
Gong et al. Journal of Cloud Computing (2022) 11:29
https://doi.org/10.1186/s13677-022-00298-2

RESEARCH

Grid‑Based coverage path planning with NFZ
avoidance for UAV using parallel self‑adaptive
ant colony optimization algorithm in cloud IoT
Yiguang Gong*, Kai Chen, Tianyu Niu and Yunping Liu 

Abstract 

In recent years, with the development of Unmanned Aerial Vehicle (UAV) and Cloud Internet-of-Things (Cloud IoT)
technology, data collection using UAVs has become a new technology hotspot for many Cloud IoT applications.
Due to constraints such as the limited power life, weak computing power of UAV and no-fly zones restrictions in the
environment, it is necessary to use cloud server with powerful computing power in the Internet of Things to plan the
path for UAV. This paper proposes a coverage path planning algorithm called Parallel Self-Adaptive Ant Colony Opti-
mization Algorithm (PSAACO). In the proposed algorithm, we apply grid technique to map the area, adopt inversion
and insertion operators to modify paths, use self-adaptive parameter setting to tune the pattern, and employ parallel
computing to improve performance. This work also addresses an additional challenge of using the dynamic Floyd
algorithm to avoid no-fly zones. The proposal is extensively evaluated. Some experiments show that the performance
of the PSAACO algorithm is significantly improved by using parallel computing and self-adaptive parameter configu-
ration. Especially, the algorithm has greater advantages when the areas are large or the no-fly zones are complex.
Other experiments, in comparison with other algorithms and existing works, show that the path planned by PSAACO
has the least energy consumption and the shortest completion time.

Keywords:  Unmanned aerial vehicle, Coverage path planning, Ant colony algorithm, Floyd algorithm, No-fly zone,
Grid-based technique

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the rapid development of the Internet of Things(IoT),
the number of connected devices increases exponentially
[1]. Due to the limited energy and computing power, ter-
minal devices often offload computing tasks to servers
with higher computing power. One approach is to apply
edge computing(EC) technology which can offload tasks
to edge servers to relieve the pressure of limited computing
resources on terminal devices [2]. Generally, EC arranges
edge servers at the network edge so as to ensure that the
computation is performed near data sources [3]. The other
approach is to offload computing tasks to cloud servers

[4]. Cloud computing provides IoT with limitless storage
capabilities and computation power [5]. And the blend and
incorporation of IoT and Cloud processing forms a new
paradigm, named as CloudIoT or Cloud of things (CoT) [6].

The emergence of EC and CloudIoT brings many new
applications, such as tasks offloading strategies [7–9],
dynamic resource management [10], internet of vehicles
[11, 12], geographical Point-of-Interest (POI) recommen-
dation [13], privacy security and recommender systems
[14], cloud-based big data technique [15], smart city [16,
17], fault-tolerant placement for cloud systems [18], data
forecasting [19], convergence technology of computing,
communication and caching [20], edge-cloud collabora-
tion method [21], the efficient data collection with UAVs
[22, 23] and et al.. Among them, the application of UAV
can significantly improve the capabilities of IoT devices

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: yiguang-gong@nuist.edu.cn

School of Automation, Nanjing University of Information Science
and Technology, Nanjing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00298-2&domain=pdf

Page 2 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

by processing the data of these devices. This paper
focuses on the application of UAV.

Over the past few decades, UAVs have been widely used
in military and civilian applications [24]. The UAVs can be
used for search and rescue [25, 26], photogrammetry [27,
28], structures inspection [29, 30], model reconstruction
[31, 32], smart farming [33, 34], post-earthquake assess-
ment [35] etc. Many of these UAVs applications involve
Coverage Path Planning (CPP) technique, which requires
building a path that guarantees that an agent will explore
every location in a given scenario [36] . CPP confronts
a number of challenges, such as avoiding obstacles [37],
data collection [38], avoiding no-fly zone(NFZ) [39], etc.
Depending on the size and complexity of areas of inter-
est, exact or approximate cellular decomposition can be
applied to decompose the areas and build efficient paths
[40]. In addition, planning paths for large areas requires
a lot of execution time, using cloud computing is a good
choice [41]. For simple CPP missions, the most common
performance metrics found in the literature are: the total
travelled distance or the path length, the time-to-com-
plete a mission, the area coverage maximization, and the
number of turning maneuvers [42]. These metrics depend
mainly on two factors: the path length and the number of
turns.

This paper, we propose a novel parallel self-adaptive ant
colony optimization algorithm(PSAACO) to complete a
grid-based CPP. And dynamical Floyd algorithm(DFA) is
presented to avoid NFZs efficiently. These two algorithms
require a lot of computing time, so they run on the cloud
server. Our main contributions are as follows:

•	 Apply grid-based techniques to decompose the area
of interest into cells, map the NFZs using rectan-
gles, and label the gird cells and NFZs with A-Type
and N-Type points, respectively. Based on the labeled
area, establish the model of the CPP problem, and
put forward the formula for the model.

•	 Improve the ACO algorithm and propose the
PSAACO algorithm. Apply the inversion operator
and the insertion operator in the PSAACO algorithm,
and make it suitable for solving the CPP problem.

•	 Introduce a self-adaptive setting method for parame-
ters of PSAACO algorithm, and prove the superiority
of self-adaptive setting method by experiments.

•	 Apply multi-thread parallel computing in the algo-
rithm, and prove the improvement of the algorithm
performance by experiments.

•	 Improve the Floyd Warshall algorithm and present the
DFA. When vertices are added, only the changes caused
by these vertices are calculated in DFA. Apply the DFA
to address NFZ avoidance in the CPP problems.

•	 Compare the PSAACO algorithm with other algo-
rithms and existing works.

The paper is structured as follows: Section 2 describes the
related works; Section 3 presents the CPP problem model
and provides details about the PSAACO algorithm and
DFA; Section 4 presents the performance metrics and
experiment results; and Section 5 concludes the paper.

Related Works
CPP is a critical issue for many UAV applications, and
it has become also a research hotspot. According to
whether the environment is known or not, CPP algo-
rithms can be divided into two categories: online CPP
and offline CPP [43]. Offline CPP algorithms only depend
on static environmental information, assuming that all
environmental information is known in advance. Online
CPP algorithms don’t need to know the complete infor-
mation of the environment to be covered in advance, and
plan local paths based on real-time sensor information.

According to the employed cellular decomposition
technology, CPP algorithms can be divided into three
main types: no decomposition, exact cellular decomposi-
tion and approximate cellular decomposition [42].

Using a single UAV to perform CPP tasks in a simple
area with regular shape usually does not need cell decom-
position. Back-and-forth(BF) and Spiral(SP) are two most
common no decomposition CPP algorithms [42]. In the
BF algorithm, the UAV starts from a certain point on the
edge of the area and flies forward along a straight path in
a specific direction. After reaching the edge of the area,
the UAV flies back in the opposite direction along a par-
allel path, and the UAV flies back and forth until a path
covering the entire area is generated. The specific process
of the SP algorithm is as follows: The UAV moves clock-
wise or counterclockwise along the edge of the unvisited
part of the area. If it encounters an obstacle, the UAV
rotates clockwise or counterclockwise for a certain angle
and then continues to move forward, and so on and so
forth until the UAV completes covering the entire area.

Exact cellular decomposition divides the irregularly-
shaped complex region into regular-shaped simple cells,
and then the path planning is performed on the cells. The
classical exact cellular decomposition methods include
Trapezoidal Decomposition and Boustrophedon Decom-
position [43]. Trapezoid Decomposition is applied on 2D
polygonal areas consisting of polygonal boundaries and
polygonal obstacles. Starting at each vertex of the bound-
ary and obstacles, draw upper line segment and lower line
segment in the non-obstacle part of the area. These line
segments decompose the non-obstacle part into simple
trapezoidal cells, and then plan paths on these trapezoidal

Page 3 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

cells. Boustrophedon Decomposition method is similar to
the Trapezoid Decomposition, but the two endpoints of
the line segment dividing the area need to be located on
the boundary of the area. Boustrophedon Decomposition
decomposes an area into simple convex polygons, which
can be covered by a simple back-and-forth run. Com-
pared with the trapezoidal method, the Boustrophedon
Decomposition can reduce the number of cells, thereby
shortening the total length of the coverage path.

Approximate cellular decomposition, also known as grid-
based decomposition, decomposes an area of interest into
regularly-shaped grids. These grids are usually square, but
they can be triangular or hexagonal. Each grid is marked
with a value to indicate whether there are obstacles in it.
Grid-based decomposition tries to find out the optimal
path to traverse these grids and avoid obstacles. Grid-based
decomposition methods are easy to create, simple and intu-
itive to use, and are widely used methods at present.

Authors in [44] propose an cost-efficient multirobot
CPP algorithm. This method consists of two parts. The
first part divides the area of interest into sub-areas. The
second part applies a single UAV on each sub-area, and
uses an algorithm based on the wave-front planner to plan
path for the sub-area. The algorithm creates an adjacency
graph of the grids, and then applies a breadth-first search
(BFS) on the graph to perform the distance transforma-
tion. The path planned by the algorithm takes the starting
cell as the basic cell, selects the cell with the smallest gra-
dient rise in the neighborhood of the basic cell as the next
point of the path. Take this new path point as the basic
cell, and repeat the above process to find the subsequent
points for the path until the path covers the entire area.

Authors in [45] propose a method to plan coverage
paths on irregular-shaped areas for image mosaicing. The
algorithm uses a cost function designed to minimize the
number of turns. This method consists of two parts. In
the first part, the area is decomposed into regular-shaped
grids, then this decomposed area is converted to a regular
graph. The second part adopts a method similar to that in
literature [44], applies the BFS on the grids to perform the
distance transformation, then sequentially selects the cells
with the smallest gradient rise in the neighborhood to form
a coverage path. Deep-limited search is applied to ensure
that the method can obtain a path that traverses all nodes
and each node is traversed only once. A backtracking pro-
cedure is also used to solve the problems of same potential
weight neighbor selection and trapping in local optima.

Cabreira et al. [39] introduce an energy-aware grid-based
method. The approach is designed to minimize energy
consumption of mapping tasks on the areas with irregular
shapes. The method improves the grid-based approach pro-
posed by [45], and proposes a new cost function to replace

the original one in [45], which aims to minimize the number
of turns. The new energy cost function takes into account
not only the energy required for the UAV to turn, but also
the energy consumed by the UAV when accelerating, decel-
erating and flying at a constant speed. The new approach is
able to lower energy consumption in real flight experiments.

Ghaddar et al. [46] introduce an obstacle avoidance
approach based on energy-aware grids. The method can
be divided into two stages. The first stage is to plan one
coverage path offline on the area of interest based on
the top view girds. The second stage is an online obsta-
cle avoidance process based on the information captured
by the camera. If an obstacle is captured , the proposed
method re-plans the path to avoid the obstacle. This liter-
ature presents the experimental results on two scenarios,
showing that the proposed method can shorten the flight
time and reduce the energy consumption.

In another paper [40], Ghaddar et al. propose an
energy-aware CPP algorithm using grid-based technique
to cover areas where NFZs exist. The algorithm includes
three main stages. The first stage is to divide the area of
interest into grids and graphically represent the NFZs.
The second stage is to partition the area into sub areas
around the NFZs. And the third stage is to plan one path
on each sub area. To increase the percentage of covered
area, the proposed algorithm selects the partition bor-
ders on the boundaries of cells. This approach applies
filtering method to get rid of edges and nodes that are
negligible for the coverage task. And this method uses a
new cost function to build better turning points selection
mechanism. The proposed approach is suitable for sce-
narios using single and multiple UAVs.

Materials and Methods
In this paper, our goal is to plan a coverage path over an
area of interest where NFZs exist. The requirements to
fulfill for the CPP are:

•	 Complete coverage of the area of interest;
•	 Ensure minimum completion time, by lowering the

turning angle and the length of the planned path.
•	 Avoid passing over the interior of NFZs, but the

boundary lines of NFZs are passable;

We use one UAV in offline mode to cover an area where
NFZs exist. We build the CPP problem model using
grid-based technique. We propose the PSAACO to make
path planning on this problem model. Furthermore, to
avoid the NFZs, we propose a DFA, which can dynami-
cally add points and only need to calculate the changes
caused by these points without recalculating the entire
algorithm.

Page 4 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

Problem Model
We consider planning a path for an area of size approxi-
mately 100m × 80m, the area is shown in Fig. 1a. In the
figure, the grey polygon represents the area that needs to
be covered and searched, while the red polygons repre-
sent the NFZs.

Similarly to [40], this work uses the grid-based tech-
nique to model the investigated area. We map the geo-
graphical area to grid cells, and the mapped image is

shown in Fig. 1b. The longest side of the area is aligned
parallel to the X-axis or Y-axis of the mapped image by
means of coordinate transformation. Each grid cell has
rectangular shape, and its size is determined by the UAV
footprint, what it means is the area the UAV can cover
at one time [47]. In Fig. 1b, each grid cell is 20 meters
long and 20 meters wide. Grid cells filled entirely or par-
tially with grey represent areas that need to be covered,
and grid cells filled with red represent NFZs, while the

Fig. 1  Grid-based area decomposition and cells labeling

Page 5 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

unfilled cells mean areas that do not need to be covered
or are not prohibited to fly over.

In Fig. 1c, we label the key points of the mapped image.
The key points are divided into two categories, named as
A-Type points and N-Type points, respectively. A-Type
points are the center points of the grid cells that need to be
covered and searched, marked with orange circular labels
in the figure. N-Type points are the vertices of NFZ poly-
gons, and marked with red circular labels. The key points
in each row are numbered from left to right (x increasing
direction), and the rows are numbered incrementally from
top to bottom (y increasing direction). The text in each
label consists of its type name and sequentially number.

In this work, a key point is represented as a vector
V(te, sn, x, y) , where coord(x, y) is the coordinate, te is
the type of the point, sn is the sequentially number. For
example, in Fig. 1c, point VA10 can be represented by a
vector V (“A′′, 10, 70, 50) , while point VN7 can be repre-
sented by a vector V (“N ′′, 7, 20, 60).

NFZs are described by rectangles, eg rectangle
NR(VN0,VN1,VN5,VN4) is an instance of NFZ. If some NFZ
rectangles have common edges, try to combine them into a
larger rectangle, eg rectangle NR(VN6,VN7,VN10,VN9) and
rectangle NR(VN7,VN8,VN11,VN10) can be combined into
rectangle NR(VN6,VN8,VN11,VN9) . After the NFZs are
combined, we can remove those redundant N-Type verti-
ces that are not used to form the NFZ rectangles. Figure 1d
shows the area image after removing the redundant vertices.

Figure 1e shows an example of CPP, the back-and-forth
is applied on the area. The blue polyline represents the
planned path, which starts at point VA4 and ends at VA14 .
In this paper, one path is described by one sequence of
points it passes through, and the planned path without
considering NFZ avoidance is as follows.

In this work, we detect whether all line segments in the
path intersect the diagonal of the rectangle. If there is a
line segment that intersects the diagonal of the NFZ rec-
tangle, it is considered that the line segment has passed
the NFZ, and NFZ avoidance processing is required. Use
a set named NFZS to record the diagonals of all NFZ rec-
tangles. In Fig. 1e, the diagonals in NFZS are represented
by red line segments, and NFZS is as follows.

As a special case, the line segment LS(VN7,VN8) is the
common edge of two NFZs, which is considered to be the
interior of the area. If there is an intersection between the

(1)
Pi =P(VA4,VA3,VA2,VA1,VA0,VA5,VA6,VA7,

VA8,VA11,VA10,VA9,VA12,VA13,VA14)

(2)

NFZS = {LS(VN0,VN5), LS(VN1,VN4), LS(VN2,VN8),

LS(VN3,VN7), LS(VN6,VN10), LS(VN8,VN9))}

path Pi and LS(VN7,VN8) , NFZ avoidance is also required. The
common edge LS(VN7,VN8) is also recorded in NFZS,
and the complete NFZS of the Fig. 1e is as follows.

As can be seen from Fig. 1e, the line segment
LS(VA7,VA8) of the path intersects LS(VN0,VN5) in the
NFZS , which means that the planned path Pi passes
through the NFZ, but this is not allowed.

In this paper, we use N-Type points to avoid NFZs.
Two N-Type points, VN0 and VN1 , are inserted into the
line segment LS(VA7,VA8) . The update path Pj success-
fully avoids the NFZ, the vector of Pj is as follows, and
it is illustrated in Fig. 1f.

In short, the CPP problem in this paper can be regarded
as an optimization problem. The problem is described as
follows: plan a path passing through all A-Type points,
require each A-Type point to be traversed only once, use
N-Type points to avoid the NFZs, and require the short-
est time for a UAV to cover the path. The mathematical
model of the CPP problem can be described by Eq. 5.

Where f is a function to calculate the completion time for
a planned path. τ is the minimum completion time of all
paths. Pi is a planning path, as in Eq. 4. ν is UAV speed,
and ψ is UAV rotation rate. G means area after decompo-
sition, which is composed of several sets. VAS is the set of
A-Type points, containing all A-Type points in the area,
while VNS is the set of N-Type points. NFZS defines a set
of line segments to determine whether NFZ avoidance is
required, which consists of the diagonals of the NFZ rec-
tangles and the common edge of two NFZ rectangles.

The mathematical model of the CPP problem subject to:

(3)

NFZS = {LS(VN0,VN5), LS(VN1,VN4), LS(VN2,VN8),

LS(VN3,VN7), LS(VN6,VN10), LS(VN8,VN9)), LS(VN7,VN8)}

(4)

Pj =P(VA4,VA3,VA2,VA1,VA0,VA5,VA6,VA7,VN0,

VN1,VA8,VA11,VA10,VA9,VA12,VA13,VA14)

(5)τ = minimize
∀Pi∈G

f (Pi, ν,ψ)

(6)G = G(VAS,VNS,NFZS)

(7)∀Vk ∈ Pi → Vk ∈ (VAS ∪ VNS)

(8)∀Vk ∈ VAS → Vk ∈ Pi

(9)i = j,Vi ∈ Pk ,Vj ∈ Pk → Vi = Vj

(10)∀LSx ∈ Pi, ∀LSy ∈ NFZS → LSx ∩ LSy = ∅

Page 6 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

Constraint formula 7 represents any point in the planned
path Pi , which must also exist in the set of A-Type points
or N-Type points. Constraint formula 8 indicates that Pi
contains all A-Type points. Constraint formula 9 shows
that each point in Pi can only appear once, and no two
identical points exist in the same path. Constraint for-
mula 10 states that the line segment LSx in Pi does not
intersect with the line segment LSy in NFZS, that is, the
path Pi does not pass through the NFZs.

Table 1 defines the notation of relevant sets, vectors,
parameters and variables of our work.

PSAACO Algorithm for CPP
Ant colony algorithm(ACO) is a bionic optimization algo-
rithm, which simulates the behavior of ant colony forag-
ing in nature, and uses probabilistic search technology to
find the optimal path. This technique is first introduced
by Dorigo and his colleagues [48], and then many schol-
ars have continuously enriched and improved it, forming
an algorithm family. The well-known algorithms in the
algorithm family include: Elitist Ant System (EAS) [49],
Rank Based Ant System(ASRank) [50], MAX-MIN Ant
System (MMAS) [51], Ant Colony System(ACS) [52], etc.
ACO is used for many applications especially complex

combinatorial optimization problems such as vehicle
routing problem (VRP) [53], job-shop scheduling problem
(JSP) [54], traveling salesman problem (TSP) [55], quad-
ratic assignment problem (QAP) [56], and so on.

In this paper, we extend the ACO algorithm presented
in our previous work [57], and propose a new PSAACO
to deal with CPP problem. This new PSAACO algorithm
is mainly expanded as follows: make some modifications
to solve CPP problems, modify the self-adaptive strategy
to construct and apply a new parameter vector at each
iteration, apply the inversion and insertion operators to
construct new solutions, use a multi-threaded parallel
computing approach to improve the solution quality and
search speed.

The pseudocode of the PSAACO is presented in Algo-
rithm 1. As seen in the algorithm, procedure Initial-
izeGlobalParameters() is used to initialize the global
parameters G, ψ , ν , TdNum, Itmax,Itmax2, Cmax, Cmin,
a, n and q, whose meanings are provided in the algo-
rithm. The G is an instance of CPP model, as represented
by Eq. 6. The CPP model instance contains three sets:
A-Type points set VAS, N-Type points set VNS and line
segments set NFZS. The following subsections elaborate
on the other procedures in the algorithm.

Table 1  Table of notations

Symbol Description Symbol Description

A Geographical area te Type of the point

G Instance of CPP model sn Sequentially number of point

VAi A-Type point VNi N-Type point

NR NFZ rectangle Pi Planned path

coord(x, y) Coordinate of point SPi Sub-path consisting of partial points of the path

LSi line segment VAS Set of A-Type points

VNS Set of N-Type points NFZS Set of line segments to define NFZs

ν UAV speed ψ UAV rotation rate

β Total distance of a path ϕ Total turning angles of a path

� Total energy consumption of a path τ Total completion time of a path

S The solution archive n Number of solutions in solution Archive

m Number of variables in solution vector si The i-th solution int solution archive

s
j
i

Value of the j-th variable in the i-th solution ωi selection weight of the i-th vector in the archive

η The size of search solution archiving area C The self-adaptive parameter archive

Cmax Array of parameter maximum values Cmin Array of parameter minimum values

a Number of parameters in parameter Archive b Number of parameters in parameter vector

ci The i-th parameter vector int archive c
j
i

the j-th parameter in the i-th parameter vector

µ the mean value of Gaussian function σ the mean square error of Gaussian function

dlij distance from vertex i to j in the l-th iteration ξ The convergence speed of parameter archive

θ The size of search parameter archiving area � Energy consumption per meter of length

γ Energy consumption per degree of turn angle q Number of ants for each thread

TdNum Number of parallel threads Itmax Maximum number of iterations

Itmax2 Maximum iteration number of finding no better solution

PM Sub-paths matrix between any two points in VAS after avoiding NFZs

Page 7 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Calculate the Sub‑path Matrix after Avoiding NFZs
The pseudocode used for calculate the sub-path matrix
is in Algorithm 2. As seen in the Algorithm 2, in steps 6
to 16, it is checked whether the line segment composed
of any two points in VAS has an intersection with the
line segment defined by NFZS. If there is no intersec-
tion, the corresponding element value in the sub-path
matrix is assigned to the sub-path composed of these
two points. If there is an intersection, it means that the
line segment passes through the NFZs, then start the
NFZ avoidance algorithm to obtain the sub-path and
assign the obtained sub-path to the element in the sub-
path matrix. The procedure GetSubpathByFloyd in step
18 will be described in later subsection.

For example, in the CPP model instance shown in
Fig. 1, the line segment consisting of VA6 and VA7 has
no intersection with any line segment in NFZS, so the
value of PM[6][7] is SP(VA6,VA7) . And the line seg-
ment LS(VA7,VA8) has an intersection with the line seg-
ment LS(VN0,VN5) in NFZS, so the value of PM[7][8] is
SP(VA7,VN0,VN1,VA8) after NFZ avoidance processing.

The Procedures for Solution
As seen in the Algorithm 1, the main processing flow
for the solution archive in the PSAACO algorithm is
indicated below:

Page 8 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

•	 The first process applies the “InitializeSolution-
Archive” procedure in step 10 to initialize the solu-
tion archive, and uses “UpdateSolutionArchive”
procedure in step 11 to update the archive.

•	 The second process corresponds to steps 21 to 23
in the algorithm. Each ant selects a base solution
from the solution archive, constructs one new solu-
tion from the base solution by “ConstructSolution”
procedure, and then adds the new solution into the
solution archive.

•	 The third process uses the “UpdateSolutionArchive”
procedure to sort the solutions in the solution
archive by their quality, then keep the best n solu-
tions in the solution archive and remove redundant
solutions.

•	 Repeat the second and third process before a termi-
nation condition is satisfied.

The structure of solution archive  The structure of solu-
tion archive S of PSAACO algorithm is shown in Fig. 2.
The solution archive stores n solutions. Each solution sj is
represented by an m-dimensional vector, as shown in the
following formulas:

f (sj) and ωj means the fitness value and selection weight
of solution sj ,respectively.

For the CPP problem, each solution of PSAACO cor-
responds to a planned path without NFZ avoidance,
and each variable in the solution corresponds to the
sn of one point in the path. For example, the solution
si corresponding to the path Pi described in Eq. 1 is as
follows:

Initializing solution archive  The pseudocode used for gen-
erating the initial solutions for the solution archive is pre-
sented in Algorithm 3. As seen in the algorithm, each solu-
tion was randomly generated as a permutation of the set
of the points in VSA. Then, each solution is converted to a
path using the “getPathFromSolution” procedure in step 4.
The fitness value of the path is calculated in step 5, and the
new solution is added into the solution archive in step 6.

(11)sj = (s1j , s
2
j , · · · , s

i
j , · · · , s

m
j)

(12)si = s(4, 3, 2, 1, 0, 5, 6, 7, 8, 11, 10, 9, 12, 13, 14)

The pseudocode of the “getPathFromSolution” pro-
cedure is shown in Algorithm 4. Take out two adjacent
points of the solution solu in turn, query their corre-
sponding sub-paths from PM, and combine these sub-
paths into a complete path P. Since the sub-paths in PM
are NFZs-avoiding, the new path is also NFZs-avoiding.

Constructing new solutions probabilistically  First, each
ant applies the roulette wheel selection algorithm, proba-
bilistically selecting a solution from the solution archive
S. As shown in the following equation, the selection
probability PSj of the solution sj is calculated according to
its selection weight ωj.

(13)PSj =
ωj
n
i=1 ωi

Page 9 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Where ωj can be calculated by Eq. 14. In the equation, η
represents the search size constant, and n is the number
of solutions in S.

Then, a new solution is built based on the selected
solution. Similarly to [58], this work uses the local
search operators to construct a solution. The pseu-
docode to construct a new solution is shown in Algo-
rithm 5. We use the inversion and insertion operators,
which are among the most popular local search opera-
tors. The algorithm chooses to use the inversion opera-
tor with a probability of 50%, as shown in steps 6 and 7.
And the insertion operator is selected with a probabil-
ity of 25% in steps 8 and 9. In steps 10 to 22, we apply
the inversion operator multiple times in a continuous
loop, and take the best constructed solution as the new
solution. The local search operators can be described as
follows:

•	 The inversion operator: The inversion operator sim-
ply inverses the variables of the solution between
positions x and y. In other words, it randomly selects
two positions on the solution and then reverses the
sub-path between these two positions. For example,
inversion(si, x, y ) generates a new solution sj , which
is sj = (s1i , · · · , s

x−1
i , s

y
i , s

y−1

i , · · · , sxi , s
y+1

i , · · · , sni) ,
where 1 ≤ x < y ≤ n.

•	 The insertion operator: The insertion operator ran-
domly selects the positions x and y in the solution.
Then it moves the variable from Position y to Position
x. Insertion(si, x, y ) generates a new solution sj , which is
sj = (s1i , · · · , s

x−1
i , s

y
i , s

x
i , s

x+1
i , · · · , sy−1

i , s
y+1

i , · · · , sni) ,
where 1 ≤ x < y ≤ n.

(14)ωj =
1

ηn
√
2π

e

−(j − 1)2

2η2n2

Updating the solution archive  The “InitializeSolution-
Archive” and “ConstructSolution” procedures add some
new solutions into the solution archive S. The “UpdateS-
olutionArchive” procedure performs the update S opera-
tion. First, the solutions in S containing new solutions are
sorted according to their fitness function value, and the

Fig. 2  The structure of solution archive

Page 10 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

solutions with good quality are ranked above the solu-
tions with poor quality. Then, the top n solutions with the
best quality in S are retained, and other redundant solu-
tions are removed.

The Procedures for Self‑Adptive Parameters
Some parameters greatly affect the performance of
PSAACO. The scheme of manually setting parameters
depends too much on the experience of setting person-
nel. This paper adopts a self-adaptive parameters setting
scheme for PSAACO.

The self-adaptive parameter archive C is added to store
these self-adaptive parameters. Assume that there are a
parameter setting schemes, and each scheme is a vector
composed of b self-adaptive parameters, the correspond-
ing parameter archive is shown in Fig. 3. cij is the i-th
parameter value in the j-th parameter vector. f (cj) is the
fitness value of the cj . ωj means the weight of cj.

In the algorithm 1, the main processing flow for the
self-adaptive parameters in the PSAACO algorithm is
indicated below:

•	 The first process applies the “InitializelParameter-
Archive” procedure in step 7 to initialize the parame-
ter archive. Randomly create a parameter vectors and
store them into the parameter archive.

•	 The second process corresponds to steps 15 to 29 in
the algorithm. Each iteration selects a base parameter
vector from the archive, constructs a new param-
eter vector from the base parameter vector by “Con-
structParameter” procedure. Take this new param-
eter vector as the current parameter vector for this
iterative calculation. Record the fitness value of the
best solution constructed by ants in this iteration,
and take this value as the fitness value of the new
parameter vector. Add the new parameter vector and
its fitness value into the parameter archive.

•	 The third process uses the “UpdateParameterArchive”
procedure to sort the parameter vectors in C by their
quality, then keep the best a parameter vectors in C
and remove redundant parameter vectors.

•	 Repeat the second and third process before a termi-
nation condition is satisfied.

The procedures for parameter archive are very similar to
that for solution archive, and they have almost the same
operations in initializing archive, selecting base vector
from archive, updating archive, etc.

There is a big different procedure for parameter
archive, and that is constructing a new parameter. Each
variable in the base parameter vector probabilistically
selects new value in its neighborhood, and these new val-
ues form a new parameter vector. The probability density
function Pd(x) for each variable is as follows:

and

f (x,µ, σ) is the Gaussian function, x is a variable in one
parameter vector. σ denotes the mean square error , µ is
the mean value , and ξ means the algorithm parameter.

Parallel Computing with Multiple Threads
Parallel computing can enhance the algorithm speed,
and it introduces parallel computing elements to expand
the search mode, which can often improve the quality
of algorithm results [59]. In this work, we use a multi-
threaded parallel computing approach to improve the
solution quality and search speed of PSAACO.

Step 6 of Algorithm 1 starts TdNum parallel threads, and
steps 7 to 45 in Algorithm 1 are the running steps of each

(15)Pd(x) = f (x,µ, σ) =
1

σ
√
2π

e

−(x − µ)2

2σ 2

(16)µ = cij , σ = ξ

a∑

r=1

|cir − cij |
a− 1

Fig. 3  The structure of parameter archive

Page 11 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

thread. Each thread runs an independent ACO algorithm,
and it has its own solution archives, parameter archives and
global parameters, etc. These threads have independent ant
colonies to explore new solutions. And they independently
update their own solution archives and parameter archives.
After all threads run, take the best solution obtained by all
threads as the result of the whole algorithm.

The application of parallel computing speeds up the
run of the algorithm, reduces the probability of PSAACO
falling into a local optimum, and improves the overall
performance of PSAACO. The relevant proof experi-
ments are described in the later experimental part.

The Fitness Value
The most common performance metrics are: path length,
number of turning maneuvers, completion time, energy
consumption, and quality of area coverage. Path length
and turning angle are the two main basic factors, and
most common performance metrics usually rely on one of
these factors or a combination of two factors. The com-
pletion time and energy consumption metrics include the
evaluation of these two factors, so these two metrics are
more comprehensive and reasonable. In this paper, the
completion time is used as the fitness function value.

NFZ Avoidance Using DFA
The Floyd Warshall algorithm is used to search for the short-
est path between any two points, and can handle the short-
est path problem of undirected graphs or weighted directed
graphs [60, 61]. The idea of the algorithm is to insert dif-
ferent intermediate vertices between two points and find
out the insertion scheme of the shortest path. Let dxij be the
shortest path from vertex i to vertex j , and its intermediate
vertex is in the set 1, 2... y, where x is the iteration number
and y is the total number of all vertices. Then for y > 1,

Thus, dyij is the shortest paths matrix calculated by the
Floyd Warshall algorithm from the input graph. The
Floyd Warshall algorithm cannot dynamically add points.
When a new vertex is added into the graph, all shortest
path needs to be recalculated, and the time complexity is
O(n3).

This paper improves the algorithm so that when verti-
ces are added, only the changes caused by these vertices
are calculated, and the algorithm are named DFA.

The DFA is presented in Algorithm 6. The algorithm
has three input parameters. DistanceM1 represents
the distance matrix that has been calculated so far, and
DistanceM1[i][j] records the shortest distance from ver-
tex i to vertex j. PathM1 indicates the path matrix that

(17)dxij = min(dx−1
ij , dx−1

ik + dx−1

kj)

has been calculated, and PathM1[i][j] records the inter-
mediate vertex for the shortest path from vertex i to
vertex j. DistanceA is an array of distances between new
point and calculated points, where DistanceA[i] records
the distance between new point and vertex i. In steps
3 to 17 in Algorithm 6, initialize the DistanceM2 and
PathM2 by copying the calculated data in DistanceM1
and PathM1 , and adding the data of the new point from
DistanceA. The steps 18 to 23 of the algorithm calcu-
late and update all paths ending at the new point, and
the steps 24 to 29 calculate and update all paths start-
ing at the new point, while the steps 30 to 35 calculate
and update all paths with the new point as intermediate
point. The calculation and update operations are imple-
mented by the “updateMatrix” procedure. The detailed
steps of the “updateMatrix” procedure are described in
algorithm 7, and its principle is shown in Formula 17.

It is easy to see that the time complexity of DFA is
O(3n2) . When the number of points is large, DFA has
great advantages in running speed.

Page 12 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

We apply the DFA to deal with NFZ avoidance.
Assume we get a CPP model G and a sub-path
Pk = (VAi,VAj) , then the main process for Pk to avoid
NFZs is as follows:

•	 The first process is to calculate all N-Type points in
G using DFA, and store the result in the distance
matrix DistanceM1 and the path matrix PathM1.
We take the CPP model shown in Fig. 1 as an exam-
ple, The DistanceM1 is shown in Table 2. The data in
the table represents the shortest distance between
two N-Types points. In particular, ∞ indicates that
there is no feasible path between two points. Table 3
describes the data of PathM1. From the table we
can see that the shortest path from VN1 to VN10 is:
(VN1,VN5,VN10) , since 5 is the intermediate vertex
between VN1 to VN10.

•	 The second process is to calculate the distance
between the starting vertex VAi and all N-Type points
to obtain the distance array of DistanceA1. For
example, the DistanceA1 for vertex VA7 in Fig. 1 is
(14.1,∞, · · · ,∞, 51.0).

•	 The third process is to take DistanceA1, DistanceM1
and PathM1 as input parameters, apply the DFA to
calculate and update the distance matrix DistanceM1
and the path matrix PathM1.

•	 Repeat process 2 and process 3 to calculate the
end vertex VAj . And we can get the NFZ avoidance
path from final path matrix PathM1. In the exam-
ple, the final DistanceM1 is shown in Table 4 and
the final PathM1 is shown in Table 5. It can be seen
from the tables that the NFZ avoidance path of
Pk = (VA7,VA8) is (VA7,VN0,VN1,VA8).

Experiment Results and Discussions
In this section, we present experimental results and dis-
cussions of our work. In the following, two metrics for
evaluating performance are introduced first. Next the
performance improvement using self-adaptive param-
eters and parallel computing is presented. Finally the per-
formance comparison with other algorithms and existing
works is carried out.

Experimental Environment
The computer used for the experiments is Lenovo
Xiaoxin Pro16 2021: AMD Ryzen 7-5800H CPU (8cores)
, 16 GB memory, 1 TB SSD. The integrated development
environment of the experiments is Visual Studio 2019
on Windows 11, and the experimental projects are pro-
grammed using C#.

Performance Metrics
Performance metrics, completion time and energy con-
sumption are used to evaluate the experimental results.
Their definitions are as follows.

Completion Time [62] is the total time required to
complete the planned path. It can be calculated:

Where β is total distance of a path, ϕ denotes total turn-
ing angles of a path, ψ is UAV rotation rate, and ν is UAV
speed.

(18)τ =
β

ν
+

ϕ

ψ

Table 2  Distance matrix for N-Type points

VN0 VN1 · · · VN9 VN10

VN0 ∞ 20 · · · 93.0 63.2

VN1 20 ∞ · · · 113.0 76.5
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 93.0 113.0 · · · ∞ 40

VN10 63.2 76.5 · · · 40 ∞

Table 3  Path matrix for N-Type points

VN0 VN1 · · · VN9 VN10

VN0 0 1 · · · 6 10

VN1 0 1 · · · 6 5
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 6 6 · · · 9 10

VN10 0 5 · · · 9 10

Page 13 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Energy consumption [40] is the total energy consump-
tion required to complete the planned path. It can be
calculated:

(19)� = �× β + γ × ϕ

Where � is the energy consumption required by the UAV
to complete each 1m path length, and γ is the energy con-
sumption required to complete each 1 degree turning
angle. In this work, we use the same values as in [40], and

Table 4  Distance matrix after NFZ avoidance

VN0 VN1 · · · VN9 VN10 VA7 VA8

VN0 ∞ 20 · · · 93.0 63.2 14.1 34.1

VN1 20 ∞ · · · 113.0 76.5 34.1 14.1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 93.0 113.0 · · · ∞ 40 79.9 110.7

VN10 63.2 76.5 · · · 40 ∞ 51.0 70.7

VA7 14.1 34.1 · · · 79.9 51.0 ∞ 48.3

VA8 34.1 14.1 · · · 110.7 70.7 48.3 ∞

Table 5  Path matrix after NFZ avoidance

VN0 VN1 · · · VN9 VN10 VA7 VA8

VN0 0 1 · · · 6 10 11 1

VN1 0 1 · · · 6 5 0 12
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 6 6 · · · 9 10 2 5

VN10 0 5 · · · 9 10 11 12

VA7 0 0 · · · 2 10 11 1

VA8 1 1 · · · 5 10 1 12

Fig. 4  The CPP model2.[63]

Page 14 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

set the values of � and γ to 0.1164 KJ/m and 0.0173 KJ/
degree, respectively.

Performance Improvement using Self‑Adaptive Parameters
Some experiments are carried out to test the performance
improvement using self-adaptive parameters. Two CPP
models are used in these experiments. One CPP model
is depicted in Fig. 1, named CPP model1, which has a

relatively small area. The other CPP model is from Ref-
erence [63] , which has a relatively large area and a com-
plex no-fly zone. We make some modifications, and the
adjusted model is named CPP model2, as shown in Fig. 4.

Table 6 lists the parameter setting scheme and per-
formance of five experiments. In the four experiments
from ACO1 to ACO4, we manually set the values of the
three self-adaptive parameters n, q and η for the ACO

Table 6  Experiments for Performance Improvement using Self-Adaptive Parameters

Parameters CPP model1 CPP model2

n q η Best Mean Worst Best Mean Worst

ACO1 5 10 0.001 46 46.31 48 268.64 306.77 397.00

ACO2 10 20 0.01 45.32 46.29 49 242.20 263.62 300.10

ACO3 20 50 0.1 45.32 45.52 46 214.15 227.81 254.74

ACO4 50 100 1 45.32 45.32 45.32 212.65 224.73 244.07

PSAACO Self-Adaptive 45.32 45.32 45.32 208 224.78 259.54

Fig. 5  The CPP model3. [43]

Table 7  Experiments for Performance Improvement using Parallel Computing

Number of parallel threads CPP model2 CPP model3

Best Mean Worst Best Mean Worst

1 208 224.78 259.54 266.30 276.59 295.99

5 208 214.93 236.02 257.79 267.02 285.00

10 208 212.80 223.81 259.60 266.22 273.44

20 208 211.79 226.55 256.72 261.53 266.75

Page 15 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

algorithm, and the three parameters represent the solu-
tion number in solution archive, the ant number for each
thread and the search size in archive area, respectively.
The fifth experiment shows the experimental result of
the PSAACO algorithm. In Table 6, the columns titled
“CPP model1” and “CPP model2” show the experimental
results of running PSAACO algorithm 10 times on CPP
model1 and CPP model2, respectively. The sub column
titled “Best” shows the completion time correspond-
ing to the best solution of 10 runs, the sub column titled
“Mean” shows the mean completion time, and the sub
column titled “Worst” indicates the worst completion
time. It can be seen from Table 6:

•	 When planning the path on CPP model1, most
experiments can obtain excellent solutions. This
means that parameter settings are less important for
small, simple areas. For the large and complex CPP
model2, the performance of the third to fifth experi-
ments is significantly better than the other experi-
ments. This means that parameter settings are very
important for this model.

•	 The performance of ACO algorithm largely depends
on parameter settings, especially when dealing with
some complex models. While PSAACO shows excel-
lent comprehensive performance, even when dealing
with complex models.

Fig. 6  Performance comparison experiment on CPP model1

Page 16 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

In conclusion, self-adaptive parameter setting can
improve the performance of ACO algorithm to solve
the CPP problem, and the performance improvement is
more obvious when the areas are large or the no-fly zones
are complex.

Performance Improvement using Parallel Computing
To test the performance improvement using parallel
computing, we conduct some experiments on two CPP
models. One CPP model is CPP model2. The other is a
modified model based on the model in ref. [43] , which is
illustrated in Fig. 5.

Four experiments are done and each experiment
runs 10 times. The number of parallel threads for these
four experiments is set to 1, 5, 10, and 20, respectively.
All experiments adopt self-adaptive parameter setting
scheme. Table 7 shows the experimental results. It can be
seen from Table 7:

•	 The performance of PSAACO algorithm is improved
as the number of threads increases. As shown in the
Table 7, experiments with a large number of threads
achieve better mean completion time metrics.

•	 When the number of threads increases to a certain
value, such as more than 10, continuing to increase
the number of threads has little effect on perfor-
mance improvement.

In short, parallel computing can improve the perfor-
mance of PSAACO algorithm. And a small number of
parallel threads can be selected for simple problems,
while a larger number of threads, such as 10 or 20, can be
selected for complex problems.

Performance Comparison between PSAACO and Other
Algorithms
The BF and SP are the most common pattern for a single
UAV to explore regular-shaped and non-complex areas

Fig. 7  Performance comparison experiment on CPP model2

Page 17 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Table 8  Experiments for Performance Comparison between PSAACO and Other Algorithms

BF SP WF PSAACO

CPP model1 Path length[m] 308.20 314.00 296.50 288.20

Turning angle[deg] 630.00 548.13 720.00 495.00

Energy consumption[KJ] 46.77 46.03 46.97 42.11

Completion time[sec] 51.82 49.67 53.65 45.32

CPP model2 Path length[m] 2085.00 1793.50 1633.10 1600.00

Turning angle[deg] 2507.28 1771.02 2970.00 1440.00

Energy consumption[KJ] 286.07 239.40 241.47 211.15

Completion time[sec] 292.08 238.38 262.31 208.00

CPP model3 Path length[m] 2786.40 2472.90 2009.10 1917.90

Turning angle[deg] 3166.26 3031.02 3510.00 1890.00

Energy consumption[KJ] 379.11 340.28 294.58 255.94

Completion time[sec] 384.18 348.32 317.91 254.79

Fig. 8  Performance comparison experiment on CPP model3

Page 18 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

[42]. The wavefront algorithm(WF) is a popular cover-
age path planning approach suitable for irregular-shaped
areas [63]. In this work, we modify these three algorithms
to solve the CPP problem as described in Eq. 5.

The main process of this modified BF algorithm is as
follows:

•	 Find the points on the four corners in VSA, for exam-
ple, the four points in Fig. 1 are VA0,VA4,VA14,VA12

,respectively.
•	 Take each point as the starting point and go back

and forth along the horizontal, vertical and diagonal
directions to generate paths. For example, Fig. 1e
depicts the generated path in the horizontal direc-
tion starting from VA4 . Each point can generate
three paths, and four points can get a total of twelve
paths.

•	 These paths are processed by the DFA for NFZ avoid-
ance, and the fitness values of these paths are calcu-
lated. The path with the smallest fitness value is taken
as the result of the BF algorithm.

The modification to SP is similar to the modification
to BF. First, find the four corner points in the VSA.
Next, take these points as starting points, and make
a spiral motion in a clockwise or counterclockwise
direction to generate paths. Then, these paths are pro-
cessed for NFZ avoidance, and their fitness function
values are calculated. Finally, the best path is taken as
the result.

In the modified WF algorithm, we select each point
in the VSA as the goal point, and use the wavefront
method and NFZ avoidance to generate paths, then
take the best path as the algorithm result.

We do some experiments to compare our algorithm
with the three algorithms. CPP model1, CPP model2
and CPP model3 are used in these experiments. CPP
model1 has a relatively small area and a simple NFZ,
CPP model2 has a relatively large area and a complex
NFZ, and CPP model3 has a larger area and a very
complex NFZ. The three models cover scenarios of dif-
ferent area and NFZs of different complexity, which can
comprehensively test and compare the performance of
these algorithms.

Set the number of parallel threads to 20, make 10 path
planning for each scenario, and select the optimal solu-
tion in the 10 path planning experiments as the final solu-
tion of the algorithm. Figure 6a-d represent the CPP on
model1 done by BF,SP,WF and PSAACO, respectively.
Figures 7 and 8 show the paths planned by the four algo-
rithms on model2 and model3. As can be seen from these
figures, PSAACO algorithm has shorter distance and
fewer turns than other algorithms.

Table 8 shows that PSAACO generate a shorter path
on model1 than BF, SP and WF by 6.5%, 8.2% and 2.8%
respectively, decreasing the turning angles by 21.4%, 9.7%
and 31.3%, lowering the energy consumption by 10.0%,

Table 9  Experiments for Performance Comparison between
PSAACO and algorithm in [45]

Ref. [45] PSAACO

UAV speed[m/sec] 8 8

UAV rotation rate[deg/sec] 30 30

Path length[m] 1488.01 1462.60

Turning angle[deg] 1890 1349.64

Energy consumption[KJ] 205.90 193.59

Completion time[sec] 249.00 227.81

Fig. 9  Paths planned by the algorithms in [45] and PSAACO

Page 19 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

8.5% and 10.3%, and reducing the completion time by
12.5%, 8.8% and 15.5%.

Table 8 also shows that the path generated by PSAACO
on model2 is 23.3%, 10.8% and 2.0% shorter than BF,
SP, and WF, respectively, reduces the rotation angle by
42.6%, 18.7% and 51.5%, decreases the energy consump-
tion by 26.2%, 11.8% and 12.6%, and shortens the com-
pletion time by 28.8%, 12.7% and 20.7%.

It can also be seen from the Table 8 that the path gen-
erated by PSAACO on model3 is 31.2%, 22.4% and 4.5%
shorter than BF, SP and WF, respectively, and the rotation
angle is reduced by 40.3%, 37.6% and 46.2%, the energy
consumption is reduced by 32.5%, 24.8% and 13.1%, and
the completion time is shortened by 33.7%, 26.9% and
19.9%, respectively.

In short, PSAACO has excellent comprehensive perfor-
mance on CPP. Compared with BF, SP and WF, PSAACO
has a great gain in the four indicators of total path length,
total turning angle, energy consumption and completion
time.

Performance Comparison with Existing Works
In this section, we consider comparing our work with dif-
ferent scenarios in existing works:

•	 The work in [45], where the deep-limited search is
applied to build coverage path.

Table 10  Experiments on area 1 for performance comparison
between PSAACO and algorithm in [46]

Ref. [46] PSAACO

UAV speed[m/sec] 8 8

UAV rotation rate[deg/sec] 30 30

Path length[m] 630.55 531.14

Turning angle[deg] 1572.01 1272.00

Energy consumption[KJ] 100.59 83.83

Completion time[sec] 131.22 108.79

Fig. 10  Paths planned on area 1 by the algorithms in [46] and PSAACO

Page 20 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

•	 An energy-aware grid based algorithm with obstacle
avoidance, proposed in [46],

•	 An grid-based coverage path planning over irregular-
shaped area, presented in [39].

The experimental settings are the same as the previ-
ous section, we set the number of parallel threads to 20,
and choose the optimal solution in 10 runs as the final
solution. For a fair comparison of different methods, we
assume that the UAV flies with the same speed and rota-
tion rate in the same scenario.

Scenario 1
In this scenario, our approach is compared with that of
Valente et al. [45]. The area size of scenario 1 is approx-
imately 327 m × 195 m. In [45], the distance transform
function is used over the grid, the deep-limited search
is applied to plan coverage paths, and the path with the
smallest number of turns is selected.

Figure 9a represents the CPP generated in the
[45], Fig. 9b shows the CPP in our work, and Table 9
presents a comparison of the results of the two

Fig. 11  Paths planned on area 2 by the algorithms in [39, 46] and PSAACO

Table 11  Experiments on area 2 for performance comparison
between PSAACO and algorithm in [39, 46]

Ref. [39] Ref. [46] PSAACO

UAV speed[m/sec] 8 8 8

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 1075 1046.08 1025.30

Turning angle[deg] 2030.35 1571.18 1353.57

Energy consumption[KJ] 160.25 148.94 142.76

Completion time[sec] 202.05 183.13 173.28

Fig. 12  Paths planned on area 1 by the algorithms in [39] and PSAACO

Table 12  Experiments on area 1 for performance comparison
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 440.41 432.13 394.85

Turning angle[deg] 1845 1935 1170

Energy consumption[KJ] 83.18 83.77 66.20

Completion time[sec] 105.54 107.71 78.49

Page 21 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

approaches.Table 9 shows that the path length obtained
by PSAACO is not much reduced compared with that
obtained in Reference [45], but the turning angle is
greatly reduced, and the angle of PSAACO is reduced
by 28.6%. Benefiting from the smaller path length and
turning angle, the energy consumption and completion

time of PSAACO are improved by 6.0% and 8.5%
respectively.

Scenario 2
In this scenario, our approach is compared with
the energy-aware grid based solution for obstacle
avoidance(EAOA) provided by Ghaddar et al. [46]. Two
areas, named area 1 and area 2, in [46] are selected for
comparison. In order to fit the CPP model in our work,
we make minor adjustments to the paths of these two
areas.

Area 1  Figure 10a illustrates the CPP on area 1 gen-
erated by EAOA in [46] , and Fig. 10b shows the CPP
obtained by PSAACO algorithm.

As can be seen from Table 10, the path length and turn-
ing angle of the PSAACO algorithm are greatly improved,

Fig. 13  Paths planned on area 2 by the algorithms in [39] and PSAACO

Fig. 14  Paths planned on area 3 by the algorithms in [39] and PSAACO

Table 13  Experiments on area 2 for performance comparison
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 509.70 483.07 452.42

Turning angle[deg] 1755 1683.43 1260

Energy consumption[KJ] 89.69 85.35 74.46

Completion time[sec] 109.47 104.42 87.24

Page 22 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

which are reduced by 15.8% and 19.1%, respectively. Cor-
respondingly, energy consumption and completion time
have also been greatly improved, reducing by 17.1% and
16.7%, respectively.

Area 2  Figure 11a shows the CPP on area 2 generated
by E-F method in [39], Fig. 11b shows the CPP generated
by EAOA in [46], and the CPP obtained in our work is
illustrated in Fig. 11c.

As can be seen from Table 11, the PSAACO algo-
rithm produces a shorter path length and smaller
turning angle. Compared with E-F and EAOA, the
path length of PSAACO is reduced by 4.6% and
2.0%, and the turning angle is reduced by 33.3%
and 13.9%, respectively. Benefiting from the smaller
path length and turning angle, the energy consump-
tion of PSAACO is decreased by 14.2% and 5.4%, and
the completion time is reduced by 10.9% and 4.1%,
respectively.

Scenario 3
In this scenario, our approach is compared with the algo-
rithm proposed in Cabreira et al. [39]. Four areas, named
area 1, area 2, area 3 and area 4, in [39] are selected for
comparison. Authors in [39] propose two methods: O-F
and E-F, which calculate the path with the lowest turn-
ing angle and the path with the least energy consump-
tion respectively. For the convenience of comparison,
we modified some parameters, such as the size of some
areas, the speed of UAV, etc. But we maintain the same
path planning scheme, keeping the number and order of
points in the path unchanged.

Area 1  For area 1, the path planned by O-F method is
illustrated in Fig. 12a, the path obtained by E-F method is
shown in 12b, and the path generated by PSAACO algo-
rithm is presented in 12c.

It can be seen from the Table 12 that the PSAACO
algorithm greatly reduces the path length and turn-
ing angle. Compared with O-F and E-F methods,
the path length of PSAACO is reduced by 10.3% and

Table 14  Experiments on area 3 for performance comparison
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 556.98 511.42 532.91

Turning angle[deg] 2250 2295 1350

Energy consumption[KJ] 103.75 99.23 85.38

Completion time[sec] 130.69 127.64 98.29

Fig. 15  Paths planned on area 4 by the algorithms in [39] and PSAACO

Table 15  Experiments on area 4 for performance comparison
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 582.84 566.27 563.13

Turning angle[deg] 2025 2025 1260

Energy consumption[KJ] 102.87 100.94 87.34

Completion time[sec] 125.78 124.12 98.31

Page 23 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Fig. 16  The CPP model4

Page 24 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

8.6%, and the turning angle is reduced by 36.6% and
39.5%, respectively. Correspondingly, the energy con-
sumption and completion time of PSAACO have
also been greatly improved. The energy consumption
of PSAACO is decreased by 20.4% and 21.0%, and
the completion time is reduced by 25.6% and 27.1%,
respectively.

Area 2  For area 2, the path planned by O-F method is
illustrated in Fig. 13a, the path obtained by E-F method is
shown in 13b, and the path generated by PSAACO algo-
rithm is presented in 13c.

It can be seen from the Table 13 that the PSAACO
algorithm greatly reduces the path length and turn-
ing angle. Compared with O-F and E-F methods, the
path length of PSAACO is reduced by 11.2% and 6.3%,
and the turning angle is reduced by 28.2% and 25.2%,
respectively. Correspondingly, the energy consump-
tion and completion time of PSAACO have also been

greatly improved. The energy consumption of PSAACO
is decreased by 17.0% and 12.8%, and the completion
time is reduced by 20.3% and 16.5%, respectively.

Area 3  For area 3, the path planned by O-F method is
illustrated in Fig. 14a, the path obtained by E-F method is
shown in 14b, and the path generated by PSAACO algo-
rithm is presented in 14c.

As can be seen from Table 14, the path length of
PSAACO is 4.3% shorter than the path length in [39]
using O-F, but 4.2% longer than the path length using
E-F. The PSAACO algorithm greatly reduces the turning
angle. Compared with O-F and E-F methods, the turn-
ing angle of PSAACO is reduced by 40.0% and 41.2%,
respectively. Correspondingly, the energy consumption
and completion time of PSAACO have also been greatly
improved. The energy consumption of PSAACO is
decreased by 17.7% and 14.0%, and the completion time
is reduced by 24.8% and 23.0%, respectively.

Fig. 17  Paths planned on CPP model4

Page 25 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Area 4  For area 4, the path planned by O-F method is
illustrated in Fig. 15a, the path obtained by E-F method is
shown in 15b, and the path generated by PSAACO algo-
rithm is presented in 15c.

As can be seen from Table 15, the PSAACO algo-
rithm slightly reduces the path length, and the path
length of PSAACO is reduced by 3.4% on O-F method
and 0.6% on E-F method. The PSAACO algorithm
greatly decreases the turning angle, the turning angle
of PSAACO is reduced by 37.8% on O-F method and
by 37.8% on E-F method. Correspondingly, the energy

consumption and completion time of PSAACO have
also been greatly improved. The energy consumption
of PSAACO is decreased by 15.1% on O-F method
and 13.5% on E-F method, and the completion time is
reduced by 21.8% on O-F method and 20.8% on E-F
method, respectively.

Performance Verification using Gazebo Simulation
In order to verify the feasibility of the proposed algo-
rithm in the real scenarios, some simulation experi-
ments are carried out using a small quadrotor UAV in
gazebo. The UAV is equipped with a Pixhawk flight con-
troller running PX4. The ground control station adopts
QGroundControl which provides full flight control and
mission planning. The communication between the
UAV and the ground control station adopts MAVLink
protocol.

The simulation experiments use a real scenario
with a rectangular area of 300 m × 180 m. There
are two tall buildings in this scenario, which are set
as NFZs. The scenario is named CPP model4, as
shown in Fig. 16a. The area is decomposed into grids,

Fig. 18  Simulated flight trajectory using Gazebo on CPP model4

Table 16  Simulation experiment results in Gazebo on CPP
model4

BF SP WF PSAACO

Planned completion time[sec] 441.03 385.64 436.42 349

Simulated completion time[sec] 466 414 462 373

completion time difference[sec] 24.97 28.36 25.58 24

Percentage of completion time
difference

5.4% 6.9% 5.5% 6.4%

Page 26 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

and the A-type points, N-type points and NFZ are
labeled. The decomposed and labeled area is shown
in Fig. 16b.

Figure 17a-d illustrate the paths planned by BF,SP,WF
and PSAACO on CPP model4, respectively. Fig-
ure 18a-d show the flight trajectories simulated with
gazebo, corresponding to the paths planned by these
four algorithms. Table 16 presents the simulation
experiment results of these four algorithms. It can be
seen from the figures and table:

•	 The flight trajectories of the UAV and the planned
paths almost coincide, indicating that the path
planned by the proposed algorithm is feasible for real
flight.

•	 Compared with the other three algorithms, the
PSAACO algorithm uses a shorter completion time,
which proves that the PSAACO has better perfor-
mance.

•	 The difference between the planned comple-
tion time and the simulated completion time is
very small, ranging from 24 and 28.36 seconds,
and the percentage of the difference is between
5.4% and 6.9%. It shows that the values of the
main performance metrics used in this paper are
almost consistent with the real values, and have
high applicability.

Conclusion
In this paper, we propose the PSAACO algorithm
to plan paths for areas of interest. The algorithm is
improved by applying grid-mapping of the area, inver-
sion and insertion operators, self-adaptive parameters,
and parallel computing. Two metrics, completion time
and energy consumption, are used to compare and
evaluate the performance of PSAACO algorithm. The
performance improvement experiments show that self-
adaptive parameter setting and parallel computing can
improve the performance of PSAACO algorithm, and
the improvement is greater when the areas are large
or the no-fly zones are complex. In the performance
comparison experiments with other algorithms and
existing works, PSAACO has excellent comprehen-
sive performance on CPP, and has a great gain in the
four indicators of total path length, total turning angle,
energy consumption and completion time. The DFA is
also proposed to deal with the NFZs in the areas. The
DFA can dynamically add vertices and only calculate
the changes caused by these vertices. However, the
approach proposed in this paper also has some limita-
tions, such as the use of parallel computing requires
high-performance computing equipment; the algorithm

runs slowly when the areas of interest are large. In the
future works, we aim to speed up the algorithm, and
evaluate the work when the areas are larger or the no-
fly zones are more complex.

Abbreviations
UAV: Unmanned aerial vehicle; IoT: Internet of things; EC: Edge computing;
CloudIoT(CoT): Cloud of things; CPP: Coverage path planning; NFZ: No-fly
zone; PSAACO: Parallel self-adaptive ant colony optimization; DFA: Dynamical
Floyd algorithm; BF: Back-and-forth; SP: Spiral; WF: Wavefront; EAS: Elitist ant
system; ASRank: Rank based ant system; MMAS: MAX-MIN ant system; ACS:
Ant colony system; TSP: Traveling salesman problem; JSP: Job-shop schedul-
ing problem; VRP: Vehicle routing problem; QAP: Quadratic assignment
problem.

Acknowledgements
The authors would like to thank to the reviewers for nice comments on the
manuscript.

Authors’ Contributions
Y.G. wrote the main manuscript text; K.G. and T.N. prepared figures and tables.
All authors have read and agreed to the published version of the manuscript.

Authors’ information
Not applicable.

Funding
Supported by National Key Research and Development Program of China
(Grant No. 2018YFC1405700) and Industry University Research Cooperation
Project of Jiangsu Province (Grant No. BY2019005).

Availability of data and materials
Some or all data, models, or codes that support the findings of this study are
available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 May 2022 Accepted: 24 July 2022

References
	1.	 Huang J, Zhang C, Zhang J (2020) A multi-queue approach of energy

efficient task scheduling for sensor hubs. Chin J Electron 29(2):242–247.
https://​doi.​org/​10.​1049/​cje.​2020.​02.​001

	2.	 Chen Y, Xing H, Ma Z, et al (2022) Cost-efficient edge caching for noma-
enabled iot services. China Commun

	3.	 Xu X, Li H, Xu W et al (2022) Artificial intelligence for edge service optimi-
zation in internet of vehicles: A survey. Tsinghua Sci Technol 27(2):270–
287. https://​doi.​org/​10.​26599/​TST.​2020.​90100​25

	4.	 Huang J, Lv B, Wu Y et al (2022) Dynamic admission control and resource
allocation for mobile edge computing enabled small cell network. IEEE
Trans Veh Technol 71(2):1964–1973. https://​doi.​org/​10.​1109/​TVT.​2021.​
31336​96

	5.	 Qabil S, Waheed U, Awan SM, Mansoor Y, Khan MA (2019) A sur-
vey on emerging integration of cloud computing and internet of
things. In: 2019 International Conference on Information Science and

https://doi.org/10.1049/cje.2020.02.001
https://doi.org/10.26599/TST.2020.9010025
https://doi.org/10.1109/TVT.2021.3133696
https://doi.org/10.1109/TVT.2021.3133696

Page 27 of 28Gong et al. Journal of Cloud Computing (2022) 11:29 	

Communication Technology (ICISCT). https://​doi.​org/​10.​1109/​CISCT.​
2019.​87774​38

	6.	 Aazam M, Khan I, Alsaffar AA, Huh E (2014) Cloud of things: Integrating
internet of things and cloud computing and the issues involved. In:
Proceedings of 2014 11th International Bhurban Conference on Applied
Sciences Technology (IBCAST) Islamabad, Pakistan, 14th - 18th January,
2014, pp 414–419. https://​doi.​org/​10.​1109/​IBCAST.​2014.​67781​79

	7.	 Chen Y, Zhao F, Lu Y, Chen X (2021) Dynamic task offloading for mobile
edge computing with hybrid energy supply. Tsinghua Science and Tech-
nology 10, https://​doi.​org/​10.​26599/​TST.​2021.​90100​50

	8.	 Chen Y, Gu W, Li K (2022) Dynamic task offloading for internet of things in
mobile edge computing via deep reinforcement learning. Int J Commun
Syst :e5154. https://​doi.​org/​10.​1002/​dac.​5154

	9.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient multi-vehicle task offload-
ing for mobile edge computing in 6g networks. IEEE Trans Veh Technol
71(5):4584–4595. https://​doi.​org/​10.​1109/​TVT.​2021.​31335​86

	10.	 Chen Y, Liu Z, Zhang Y et al (2021) Deep reinforcement learning-based
dynamic resource management for mobile edge computing in industrial
internet of things. IEEE Trans Indust Inform 17(7):4925–4934

	11.	 Xu X, Jiang Q, Zhang P, Cao X (2022) Game theory for distributed iov
task offloading with fuzzy neural network in edge computing. IEEE Trans
Fuzzy Syst. https://​doi.​org/​10.​1109/​TFUZZ.​2022.​31580​00

	12.	 Li T, Li C, Lou C, Song L (2020) Wireless recommendations for internet
of vehicles: Recent advances, challenges, and opportunities. Intell Con-
verged Netw 1(1):1–17. https://​doi.​org/​10.​23919/​ICN.​2020.​0005

	13.	 Huang J, Tong Z, Feng Z (2022) Geographical poi recommendation for
internet of things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst :e5161https://​doi.​org/​10.​1002/​dac.​5161

	14.	 Qi L, Lin W, Zhang X et al (2022) A correlation graph based approach for
personalized and compatible web apis recommendation in mobile app
development. IEEE Trans Knowl Data Eng. https://​doi.​org/​10.​1109/​TKDE.​
2022.​31686​11

	15.	 Sandhu AK (2022) Big data with cloud computing: Discussions and
challenges. Big Data Min Analytics 5(1):32–40. https://​doi.​org/​10.​26599/​
BDMA.​2021.​90200​16

	16.	 Tong Z, Ye F, Yan M, Liu H, Basodi S (2021) A survey on algorithms for
intelligent computing and smart city applications. Big Data Min Analytics
4(3):155–172. https://​doi.​org/​10.​26599/​BDMA.​2020.​90200​29

	17.	 Catlett C, Beckman P, Ferrier N, Nusbaum H et al (2020) Measuring cities
with software-defined sensors. J Soc Comput 1(1):14–17. https://​doi.​org/​
10.​23919/​JSC.​2020.​0003

	18.	 Zhang W, Chen X, Jiang J (2021) A multi-objective optimization method
of initial virtual machine fault-tolerant placement for star topological data
centers of cloud systems. Tsinghua Sci Technol 26(1):95–111. https://​doi.​
org/​10.​26599/​TST.​2019.​90100​44

	19.	 Hou C, Wu J, Cao B, Fan J (2021) A deep-learning prediction model
for imbalanced time series data forecasting. Big Data Min Analytics
4:266–278. https://​doi.​org/​10.​26599/​BDMA.​2021.​90200​11

	20.	 Bouras MA, Farha F, Ning H (2020) Convergence of computing, com-
munication, and caching in internet of things. Intell Converged Netw
1(1):18–36

	21.	 Xu X, Tian H, Zhang X et al (2022) Discov: Distributed covid-19 detection
on x-ray images with edge-cloud collaboration. IEEE Trans Serv Comput.
https://​doi.​org/​10.​1109/​TSC.​2022.​31422​65

	22.	 Wang Z, Tao J, Gao Y, Xu Y, Sun W, Li X (2021) A precision adjustable trajec-
tory planning scheme for uav-based data collection in iots. Peer-to-Peer
Netw Appl 14:655–671. https://​doi.​org/​10.​1007/​s12083-​020-​01006-0

	23.	 Xu J, Li D, Gu W et al (2022) Uav-assisted task offloading for iot in smart
buildings and environment via deep reinforcement learning. Build Envi-
ron. https://​doi.​org/​10.​1016/j.​build​env.​2022.​109218

	24.	 Ji X, Wang X, Niu Y, Shen L (2015) Cooperative search by multiple
unmanned aerial vehicles in a nonconvex environment. Math Probl Eng
2015. https://​doi.​org/​10.​1155/​2015/​196730

	25.	 Cho S, Park J, Park H, Kim S (2022) Multi-uav coverage path planning
based on hexagonal grid decomposition in maritime search and rescue.
Mathematics 10(1):83. https://​doi.​org/​10.​3390/​math1​00100​83

	26.	 Cho SW, Park HJ, Lee H, Shim DH, Kim S (2021) Coverage path planning
for multiple unmanned aerial vehicles in maritime search and rescue
operations. Comput Ind Eng 161. https://​doi.​org/​10.​1016/j.​cie.​2021.​
107612

	27.	 Cabreira TM, Franco CD, Ferreira PR, Buttazzo GC (2018) Energy-aware
spiral coverage path planning for uav photogrammetric applications.
IEEE Robot Autom Lett 3(4):3662–3668

	28.	 Choi Y, Choi Y, Briceno S, Mavris DN (2020) Energy-constrained multi-uav
coverage path planning for an aerial imagery mission using column
generation. J Intell Robot Syst 97(1):125–139. https://​doi.​org/​10.​1007/​
s10846-​019-​01010-4

	29.	 Almadhoun R, Taha T, Dias J, Seneviratne L, Zweiri Y (2019) Coverage
path planning for complex structures inspection using unmanned aerial
vehicle (uav). In: Springer, Cham

	30.	 Biundini I, Pinto M, Melo A, Marcato AM, Honorio L (2022) Coverage path
planning optimization based on point cloud for structural inspection.
In: Khosravy M, Gupta NPN (eds) Frontiers in Nature-Inspired Industrial
Optimization. Springer, Singapore, pp 141–156

	31.	 Xiao S, Tan X, Wang J (2021) A simulated annealing algorithm and grid
map-based uav coverage path planning method for 3d reconstruction.
Electronics 10(7):853. https://​doi.​org/​10.​3390/​elect​ronic​s1007​0853

	32.	 Shen Z, Song J, Mittal K, Gupta S (2022) CT-CPP: Coverage Path Planning
for 3D Terrain Reconstruction Using Dynamic Coverage Trees. IEEE Robot
Autom Lett 7(1):135–142. https://​doi.​org/​10.​1109/​LRA.​2021.​31198​70

	33.	 Mokrane A, Braham AC, Cherki B (2019) Uav coverage path planning for
supporting autonomous fruit counting systems. In: 2019 International
Conference on Applied Automation and Industrial Diagnostics (ICAAID).
IEEE, Elazig, p 1–5. https://​doi.​org/​10.​1109/​ICAAID.​2019.​89349​89

	34.	 Tormagov T, Rapoport L (2021) Coverage path planning for 3d terrain
with constraints on trajectory curvature based on second-order cone
programming. In: Olenev NN, Evtushenko YG, Jaćimović M, Khachay M,
Malkova V (eds) Advances in Optimization and Applications. OPTIMA
2021. Communications in Computer and Information Science, vol 1514.
Springer, Cham, pp 258–272. https://​doi.​org/​10.​1007/​978-3-​030-​92711-
0_​18

	35.	 Arman N, Izbirak G, Vizvari B, Arkat J (2016) Complete coverage path plan-
ning for a multi-uav response system in post-earthquake assessment.
Robotics 5(4):26. https://​doi.​org/​10.​3390/​robot​ics50​40026

	36.	 Choset H (2001) Coverage for robotics - a survey of recent results. Ann
Math Artif Intell 31:113–126

	37.	 Wang K, Meng Z, Wang L, Wu Z, Wu Z (2019) Practical obstacle avoidance
path planning for agriculture uavs. In: Wotawa F, Friedrich G, Pill I, Koitz-
Hristov R, Ali M (eds) Advances and Trends in Artificial Intelligence. From
Theory to Practice. IEA/AIE 2019. Lecture Notes in Computer Science, vol
11606. Springer, Cham, pp 196–203. https://​doi.​org/​10.​1007/​978-3-​030-​
22999-3_​18

	38.	 Nolan P, Paley DA, Kroeger K (2017) Multi-uas path planning for non-
uniform data collection in precision agriculture. In: 2017 IEEE Aerospace
Conference. IEEE, Big Sky, p 1–12. https://​doi.​org/​10.​1109/​AERO.​2017.​
79437​94

	39.	 Cabreira TM, Ferreira PR, Franco CD, Buttazzo GC (2019) Grid-based cover-
age path planning with minimum energy over irregular-shaped areas
with uavs. In: International Conference on Unmanned Aircraft Systems
(ICUAS). IEEE, Atlanta, p 758–767. https://​doi.​org/​10.​1109/​ICUAS.​2019.​
87979​37

	40.	 Ghaddar A, Merei A, Natalizio E (2020) Pps: Energy-aware grid-based
coverage path planning for uavs using area partitioning in the presence
of nfzs. Sensors 20(13):3742. https://​doi.​org/​10.​3390/​s2013​3742

	41.	 Chaari I, Koubâa A, Qureshi B et al (2018) On the robot path planning
using cloud computing for large grid maps. 2018 IEEE International Con-
ference on Autonomous Robot Systems and Competitions (ICARSC). IEEE,
Torres Vedras, p 225–230. https://​doi.​org/​10.​1109/​ICARSC.​2018.​83741​87

	42.	 Cabreira TM, Brisolara LB, Ferreira PR (2019) Survey on coverage path
planning with unmanned aerial vehicles. Drones 3(1):4. https://​doi.​org/​
10.​3390/​drone​s3010​004

	43.	 Galceran E, Carreras M (2013) A survey on coverage path planning for
robotics. Robot Auton Syst 61(12):1258–1276

	44.	 Barrientos A, Colorado J, Cerro JD, Martinez A, Rossi C, Sanz D, Valente J
(2011) Aerial remote sensing in agriculture: A practical approach to area
coverage and path planning for fleets of mini aerial robots. J Robot Syst
28:667–689

	45.	 Valente J, Sanz D, Cerro JD, Barrientos A, Frutos M (2013) Near-optimal
coverage trajectories for image mosaicing using a mini quad-rotor over
irregular-shaped fields. Precis Agric 14:115–132

https://doi.org/10.1109/CISCT.2019.8777438
https://doi.org/10.1109/CISCT.2019.8777438
https://doi.org/10.1109/IBCAST.2014.6778179
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/TVT.2021.3133586
https://doi.org/10.1109/TFUZZ.2022.3158000
https://doi.org/10.23919/ICN.2020.0005
https://doi.org/10.1002/dac.5161
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.1109/TKDE.2022.3168611
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.26599/BDMA.2020.9020029
https://doi.org/10.23919/JSC.2020.0003
https://doi.org/10.23919/JSC.2020.0003
https://doi.org/10.26599/TST.2019.9010044
https://doi.org/10.26599/TST.2019.9010044
https://doi.org/10.26599/BDMA.2021.9020011
https://doi.org/10.1109/TSC.2022.3142265
https://doi.org/10.1007/s12083-020-01006-0
https://doi.org/10.1016/j.buildenv.2022.109218
https://doi.org/10.1155/2015/196730
https://doi.org/10.3390/math10010083
https://doi.org/10.1016/j.cie.2021.107612
https://doi.org/10.1016/j.cie.2021.107612
https://doi.org/10.1007/s10846-019-01010-4
https://doi.org/10.1007/s10846-019-01010-4
https://doi.org/10.3390/electronics10070853
https://doi.org/10.1109/LRA.2021.3119870
https://doi.org/10.1109/ICAAID.2019.8934989
https://doi.org/10.1007/978-3-030-92711-0_18
https://doi.org/10.1007/978-3-030-92711-0_18
https://doi.org/10.3390/robotics5040026
https://doi.org/10.1007/978-3-030-22999-3_18
https://doi.org/10.1007/978-3-030-22999-3_18
https://doi.org/10.1109/AERO.2017.7943794
https://doi.org/10.1109/AERO.2017.7943794
https://doi.org/10.1109/ICUAS.2019.8797937
https://doi.org/10.1109/ICUAS.2019.8797937
https://doi.org/10.3390/s20133742
https://doi.org/10.1109/ICARSC.2018.8374187
https://doi.org/10.3390/drones3010004
https://doi.org/10.3390/drones3010004

Page 28 of 28Gong et al. Journal of Cloud Computing (2022) 11:29

	46.	 Ghaddar A, Merei A (2020) Eaoa: Energy-aware grid-based 3d-obstacle
avoidance in coverage path planning for uavs. Futur Internet 12(2):29.
https://​doi.​org/​10.​3390/​fi120​20029

	47.	 Ghaddar A, Merei A (2019) Energy-aware grid based coverage path
planning for uavs. In: SENSORCOMM 2019: The Thirteenth International
Conference on Sensor Technologies and Applications. IARIA, Nice, p
34–45. https://​www.​think​mind.​org/​index.​php?​view=​artic​le&​artic​leid=​
senso​rcomm_​2019_2_​30_​10053

	48.	 Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant
colonies. In: Proceedings of ECAL91 - European Conference on Artificial
Life. ELSEVIER PUBLISHING, PARIS, p 134–142

	49.	 Dorigo M, Stützle, T (2003) The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances. In: Glover F, Kochenberger GA
(eds) Handbook of Metaheuristics. International Series in Operations
Research & Management Science, vol 57. Springer, Boston. https://​doi.​
org/​10.​1007/0-​306-​48056-5_9

	50.	 Bullnheimer B, Hartl RF, Strauss C (1999) A new rank based version of the
ant system - a computational study. CEJOR 7(1):25–38

	51.	 Stutzle T, Hoos HH (2000) Max-min ant system. Futur Gener Comput Syst
16:889–914

	52.	 Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Trans Evol
Comput 1:53–66

	53.	 Júnior O, Leal JE, Reimann M (2021) A multiple ant colony system with
random variable neighborhood descent for the dynamic vehicle routing
problem with time windows. Soft Comput 25:2935–2948. https://​doi.​org/​
10.​1007/​s00500-​020-​05350-4

	54.	 Zhao B, Gao J, Chen K, Guo K (2018) Two-generation pareto ant colony
algorithm for multi-objective job shop scheduling problem with
alternative process plans and unrelated parallel machines. J Intell Manuf
29:93–108. https://​doi.​org/​10.​1007/​s10845-​015-​1091-z

	55.	 Shetty A, Shetty A, Puthusseri KS, Shankaramani R (2018) An improved
ant colony optimization algorithm: Minion ant(mant) and its application
on tsp. In: 2018 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, Bangalore, p 1219–1225. https://​doi.​org/​10.​1109/​SSCI.​2018.​
86288​05

	56.	 Maniezzo V, Colorni A (1999) The ant system applied to the quadratic
assignment problem. IEEE Trans Knowl Data Eng 11(5):769–778

	57.	 Gong Y, Wang W, Gong S (2022) A novel self-adaptive mixed-variable mul-
tiobjective ant colony optimization algorithm in mobile edge computing.
Secur Commun Netw 2022. https://​doi.​org/​10.​1155/​2022/​49677​75

	58.	 Ilhan I, Gökmen G (2022) A list-based simulated annealing algorithm with
crossover operator for the traveling salesman problem. Neural Comput &
Applic 34:7627–7652

	59.	 Pedemonte M, Nesmachnow S, Cancela H (2011) A survey on parallel ant
colony optimization. Appl Soft Comput 11(8):5181–5197

	60.	 Floyd RW (1962) Algorithm 97: Shortest path. Comm Acm 5(6). https://​
doi.​org/​10.​1145/​367766.​368168

	61.	 Warshall S (1962) A theorem on boolean matrices. J ACM 9(1):11–12
	62.	 Nam LH, Huang L, Li XJ, Xu JF (2016) An approach for coverage path plan-

ning for uavs. In: 2016 IEEE 14th International Workshop on Advanced
Motion Control (AMC). IEEE, Auckland, p 411–416. https://​doi.​org/​10.​
1109/​AMC.​2016.​74963​85

	63.	 Zelinsky A, Jarvis RA, Byrne JC, Yuta S (1993) Planning paths of complete
coverage of an unstructured environment by a mobile robot. In: Proceed-
ings of international conference on advanced robotics. p 533–538

https://doi.org/10.3390/fi12020029
https://www.thinkmind.org/index.php?view=article&articleid=sensorcomm_2019_2_30_10053
https://www.thinkmind.org/index.php?view=article&articleid=sensorcomm_2019_2_30_10053
https://doi.org/10.1007/0-306-48056-5_9
https://doi.org/10.1007/0-306-48056-5_9
https://doi.org/10.1007/s00500-020-05350-4
https://doi.org/10.1007/s00500-020-05350-4
https://doi.org/10.1007/s10845-015-1091-z
https://doi.org/10.1109/SSCI.2018.8628805
https://doi.org/10.1109/SSCI.2018.8628805
https://doi.org/10.1155/2022/4967775
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1109/AMC.2016.7496385
https://doi.org/10.1109/AMC.2016.7496385

	Grid-Based coverage path planning with NFZ avoidance for UAV using parallel self-adaptive ant colony optimization algorithm in cloud IoT
	Abstract
	Introduction
	Related Works
	Materials and Methods
	Problem Model
	PSAACO Algorithm for CPP
	Calculate the Sub-path Matrix after Avoiding NFZs
	The Procedures for Solution
	The Procedures for Self-Adptive Parameters
	Parallel Computing with Multiple Threads
	The Fitness Value

	NFZ Avoidance Using DFA

	Experiment Results and Discussions
	Experimental Environment
	Performance Metrics
	Performance Improvement using Self-Adaptive Parameters
	Performance Improvement using Parallel Computing
	Performance Comparison between PSAACO and Other Algorithms
	Performance Comparison with Existing Works
	Scenario 1
	Scenario 2
	Scenario 3

	Performance Verification using Gazebo Simulation

	Conclusion
	Acknowledgements
	References

