOFT), IEEE and ACM. He is an IPSJ Fellow.

Theo Dimitrakos

Head of Security Architectures Research, BT Research and Technology
Dr. Theo Dimitrakos the leading the Security Architectures Research area at
the Security Futures Practice of BT Research & Technology (part of BT Innovate
& Design). He has over fifteen years of experience in Information Security,
Identity and Entitlement Management, SOA Web Services, Grid and Cloud
Computing and, more recently, Cyber Security including Intrusion Prevention
Systems, Anti-Evasion Analysis and Malware Detection / Containment for
Virtual Data Centres and large scale Open Systems. Theo has been the
technical director of several European research initiatives including large scale
innovation delivery projects such as BEinGRID and TrustCoM, and more
recently OPTIMIS as well as research community building initiatives such as
iTrust. He has contributed to or authored several expert advisory reports on
Protection against Cyber-crime, on Virtualisation and Cloud Security
Innovations, on Data Protection and Privacy in the Cloud, on Cloud Computing
Risks and on Security and Resilience of Cloud Computing Infrastructure and
Services for Government use by BT, ENISA and other European and UK
agencies or expert groups. Some of these have been discussed at the WEF in
Davos and the European Parliament. Theo has also been offering consultancy
steering the product development roadmaps of innovative start-ups in Europe
and North America. Theo holds a Ph.D. in Computing from Imperial College,
London; and a B.Sc. in Mathematics from Panepistimio Kritis.

Srijith Nair

Senior Security Researcher, BT Research and Technology
Dr. Srijith Nair is a Senior Security Researcher at BT Innovate and Design and is
currently looking at security issues related to virtualisation and the cloud
computing delivery model and other security issues involving SOA/SOI
themes. He has been part of multiple expert groups advising European
Network and Information Security Agency (ENISA) on the impact of cloud
computing on the resilience of eGov services as well as on cloud computing
security assessment and was also a part of the working group of the Cloud
Security Alliance (CSA) delivering the security guidance report. He has a Ph.D.
in computer science from Vrije Universiteit, Amsterdam where he worked with
Prof. Andrew S. Tanenbaum and Associate Prof. Bruno Crispo on the problem
of intrasystem information flow control within the scope of data-centric policy
enforcement. He also worked on other aspects of security, including applied
cryptography, DRM, and system security in general. Srijith received his M.Sc.
(Computer Science) degree from National University of Singapore, Singapore
in 2002 and a B.Tech. (EEE) degree (First class honors) from Nanyang
Technological University, Singapore in 2000, under the SIA/NOL
Undergraduate Scholarship Program.

Acknowledgements
The work at Tokai University has been supported by the Japanese Ministry of
Internal Affairs and Communications funded project “Research and
Development of Security Technologies for Cloud Computing” involving Tokai
University, Waseda University, NEC, Hitachi and KDDI. Jaideep Vaidya’s work is
supported in part by the United States National Science Foundation under
Grant No. CNS-0746943 and by the Trustees Research Fellowship Program at
Rutgers, The State University of New Jersey. Contributions by Theo Dimitrakos
and Srijith Nair relate to research in British Telecommunications under the IST
Framework Programme 7 integrated project OPTIMIS that is partly funded by
the European Commission under contract number 257115.

http://code.google.com/webtoolkit/
http://www.grouplens.org/node/73
http://www.grouplens.org/node/73
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/concepts_micro_instances.html

Basu et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:8 Page 14 of 14
http://www.journalofcloudcomputing.com/content/1/1/8

Author details
1Graduate School of Engineering, Tokai University. 2-3-23 Takanawa,
Minato-ku, Tokyo 108-8619, Japan. 2MSIS Department, Rutgers, The State
University of New Jersey. 1, Washington Park, Newark, New Jersey 07102-1897,
USA. 3Security Futures Practice, Research & Technology, BT. Adastral Park,
Martlesham Heath, IP5 3RE, UK.

Received: 6 February 2012 Accepted: 5 June 2012
Published: 9 July 2012

References
1. Schafer JB, Konstan J, Riedi J (1999) Recommender systems in

e-commerce. In Proceedings of the 1st ACM conference on Electronic
Commerce 158–166. New York: ACM Press

2. Basu A, Vaidya J, Kikuchi H, Dimitrakos T (2011) Privacy-preserving
collaborative filtering for the cloud. In Proceedings of the 3rd IEEE
International Conference on Cloud Computing Technology and Science
(Cloudcom), Athens, Greece

3. Reed M, Syverson P, Goldschlag D (1998) Anonymous connections and
onion routing. Sel Areas Commun 16(4): 482–494

4. Catalano D, Di RaimondoM, Fiore D, Gennaro R, Puglisi O (2011) Fully non-
interactive onion routing with forward-secrecy. In Proceedings of the 9th
International conference on Applied cryptography and network security.
ACNS’11. Nerja, Spain 255–273. Berlin, Heidelberg: Springer-Verlag

5. Dingledine R, Mathewson N, Syverson P (2004) Tor: The
second-generation onion router. In Proceedings of the 13th conference
on USENIX Security Symposium-Volume 13. SSYM’04, San Diego, CA
21–21. Berkeley, CA, USA: USENIX Association

6. Clarke I, Sandberg O, Wiley B, Hong T (2001) Freenet: A distributed
anonymous information storage and retrieval system. In International
workshop on Designing privacy enhancing technologies: design issues in
anonymity and unobservability 46–66. New York, NY, USA:
Springer-Verlag New York, Inc.

7. Furukawa J, Sako K (2010) Mix-net system. [US Patent Application.
20,100/115,285]

8. Danezis G (2003) Mix-networks with restricted routes. In Proceedings of
Privacy Enhancing Technologies workshop (PET 2003) 1–17. Dresden,
Germany: Springer-Verlag

9. Wakeman I, Chalmers D, Fry M (2007) Reconciling privacy and security in
pervasive computing: the case for pseudonymous group membership. In
Proceedings of the 5th International workshop on Middleware for
pervasive and ad-hoc computing: held at the ACM/IFIP/USENIX 8th
International Middleware Conference. MPAC ’07. Newport Beach,
California 7–12. New York, NY, USA: ACM

10. Canny J (2002) Collaborative filtering with privacy. In Proceedings of the
2002 IEEE Symposium on, Security and Privacy. SP ’02. Oakland, CA, USA
45–57. Washington, DC, USA: IEEE Computer Society

11. Canny J (2002) Collaborative filtering with privacy via factor analysis. In
Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’02 238–245.
New York: ACM. [http://doi.acm.org/10.1145/564376.564419]

12. Polat H, Du W (2003) Privacy-preserving collaborative filtering using
randomized perturbation techniques. In Data Mining, 2003. ICDM 2003.
Third IEEE International, Conference on 625–628. IEEE

13. Polat H, Du W (2005) Privacy-preserving collaborative filtering on
vertically partitioned data. Knowledge Discovery in Databases: PKDD
2005. pp. 651–658

14. Polat H, Du W (2005) SVD-based collaborative filtering with privacy. In
Proceedings of the 20th ACM Symposium on Applied Computin

15. Polat H, Du W (2006) Achieving private recommendations using
randomized response techniques. In Proceedings of the 10th Pacific-Asia
conference on Advances in Knowledge Discovery and Data Mining.
PAKDD’06. Singapore 637–646. Berlin, Heidelberg: Springer-Verlag

16. Berkovsky S, Eytani Y, Kuflik T, Ricci F (2007) Enhancing privacy and
preserving accuracy of a distributed collaborative filtering. In Proceedings
of the 2007 ACM conference on, Recommender systems. RecSys ’07.
Minneapolis, MN, USA 9–16. New York, NY, USA: ACM

17. Tada M, Kikuchi H, Puntheeranurak S (2010) Privacy-Preserving
Collaborative Filtering Protocol Based on Similarity between Items. In
Proceedings of the 2010 24th IEEE International, Conference on

Advanced Information Networking and Applications. AINA ’10. Perth,
Australia 573–578. Washington, DC, USA: IEEE Computer Society

18. Cissée R, Albayrak S (2007) An agent-based approach for
privacy-preserving recommender systems. In Proceedings of the 6th
international joint conference on autonomous agents and multiagent
systems. AAMAS ’07. Honolulu, Hawaii 1–8. New York, NY, USA: ACM

19. Ahmad W, Khokhar A (2007) An Architecture for Privacy Preserving
Collaborative Filtering on Web Portals. In Proceedings of the Third
International Symposium on Information Assurance and Security. IAS ’07.
Manchester, UK 273–278. Washington, DC, USA: IEEE Computer Society

20. Kaleli C, Polat H (2010) P2P collaborative filtering with privacy. Turkish J
Electr Electrical Eng Comput Sci 8: 101–116

21. Han S, Ng WK, Yu PS (2009) Privacy-Preserving Singular Value
Decomposition. In Proceedings of the 2009 IEEE International Conference
on, Data Engineering. ICDE ’09. Shanghai, China 1267–1270. Washington,
DC, USA: IEEE Computer Society

22. Gong S (2011) Privacy-preserving collaborative filtering based on
randomized perturbation techniques and secure multiparty
computation. IJACT: Int J Advancements Comput Technol 3(4): 89–99

23. Basu A, Kikuchi H, Vaidya J (2011) Privacy-preserving weighted Slope One
predictor for Item-based Collaborative Filtering. In Proceedings of the
international workshop on Trust and Privacy in Distributed Information
Processing (workshop at the IFIPTM 2011), Copenhagen, Denmark

24. Lemire D, Maclachlan A (2005) Slope one predictors for online
rating-based collaborative filtering. Soc Ind Mathematics 5: 471–480

25. Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In Proceedings of the 17th international conference
on Theory and application of cryptographic techniques, Volume 1592,
EUROCRYPT’99 223–238. Berlin, Heidelberg: Springer-Verlag

26. Dean J, Ghemawat S (2008) MapReduce: Simplified data processing on
large clusters. Commun ACM 51: 107–113

27. Von Ahn L, Blum M, Hopper N, Langford J (2003) CAPTCHA: Using hard AI
problems for security. In Proceedings of the 22nd international
conference on Theory and applications of cryptographic techniques.
EUROCRYPT’03 294–311. Berlin, Heidelberg: Springer-Verlag

doi:10.1186/2192-113X-1-8
Cite this article as: Basu et al.: Privacy preserving collaborative filtering for
SaaS enabling PaaS clouds. Journal of Cloud Computing: Advances, Systems
and Applications 2012 1:8.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://doi.acm.org/10.1145/564376.564419

	Abstract
	Keywords

	Introduction
	Motivating example
	Objectives
	Contributions

	Related work
	Background
	Slope one predictors for collaborative filtering
	Privacy threats
	Anonymity and identifiability

	Homomorphic cryptosystem
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Problem statement

	Proposed scheme
	Pre-computation
	Case of new ratings

	Algorithm 4
	Updates and deletions

	Algorithm 5
	Prediction
	Algorithm 6
	Vertical partition across multiple organisations

	Implementation considerations
	Database access and configurability
	Cache based datastore access in the Google App Engine
	Direct database access in the Amazon Elastic Beanstalk
	Deployment configurability

	Efficiency and parallelism
	Parallelism in pre-computation
	Parallelism in prediction

	Attack model: malicious cloud
	Potential extension to vertical partitions

	Evaluation
	Pre-computation
	Prediction
	Security
	Insider threat in the cloud
	What if the user is dishonest?

	Conclusion and future work
	Endnotes
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author details
	References

