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Abstract

Cloud computing services rely on electricity to power compute-servers, network
equipment, cooling systems, and other supporting infrastructure. As such, energy
costs are a substantial outgoing to public providers of cloud computing services.
On-demand pricing, where consumers are not required to give advance notice of
requirements, does not aid the provider in planning future demand, and therefore
makes it more difficult to purchase energy at discounted rates. In this paper, we
propose an advance pricing mechanism for cloud computing resources based on
provision-point contracts, commonly used by deal-of-the-day websites such as
Groupon. We show how our Contributory Provision Point (CPP) contracts reward
consumers with reduced prices for advance reservations, while allowing providers to
make accurate forecasts of energy usage. We show how CPP contracts are risk-free
for the provider, guaranteeing to be at least as profitable as on-demand mechanisms
where electricity is purchased ad-hoc by the provider. Through a computer
simulation, we demonstrate that CPP contracts can be more profitable for the
provider compared to a traditional method of hedging electricity futures using a
popular forecasting algorithm. Furthermore, we show that CPP contracts encourage
consumers to forecast honestly by rewarding them with discounted rates, while
remaining profitable for the provider, even when forecasts are not completely
accurate.

Keywords: Utility computing, Market-orientated computing, Assurance contracts,
Hedging, Energy futures, Forward contracts, Derivatives
Introduction
Consumers of infrastructure-as-a-service resources typically pay a single price to ac-

cess a virtual machine for a specified period of time. This price covers the costs of the

virtual machine’s fraction of the physical server, any maintenance and repairs, the

physical datacentre space, the energy needed to power it, the cost of air conditioning

to cool the datacentre, and its fraction of other costs incurred in creating the cloud

service, such as administration and advertising.

One of the primary attractive features of cloud computing is on on-demand pricing,

where consumers gain access to the resource immediately and are charged for the

amount of time they use the resource [1]. An alternative is advance or forward pricing,

where consumers gain access to the resource at a specified time in the future, and have

access for a pre-agreed duration.
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The provider has both fixed and variable costs. Air-conditioning and datacentre space

are examples of fixed costs; regardless of how many servers are placed in the datacentre,

these costs will essentially be the same.

The provider also has variable costs, where the cost is proportional to the amount of

virtual machines demanded by the provider’s customers. Electricity costs for powering

servers are variable costs.

The public cloud provider relies on electricity to successfully provide consumers with

a service. As such, energy costs can be a significant outgoing for providers of public

cloud computing resources.

Estimates for the contribution of server electricity to the total cost of ownership

(TCO) of a physical server vary between 3% and 15% [2-4]. This cost impacts the price

paid by consumers to access virtual machines, and the profit achieved by the provider.

In a competitive marketplace, keeping prices low is critical for commercial success.

Currently, research effort is being directed at reducing the power consumption of

computing technology [5,6]. The primary objective of this research is to reduce carbon

footprint, but reducing expenditure is also an important factor.

Many datacentres purchase electricity as per most household consumers; on-demand

for a fixed cost per unit consumed. This could be directly from an energy supplier, or

from an energy broker who hedges market-traded instruments to offer fixed prices to

its clients. The broker is typically an intermediary party who sits between the electricity

providers and cloud providers, negotiating between both parties. Agreements will exist

between sellers, buyers and brokers to ensure that only purchased electricity is con-

sumed, and penalties will be payable in the event of breaking these agreements.

However, some larger data centres may be built with their own power source such as

hydro-electric generators or solar cells. In this case, the datacentre can also become a pro-

vider of electricity, pumping unused electricity into the electricity grid and subsequently

receiving a payment. Such a system is governed through the use of a bilateral agreement,

which details costs and conditions for both selling and purchasing electricity resources.

Some research has been conducted on optimising the placement of virtual machines

such that the cheapest electricity available is used by the datacentre.

Qureshi et al. were the first to propose dynamically assigning computational workloads in

distributed systems to locations where electricity may be cheaper. Their simulation studies

indicated that savings of millions of dollars could be achieved using their method [7].

A similar method was suggested by Rao et al., but the dynamic allocation also takes

into account the latency between different locations, so that QoS metrics would be met

while electricity cost reduced [8].

Buchbinder et al. extended these methods so that only batch applications would be

migrated to cheaper markets [9]. In this way, applications that could tolerate a delay

would use the cheapest electricity, and interactive applications would not cause poor

user-experience as a result of the overhead involved in migrating the application

A currently under-explored area of research is if cloud providers can use derivative

contracts in energy to decrease its costs [10]. Futures contracts are a type of financial

derivative that give buyers guaranteed access to the resource in advance of when it is

delivered: the user is obliged to take ownership of the resource on the delivery date that

the contract specifies. The provider could then engage a broker to provide fixed-price

electricity to top up its pre-bought electricity capacity.
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A futures contract specifies the size of the commodity being purchased. In electricity

futures, the commodity is a quantity of electrical power (typically a MW) delivered for

a fixed period of time, typically a month or a quarter-year.

However, the use of electricity futures can have significant associated risks. If the pro-

vider buys a future contract for electricity which is subsequently not fully utilised by

customers, then it is possible that the provider will make a loss. Electricity delivered to

the cloud provider cannot be stored; if is not used as it is delivered, then it is wasted.

Given that an electricity future for one month’s delivery of 1 MW costs over £35,000,

this risk can be sizeable.a

In this paper, we propose a pricing mechanism that allows cloud providers to pur-

chase electricity futures with no risk that they will subsequently fail to utilise their in-

vestment effectively; the mechanisms guarantee that the provider will make at least as

much profit as offering on-demand resources and purchasing electricity ad-hoc.

The novel mechanisms we explore in this paper are based on provision-point con-

tracts (also known as assurance contracts). In such a mechanism, members of a group

pledge to contribute to an action if a threshold of some type is met. If this threshold is

met, the action is taken and the public goods are provided; otherwise no party is bound

to carry out the action and the monies paid are then refunded [11].

Such a mechanism is used by deal-of-the-day website Groupon.com. Users make re-

quests for special offers by purchasing an offer. When a threshold number of users is

reached, the offer is profitable to the provider and the offer is confirmed. In this case,

both the provider and consumer benefit; if the threshold is not reached, those users

who did purchase the offer have their costs refunded.

In previous work [12], we showed how provision-point contracts can be used to

schedule virtual machines more effectively on a large-scale cloud infrastructure.

In this paper, we amend traditional provision-point contracts by changing the beneficiaries

of the contract, and the value of the offer, to create a number of new pricing mechanisms.

Consumers of cloud computing resources can purchase these in advance for dis-

count, while retaining the ability to purchase additional resources on-demand. The

cloud provider subsequently uses this information to purchase electricity futures.

In this paper we show how our Contributory Provision Points contracts allow pro-

viders to make accurate forecasts of energy usage and therefore reduce their costs

through the purchase of electricity.

Furthermore, we present results from a computer-based sensitivity analysis of our model.

We show that CPP contracts can achieve larger profits for the cloud provider compared to

traditional hedging of electricity resources using a popular accurate forecasting algorithm.

We also show that CPP contracts are more profitable for the provider than hedging energy

using standard forward contracts. Furthermore, our results show that our provision-point

schemes encourage honesty in the user population, but can tolerate small deviations in

forecasting accuracy to provide both consumer and provider with financial benefits.
Pricing mechanisms
On-demand pricing

In standard on-demand pricing there is a period of duration N intervals, where re-

sources are purchased and then immediately available.
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The provider charges customers a cost Co to use the computing resource for an

interval i. The interval i is chosen by the provider, and represents the minimum

period (typically an hour) for which a resource may be used, and for which the con-

sumer will be charged. The total demand experienced for resources in time interval

i is ti. In this case, the total revenue (REV) achieved by the provider over the period

is the total demand experienced at the on-demand price.

REV ¼ Co

XN
i¼0

ti

The provider will be required to pay Eo for electricity for the duration of the interval
that the virtual machine is running; we assume this cost is constant, and doesn’t vary

with time of day or quantity. The electricity required per virtual machine for the inter-

val is β. In this case, the cost of electricity (COE) to the provider is the total demand

experienced at the cost of on-demand electricity per virtual machine.

COE ¼ βEo

XN
i¼0

ti

Therefore, the provider’s profit using an on-demand model is:
Pod ¼ Co−βEoð Þ
XN
i¼0

ti

Forward Contracts

Now, consider a pricing model for cloud computing which uses two periods, each

period consisting of N time intervals.

In the first period, “the reservation period”, consumers purchase advance reservations

(or forwards) at a cost Cr, which allow them to use a resource at a specific interval i

during the next period. The total number of resources reserved in a time interval i is ri.

In the second period, “the execution period”, consumers gain access to their reserva-

tions at the specified time interval. Consumers may also purchase access to a resource

for the duration of an interval at a cost Co. The total demand experienced for resources

in time interval i is ti.

In this case, the revenue achieved over the period is the total resources reserved at

the reserve price, plus the additional resources bought on-demand at the on-demand

price.

REV ¼
XN
i¼0

riCr þ ti−rið ÞCo½ �

As the provider has committed to deliver a number of resources through the sale

of forward contracts on computing resources, she can use this information to pur-

chase forward contracts on electricity to obtain a saving on consumption. The

provider can choose to buy θ electricity futures contracts, where each contract enti-

tles her to use I units of electricity for a period of N time intervals at a cost Er per

time interval.
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The cost over the period is the cost of purchasing reserved electricity across the en-

tire period, plus the total cost of purchasing on-demand electricity required in addition

to the reserved electricity.

COE ¼ θNEr þ Eoβ
XN
i¼0

tið Þ−θNEoI

" #

Therefore, the profit obtained via hedging electricity consumption through the use of

forward contracts on electricity is:

Pres ¼ REV−COE

Pres ¼ Cr−Coð Þ
XN
i¼0

ri þ Co−Eoβð Þ
XN
i¼0

ti þ Nθ IEo−Erð Þ;

For the mechanism to be worth implementing for the provider, it must offer a greater

profit than using an on-demand model:

Press > Pod

Co < Cr þ θN IEo−Erð Þ
∑N
0 ri

However, for the model to be beneficial to the consumer, the consumer must be
incentivised to provide a forecast. Therefore, reserving a resource must be cheaper than

buying a resource on-demand.

Co > Cr

Therefore, the conditions for the mechanism to be beneficial to all parties are:

Co > Cr ð1Þ

Cr > Co−
θN IEo−Erð Þ

∑N
0 ri

ð2Þ

With forward pricing on computing resources, the provider might choose to fix Co

and Cr so that customers are fully aware of the pricing they will be charged. In this case

condition (1) is satisfied, and consumers are incentivised to use the service.

However, as condition (2) is dependent on ∑N
0 ri , the provider is not aware of if the

mechanism will be more profitable than on-demand pricing until all consumers have

purchased forward contracts and the provider is obliged to deliver the resource.

The provider must provide consumers with access to their reserved instances for

smaller cost (and therefore less revenue), but may not benefit from cheaper electri-

city costs in all cases.
Provision-point contracts

This issue can be circumvented by introducing a provision-point contract into the

mechanism. An intermediate phase – the ‘confirmation phase’ – is now introduced:

1. Reservation Phase: Consumers request resources to be consumed in the

execution phase.
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2. Confirmation Phase: If the provider finds that they will benefit as a result of the

mechanism by conditions (1) and (2) being met, they will confirm consumers’

requests and the contracts are confirmed. If either condition is not met, all

contracts are cancelled.

3. Execution Phase: Consumers gain access to their confirmed resources, and may also

buy additional on-demand resources.

If the requirements of the consumer population are found not to produce an increase in

profit, the provider cancels all contracts and no revenue is lost as a result. If the mechan-

ism is profitable, all contracts are confirmed. This is equivalent to a traditional provision-

point contract used by deal-of-the-day websites such as Groupon. This format of

provision-point contract is hereby referred to as a Group Provision Point (GPP) contract.

Contributor Provision Points (CPP)

The forward and group provision-point mechanisms are extremes. In the forward

mechanism, all consumers who submit a reservation benefit from reduced prices, in

spite of it sometimes not benefitting the provider. In the group provision-point mech-

anism either all, or no, consumers benefit from reduced prices depending on whether

an advantage is gained by the provider or not.

A compromise might be to only confirm contract requests to the consumers that contrib-

ute to the purchase of advanced electricity. This could be based on the earliest consumers

who request a reservation. Customers who submitted a late reservation would have their

contract cancelled, as their discount would not contribute to cheaper electricity.

The provider would typically determine how much advance electricity θ to purchase

based on some function of the profile of the reserved resources over the month.

θ ¼ f ro⋯rN½ �ð Þ

If the provider chooses to purchase θ forward contracts on electricity, this will pro-
vide the provider with Iθ units of electricity each interval for N intervals. Therefore, the

total electricity available to the provider over the period is IθN. This will support q con-

tracts:

q ¼ 1
β
IθN

If only q contracts are confirmed, and all others are cancelled:
q ¼
XN
0

ri

Substituting into (2):

Cr þ θN IEo−Erð Þ
1
β IθN

> Co

Cr þ β IEo−Erð Þ
I

> Co ð3Þ

The vulnerability of the forward contracts has now been removed, as the conditions

for profitability no longer depend on the uncontrollable number of reservations.
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As long as prior to implementing the mechanism conditions (1) and (3) are met

and Er is set to be the maximum likely cost of an electricity future, the mechanism

will generate a profit over on-demand pricing.

This mechanism also protects the provider against changes in the cost of electricity

forwards. If the cost of a forward does not satisfy the following, the provider should

cancel all contracts:

Er < IEo−
1
β

Co−Crð Þ

Simulation
In Pricing mechanisms section, we showed that CPP contracts are guaranteed to be at

least as profitable to the provider as traditional on-demand contracts, where the

provider purchases electricity ad hoc to meet demand.

However, a more likely situation is that the provider would independently predict fu-

ture demand based on past performance and would purchase electricity futures based

on this forecast. In this scenario, the provider could reduce energy costs by purchasing

in advance, without asking consumers for advance reservations or giving them a dis-

count. However, this does involve risk for the provider – if the forecast is wrong, the

provider may invest in energy which is subsequently not used.

To determine if CPP contracts could generate more profit for the provider than fore-

casting, a simulation was coded in Python [13], which used the RPyb package to inter-

face with the statistical programming language R [14].

It is likely that determining in exactly what situations when our models will out-

perform provider forecasting will be an impossible task. Different providers will use

different methods for forecasting, will understand their respective user-base to

different degrees, and will take different approaches to risk. Furthermore, different

providers will have different target markets which may have differing levels

of volatility.

We wish to compare the performance of the provision-point mechanism to that of a

provider who has a very accurate view of future demand. We assume that in a real-

world scenario, providers will submit a less accurate forecast than our ideal simulated

scenario. In this manner we can determine the minimum benefit achieved by the CPP

mechanism compared to forecasting.

In these simulations, we give the provider the ability to forecast accurately by choosing

a simple and predictable waveform to represent market demand (a sinusoid with a small

account of noise) and a simple and powerful forecasting algorithm (Holt-Winters) set with

ideal parameter-values (derived from preliminary tests).

Our objective is to determine if there is a potential for providers to benefit from

our models. In Discussion section, we give further discussion of deploying these

models commercially.

We use two outcome variables to measure performance:

� The increase in the provider’s profitability over the simulated period using our

model compared to a traditional on-demand model where the provider forecasts

energy needs.
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� The decrease in the consumers’ mean cost per resource over the simulated period

using our model compared to a traditional on-demand model where the provider

forecasts energy needs.

For the model to be useful the provider must increase profitability and the consumer

must reduce expenditure.

We manipulate three experimental variables:

� The cost of an advance resource.

� The accuracy of consumers’ predictions, expressed as a percentage overestimate.

� The demand for resources over the simulation
Resource costs

We choose the cost of a resource to be £0.006, which is approximately the Pound

Sterling value of an Amazon Web Services micro-instance hour in December 2012.

Our objective is to determine relative savings, rather than absolute benefits. Note that

the cost of an advance resource is different to the decrease in consumers’ mean cost

per resource, as the consumer may purchase resources that are subsequently not used.

In this case, the mean cost per resource may increase but the cost of a resource will

remain the same.
Demand profiles and forecast accuracy

We simulate a population of 3000 users, across three market profiles. A market profile

defines the change in demand experienced by the provider over the simulation period.

We use three market profiles, as shown in Figure 1. These market profiles show in-

creasing, decreasing, and flat trends, with random fluctuations and a sine periodicity.
Figure 1 Market profiles simulated.
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Eighty percent of consumers in the simulation experience demand as a function of

the form 1 + cos(2πh/24), where h is the hour-number in the day. Twenty percent of

consumers experience demand chosen randomly from a normal distribution. This ratio

was chosen so that the random component would still play an appreciable role in

determining overall demand but would not swamp the predictability of the sinusoid

profile.

Consumers follow a highly conservative approach of only reserving a resource if it

has been used at the same time for the last three periods.

A cosine was chosen as it reflects a seasonal aggregate demand where there are pe-

riods of high demand (eg. at Christmas) followed by a lull in sales. A cloud provider

whose customers may be retailers might experience such seasonal cycles. Most import-

antly, the cosine is representative of a trend that should be relatively easy to predict by

the provider using a forecasting algorithm.

The forecast accuracy describes the percentage amount by which consumers overesti-

mate usage, and thereby purchase advance resources. A negative value represents an

underestimate.

Forecast accuracy is an important characteristic of consumers for two reasons. Firstly,

consumers may try to obtain a greater discount by submitting dishonest forecasts to

the provider. So it is important the mechanism must not reward consumers for dishon-

est behaviour, which will impact the ability of the provider to use the forecast.

Secondly, consumers may purchase advanced resources based on what they believe to

be an honest forecast, but where the forecast may become inaccurate as a result of

changing circumstances. In this case, the mechanism must allow some margin of error

in consumer forecasts, as consumers are unlikely to be completely accurate all of

the time.
Provider forecasting

For electricity, we assume that the provider may purchase electricity futures for a

period of four weeks, which supplies 1MWh of electricity per hour. We obtain prices

of ICE UK Base Electricity Futures over a 39 month period from March 2012 (Figure 2).

The cost of electricity on-demand from the grid is £0.01/kWh, based on [2].

The provider will purchase an electricity future if its estimated expected usage, based

on consumers’ advance reservations, is such that it will be cheaper than subsequently

buying the same amount of energy on-demand.

As a first approximation to real-world forecasting approaches, in the simulations

reported here the provider uses the Holt-Winter exponential smoothing algorithm to

forecast energy usage [15]. This algorithm is easily implementable and has successfully

been used previously to forecast energy usage so is likely to be an option for a provider

who wishes to forecast energy usage [16]. The algorithm allows the specification of up

to three parameters, α, β and γ, which define the amount of smoothing, trend and sea-

sonal effect respectively to be applied where forecasting. During preliminary studies on

our demand profiles, we found that the specifying values of β and γ caused large fluctu-

ations in forecasting demand. We decided to use the “single” version of the algorithm

(where β and γ are set to 0) as this was the most stable method of forecasting for the

provider using our test market profiles.



Figure 2 Variation in the cost of energy futures over time.
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The provider computes a value of α, the smoothing factor, from historical data of

market performance once every six months. During preliminary investigation, it was

found that this process proved more accurate than the case where the provider was

supplied with α calculated from the entire demand profile in advance.
Results
Figures 3, 4, and 5 shows the users’ price reduction against the providers profit increase for

a range of resource prices and accuracies, when using standard forward contracts. Figures 6,

7, and 8 shows the same measures using CPP contracts. In these figures, colours represent
Figure 3 Users’ price reduction against the providers profit increase using standard forwards for
growing market profile.
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the resource price, and different markers represent forecast accuracy as shown in the legend

in Figure 9.

For a mechanism to be profitable, it must increase the provider’s profits while redu-

cing users’ costs. In Figures 3, 4, 5, 6, 7, and 8, this occurs in the green shaded quad-

rant. In all market profiles, there is at least one resource price which is found to

be both beneficial to the consumer and provider for both standard forwards and

CPP contracts.

In both standard forwards, and CPP contracts, the user benefits financially most

when they are honest. A reliable forecast will give them the most cost saving. Under-

estimating usage results in a smaller saving for the consumer as they fail to maximise

cost savings through the purchase of cheaper resources. However, overestimating often

results in a smaller saving, or even an overspend compared to on-demand purchasing,

as a result of purchasing resources that are subsequently not needed. Overspending is

most likely to be seen where the advance resource cost is close to the on-demand cost.

This implies consumers are more likely to underestimate to protect their risk.

In our simulation studies, CPP contracts are always more profitable to the provider

than standard forwards. In some cases, this means the provider can make more of a

profit for the same advance resource price. For example, in the flat market, an advance

price of £0.0056 produces only a 1% increase in profit for the provider. In the same

market when CPP contracts are offered, an increase of 4% is achieved. The sacrifice is

consumers’ mean cost, because in CPP contracts the consumers are not guaranteed to

receive the discount. However, in terms of an attractive product, being able to offer

computational units with a lower list price is likely to encourage consumers. It is pos-

sible consumers would make decisions based on published costs rather than their mean

cost per resource.

Setting the price of CPP contracts is essentially a business decision, based on how

much of a saving consumers would typically expect for requesting resources (especially
Figure 4 Users’ price reduction against the providers profit increase using standard forwards for
flat market profile.



Figure 5 Users’ price reduction against the providers profit increase using standard forwards using
shrinking market profile.
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considering that subsequent supply is not guaranteed) against how much of a profit in-

crease is required by the provider for the mechanism to be worthwhile.

In the flat market, there are a number of CPP contracts prices which are beneficial to

both parties (Figure 7). In a competitive market, the provider would be better off offer-

ing a cheaper list price to entice customers, even if this results in a smaller profit in-

crease as a result of reduced energy costs.

A cost of £0.0058 suits everyone in these simulations. Customers make a minimum sav-

ing of 3%, the provider makes a saving of between 3 and 15% and the user can underesti-

mate their usage by 10% with both parties still benefitting. However, the consumer must

avoid overestimating as this can quickly result in a loss for the consumer.
Discussion
Contributory provision points in a cloud environment

We believe that provision-point contracts can be used in combination with on-demand

pricing to give consumers the flexibility of being able to start and stop computing re-

sources as and when required, while benefitting from discounted resources.

Most applications deployed on a cloud infrastructure require a minimum number of vir-

tual machines to operate around the clock. For example, a typical web application would

always require a web server, an application server and a database server. The owner of this

web application can seek a discount by requesting three CPP contracts for three virtual

machines on which are run a web, application and database server. The consumer knows

that these three virtual machines will be required in the next period, so has nothing to lose

by making a request for them.

Consider a consumer which has gained access to these virtual machines through CPP

contracts and has therefore obtained a discount. If there is sudden surge in demand,

and the application is struggling to handle web requests, the consumer can still



Figure 6 Users’ price reduction against the providers profit increase using CPP contracts for
growing market profile.
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purchase an on-demand virtual machine to provide the application with an additional

web server. The only pre-requisite is that the application has been coded to integrate

with resources started on-demand.

In this scenario, the consumer has obtained a discount by purchasing CPP contracts

for the baseline application servers, but can still grow capability to meet unexpected

demand by purchasing additional on-demand virtual machines.
Figure 7 Users’ price reduction against the providers profit increase using CPP contracts for flat
market profile.



Figure 8 Users’ price reduction against the providers profit increase using CPP contracts for
shrinking market profile.
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The same consumer might notice that at a particular time of day, the application

server struggles to handle requests perhaps as a result of an update process. The con-

sumer could request an additional CPP contract for a virtual machine that can be used

to host an additional application server while this update takes place. Again, the

consumer has reduced her expenditure by requesting a reservation.
Consumer attractiveness against on-demand pricing

One obvious question prompted by our work is this: will consumers reserve resources

if there is no guarantee on the provider’s part that they will be delivered (prior to the

confirmation phase)?

There are already a large number of deal-of-the-day websites which rely on con-

sumers purchasing offers with no guarantee that the offer will be confirmed: Groupon;

LivingSocial; TravelZoo; and Wowcher are just a selection. For the consumer, they have

nothing to lose financially – if the deal is not confirmed, they are refunded whatever

was paid. If the deal is confirmed, the consumer benefits with a discount.

However, these websites are aimed at consumers – would businesses that rely on cloud

infrastructure for critical business operations use CPP contracts?

Amazon Web Services already offer non-guaranteed reservation of computing resources

through its Spot Market [17]. In this model, a consumer places a bid for a quantity of

resources. If the current spot price is below the bid, the consumer receives access to the

resource at a cost lower than the on-demand price. If the spot price rises above the bid,

the consumer loses access to the resource.

In this model, the consumer has no guarantee of receiving the resource. They request

a resource through their bid. The consumer does not know the request is confirmed,

until the spot price changes in their favour and they are given access.



Figure 9 Legend applicable to Figures 3, 4, 5, 6, 7, and 8.
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If the consumer is confident they will need the resource, they have nothing to lose by

placing a bid. If the bid is not successful, they will purchase resources at the on-demand

price. If the bid is successful, they will have access to resources for a lower cost.

The success of AWS Spot Instances implies that CPP contracts will be desired by the

consumer. Many businesses will have an understanding of their future demands, and so

have nothing to lose by making a request for discounted future resources. These con-

sumers have the opportunity to make savings by purchasing CPP contracts. This saving

is not guaranteed, but the consumer would have needed to buy the resource anyway.
Consumer attractiveness against forward pricing

In a competitive market, would consumers prefer to use standard forwards or provision-

point contracts? If consumers are savvy then they would choose to assess benefit based on

the mean cost per resource. In this case, the consumer would prefer to use standard for-

wards as this delivers a better saving.

However, consumers are not necessarily rational. The provider will be able to offer a

cheaper list price for CPPs than standard forwards while receiving the same profit. Con-

sumers are likely to be enticed (at least initially) by the cheaper list price of the resource.

For example, consider the shrinking profile where the provider is happy for an advance

model to be as profitable as an on-demand model, perhaps as a means of attracting new

customers through discounted pricing.

In this scenario, CPP contracts breakeven when the resource price is £0.0056. How-

ever, standard forwards breakeven when the Resource Price is approximately £0.00564.

So to the consumer, the most attractive model would appear to be the CPP

mechanism.
Performance and implementation

It is difficult to compare the performance of CPP contracts against forecasting using other

techniques. The ability for a cloud provider to predict its energy usage depends on a large
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number of things, and this is likely to vary widely between providers [18]. For example,

the following may affect the provider’s ability to forecast:

� Understanding of its market, and cycles or trends;

� Forecasting algorithm chosen;

� Period in existence (for historical data);

� Accuracy of smoothing parameters;

� Customer churn or growth, marketing campaigns;

� Effective CRM management and sales process.

The CPP mechanism relies on consumers to forecast usage. Again, the ability of the

consumer to predict usage relies on a number of factors, including those specified for

the provider. However, it is a reasonable assumption that a consumer of resources is

likely to be able to predict future demands to a higher degree of accuracy than the pro-

vider. This is simply because the consumer has a more detailed understanding of its

target market, customer cycles and trends.

In the simulations reported here, simple waveforms were chosen that should be easy

to predict by the provider. Furthermore, the provider was configured such that it would

learn the best smoothing-factor time value. Even in these unrealistically ideal circum-

stances (i.e., forecasting for real-world providers is a much more challenging issue, and

hence likely to be significantly less accurate), it was found that CPP contracts still

outperformed forecasting and forward contracts. We believe that if our simulations has

used more challenging circumstances, making the provider’s forecasts more error-

prone, it is clear that CPP contracts would perform even better.

A provider considering offering such a mechanism should run side-by-side compari-

son trials to determine if CPP contracts perform better than their current methods of

forecasting demand.
Conclusions
In this paper, we have proposed a novel pricing model for cloud services based on

provision-point contracts. We have shown that Contributory Provision Point contracts

are guaranteed to be as least as profitable as on-demand pricing mechanisms in the

case where the provider purchases electricity on an ad hoc basis. We have also shown

how CPP contracts are more profitable for the provider than standard forwards.

Through simulation studies, we have shown how CPP contracts can outperform on-

demand pricing where energy is purchased based on the Holt-Winters forecasting al-

gorithm, both by maximising profit and reducing consumer expenditure. Furthermore,

our results show that our provision-point mechanisms encourage honesty in the user

population, but can tolerate small deviations in forecasting accuracy to provide both

consumer and provider with financial benefits.

The mechanism is not guaranteed to perform better than a cloud provider that offers

on-demand pricing and hedges energy costs with a high degree of accuracy. However,

the model is guaranteed to perform better than a cloud provider who offers on-

demand pricing and purchases energy in an on-demand manner. This means the pro-

vider is guaranteed to receive a minimum gross margin whether forecasting or not; a
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purchased energy future will always be utilised enough that a loss cannot be made. As

such, the mechanism carries no risk to the provider that investments in electricity will

not be worthwhile.

CPP contracts could potentially be offered by any provider of a service, where the

providers’ variable costs can be reduced by reserving in advance.

We believe that CPP contracts could be implemented on a commercial basis by

providers of cloud computing services. The existence of numerous deal-of-the-day

websites and AWS Spot Prices implies consumers are willing to request discounted

resources, even if they are not guaranteed to gain access to them. However, we be-

lieve it is difficult to compare our method for hedging energy costs against forecast-

ing based on historical data, simply because of the number of variables that will

differ between providers. As such, we suggest providers considering offering CPP

contracts to consumers should trial the model next to their existing hedging mech-

anism to see if financial gains can be realised.

The mechanism described here relies on a fixed cost for on-demand electricity to be

available, and agreed in advance by an electricity broker or supplier. It is likely this

could be achieved commercially, but as the broker is absorbing risk on behalf of the

provider, the consumer will probably pay more than if they purchase electricity from a

spot market. Further work should be conducted on if the provision-point mechanism

can be used to hedge electricity where the provider purchases electricity on-demand

from a spot market. In such a mechanism there will always be an element of risk, as

the spot-price might rise such that the energy future is no longer financially beneficial.

However, provision-points could potentially lower this risk by giving the provider the

opportunity to cancel contracts if it sees a trend that indicates a likely future loss.

Provision-point contracts can play a part in reducing costs where cloud providers

with their own electricity generating equipment participate in bilateral agreements

with energy providers: PPCs could give providers an indication of future demand,

which could then potentially be used to sell or buy electricity at a better price.

Exploring this is another area of future research.

In this paper, air conditioning has been considered a fixed cost for simplicity. How-

ever, this is not actually the case in a large scale datacentre; more servers will require

more energy to be fed into coolers to counteract the extra hot air produced by those

servers, although the rate of change may be very small. It is likely to be the case that

improved server consolidation will result in less consumption of energy for air condi-

tioning. Furthermore, energy futures could be purchased such that air conditioning

cooling costs will be reduced as well as direct server costs.

Our intention is that this paper provides a basis for further investigation into the use

of derivative contracts for reducing cloud datacentre costs: clearly there are many more

issues that remain to be explored.
Endnotes
aICE UK Base Electricity Futures, November 2012.
bRpy.sourceforge.net.
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