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Abstract

This letter provides a review of fundamental distributed systems and economic Cloud computing principles. These
principles are frequently deployed in their respective fields, but their interdependencies are often neglected. Given
that Cloud Computing first and foremost is a new business model, a new model to sell computational resources, the
understanding of these concepts is facilitated by treating them in unison. Here, we review some of the most
important concepts and how they relate to each other.
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Introduction
Imagine that you have to go on a trip to meet a friend
in a different city. There are many modes of transporta-
tion available to you. You can drive there by car, take a
taxi, share a ride in a van, take a bus or a train, or even
fly there in an airplane. Your choice is determined by
your general preference for these options. In particular,
your choice depends on the economics and convenience
of these alternatives given the characteristics of the trip,
including distance to destination and time available. The
cost of the choice you make in turn is related to howmany
other people are sharing the same mode of transporta-
tion, and how expensive it is to operate the transportation
vehicle and infrastructure.
Now compare this choice to the choice of energy sup-

plier that people faced in the early 20th century. You could
buy your own electric generator, but it was not very cost
efficient if your needs varied diurnally or seasonally. As
it became apparent that electricity was as invaluable of a
commodity as gas, water and the telephone, utility com-
panies and national electrical grids that could aggregate
and distribute electricity on demand replaced the privately
owned generators.
Cloud computing [1] could be seen as an effort to com-

moditize computing, and distribute and operate it as effi-
ciently as the electrical grid while still offering consumers
the plethora of alternatives known from the transporta-
tion domain. The pre-cloud era could be compared to
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everyone driving around in their own car and using their
own generators. The cloud era allows computing to be
used similarly to public transportation and makes it pos-
sible to tap into computing power with the same ease that
you plug in your appliances to the electrical grid at home.
To distinguish the Cloud from its predecessors it is often
defined as a use of computing resources that are deliv-
ered as a service over a network. The way in which you
provision these services holds the key to the innovation.
Cloud services need to be scalable, fault-tolerant, highly

available, high-performance, reliable and easy to use,
manage, monitor, and provision efficiently and economi-
cally. One early realization by Cloud computing pioneers
was that meeting all these requirements for services han-
dling massive amounts of data and huge numbers of
concurrent users called for innovation in the software
stack as opposed to the highly specialized hardware layer.
The hardware is reduced to a commodity and the Quality
of Services (QoS) are instead provided by a fully inte-
grated and hardware agnostic software stack. Virtualiza-
tion became the new silver bullet.
As the demand for computing power increased with

more users coming on-line andmore data being published
on-line it became apparent that some drastic architec-
tural changes had to be introduced to provision compute
resources more efficiently. The most prominent enabler
for efficient resource provisioning was data center con-
solidation. Instead of using spare cycles from arbitrary
privately owned nodes in a networka, it was more cost
effective to provide high QoS by consolidating computing
in highly streamlined data centers packed with low-cost
dedicated compute and storage clusters in a highly reliable
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and fast network. These data centers were also frequently
deployed in areas where energy and labor were cheap to
further cut operational costs.
Data-center consolidation and more aggressive sharing

of compute resources lead to the following key benefits of
Cloud computing:

1. Lower cost of using compute resources
2. Lower cost of provisioning compute resources
3. Reduced time-to-market

The first benefit can be attributed to only paying for
the resources when you use them. When you do not
use them, the provider can allocate them to other users.
Being able to host multiple users or tenants on the same
infrastructure allows the provider to utilize the resources
more efficiently and thereby increase the return on invest-
ment (ROI). This win-win relationship between users
and providers is the reason why most companies switch
to Cloud architectures. The growth and sudden popu-
larity of Cloud computing was, however, not fueled by
traditional, established companies. Start-ups were the pio-
neering users of Cloud technology as it reduced their
time-to-market and provided them with less up-front risk
to stand up a demo or beta version. If the users did not
flock, not much harm was done, you just stopped paying
for the resources. If there was an unexpected flash crowd
of people bombarding the service, you would just pay for
more resources. This type of usage is often referred to as
the elasticity of the Cloud. The Cloud allows you to scale
down as easily and as quickly as you scale up.
Below we will review some of the fundamental con-

cepts of distributed computing at scale, and then relate
these concepts to economic principles that help us under-
stand the trade-offs governing their deployment. The
main motivation for studying these economic principles is
that solely maximizing systems metrics, such as, through-
put, response time and utilization may not always be the
most profitable strategy for a Cloud provider.
Before delving into these principles we will first take a

look back at technologies that predated Cloud comput-
ing to see how the architecture of this new computing
paradigm evolved into its current state.

Historical evolution
The vision of organizing compute resources as a util-
ity grid materialized in the 1990s as an effort to solve
grand challenges in scientific computing. The technol-
ogy that was developed is referred to as Grid Comput-
ing [2], and in practice involved interconnecting high-
performance computing facilities across universities in
regional, national, and pan-continent Grids. Grid middle-
ware was concerned with transferring huge amounts of
data, executing computational tasks across administrative

domains, and allocating resources shared across projects
fairly. Given that you did not pay for the resources you
used, but were granted them based on your project mem-
bership, a lot of effort was spent on sophisticated security
policy configuration and validation. The complex policy
landscape that ensued hindered the uptake of Grid com-
puting technology commercially. Compare this model to
the pay-per-use model of Cloud computing and it then
becomes easy to see what, in particular, smaller businesses
preferred. Another important mantra of the Grid was that
local system administrators should have the last say and
full control of the allocation of their resources. No remote
users should have full control or root access to the expen-
sive super computer machines, but could declare what
kind of software they required to run their jobs. Inherently
in this architecture is the notion of batch jobs. Interactive
usage or continuous usage where you installed, config-
ured and ran your own software, such as a Web server
was not possible on the Grid. Virtual machine technol-
ogy [3] released the Cloud users from this constraint, but
the fact that it was very clear who pays for the usage of a
machine in the Cloud also played a big role. In summary,
these restrictions stopped many of the Grid protocols
from spreading beyond the scientific computing domain,
and also eventually resulted in many scientific computing
projects migrating to Cloud technology.
Utility computing [4] refers to efforts in the industry

around the turn of the millennium to improve manage-
ability and on-demand provisioning of compute clusters.
At this time, companies were very skeptical to running
their confidential workloads off premise and thus utility
computing was often sold on a cluster-by-cluster basis and
installed on a company-by-company or organization-by-
organization basis. This deployment model made it very
expensive to get up and running, which ironically had
been one of the key claimed benefits of utility computing.
Nevertheless, it started to become clear around this time
that virtualization was the key to on-demand provisioning
of compute resources.Web services and Service-Oriented
Architectures [5] were touted as the solution to many
of the problems seen in the earlier efforts of Utility and
Grid computing. Providing a standard API would allow
infrastructure to be allocated programmatically based on
demand. The APIs and protocols were borne out of the
evolution of the World Wide Web (WWW) that started
to provide more dynamic and interactive content on Web
pages leading to the phenomenon of mashups. Mashups
in the early days essentially scraped HTML from various
Web pages to dynamically create a value-adding service on
a new Web page. As this was error prone, it was quickly
realized that APIs were needed and the first Web services
protocols, such as SOAP [6], were designed.
By the time Amazon launched their Elastic Compute

Cloud (EC2) service in 2006, both Web service APIs
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and virtualization technology (e.g. Xen[3]) were mature
enough to form a compelling combination or a perfect
storm to deliver the first real public utility computing
service that had been envisioned a decade earlier.
In summary, the vision of the Grid combined with Vir-

tual Machine technology and Web service APIs were the
essential characteristics of the first Clouds. Next, we will
review the fundamental distributed systems principles
underlying today’s Cloud systems.

Computational principles
Next, we provide a brief recap of themost important com-
putational systems principles related to the new Cloud
computing era. These concepts have been presented in-
depth in many pre-existing review articles, so here we
only cover them at a level of detail that helps the reader
appreciate the economic implications discussed in the
second part of this letter. A reader already familiar with
the systems-related principles of Cloud computing may
skip forward to the section on Economic principles. How-
ever, to avoid confusion about taxonomy, this section may
be revisited as a reference for technical definitions of these
widely referred-to concepts.

Multi-tenancy
A tenant in the Cloud context is a user of Cloud infrastruc-
ture, i.e. Infrastructure-as-a-Service (IaaS) services [7]. A
VM owner is an example of a tenant and if multiple VM
owners are allocated on the same physical machine it is
an example of multi-tenancy [8]. The difference between
a multi-(end)-user service and a multi-tenant service is
that a multi-user offering may benefit from having users
know about each other and explicitly share social content
to promote the network effect. A multi-tenant solution
could internally benefit from shared physical resources
but must give the impression of an exclusive offering to
each of the tenants. As an example, hosting the Facebook
service on a Web server in the Cloud would be an exam-
ple of a multi-user service, but hosting both a Twitter
Web server and a FacebookWeb server in the same Cloud
data center would be an example of multi-tenancy. From
this definition, it is clear that the IaaS provider needs
to provide mechanisms to isolate the tenants from each
other.
Multiple tenants need to be isolated in terms of privacy,

performance and failure:

• Privacy Isolation.Multiple tenants must not have
access to each other’s data. This may seem like an
easy requirement to meet but in a typical file system
there may be traces left after a file even after
removing it, which would violate this property.

• Performance Isolation.Multiple tenants must not
be effected by each other’s load. If one tenant starts

running a CPU intensive task and other tenants see a
drop in performance as a result, then this property is
violated.

• Failure Isolation. If a tenant either inadvertently or
maliciously manages to crash its compute
environment, it should not effect the compute
environment of other users. Imagine a Java VM
hosting multiple applications such as a Tomcat
Servlet engine. Now, if one servlet Web app crashes
the VM, then the other apps in the same VM would
also crash. This failure would in that case be a
violation of the failure isolation property. Virtual
machines offer a popular technique to ensure
isolation, but in some cases the overhead of
virtualization, of e.g. IO and network, is too high so a
trade-off has to be made between isolation level and
performance.

Ensuring these levels of isolation is closely related to the
strategy used to allocate resources to tenants, which we
will discuss next.

Statistical multiplexing
One major benefit related to data center consolida-
tion that we discussed in the introduction is statistical-
multiplexing [9]. The idea behind statistical multiplexing
is that bursty workloads that are consolidated on the same
Cloud infrastructure may in aggregate display a less bursty
pattern. Figure 1 shows an example of statistical mul-
tiplexing with two workloads exhibiting complementing
demand over time.

1. Without an elastic Cloud infrastructure, the most
common way of provisioning resources to tenants is
to allocate resources that meet the peak demand of
each workload. Clearly, this leads to a major waste in
resources for the majority of the time. Statistical
multiplexing allows an allocation that is substantially
lower than the sum of the peaks of the workloads.

2. Ideally if statistical multiplexing is applied on a large
number of independent workloads, the aggregate will
be stable, i.e. a straight line in the demand chart. If
this is the case, it is enough to just allocate the sum of
the averages of resource demand across all workloads.

3. Now assuming that we are in an elastic Cloud
environment and we can slice resource allocations by
time akin to how an OS time-shares CPU between
processes. In this scenario, further reductions in
resource allocations may be achieved by simply
allocating the sum of resource demand across all
workloads in each time slice.

4. Finally if each time slice only has a single workload
active at any point in time, the allocation reduces to
just the maximum demand across the workloads.
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Figure 1 Statistical multiplexing. Allocations for workload 1 (w1)
and workload 2 (w2) competing for the same resources.

This model of perfect statistical multiplexing is hard
to achieve in practice. The main reason for this is that
workloads tend to be correlated. The effect is known as
self-similarity. Self-similar workloads have the property
that aggregating bursty instances will produce an equally
bursty aggregate, something that is often observed in
practice. However, there are many techniques to recre-
ate the effects of statistical multiplexing without having
to hope for it to occur organically. For instance, you
could measure the correlation between workloads and
then schedule workloads that are complementing on the
same resources. These techniques are sometimes referred
to as optimal packing of workloads or interference mini-
mization [10]. Poor statistical multiplexing tends to lead to
low utilization, or unmet demand, as we will discuss fur-
ther when we review the economic principles governing
under and over-provisioning.

Horizontal scalability
An application or algorithm that runs in the Cloud will not
be able to scale up and downwith the infrastructure unless
it can run at least in part in parallel. Execution in the
Cloud requires efficient scaling across machines, referred
to as horizontal scalability. A local program running on
a single machine on the other hand only needs to scale
vertically, i.e. run faster as local resources such as CPU,
memory, and disk are added. Howwell a program scales is
thus related to the parallelizability of its algorithms. This
effect is formalized in what is called Amdahl’s Law [11]:

T(n) = T(1)(B + (1− B)/n) (1)

Amdahl’s Law predicts the expected speed-up of a pro-
gram or algorithmwhen run overmultiple machines.T(n)
is the time taken to run on n machines. B is the fraction
of the program that needs to run serially, i.e. that cannot
be parallelized. Note that several disjoint sections in the

execution path may need to run serially to collect, dis-
tribute or synchronize parallel computations. It is clear
that minimizing B maximizes the speedup. However, the
most important consequence of Amdahl’s Law is that it
sets a theoretical cap on how many machines a program
will benefit from running on, beyond which point adding
newmachines will not make the program run faster. If B is
close to negligible we can expect linear scalability. Adding
x machines will make the program run x times faster. If
the program speedup grows at a slower rate than the num-
ber of machines added, which is the common case due
to various overheads of distribution, we refer to sublinear
scalability. The program may also speedup at a faster rate
than themachines being added, in which case the program
is said to exhibit superlinear scalability (see Figure 2). This
effect may happen if there is some common resource like
a shared cache that benefits from more usage, e.g., more
cache entries and fewer cache misses.
Many advances in the database community have

emerged, and been popularized, to achieve horizontal
scalability when processing massive amounts of data in
Clouds. The most prominent concepts include: data par-
titioning and sharding [12]; consistent hashing and dis-
tributed hashtables (DHT) [13,14]; and eventual and quo-
rum consistency [15,16].

Economic principles
Now, we discuss the economic implications of the new
Cloud systems principles to see how economic theories
may help with various systems trade-offs that from a pure
computational perspective seem insurmountable to over-
come without fine-tuning heuristics and trial and error.

Over and under provisioning
As we alluded to in the section on statistical multiplex-
ing, over-provisioning is a common strategy for allocating
resources across tenants. Here we discuss the economic
dilemma of over (Figure 3) versus under-provisioning
(Figure 4) resources.

Figure 2 Scalability. Superlinear - convex growth. Sublinear -
concave (saturated) growth.
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Figure 3 Over provisioning. Profit opportunities are lost due to
many idle resources.

We can see that over-provisioning leads to a large
area of idle resources over time. In financial terms this
means high-operational cost, and lost opportunities to
increase profit. To increase profit the IaaS providermay be
tempted to lower the allocation to reduce the operational
cost as seen in Figure 4. However, this leads to an even
more severe drawback, unmet demand. Unmet demand
means revenue loss, and can have long-term negative
effects as customers who are denied access to a resource
despite being willing to pay for it may not return. For
this reason over-provisioning is more popular than under-
provisioning. However, neither the IaaS provider nor the
tenant may be able to perfectly predict the peaks, after all
that is why they are running in the Cloud in the first place.
In this case under-provisioning may occur inadvertently.
Hence, over-provisioning versus under-provisioning

involves making a trade-off between profit and revenue
loss.

Variable pricing
Given all the issues of allocating resources to bursty
demand, it is natural to ask whether this burstiness can
be suppressed somehow as opposed to being accommo-
dated. That is exactly the idea behind variable pricing

Figure 4 Under provisioning. Demand is unmet and therefore
revenue opportunities are lost. Service downtime may also lead to
long-term revenue loss due to lost customers.

or demand-driven pricing. The idea is to even out the
peaks and valleys with incentives. If the demand is high
we increase the price. This leads to tenants who cannot
afford the higher price to back-off and thereby demand
is reduced. On the other hand, if the demand is low, a
price drop may encourage tenants who would otherwise
not have used some resources to increase their usage
and thereby demand. The end result is a stable aggregate
demand as in the statistical multiplexing scenario. The key
benefits to IaaS providers include the ability to cash in on
peak demand by charging premiums, and a mechanism to
increase profit during idle times. Now, how can we ensure
that the price is a good representation of demand? Here,
microeconomic theory of supply and demand [17] helps.
If we plot the quantity of goods a supplier can afford to

produce given a price for the goodwe get the supply curve.
If we plot the quantity of goods requested by consumers
given a price for the good we get the demand curve. The
price at the point where the supply and demand curves
meet is called the efficient marker price as it is a stable
price that a market converges towards (see Figure 5). To
see why this is the case, consider the gray dot on the sup-
ply curve in Figure 5. In this case the supplier observes a
demand that is higher than the current quantity of goods
produced. Hence, there is an opportunity for the supplier
to increase the price of the good to afford to produce
more goods to meet this demand. Conversely, considering
the black dot on the demand curve, we can see that the
demand is higher than the volume of goods that the sup-
plier can produce. In this case the demand will naturally
go down and the consumers are likely to be willing to pay
a higher price to get their goods.
In general, variable pricing allows a provider to allocate

resources more efficiently.

Price setting
There are many ways to set prices for goods in a market.
Themost commonly known are various forms of auctions,

Figure 5 Supply and demand curves. The efficient market price is
where the supply and demand curves meet. Pricing below may lead
to shortage of supply. Increasing the price towards the market price
will take the demand down to a point were it can be met.
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spot prices and reservations. In auctions, bidders put in
offers to signal how much they are willing to pay for a
good. In double actions, there are also sellers who put in
asks denoting how much they are willing to sell the good
for. The stock market is an example of a double auction.
In computational markets, second price sealed bid auc-
tions are popular since they are efficient in determining
the price, i.e. reflect the demand, without too much com-
munication. All bidders put in secret bids and the highest
bidder gets the good for the price equalling the second
highest bid.
In the case where there is not a completely open mar-

ket price, and there is just a single provider selling off
compute resources, spot pricing is a common way of set-
ting demand based prices. The spot price is computed
on a running basis depending on the current level of
demand. There could for instance be a base pay that is dis-
counted or hiked based on demand fluctuations. A spot
market differs from a futures market in that goods are
bought and consumed immediately. Futures markets such
as options are less common in practical computational
markets today.
Purchasing resources on a spot market involves a high

risk of either having to pay more for the same allocation or
being forced to reduce the allocation to stay within budget
(see the section on Predictability below). A common way
to reduce the risk for consumers is to offer a reservation
market. A reservationmarket computes the expected spot
demand for some time in the future and adds a premium
for uncertainty to arrive at a reservation price. Essentially
you have to pay for the provider’s lost opportunity of sell-
ing the resources on the spot market. This way the risk
is moved from the consumer of compute resources, the
tenant, to the provider. I.e., the provider’s actual cost or
revenue when providing the resource may vary, whereas
the cost for the tenant is fixed. If there is an unexpected
hike in the demand and all resources have already been
promised away in reservations there is no way for the
provider to cash in on this demand, which constitutes a
risk for the provider.
The research field of computational economies have

tackled these problems as far back as the 1960s and
70s [18-20]. More recent computational market designs
include [21-23]. Reviews of some of these designs can be
found in [24,25].
In summary, reservation markets move the risk of

uncertain prices from the tenant to the provider as uncer-
tain demand.

The tragedy of the commons
The next principle we will discuss is a social dilemma
referred to as the tragedy of the Commons [26]. The
dilemma was introduced in a paper in 1968 by Garrett
Hardin, where the following scenario was outlined.

Imagine a public, government-owned piece of land with
grass, in the UK referred to as a Common. Now, a num-
ber of shepherds own sheep that they need to feed on this
Common to keep alive. The shepherds will benefit eco-
nomically from the sheep because they can, for instance,
sell their wool. Each shepherd faces the financial decision
whether it would be more profitable to purchase another
sheep to feed on the Common and extract wool for, or
provide more food to each sheep by sticking with the cur-
rent herd. Given that it is free to feed the sheep on the
Common and the reduction in available food is marginal,
it turns out that it is always optimal for a selfish shepherd
trying to optimize his profit to buy another sheep. This
has the effect of driving the Common into a slump where
eventually no more grass is available and all sheep die and
all shepherds go bankrupt.
One could argue that less selfish shepherds who are

wary of the benefits of the group of shepherds as a pros-
perous community will not let the situation end in tragedy.
However, there are many examples of communities that
have gone extinct this way. In general what these com-
munities have in common is that there is a high degree
of free-riders, i.e. community members who take more
from the common resources of the community than they
give back. Sometimes the effects are temporal and not
as obvious since no one purposefully abuses the commu-
nity. One example is the PlanetLab testbed [27] used by
systems researchers in the US. The testbed is distributed
across a large number of organizations to allow wide area
and large-scale experiments. The weeks leading up to
major systems conferences such as OSDI, NSDI, SOSP
and SIGCOMM see extreme load across all machines in
the testbed typically leading to all researchers failing to
run their experiments.
The opposite of free-riding is referred to as altruism.

Altruists care about the community and are the back-
bone of a sustainable and healthy community. A good
example of this is the Wikipedia community with a small
(compared to readers) but very dedicated group of editors
maintaining the order and quality of the information pro-
vided. The opposite of the tragedy of the Commons is the
network effect where more users lead to greater benefits
to the community, e.g. by providingmore content as in the
Wikipedia case.
The balance between free-riders and altruists as well as

the regulations and pricing of resource usage determines
whether the tragedy of Commons or the network effect
prevails.
This concept is closely related to what economists

refer to as externality [28], individual actions impose an
unforeseen positive or negative side-effect on the soci-
ety. The archetypical example is factory pollution. Such
side-effects are mainly addressed in the Cloud by various
infrastructure isolation designs such as virtual machines,
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or virtual private networks (see discussion in the section
on Multi-tenancy above).

Incentive compatibility
One of the most frequently overlooked aspects of dis-
tributed systems is incentive compatibility [29]. Yet it is a
property that all successful large-scale systems adhere to,
the Cloud being no exception, and it is very often themain
reason why proposed systems fail to take off. It is a con-
cept borrowed from game-theory. In essence, an incentive
compatible system is a system where it is in the interest
of all rational users to tell the truth and to participate. In
a systems context, not telling the truth typically means
inserting incorrect or low quality content into the sys-
tem to benefit your own interests. Incentive to participate
is closely related to the notion of free-riding. If there is
no incentive to contribute anything to a common pool of
resources, the pool will eventually shrink or be overused
to the point where the system as a whole becomes unus-
able. That is, the system has converged to a tragedy of
the Commons. Ensuring that the system cannot be gamed
is thus equivalent to ensuring that there is no free-riding
and that all users contribute back to the community the
same amount of valuable resources that they take out. A
new, untested, system with a small user base also has to
struggle with a lack of trust, and in that case it is partic-
ularly important to come out favorable in the individual
cost-benefit analysis, otherwise the potential users will
just pick another system. Tit-For-Tat (TFT) is an example
of an incentive compatible algorithm to ensure a healthy
and sustainable resource sharing system.
If Cloud resources are sold at market prices it ensures

incentive compatibility, .i.e. ensuring that the price is fol-
lowing the demand (in the case of a spot market) or the
expected demand (in the case of a reservation market)
closely has the effect of providing an incentive for both
suppliers and consumers to participate in the market. Ear-
lier systems such as the Grid and P2P systems that did
not have an economic mechanism to ensure incentive
compatibility has historically had a much harder time of
sustaining a high level of service over a long period of
time due to frequent intentional and non-intentional free-
riding abuses. Hence, demand-based pricing helps ensure
incentive-compatibility.
Computational markets that have demand-driven pric-

ing may however still not be incentive compatible. If it
for instance is very cheap to reserve a block of resources
ahead of time and then cancel it before use, it could
lead to an artificial spike in demand that could dissuade
potential customers from using the resource. This in
turn would lead to the spot market price being lower,
which could benefit the user who put in the original
reservation maliciously. In economic terms, it is a clas-
sic example of someone not telling the truth (revealing

their true demand in this case) in order to benefit (get-
ting cheaper spot market prices). Another classic exam-
ple is an auction where the bidders may overpay or
underpay for the resource, just to make sure competitors
are dissuaded to participate or to falsely signal personal
demand.

Efficiency
Shared resource clusters such as the Grid are com-
monly monitored and evaluated based on systemsmetrics
such as utilization. A highly utilized system meant the
resources typically funded by central organizations such
as governments were being efficiently used. This type of
efficiency is referred to as computational efficiency. It is
a valuable metric to see whether there are opportunities
to pack workloads better or to re-allocate resources to
users who are able to stress the system more, i.e. a poten-
tial profit opportunity (see the section above on Over and
under provisioning). In a commercial system such as the
Cloud it is also important to consider the value that the
system brings to the users, because themore value the sys-
tem brings to users the more they are willing to pay and
the higher profit the Cloud provider is able to extract from
a resource investment. This trade-off becomes apparent
when considering a decision to allocate a resource to a
user who is willing to pay $0.1 an hour for some resource
and utilize at close to 100% versus another user who is
willing to use the same resource over the same period of
time but at 90% utilization and paying $0.5 an hour. There
is likely more idle time and unused resources if the second
user is accommodated but the overall profit will be higher
(0.5-0.1=$0.4/hour).
To evaluate the economic efficiency [30] one therefore

often goes beyond pure system metrics. In economics,
utility functions are used to capture the preferences or the
willingness of a user to pay for a resource. Maximizing
the overall utility across competing users is then a com-
mon principle to ensure an overall healthy and sustainable
ecosystem. This sum of utilities across all users is referred
to as the social welfare of the system. To compare two sys-
tems or two resource allocation mechanisms for the same
system one typically normalizes the social welfare metric
by comparing the value to an optimal social welfare value.
The optimal social welfare value is the value obtained if
all users (in the case of no contention) or the highest
paying user receive all the resources that they desire. Eco-
nomic efficiency is defined as the optimal social welfare
over the social welfare obtained using an actual allocation
strategy. A system with an economic efficiency of 90%,
for instance have some opportunity, to allocate resource
to higher paying users and thereby extract a higher
profit.
In essence, ensuring economic efficiency involves opti-

mizing social welfare.
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There is however an argument to be made that always
allocating to the highest paying user does not create a
healthy sustainable ecosystem, which we will discuss next.

Fairness
Consider the case where some user constantly outbids
a user by $.0001 every hour in a competitive auction
for resources. An economically efficient strategy would
be to continuously allocate the resource to the highest
bidder. The bidder who keeps getting outbid will how-
ever at some point give up and stop bidding. This brings
demand down and the resource provider may lose out
on long term revenue. It is hence also common practice
to consider the fairness of a system. In economics, a fair
system is a defined in terms of envy between users com-
peting for the same resource [31]. Envy is defined as the
difference in utility that a user received for the actual allo-
cation obtained compared to the maximum utility that
could have been obtained across all allocations for the
same resource to other users. The metric is referred to
as envy-freeness and a fair system tries to maximize envy
freeness (minimize envy). Having high fairness is impor-
tant to maintain loyal customer, and it may in some cases
be traded off against efficiency as seen in the example
above. Fairness may not be efficient to obtain in every sin-
gle allocation instance, but is commonly evaluated over a
long period of time. For example a system could keep track
of the fairness deficit of each user and try to balance it over
time to allocate resources to a user that has the highest
fairness deficit when resources become available.
In addition to fairness considerations, there could be

other reasons why a resource seller may want to diverge
from a pure efficiency-optimizing strategy. If information
is imperfect and the seller needs to price goods based on
the expected willingness to pay by consumers, it may be a
better long-term strategy to set the price slightly lower to
avoid the dire effects of losing trades by setting the price
to high. Another reasonmay be that some consumers have
less purchasing power than others, and giving them ben-
efits, so they can stay in the market, improves the overall
competitiveness (and liquidity, see below) of the market,
which in turn forces the richer consumers to bid higher.

Liquidity
The central assumption in variable pricing models (see
the section above on Variable pricing) is that the price
is a proxy or a signal for demand. If this signal is very
accurate, allocations can be efficient and incentives to
use versus back off of resources are well aligned. If there
are too few users competing for resources the prices may
plummet and the few users left may get the resource vir-
tually for free. It is therefore critical for a provider to have
enough competing users and to have enough purchases
of resources for all the market assumption to come into

play. In particular, this means ensuring that the second
part of incentive compatibility is met, i.e. users have an
incentive to participate. Most providers fall back on fixed
pricing if there is too little competition, but that may lead
to all the inefficiency that variable pricing is designed to
address. In economics, this volume of usage and compe-
tition on a market is referred to as liquidity [32]. Lack
of liquidity is a very common reason for market failure,
which is why many financial and economic markets have
automated traders to ensure that there is a trade as long
as there is a single bidder who sets a reasonable price.
A provider may, for instance, put in a daemon bidder to
ensure that resources are always sold at a profit.

Predictability
The biggest downside of variable pricing models is unpre-
dictability. If the price spikes at some time in the future,
the allocation may have to drop even though the demand
is the same to avoid breaking the budget. Exactly how
much budget to allocate to resources depends on the pre-
dictability of the prices, i.e. the demand. If the demand
is flat over time, very little excess budget has to be put
aside to cope with situations where resources are critically
needed and demand and prices are high. On the other
hand, if some application is not elastic enough to handle
resource variation, e.g. nodes being de-allocated because
the price is too high, a higher budget may need to be allo-
cated to make sure the application runs at some minimal
level of allocation.
Essentially users as well as applications have differ-

ent sensitivity to risk of losing resource allocations or
resources beingmore expensive. In economics the attitude
towards risk is described in the risk-averseness or risk atti-
tude property of a user. There are three types of users that
differ in how much they are willing to spend to get rid
of risk (variation) [33]. Risk-averse users will spend more
money than the expected uncertain price (i.e. hedge for
future spikes c.f. the discussion on over-provisioning and
under- provisioning) [34]. Risk-neutral users will spend
exactly the expected price. Finally, risk-seekers will put
in a lower budget than the expected price to meet their
allocation needs (see Figure 6). An application that is per-
fectly elastic and that may scale down or up over time
as long as the long term performance is guaranteed may
choose a risk neutral strategy. Risk seekers are less com-
mon in computational markets, but they may be bettering
on demand going down in the future. Risk-averse users
are the most common group, and the premium they pay
above the expected price is a good indicator for howmuch
a resource provider can charge for reservations, which
essentially eliminates this uncertainty.
In summary, the elasticity of a Cloud application is

highly related to the risk-aversion of the resource pur-
chase, i.e. how much to pay to hedge uncertainty.
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Figure 6 Risk attitudes. Risk averseness is the amount of money you
are willing to pay to remove risk. Risk neutral people will always be
willing to pay the same amount for a lottery ticket as the expected
outcome or gain of the lottery.

Discussion
Even though many of the economic approaches to com-
putational resource allocation have been known since the
1960s, the adoption has been very slow. One of the rea-
sonsmay be the assumption of instant, low-latency scaling
and friction-less allocation, a.k.a. elasticity assumed by the
economicmodels. Another, may be the limited opportuni-
ties to large-scale sharing and co-location of workloads, as
many private firms are very sensitive to share their com-
putational resources with others. The success of Public
Clouds, such as Amazon EC2, has brought many of these
economic concepts back into mainstream usage again.
One example is the now fully operational Amazon Spot
Market. There have been a multitude of attempts in the
past to deploy such markets, but they do not start provid-
ing tangible benefits to consumers and providers until the
markets reach a certain level of maturity and liquidity. It is
informative to study when Amazon thinks Spot instances
should be used [35]. The key stated reasons include, scal-
ing out large, low-risk computations whenever either the
market demand is low, and thus prices are low, or when
large computations need to run unexpectedly and the
planned capacity is not sufficient.
Another recent example of a more sophisticated

computational market is the Deutsche Börse Cloud
Exchange [36]. This exchange allows IaaS providers to
sell resources at a centralized exchange to avoid vendor
lock-in and to spur competition for more efficient pric-
ing of commodity Cloud resources. The main argument
to sellers is that their sales volume would increase, and to
consumers that the prices would be lower. Trust is also an
important factor that would allow smaller providers to sell
through a well-known stock exchange. As these markets
and others mature, the Economic principles discussed
here will start having a bigger impact on how we provide,
consume, and design Cloud resource infrastructure in the
future.

Summary
We have discussed some computational principles under-
lying the efficient design of Cloud computing infrastruc-
ture provisioning. We have also seen how economic prin-
ciples play a big role in guiding the design of sustainable,
profitable, and scalable systems. As Cloud computing
becomes more commonplace and more providers enter
the market, the economic principles are likely to play
a bigger role. The sophistication of the market designs
depends very much on the level of competition and usage,
a.k.a. as the liquidity of a market.
The key to a successful market design is to align the

incentives of the buyers and sellers with those of the
system as a whole. This will ensure participation and liq-
uidity. Most computational principles in the Cloud are
governed by the notion that large scale distributed systems
see failures so frequently that failover and recoverability
must be an integral part of the software design. In order
to failover successfully one needs to have full program-
matic control from hardware to end-user application. An
ongoing trend has been to develop platforms and cloud
operating systems that offer this level of software control
of hardware to automate administration, management,
and deployment dynamically based on demand.

Endnote
adone in many P2P networks at the time.
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