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Abstract 

In recent years, with the development of Unmanned Aerial Vehicle (UAV) and Cloud Internet-of-Things (Cloud IoT) 
technology, data collection using UAVs has become a new technology hotspot for many Cloud IoT applications. 
Due to constraints such as the limited power life, weak computing power of UAV and no-fly zones restrictions in the 
environment, it is necessary to use cloud server with powerful computing power in the Internet of Things to plan the 
path for UAV. This paper proposes a coverage path planning algorithm called Parallel Self-Adaptive Ant Colony Opti-
mization Algorithm (PSAACO). In the proposed algorithm, we apply grid technique to map the area, adopt inversion 
and insertion operators to modify paths, use self-adaptive parameter setting to tune the pattern, and employ parallel 
computing to improve performance. This work also addresses an additional challenge of using the dynamic Floyd 
algorithm to avoid no-fly zones. The proposal is extensively evaluated. Some experiments show that the performance 
of the PSAACO algorithm is significantly improved by using parallel computing and self-adaptive parameter configu-
ration. Especially, the algorithm has greater advantages when the areas are large or the no-fly zones are complex. 
Other experiments, in comparison with other algorithms and existing works, show that the path planned by PSAACO 
has the least energy consumption and the shortest completion time.

Keywords:  Unmanned aerial vehicle, Coverage path planning, Ant colony algorithm, Floyd algorithm, No-fly zone, 
Grid-based technique
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Introduction
With the rapid development of the Internet of Things(IoT), 
the number of connected devices increases exponentially 
[1]. Due to the limited energy and computing power, ter-
minal devices often offload computing tasks to servers 
with higher computing power. One approach is to apply 
edge computing(EC) technology which can offload tasks 
to edge servers to relieve the pressure of limited computing 
resources on terminal devices [2]. Generally, EC arranges 
edge servers at the network edge so as to ensure that the 
computation is performed near data sources [3]. The other 
approach is to offload computing tasks to cloud servers 

[4]. Cloud computing provides IoT with limitless storage 
capabilities and computation power [5]. And the blend and 
incorporation of IoT and Cloud processing forms a new 
paradigm, named as CloudIoT or Cloud of things (CoT) [6].

The emergence of EC and CloudIoT brings many new 
applications, such as tasks offloading strategies [7–9], 
dynamic resource management [10], internet of vehicles 
[11, 12], geographical Point-of-Interest (POI) recommen-
dation [13], privacy security and recommender systems 
[14], cloud-based big data technique [15], smart city [16, 
17], fault-tolerant placement for cloud systems [18], data 
forecasting [19], convergence technology of computing, 
communication and caching [20], edge-cloud collabora-
tion method [21], the efficient data collection with UAVs 
[22, 23] and et al.. Among them, the application of UAV 
can significantly improve the capabilities of IoT devices 
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by processing the data of these devices. This paper 
focuses on the application of UAV.

Over the past few decades, UAVs have been widely used 
in military and civilian applications [24]. The UAVs can be 
used for search and rescue [25, 26], photogrammetry [27, 
28], structures inspection [29, 30], model reconstruction 
[31, 32], smart farming [33, 34], post-earthquake assess-
ment [35] etc. Many of these UAVs applications involve 
Coverage Path Planning (CPP) technique, which requires 
building a path that guarantees that an agent will explore 
every location in a given scenario [36] . CPP confronts 
a number of challenges, such as avoiding obstacles [37], 
data collection [38], avoiding no-fly zone(NFZ) [39], etc. 
Depending on the size and complexity of areas of inter-
est, exact or approximate cellular decomposition can be 
applied to decompose the areas and build efficient paths 
[40]. In addition, planning paths for large areas requires 
a lot of execution time, using cloud computing is a good 
choice [41]. For simple CPP missions, the most common 
performance metrics found in the literature are: the total 
travelled distance or the path length, the time-to-com-
plete a mission, the area coverage maximization, and the 
number of turning maneuvers [42]. These metrics depend 
mainly on two factors: the path length and the number of 
turns.

This paper, we propose a novel parallel self-adaptive ant 
colony optimization algorithm(PSAACO) to complete a 
grid-based CPP. And dynamical Floyd algorithm(DFA) is 
presented to avoid NFZs efficiently. These two algorithms 
require a lot of computing time, so they run on the cloud 
server. Our main contributions are as follows:

•	 Apply grid-based techniques to decompose the area 
of interest into cells, map the NFZs using rectan-
gles, and label the gird cells and NFZs with A-Type 
and N-Type points, respectively. Based on the labeled 
area, establish the model of the CPP problem, and 
put forward the formula for the model.

•	 Improve the ACO algorithm and propose the 
PSAACO algorithm. Apply the inversion operator 
and the insertion operator in the PSAACO algorithm, 
and make it suitable for solving the CPP problem.

•	 Introduce a self-adaptive setting method for parame-
ters of PSAACO algorithm, and prove the superiority 
of self-adaptive setting method by experiments.

•	 Apply multi-thread parallel computing in the algo-
rithm, and prove the improvement of the algorithm 
performance by experiments.

•	 Improve the Floyd Warshall algorithm and present the 
DFA. When vertices are added, only the changes caused 
by these vertices are calculated in DFA. Apply the DFA 
to address NFZ avoidance in the CPP problems.

•	 Compare the PSAACO algorithm with other algo-
rithms and existing works.

The paper is structured as follows: Section 2 describes the 
related works; Section 3 presents the CPP problem model 
and provides details about the PSAACO algorithm and 
DFA; Section  4 presents the performance metrics and 
experiment results; and Section 5 concludes the paper.

Related Works
CPP is a critical issue for many UAV applications, and 
it has become also a research hotspot. According to 
whether the environment is known or not, CPP algo-
rithms can be divided into two categories: online CPP 
and offline CPP [43]. Offline CPP algorithms only depend 
on static environmental information, assuming that all 
environmental information is known in advance. Online 
CPP algorithms don’t need to know the complete infor-
mation of the environment to be covered in advance, and 
plan local paths based on real-time sensor information.

According to the employed cellular decomposition 
technology, CPP algorithms can be divided into three 
main types: no decomposition, exact cellular decomposi-
tion and approximate cellular decomposition [42].

Using a single UAV to perform CPP tasks in a simple 
area with regular shape usually does not need cell decom-
position. Back-and-forth(BF) and Spiral(SP) are two most 
common no decomposition CPP algorithms [42]. In the 
BF algorithm, the UAV starts from a certain point on the 
edge of the area and flies forward along a straight path in 
a specific direction. After reaching the edge of the area, 
the UAV flies back in the opposite direction along a par-
allel path, and the UAV flies back and forth until a path 
covering the entire area is generated. The specific process 
of the SP algorithm is as follows: The UAV moves clock-
wise or counterclockwise along the edge of the unvisited 
part of the area. If it encounters an obstacle, the UAV 
rotates clockwise or counterclockwise for a certain angle 
and then continues to move forward, and so on and so 
forth until the UAV completes covering the entire area.

Exact cellular decomposition divides the irregularly-
shaped complex region into regular-shaped simple cells, 
and then the path planning is performed on the cells. The 
classical exact cellular decomposition methods include 
Trapezoidal Decomposition and Boustrophedon Decom-
position [43]. Trapezoid Decomposition is applied on 2D 
polygonal areas consisting of polygonal boundaries and 
polygonal obstacles. Starting at each vertex of the bound-
ary and obstacles, draw upper line segment and lower line 
segment in the non-obstacle part of the area. These line 
segments decompose the non-obstacle part into simple 
trapezoidal cells, and then plan paths on these trapezoidal 
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cells. Boustrophedon Decomposition method is similar to 
the Trapezoid Decomposition, but the two endpoints of 
the line segment dividing the area need to be located on 
the boundary of the area. Boustrophedon Decomposition 
decomposes an area into simple convex polygons, which 
can be covered by a simple back-and-forth run. Com-
pared with the trapezoidal method, the Boustrophedon 
Decomposition can reduce the number of cells, thereby 
shortening the total length of the coverage path.

Approximate cellular decomposition, also known as grid-
based decomposition, decomposes an area of interest into 
regularly-shaped grids. These grids are usually square, but 
they can be triangular or hexagonal. Each grid is marked 
with a value to indicate whether there are obstacles in it. 
Grid-based decomposition tries to find out the optimal 
path to traverse these grids and avoid obstacles. Grid-based 
decomposition methods are easy to create, simple and intu-
itive to use, and are widely used methods at present.

Authors in [44] propose an cost-efficient multirobot 
CPP algorithm. This method consists of two parts. The 
first part divides the area of interest into sub-areas. The 
second part applies a single UAV on each sub-area, and 
uses an algorithm based on the wave-front planner to plan 
path for the sub-area. The algorithm creates an adjacency 
graph of the grids, and then applies a breadth-first search 
(BFS) on the graph to perform the distance transforma-
tion. The path planned by the algorithm takes the starting 
cell as the basic cell, selects the cell with the smallest gra-
dient rise in the neighborhood of the basic cell as the next 
point of the path. Take this new path point as the basic 
cell, and repeat the above process to find the subsequent 
points for the path until the path covers the entire area.

Authors in [45] propose a method to plan coverage 
paths on irregular-shaped areas for image mosaicing. The 
algorithm uses a cost function designed to minimize the 
number of turns. This method consists of two parts. In 
the first part, the area is decomposed into regular-shaped 
grids, then this decomposed area is converted to a regular 
graph. The second part adopts a method similar to that in 
literature [44], applies the BFS on the grids to perform the 
distance transformation, then sequentially selects the cells 
with the smallest gradient rise in the neighborhood to form 
a coverage path. Deep-limited search is applied to ensure 
that the method can obtain a path that traverses all nodes 
and each node is traversed only once. A backtracking pro-
cedure is also used to solve the problems of same potential 
weight neighbor selection and trapping in local optima.

Cabreira et al. [39] introduce an energy-aware grid-based 
method. The approach is designed to minimize energy 
consumption of mapping tasks on the areas with irregular 
shapes. The method improves the grid-based approach pro-
posed by [45], and proposes a new cost function to replace 

the original one in [45], which aims to minimize the number 
of turns. The new energy cost function takes into account 
not only the energy required for the UAV to turn, but also 
the energy consumed by the UAV when accelerating, decel-
erating and flying at a constant speed. The new approach is 
able to lower energy consumption in real flight experiments.

Ghaddar et  al. [46] introduce an obstacle avoidance 
approach based on energy-aware grids. The method can 
be divided into two stages. The first stage is to plan one 
coverage path offline on the area of interest based on 
the top view girds. The second stage is an online obsta-
cle avoidance process based on the information captured 
by the camera. If an obstacle is captured , the proposed 
method re-plans the path to avoid the obstacle. This liter-
ature presents the experimental results on two scenarios, 
showing that the proposed method can shorten the flight 
time and reduce the energy consumption.

In another paper [40], Ghaddar et  al. propose an 
energy-aware CPP algorithm using grid-based technique 
to cover areas where NFZs exist. The algorithm includes 
three main stages. The first stage is to divide the area of 
interest into grids and graphically represent the NFZs. 
The second stage is to partition the area into sub areas 
around the NFZs. And the third stage is to plan one path 
on each sub area. To increase the percentage of covered 
area, the proposed algorithm selects the partition bor-
ders on the boundaries of cells. This approach applies 
filtering method to get rid of edges and nodes that are 
negligible for the coverage task. And this method uses a 
new cost function to build better turning points selection 
mechanism. The proposed approach is suitable for sce-
narios using single and multiple UAVs.

Materials and Methods
In this paper, our goal is to plan a coverage path over an 
area of interest where NFZs exist. The requirements to 
fulfill for the CPP are:

•	 Complete coverage of the area of interest;
•	 Ensure minimum completion time, by lowering the 

turning angle and the length of the planned path.
•	 Avoid passing over the interior of NFZs, but the 

boundary lines of NFZs are passable;

We use one UAV in offline mode to cover an area where 
NFZs exist. We build the CPP problem model using 
grid-based technique. We propose the PSAACO to make 
path planning on this problem model. Furthermore, to 
avoid the NFZs, we propose a DFA, which can dynami-
cally add points and only need to calculate the changes 
caused by these points without recalculating the entire 
algorithm.



Page 4 of 28Gong et al. Journal of Cloud Computing           (2022) 11:29 

Problem Model
We consider planning a path for an area of size approxi-
mately 100m × 80m, the area is shown in Fig. 1a. In the 
figure, the grey polygon represents the area that needs to 
be covered and searched, while the red polygons repre-
sent the NFZs.

Similarly to [40], this work uses the grid-based tech-
nique to model the investigated area. We map the geo-
graphical area to grid cells, and the mapped image is 

shown in Fig. 1b. The longest side of the area is aligned 
parallel to the X-axis or Y-axis of the mapped image by 
means of coordinate transformation. Each grid cell has 
rectangular shape, and its size is determined by the UAV 
footprint, what it means is the area the UAV can cover 
at one time [47]. In Fig.  1b, each grid cell is 20 meters 
long and 20 meters wide. Grid cells filled entirely or par-
tially with grey represent areas that need to be covered, 
and grid cells filled with red represent NFZs, while the 

Fig. 1  Grid-based area decomposition and cells labeling
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unfilled cells mean areas that do not need to be covered 
or are not prohibited to fly over.

In Fig. 1c, we label the key points of the mapped image. 
The key points are divided into two categories, named as 
A-Type points and N-Type points, respectively. A-Type 
points are the center points of the grid cells that need to be 
covered and searched, marked with orange circular labels 
in the figure. N-Type points are the vertices of NFZ poly-
gons, and marked with red circular labels. The key points 
in each row are numbered from left to right (x increasing 
direction), and the rows are numbered incrementally from 
top to bottom (y increasing direction). The text in each 
label consists of its type name and sequentially number.

In this work, a key point is represented as a vector 
V(te,  sn,  x,  y) , where coord(x,  y) is the coordinate, te is 
the type of the point, sn is the sequentially number. For 
example, in Fig.  1c, point VA10 can be represented by a 
vector V (“A′′, 10, 70, 50) , while point VN7 can be repre-
sented by a vector V (“N ′′, 7, 20, 60).

NFZs are described by rectangles, eg rectangle 
NR(VN0,VN1,VN5,VN4) is an instance of NFZ. If some NFZ 
rectangles have common edges, try to combine them into a 
larger rectangle, eg rectangle NR(VN6,VN7,VN10,VN9) and 
rectangle NR(VN7,VN8,VN11,VN10) can be combined into 
rectangle NR(VN6,VN8,VN11,VN9) . After the NFZs are 
combined, we can remove those redundant N-Type verti-
ces that are not used to form the NFZ rectangles. Figure 1d 
shows the area image after removing the redundant vertices.

Figure 1e shows an example of CPP, the back-and-forth 
is applied on the area. The blue polyline represents the 
planned path, which starts at point VA4 and ends at VA14 . 
In this paper, one path is described by one sequence of 
points it passes through, and the planned path without 
considering NFZ avoidance is as follows.

In this work, we detect whether all line segments in the 
path intersect the diagonal of the rectangle. If there is a 
line segment that intersects the diagonal of the NFZ rec-
tangle, it is considered that the line segment has passed 
the NFZ, and NFZ avoidance processing is required. Use 
a set named NFZS to record the diagonals of all NFZ rec-
tangles. In Fig. 1e, the diagonals in NFZS are represented 
by red line segments, and NFZS is as follows.

As a special case, the line segment LS(VN7,VN8) is the 
common edge of two NFZs, which is considered to be the 
interior of the area. If there is an intersection between the 

(1)
Pi =P(VA4,VA3,VA2,VA1,VA0,VA5,VA6,VA7,

VA8,VA11,VA10,VA9,VA12,VA13,VA14)

(2)

NFZS = {LS(VN0,VN5), LS(VN1,VN4), LS(VN2,VN8),

LS(VN3,VN7), LS(VN6,VN10), LS(VN8,VN9))}

path Pi and LS(VN7,VN8) , NFZ avoidance is also required. The 
common edge LS(VN7,VN8) is also recorded in NFZS, 
and the complete NFZS of the Fig. 1e is as follows.

As can be seen from Fig.  1e, the line segment 
LS(VA7,VA8) of the path intersects LS(VN0,VN5) in the 
NFZS , which means that the planned path Pi passes 
through the NFZ, but this is not allowed.

In this paper, we use N-Type points to avoid NFZs. 
Two N-Type points, VN0 and VN1 , are inserted into the 
line segment LS(VA7,VA8) . The update path Pj success-
fully avoids the NFZ, the vector of Pj is as follows, and 
it is illustrated in Fig. 1f.

In short, the CPP problem in this paper can be regarded 
as an optimization problem. The problem is described as 
follows: plan a path passing through all A-Type points, 
require each A-Type point to be traversed only once, use 
N-Type points to avoid the NFZs, and require the short-
est time for a UAV to cover the path. The mathematical 
model of the CPP problem can be described by Eq. 5.

Where f is a function to calculate the completion time for 
a planned path. τ is the minimum completion time of all 
paths. Pi is a planning path, as in Eq. 4. ν is UAV speed, 
and ψ is UAV rotation rate. G means area after decompo-
sition, which is composed of several sets. VAS is the set of 
A-Type points, containing all A-Type points in the area, 
while VNS is the set of N-Type points. NFZS defines a set 
of line segments to determine whether NFZ avoidance is 
required, which consists of the diagonals of the NFZ rec-
tangles and the common edge of two NFZ rectangles.

The mathematical model of the CPP problem subject to:

(3)

NFZS = {LS(VN0,VN5), LS(VN1,VN4), LS(VN2,VN8),

LS(VN3,VN7), LS(VN6,VN10), LS(VN8,VN9)), LS(VN7,VN8)}

(4)

Pj =P(VA4,VA3,VA2,VA1,VA0,VA5,VA6,VA7,VN0,

VN1,VA8,VA11,VA10,VA9,VA12,VA13,VA14)

(5)τ = minimize
∀Pi∈G

f (Pi, ν,ψ)

(6)G = G(VAS,VNS,NFZS)

(7)∀Vk ∈ Pi → Vk ∈ (VAS ∪ VNS)

(8)∀Vk ∈ VAS → Vk ∈ Pi

(9)i  = j,Vi ∈ Pk ,Vj ∈ Pk → Vi  = Vj

(10)∀LSx ∈ Pi, ∀LSy ∈ NFZS → LSx ∩ LSy = ∅
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Constraint formula 7 represents any point in the planned 
path Pi , which must also exist in the set of A-Type points 
or N-Type points. Constraint formula 8 indicates that Pi 
contains all A-Type points. Constraint formula 9 shows 
that each point in Pi can only appear once, and no two 
identical points exist in the same path. Constraint for-
mula 10 states that the line segment LSx in Pi does not 
intersect with the line segment LSy in NFZS, that is, the 
path Pi does not pass through the NFZs.

Table  1 defines the notation of relevant sets, vectors, 
parameters and variables of our work.

PSAACO Algorithm for CPP
Ant colony algorithm(ACO) is a bionic optimization algo-
rithm, which simulates the behavior of ant colony forag-
ing in nature, and uses probabilistic search technology to 
find the optimal path. This technique is first introduced 
by Dorigo and his colleagues [48], and then many schol-
ars have continuously enriched and improved it, forming 
an algorithm family. The well-known algorithms in the 
algorithm family include: Elitist Ant System (EAS) [49], 
Rank Based Ant System(ASRank) [50], MAX-MIN Ant 
System (MMAS) [51], Ant Colony System(ACS) [52], etc. 
ACO is used for many applications especially complex 

combinatorial optimization problems such as vehicle 
routing problem (VRP) [53], job-shop scheduling problem 
(JSP) [54], traveling salesman problem (TSP) [55], quad-
ratic assignment problem (QAP) [56], and so on.

In this paper, we extend the ACO algorithm presented 
in our previous work [57], and propose a new PSAACO 
to deal with CPP problem. This new PSAACO algorithm 
is mainly expanded as follows: make some modifications 
to solve CPP problems, modify the self-adaptive strategy 
to construct and apply a new parameter vector at each 
iteration, apply the inversion and insertion operators to 
construct new solutions, use a multi-threaded parallel 
computing approach to improve the solution quality and 
search speed.

The pseudocode of the PSAACO is presented in Algo-
rithm  1. As seen in the algorithm, procedure Initial-
izeGlobalParameters() is used to initialize the global 
parameters G, ψ , ν , TdNum, Itmax,Itmax2, Cmax, Cmin, 
a, n and q, whose meanings are provided in the algo-
rithm. The G is an instance of CPP model, as represented 
by Eq.  6. The CPP model instance contains three sets: 
A-Type points set VAS, N-Type points set VNS and line 
segments set NFZS. The following subsections elaborate 
on the other procedures in the algorithm.

Table 1  Table of notations

Symbol Description Symbol Description

A Geographical area te Type of the point

G Instance of CPP model sn Sequentially number of point

VAi A-Type point VNi N-Type point

NR NFZ rectangle Pi Planned path

coord(x, y) Coordinate of point SPi Sub-path consisting of partial points of the path

LSi line segment VAS Set of A-Type points

VNS Set of N-Type points NFZS Set of line segments to define NFZs

ν UAV speed ψ UAV rotation rate

β Total distance of a path ϕ Total turning angles of a path

� Total energy consumption of a path τ Total completion time of a path

S The solution archive n Number of solutions in solution Archive

m Number of variables in solution vector si The i-th solution int solution archive

s
j
i

Value of the j-th variable in the i-th solution ωi selection weight of the i-th vector in the archive

η The size of search solution archiving area C The self-adaptive parameter archive

Cmax Array of parameter maximum values Cmin Array of parameter minimum values

a Number of parameters in parameter Archive b Number of parameters in parameter vector

ci The i-th parameter vector int archive c
j
i

the j-th parameter in the i-th parameter vector

µ the mean value of Gaussian function σ the mean square error of Gaussian function

dlij distance from vertex i to j in the l-th iteration ξ The convergence speed of parameter archive

θ The size of search parameter archiving area � Energy consumption per meter of length

γ Energy consumption per degree of turn angle q Number of ants for each thread

TdNum Number of parallel threads Itmax Maximum number of iterations

Itmax2 Maximum iteration number of finding no better solution

PM Sub-paths matrix between any two points in VAS after avoiding NFZs
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Calculate the Sub‑path Matrix after Avoiding NFZs
The pseudocode used for calculate the sub-path matrix 
is in Algorithm 2. As seen in the Algorithm 2, in steps 6 
to 16, it is checked whether the line segment composed 
of any two points in VAS has an intersection with the 
line segment defined by NFZS. If there is no intersec-
tion, the corresponding element value in the sub-path 
matrix is assigned to the sub-path composed of these 
two points. If there is an intersection, it means that the 
line segment passes through the NFZs, then start the 
NFZ avoidance algorithm to obtain the sub-path and 
assign the obtained sub-path to the element in the sub-
path matrix. The procedure GetSubpathByFloyd in step 
18 will be described in later subsection.

For example, in the CPP model instance shown in 
Fig.  1, the line segment consisting of VA6 and VA7 has 
no intersection with any line segment in NFZS, so the 
value of PM[6][7] is SP(VA6,VA7) . And the line seg-
ment LS(VA7,VA8) has an intersection with the line seg-
ment LS(VN0,VN5) in NFZS, so the value of PM[7][8] is 
SP(VA7,VN0,VN1,VA8) after NFZ avoidance processing.

The Procedures for Solution
As seen in the Algorithm  1, the main processing flow 
for the solution archive in the PSAACO algorithm is 
indicated below:
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•	 The first process applies the “InitializeSolution-
Archive” procedure in step 10 to initialize the solu-
tion archive, and uses “UpdateSolutionArchive” 
procedure in step 11 to update the archive.

•	 The second process corresponds to steps 21 to 23 
in the algorithm. Each ant selects a base solution 
from the solution archive, constructs one new solu-
tion from the base solution by “ConstructSolution” 
procedure, and then adds the new solution into the 
solution archive.

•	 The third process uses the “UpdateSolutionArchive” 
procedure to sort the solutions in the solution 
archive by their quality, then keep the best n solu-
tions in the solution archive and remove redundant 
solutions.

•	 Repeat the second and third process before a termi-
nation condition is satisfied.

The structure of solution archive  The structure of solu-
tion archive S of PSAACO algorithm is shown in Fig. 2. 
The solution archive stores n solutions. Each solution sj is 
represented by an m-dimensional vector, as shown in the 
following formulas:

f (sj) and ωj means the fitness value and selection weight 
of solution sj ,respectively.

For the CPP problem, each solution of PSAACO cor-
responds to a planned path without NFZ avoidance, 
and each variable in the solution corresponds to the 
sn of one point in the path. For example, the solution 
si corresponding to the path Pi described in Eq. 1 is as 
follows:

Initializing solution archive  The pseudocode used for gen-
erating the initial solutions for the solution archive is pre-
sented in Algorithm 3. As seen in the algorithm, each solu-
tion was randomly generated as a permutation of the set 
of the points in VSA. Then, each solution is converted to a 
path using the “getPathFromSolution” procedure in step 4. 
The fitness value of the path is calculated in step 5, and the 
new solution is added into the solution archive in step 6.

(11)sj = (s1j , s
2
j , · · · , s

i
j , · · · , s

m
j )

(12)si = s(4, 3, 2, 1, 0, 5, 6, 7, 8, 11, 10, 9, 12, 13, 14)

The pseudocode of the “getPathFromSolution” pro-
cedure is shown in Algorithm  4. Take out two adjacent 
points of the solution solu in turn, query their corre-
sponding sub-paths from PM, and combine these sub-
paths into a complete path P. Since the sub-paths in PM 
are NFZs-avoiding, the new path is also NFZs-avoiding.

Constructing new solutions probabilistically  First, each 
ant applies the roulette wheel selection algorithm, proba-
bilistically selecting a solution from the solution archive 
S. As shown in the following equation, the selection 
probability PSj of the solution sj is calculated according to 
its selection weight ωj.

(13)PSj =
ωj
n
i=1 ωi
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Where ωj can be calculated by Eq. 14. In the equation, η 
represents the search size constant, and n is the number 
of solutions in S.

Then, a new solution is built based on the selected 
solution. Similarly to [58], this work uses the local 
search operators to construct a solution. The pseu-
docode to construct a new solution is shown in Algo-
rithm 5. We use the inversion and insertion operators, 
which are among the most popular local search opera-
tors. The algorithm chooses to use the inversion opera-
tor with a probability of 50%, as shown in steps 6 and 7. 
And the insertion operator is selected with a probabil-
ity of 25% in steps 8 and 9. In steps 10 to 22, we apply 
the inversion operator multiple times in a continuous 
loop, and take the best constructed solution as the new 
solution. The local search operators can be described as 
follows:

•	 The inversion operator: The inversion operator sim-
ply inverses the variables of the solution between 
positions x and y. In other words, it randomly selects 
two positions on the solution and then reverses the 
sub-path between these two positions. For example, 
inversion(si, x, y ) generates a new solution sj , which 
is sj = (s1i , · · · , s

x−1
i , s

y
i , s

y−1

i , · · · , sxi , s
y+1

i , · · · , sni ) , 
where 1 ≤ x < y ≤ n.

•	 The insertion operator: The insertion operator ran-
domly selects the positions x and y in the solution. 
Then it moves the variable from Position y to Position 
x. Insertion(si, x, y ) generates a new solution sj , which is 
sj = (s1i , · · · , s

x−1
i , s

y
i , s

x
i , s

x+1
i , · · · , sy−1

i , s
y+1

i , · · · , sni ) , 
where 1 ≤ x < y ≤ n.

(14)ωj =
1

ηn
√
2π

e

−(j − 1)2

2η2n2

Updating the solution archive  The “InitializeSolution-
Archive” and “ConstructSolution” procedures add some 
new solutions into the solution archive S. The “UpdateS-
olutionArchive” procedure performs the update S opera-
tion. First, the solutions in S containing new solutions are 
sorted according to their fitness function value, and the 

Fig. 2  The structure of solution archive
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solutions with good quality are ranked above the solu-
tions with poor quality. Then, the top n solutions with the 
best quality in S are retained, and other redundant solu-
tions are removed.

The Procedures for Self‑Adptive Parameters
Some parameters greatly affect the performance of 
PSAACO. The scheme of manually setting parameters 
depends too much on the experience of setting person-
nel. This paper adopts a self-adaptive parameters setting 
scheme for PSAACO.

The self-adaptive parameter archive C is added to store 
these self-adaptive parameters. Assume that there are a 
parameter setting schemes, and each scheme is a vector 
composed of b self-adaptive parameters, the correspond-
ing parameter archive is shown in Fig.  3. cij is the i-th 
parameter value in the j-th parameter vector. f (cj) is the 
fitness value of the cj . ωj means the weight of cj.

In the algorithm  1, the main processing flow for the 
self-adaptive parameters in the PSAACO algorithm is 
indicated below:

•	 The first process applies the “InitializelParameter-
Archive” procedure in step 7 to initialize the parame-
ter archive. Randomly create a parameter vectors and 
store them into the parameter archive.

•	 The second process corresponds to steps 15 to 29 in 
the algorithm. Each iteration selects a base parameter 
vector from the archive, constructs a new param-
eter vector from the base parameter vector by “Con-
structParameter” procedure. Take this new param-
eter vector as the current parameter vector for this 
iterative calculation. Record the fitness value of the 
best solution constructed by ants in this iteration, 
and take this value as the fitness value of the new 
parameter vector. Add the new parameter vector and 
its fitness value into the parameter archive.

•	 The third process uses the “UpdateParameterArchive” 
procedure to sort the parameter vectors in C by their 
quality, then keep the best a parameter vectors in C 
and remove redundant parameter vectors.

•	 Repeat the second and third process before a termi-
nation condition is satisfied.

The procedures for parameter archive are very similar to 
that for solution archive, and they have almost the same 
operations in initializing archive, selecting base vector 
from archive, updating archive, etc.

There is a big different procedure for parameter 
archive, and that is constructing a new parameter. Each 
variable in the base parameter vector probabilistically 
selects new value in its neighborhood, and these new val-
ues form a new parameter vector. The probability density 
function Pd(x) for each variable is as follows:

and

f (x,µ, σ) is the Gaussian function, x is a variable in one 
parameter vector. σ denotes the mean square error , µ is 
the mean value , and ξ means the algorithm parameter.

Parallel Computing with Multiple Threads
Parallel computing can enhance the algorithm speed, 
and it introduces parallel computing elements to expand 
the search mode, which can often improve the quality 
of algorithm results [59]. In this work, we use a multi-
threaded parallel computing approach to improve the 
solution quality and search speed of PSAACO.

Step 6 of Algorithm 1 starts TdNum parallel threads, and 
steps 7 to 45 in Algorithm 1 are the running steps of each 

(15)Pd(x) = f (x,µ, σ) =
1

σ
√
2π

e

−(x − µ)2

2σ 2

(16)µ = cij , σ = ξ

a∑

r=1

|cir − cij |
a− 1

Fig. 3  The structure of parameter archive
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thread. Each thread runs an independent ACO algorithm, 
and it has its own solution archives, parameter archives and 
global parameters, etc. These threads have independent ant 
colonies to explore new solutions. And they independently 
update their own solution archives and parameter archives. 
After all threads run, take the best solution obtained by all 
threads as the result of the whole algorithm.

The application of parallel computing speeds up the 
run of the algorithm, reduces the probability of PSAACO 
falling into a local optimum, and improves the overall 
performance of PSAACO. The relevant proof experi-
ments are described in the later experimental part.

The Fitness Value
The most common performance metrics are: path length, 
number of turning maneuvers, completion time, energy 
consumption, and quality of area coverage. Path length 
and turning angle are the two main basic factors, and 
most common performance metrics usually rely on one of 
these factors or a combination of two factors. The com-
pletion time and energy consumption metrics include the 
evaluation of these two factors, so these two metrics are 
more comprehensive and reasonable. In this paper, the 
completion time is used as the fitness function value.

NFZ Avoidance Using DFA
The Floyd Warshall algorithm is used to search for the short-
est path between any two points, and can handle the short-
est path problem of undirected graphs or weighted directed 
graphs [60, 61]. The idea of the algorithm is to insert dif-
ferent intermediate vertices between two points and find 
out the insertion scheme of the shortest path. Let dxij be the 
shortest path from vertex i to vertex j , and its intermediate 
vertex is in the set 1, 2... y, where x is the iteration number 
and y is the total number of all vertices. Then for y > 1,

Thus, dyij is the shortest paths matrix calculated by the 
Floyd Warshall algorithm from the input graph. The 
Floyd Warshall algorithm cannot dynamically add points. 
When a new vertex is added into the graph, all shortest 
path needs to be recalculated, and the time complexity is 
O(n3).

This paper improves the algorithm so that when verti-
ces are added, only the changes caused by these vertices 
are calculated, and the algorithm are named DFA.

The DFA is presented in Algorithm  6. The algorithm 
has three input parameters. DistanceM1 represents 
the distance matrix that has been calculated so far, and 
DistanceM1[i][j] records the shortest distance from ver-
tex i to vertex j. PathM1 indicates the path matrix that 

(17)dxij = min(dx−1
ij , dx−1

ik + dx−1

kj )

has been calculated, and PathM1[i][j] records the inter-
mediate vertex for the shortest path from vertex i to 
vertex j. DistanceA is an array of distances between new 
point and calculated points, where DistanceA[i] records 
the distance between new point and vertex i. In steps 
3 to 17 in Algorithm  6, initialize the DistanceM2 and 
PathM2 by copying the calculated data in DistanceM1 
and PathM1 , and adding the data of the new point from 
DistanceA. The steps 18 to 23 of the algorithm calcu-
late and update all paths ending at the new point, and 
the steps 24 to 29 calculate and update all paths start-
ing at the new point, while the steps 30 to 35 calculate 
and update all paths with the new point as intermediate 
point. The calculation and update operations are imple-
mented by the “updateMatrix” procedure. The detailed 
steps of the “updateMatrix” procedure are described in 
algorithm 7, and its principle is shown in Formula 17.

It is easy to see that the time complexity of DFA is 
O(3n2) . When the number of points is large, DFA has 
great advantages in running speed.
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We apply the DFA to deal with NFZ avoidance. 
Assume we get a CPP model G and a sub-path 
Pk = (VAi,VAj) , then the main process for Pk to avoid 
NFZs is as follows:

•	 The first process is to calculate all N-Type points in 
G using DFA, and store the result in the distance 
matrix DistanceM1 and the path matrix PathM1. 
We take the CPP model shown in Fig. 1 as an exam-
ple, The DistanceM1 is shown in Table 2. The data in 
the table represents the shortest distance between 
two N-Types points. In particular, ∞ indicates that 
there is no feasible path between two points. Table 3 
describes the data of PathM1. From the table we 
can see that the shortest path from VN1 to VN10 is: 
(VN1,VN5,VN10) , since 5 is the intermediate vertex 
between VN1 to VN10.

•	 The second process is to calculate the distance 
between the starting vertex VAi and all N-Type points 
to obtain the distance array of DistanceA1. For 
example, the DistanceA1 for vertex VA7 in Fig.  1 is 
(14.1,∞, · · · ,∞, 51.0).

•	 The third process is to take DistanceA1, DistanceM1 
and PathM1 as input parameters, apply the DFA to 
calculate and update the distance matrix DistanceM1 
and the path matrix PathM1.

•	 Repeat process 2 and process 3 to calculate the 
end vertex VAj . And we can get the NFZ avoidance 
path from final path matrix PathM1. In the exam-
ple, the final DistanceM1 is shown in Table  4 and 
the final PathM1 is shown in Table 5. It can be seen 
from the tables that the NFZ avoidance path of 
Pk = (VA7,VA8) is (VA7,VN0,VN1,VA8).

Experiment Results and Discussions
In this section, we present experimental results and dis-
cussions of our work. In the following, two metrics for 
evaluating performance are introduced first. Next the 
performance improvement using self-adaptive param-
eters and parallel computing is presented. Finally the per-
formance comparison with other algorithms and existing 
works is carried out.

Experimental Environment
The computer used for the experiments is Lenovo 
Xiaoxin Pro16 2021: AMD Ryzen 7-5800H CPU (8cores) 
, 16 GB memory, 1 TB SSD. The integrated development 
environment of the experiments is Visual Studio 2019 
on Windows 11, and the experimental projects are pro-
grammed using C#.

Performance Metrics
Performance metrics, completion time and energy con-
sumption are used to evaluate the experimental results. 
Their definitions are as follows.

Completion Time [62] is the total time required to 
complete the planned path. It can be calculated:

Where β is total distance of a path, ϕ denotes total turn-
ing angles of a path, ψ is UAV rotation rate, and ν is UAV 
speed.

(18)τ =
β

ν
+

ϕ

ψ

Table 2  Distance matrix for N-Type points

VN0 VN1 · · · VN9 VN10

VN0 ∞ 20 · · · 93.0 63.2

VN1 20 ∞ · · · 113.0 76.5
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 93.0 113.0 · · · ∞ 40

VN10 63.2 76.5 · · · 40 ∞

Table 3  Path matrix for N-Type points

VN0 VN1 · · · VN9 VN10

VN0 0 1 · · · 6 10

VN1 0 1 · · · 6 5
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 6 6 · · · 9 10

VN10 0 5 · · · 9 10
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Energy consumption [40] is the total energy consump-
tion required to complete the planned path. It can be 
calculated:

(19)� = �× β + γ × ϕ

Where � is the energy consumption required by the UAV 
to complete each 1m path length, and γ is the energy con-
sumption required to complete each 1 degree turning 
angle. In this work, we use the same values as in [40], and 

Table 4  Distance matrix after NFZ avoidance

VN0 VN1 · · · VN9 VN10 VA7 VA8

VN0 ∞ 20 · · · 93.0 63.2 14.1 34.1

VN1 20 ∞ · · · 113.0 76.5 34.1 14.1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 93.0 113.0 · · · ∞ 40 79.9 110.7

VN10 63.2 76.5 · · · 40 ∞ 51.0 70.7

VA7 14.1 34.1 · · · 79.9 51.0 ∞ 48.3

VA8 34.1 14.1 · · · 110.7 70.7 48.3 ∞

Table 5  Path matrix after NFZ avoidance

VN0 VN1 · · · VN9 VN10 VA7 VA8

VN0 0 1 · · · 6 10 11 1

VN1 0 1 · · · 6 5 0 12
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN9 6 6 · · · 9 10 2 5

VN10 0 5 · · · 9 10 11 12

VA7 0 0 · · · 2 10 11 1

VA8 1 1 · · · 5 10 1 12

Fig. 4  The CPP model2.[63]
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set the values of � and γ to 0.1164 KJ/m and 0.0173 KJ/
degree, respectively.

Performance Improvement using Self‑Adaptive Parameters
Some experiments are carried out to test the performance 
improvement using self-adaptive parameters. Two CPP 
models are used in these experiments. One CPP model 
is depicted in Fig.  1, named CPP model1, which has a 

relatively small area. The other CPP model is from Ref-
erence [63] , which has a relatively large area and a com-
plex no-fly zone. We make some modifications, and the 
adjusted model is named CPP model2, as shown in Fig. 4.

Table  6 lists the parameter setting scheme and per-
formance of five experiments. In the four experiments 
from ACO1 to ACO4, we manually set the values of the 
three self-adaptive parameters n, q and η for the ACO 

Table 6  Experiments for Performance Improvement using Self-Adaptive Parameters

Parameters CPP model1 CPP model2

n q η Best Mean Worst Best Mean Worst

ACO1 5 10 0.001 46 46.31 48 268.64 306.77 397.00

ACO2 10 20 0.01 45.32 46.29 49 242.20 263.62 300.10

ACO3 20 50 0.1 45.32 45.52 46 214.15 227.81 254.74

ACO4 50 100 1 45.32 45.32 45.32 212.65 224.73 244.07

PSAACO Self-Adaptive 45.32 45.32 45.32 208 224.78 259.54

Fig. 5  The CPP model3. [43]

Table 7  Experiments for Performance Improvement using Parallel Computing

Number of parallel threads CPP model2 CPP model3

Best Mean Worst Best Mean Worst

1 208 224.78 259.54 266.30 276.59 295.99

5 208 214.93 236.02 257.79 267.02 285.00

10 208 212.80 223.81 259.60 266.22 273.44

20 208 211.79 226.55 256.72 261.53 266.75
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algorithm, and the three parameters represent the solu-
tion number in solution archive, the ant number for each 
thread and the search size in archive area, respectively. 
The fifth experiment shows the experimental result of 
the PSAACO algorithm. In Table  6, the columns titled 
“CPP model1” and “CPP model2” show the experimental 
results of running PSAACO algorithm 10 times on CPP 
model1 and CPP model2, respectively. The sub column 
titled “Best” shows the completion time correspond-
ing to the best solution of 10 runs, the sub column titled 
“Mean” shows the mean completion time, and the sub 
column titled “Worst” indicates the worst completion 
time. It can be seen from Table 6:

•	 When planning the path on CPP model1, most 
experiments can obtain excellent solutions. This 
means that parameter settings are less important for 
small, simple areas. For the large and complex CPP 
model2, the performance of the third to fifth experi-
ments is significantly better than the other experi-
ments. This means that parameter settings are very 
important for this model.

•	 The performance of ACO algorithm largely depends 
on parameter settings, especially when dealing with 
some complex models. While PSAACO shows excel-
lent comprehensive performance, even when dealing 
with complex models.

Fig. 6  Performance comparison experiment on CPP model1
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In conclusion, self-adaptive parameter setting can 
improve the performance of ACO algorithm to solve 
the CPP problem, and the performance improvement is 
more obvious when the areas are large or the no-fly zones 
are complex.

Performance Improvement using Parallel Computing
To test the performance improvement using parallel 
computing, we conduct some experiments on two CPP 
models. One CPP model is CPP model2. The other is a 
modified model based on the model in ref. [43] , which is 
illustrated in Fig. 5.

Four experiments are done and each experiment 
runs 10 times. The number of parallel threads for these 
four experiments is set to 1, 5, 10, and 20, respectively. 
All experiments adopt self-adaptive parameter setting 
scheme. Table 7 shows the experimental results. It can be 
seen from Table 7:

•	 The performance of PSAACO algorithm is improved 
as the number of threads increases. As shown in the 
Table 7, experiments with a large number of threads 
achieve better mean completion time metrics.

•	 When the number of threads increases to a certain 
value, such as more than 10, continuing to increase 
the number of threads has little effect on perfor-
mance improvement.

In short, parallel computing can improve the perfor-
mance of PSAACO algorithm. And a small number of 
parallel threads can be selected for simple problems, 
while a larger number of threads, such as 10 or 20, can be 
selected for complex problems.

Performance Comparison between PSAACO and Other 
Algorithms
The BF and SP are the most common pattern for a single 
UAV to explore regular-shaped and non-complex areas 

Fig. 7  Performance comparison experiment on CPP model2
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Table 8  Experiments for Performance Comparison between PSAACO and Other Algorithms

BF SP WF PSAACO

CPP model1 Path length[m] 308.20 314.00 296.50 288.20

Turning angle[deg] 630.00 548.13 720.00 495.00

Energy consumption[KJ] 46.77 46.03 46.97 42.11

Completion time[sec] 51.82 49.67 53.65 45.32

CPP model2 Path length[m] 2085.00 1793.50 1633.10 1600.00

Turning angle[deg] 2507.28 1771.02 2970.00 1440.00

Energy consumption[KJ] 286.07 239.40 241.47 211.15

Completion time[sec] 292.08 238.38 262.31 208.00

CPP model3 Path length[m] 2786.40 2472.90 2009.10 1917.90

Turning angle[deg] 3166.26 3031.02 3510.00 1890.00

Energy consumption[KJ] 379.11 340.28 294.58 255.94

Completion time[sec] 384.18 348.32 317.91 254.79

Fig. 8  Performance comparison experiment on CPP model3
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[42]. The wavefront algorithm(WF) is a popular cover-
age path planning approach suitable for irregular-shaped 
areas [63]. In this work, we modify these three algorithms 
to solve the CPP problem as described in Eq. 5.

The main process of this modified BF algorithm is as 
follows:

•	 Find the points on the four corners in VSA, for exam-
ple, the four points in Fig. 1 are VA0,VA4,VA14,VA12

,respectively.
•	 Take each point as the starting point and go back 

and forth along the horizontal, vertical and diagonal 
directions to generate paths. For example, Fig.  1e 
depicts the generated path in the horizontal direc-
tion starting from VA4 . Each point can generate 
three paths, and four points can get a total of twelve 
paths.

•	 These paths are processed by the DFA for NFZ avoid-
ance, and the fitness values of these paths are calcu-
lated. The path with the smallest fitness value is taken 
as the result of the BF algorithm.

The modification to SP is similar to the modification 
to BF. First, find the four corner points in the VSA. 
Next, take these points as starting points, and make 
a spiral motion in a clockwise or counterclockwise 
direction to generate paths. Then, these paths are pro-
cessed for NFZ avoidance, and their fitness function 
values are calculated. Finally, the best path is taken as 
the result.

In the modified WF algorithm, we select each point 
in the VSA as the goal point, and use the wavefront 
method and NFZ avoidance to generate paths, then 
take the best path as the algorithm result.

We do some experiments to compare our algorithm 
with the three algorithms. CPP model1, CPP model2 
and CPP model3 are used in these experiments. CPP 
model1 has a relatively small area and a simple NFZ, 
CPP model2 has a relatively large area and a complex 
NFZ, and CPP model3 has a larger area and a very 
complex NFZ. The three models cover scenarios of dif-
ferent area and NFZs of different complexity, which can 
comprehensively test and compare the performance of 
these algorithms.

Set the number of parallel threads to 20, make 10 path 
planning for each scenario, and select the optimal solu-
tion in the 10 path planning experiments as the final solu-
tion of the algorithm. Figure  6a-d represent the CPP on 
model1 done by BF,SP,WF and PSAACO, respectively. 
Figures 7 and 8 show the paths planned by the four algo-
rithms on model2 and model3. As can be seen from these 
figures, PSAACO algorithm has shorter distance and 
fewer turns than other algorithms.

Table  8 shows that PSAACO generate a shorter path 
on model1 than BF, SP and WF by 6.5%, 8.2% and 2.8% 
respectively, decreasing the turning angles by 21.4%, 9.7% 
and 31.3%, lowering the energy consumption by 10.0%, 

Table 9  Experiments for Performance Comparison between 
PSAACO and algorithm in [45]

Ref. [45] PSAACO

UAV speed[m/sec] 8 8

UAV rotation rate[deg/sec] 30 30

Path length[m] 1488.01 1462.60

Turning angle[deg] 1890 1349.64

Energy consumption[KJ] 205.90 193.59

Completion time[sec] 249.00 227.81

Fig. 9  Paths planned by the algorithms in [45] and PSAACO
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8.5% and 10.3%, and reducing the completion time by 
12.5%, 8.8% and 15.5%.

Table 8 also shows that the path generated by PSAACO 
on model2 is 23.3%, 10.8% and 2.0% shorter than BF, 
SP, and WF, respectively, reduces the rotation angle by 
42.6%, 18.7% and 51.5%, decreases the energy consump-
tion by 26.2%, 11.8% and 12.6%, and shortens the com-
pletion time by 28.8%, 12.7% and 20.7%.

It can also be seen from the Table 8 that the path gen-
erated by PSAACO on model3 is 31.2%, 22.4% and 4.5% 
shorter than BF, SP and WF, respectively, and the rotation 
angle is reduced by 40.3%, 37.6% and 46.2%, the energy 
consumption is reduced by 32.5%, 24.8% and 13.1%, and 
the completion time is shortened by 33.7%, 26.9% and 
19.9%, respectively.

In short, PSAACO has excellent comprehensive perfor-
mance on CPP. Compared with BF, SP and WF, PSAACO 
has a great gain in the four indicators of total path length, 
total turning angle, energy consumption and completion 
time.

Performance Comparison with Existing Works
In this section, we consider comparing our work with dif-
ferent scenarios in existing works:

•	 The work in [45], where the deep-limited search is 
applied to build coverage path.

Table 10  Experiments on area 1 for performance comparison 
between PSAACO and algorithm in [46]

Ref. [46] PSAACO

UAV speed[m/sec] 8 8

UAV rotation rate[deg/sec] 30 30

Path length[m] 630.55 531.14

Turning angle[deg] 1572.01 1272.00

Energy consumption[KJ] 100.59 83.83

Completion time[sec] 131.22 108.79

Fig. 10  Paths planned on area 1 by the algorithms in [46] and PSAACO
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•	 An energy-aware grid based algorithm with obstacle 
avoidance, proposed in [46],

•	 An grid-based coverage path planning over irregular-
shaped area, presented in [39].

The experimental settings are the same as the previ-
ous section, we set the number of parallel threads to 20, 
and choose the optimal solution in 10 runs as the final 
solution. For a fair comparison of different methods, we 
assume that the UAV flies with the same speed and rota-
tion rate in the same scenario.

Scenario 1
In this scenario, our approach is compared with that of 
Valente et al. [45]. The area size of scenario 1 is approx-
imately 327 m × 195 m. In [45], the distance transform 
function is used over the grid, the deep-limited search 
is applied to plan coverage paths, and the path with the 
smallest number of turns is selected.

Figure  9a represents the CPP generated in the 
[45], Fig.  9b shows the CPP in our work, and Table  9 
presents a comparison of the results of the two 

Fig. 11  Paths planned on area 2 by the algorithms in [39, 46] and PSAACO

Table 11  Experiments on area 2 for performance comparison 
between PSAACO and algorithm in [39, 46]

Ref. [39] Ref. [46] PSAACO

UAV speed[m/sec] 8 8 8

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 1075 1046.08 1025.30

Turning angle[deg] 2030.35 1571.18 1353.57

Energy consumption[KJ] 160.25 148.94 142.76

Completion time[sec] 202.05 183.13 173.28

Fig. 12  Paths planned on area 1 by the algorithms in [39] and PSAACO

Table 12  Experiments on area 1 for performance comparison 
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 440.41 432.13 394.85

Turning angle[deg] 1845 1935 1170

Energy consumption[KJ] 83.18 83.77 66.20

Completion time[sec] 105.54 107.71 78.49
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approaches.Table 9 shows that the path length obtained 
by PSAACO is not much reduced compared with that 
obtained in Reference [45], but the turning angle is 
greatly reduced, and the angle of PSAACO is reduced 
by 28.6%. Benefiting from the smaller path length and 
turning angle, the energy consumption and completion 

time of PSAACO are improved by 6.0% and 8.5% 
respectively.

Scenario 2
In this scenario, our approach is compared with 
the energy-aware grid based solution for obstacle 
avoidance(EAOA) provided by Ghaddar et  al. [46]. Two 
areas, named area 1 and area 2, in [46] are selected for 
comparison. In order to fit the CPP model in our work, 
we make minor adjustments to the paths of these two 
areas.

Area 1  Figure  10a illustrates the CPP on area 1 gen-
erated by EAOA in [46] , and Fig.  10b shows the CPP 
obtained by PSAACO algorithm.

As can be seen from Table 10, the path length and turn-
ing angle of the PSAACO algorithm are greatly improved, 

Fig. 13  Paths planned on area 2 by the algorithms in [39] and PSAACO

Fig. 14  Paths planned on area 3 by the algorithms in [39] and PSAACO

Table 13  Experiments on area 2 for performance comparison 
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 509.70 483.07 452.42

Turning angle[deg] 1755 1683.43 1260

Energy consumption[KJ] 89.69 85.35 74.46

Completion time[sec] 109.47 104.42 87.24
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which are reduced by 15.8% and 19.1%, respectively. Cor-
respondingly, energy consumption and completion time 
have also been greatly improved, reducing by 17.1% and 
16.7%, respectively.

Area 2  Figure 11a shows the CPP on area 2 generated 
by E-F method in [39], Fig. 11b shows the CPP generated 
by EAOA in [46], and the CPP obtained in our work is 
illustrated in Fig. 11c.

As can be seen from Table  11, the PSAACO algo-
rithm produces a shorter path length and smaller 
turning angle. Compared with E-F and EAOA, the 
path length of PSAACO is reduced by 4.6% and 
2.0%, and the turning angle is reduced by 33.3% 
and 13.9%, respectively. Benefiting from the smaller 
path length and turning angle, the energy consump-
tion of PSAACO is decreased by 14.2% and 5.4%, and 
the completion time is reduced by 10.9% and 4.1%, 
respectively.

Scenario 3
In this scenario, our approach is compared with the algo-
rithm proposed in Cabreira et al. [39]. Four areas, named 
area 1, area 2, area 3 and area 4, in [39] are selected for 
comparison. Authors in [39] propose two methods: O-F 
and E-F, which calculate the path with the lowest turn-
ing angle and the path with the least energy consump-
tion respectively. For the convenience of comparison, 
we modified some parameters, such as the size of some 
areas, the speed of UAV, etc. But we maintain the same 
path planning scheme, keeping the number and order of 
points in the path unchanged.

Area 1  For area 1, the path planned by O-F method is 
illustrated in Fig. 12a, the path obtained by E-F method is 
shown in 12b, and the path generated by PSAACO algo-
rithm is presented in 12c.

It can be seen from the Table  12 that the PSAACO 
algorithm greatly reduces the path length and turn-
ing angle. Compared with O-F and E-F methods, 
the path length of PSAACO is reduced by 10.3% and 

Table 14  Experiments on area 3 for performance comparison 
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 556.98 511.42 532.91

Turning angle[deg] 2250 2295 1350

Energy consumption[KJ] 103.75 99.23 85.38

Completion time[sec] 130.69 127.64 98.29

Fig. 15  Paths planned on area 4 by the algorithms in [39] and PSAACO

Table 15  Experiments on area 4 for performance comparison 
between PSAACO and algorithm in [39]

O-F algorithm E-F algorithm PSAACO

UAV speed[m/sec] 10 10 10

UAV rotation rate[deg/sec] 30 30 30

Path length[m] 582.84 566.27 563.13

Turning angle[deg] 2025 2025 1260

Energy consumption[KJ] 102.87 100.94 87.34

Completion time[sec] 125.78 124.12 98.31
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Fig. 16  The CPP model4



Page 24 of 28Gong et al. Journal of Cloud Computing           (2022) 11:29 

8.6%, and the turning angle is reduced by 36.6% and 
39.5%, respectively. Correspondingly, the energy con-
sumption and completion time of PSAACO have 
also been greatly improved. The energy consumption 
of PSAACO is decreased by 20.4% and 21.0%, and 
the completion time is reduced by 25.6% and 27.1%, 
respectively.

Area 2  For area 2, the path planned by O-F method is 
illustrated in Fig. 13a, the path obtained by E-F method is 
shown in 13b, and the path generated by PSAACO algo-
rithm is presented in 13c.

It can be seen from the Table  13 that the PSAACO 
algorithm greatly reduces the path length and turn-
ing angle. Compared with O-F and E-F methods, the 
path length of PSAACO is reduced by 11.2% and 6.3%, 
and the turning angle is reduced by 28.2% and 25.2%, 
respectively. Correspondingly, the energy consump-
tion and completion time of PSAACO have also been 

greatly improved. The energy consumption of PSAACO 
is decreased by 17.0% and 12.8%, and the completion 
time is reduced by 20.3% and 16.5%, respectively.

Area 3  For area 3, the path planned by O-F method is 
illustrated in Fig. 14a, the path obtained by E-F method is 
shown in 14b, and the path generated by PSAACO algo-
rithm is presented in 14c.

As can be seen from Table  14, the path length of 
PSAACO is 4.3% shorter than the path length in [39] 
using O-F, but 4.2% longer than the path length using 
E-F. The PSAACO algorithm greatly reduces the turning 
angle. Compared with O-F and E-F methods, the turn-
ing angle of PSAACO is reduced by 40.0% and 41.2%, 
respectively. Correspondingly, the energy consumption 
and completion time of PSAACO have also been greatly 
improved. The energy consumption of PSAACO is 
decreased by 17.7% and 14.0%, and the completion time 
is reduced by 24.8% and 23.0%, respectively.

Fig. 17  Paths planned on CPP model4
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Area 4  For area 4, the path planned by O-F method is 
illustrated in Fig. 15a, the path obtained by E-F method is 
shown in 15b, and the path generated by PSAACO algo-
rithm is presented in 15c.

As can be seen from Table  15, the PSAACO algo-
rithm slightly reduces the path length, and the path 
length of PSAACO is reduced by 3.4% on O-F method 
and 0.6% on E-F method. The PSAACO algorithm 
greatly decreases the turning angle, the turning angle 
of PSAACO is reduced by 37.8% on O-F method and 
by 37.8% on E-F method. Correspondingly, the energy 

consumption and completion time of PSAACO have 
also been greatly improved. The energy consumption 
of PSAACO is decreased by 15.1% on O-F method 
and 13.5% on E-F method, and the completion time is 
reduced by 21.8% on O-F method and 20.8% on E-F 
method, respectively.

Performance Verification using Gazebo Simulation
In order to verify the feasibility of the proposed algo-
rithm in the real scenarios, some simulation experi-
ments are carried out using a small quadrotor UAV in 
gazebo. The UAV is equipped with a Pixhawk flight con-
troller running PX4. The ground control station adopts 
QGroundControl which provides full flight control and 
mission planning. The communication between the 
UAV and the ground control station adopts MAVLink 
protocol.

The simulation experiments use a real scenario 
with a rectangular area of 300 m × 180 m. There 
are two tall buildings in this scenario, which are set 
as NFZs. The scenario is named CPP model4, as 
shown in Fig. 16a. The area is decomposed into grids, 

Fig. 18  Simulated flight trajectory using Gazebo on CPP model4

Table 16  Simulation experiment results in Gazebo on CPP 
model4

BF SP WF PSAACO

Planned completion time[sec] 441.03 385.64 436.42 349

Simulated completion time[sec] 466 414 462 373

completion time difference[sec] 24.97 28.36 25.58 24

Percentage of completion time 
difference

5.4% 6.9% 5.5% 6.4%
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and the A-type points, N-type points and NFZ are 
labeled. The decomposed and labeled area is shown 
in Fig. 16b.

Figure 17a-d illustrate the paths planned by BF,SP,WF 
and PSAACO on CPP model4, respectively. Fig-
ure  18a-d show the flight trajectories simulated with 
gazebo, corresponding to the paths planned by these 
four algorithms. Table  16 presents the simulation 
experiment results of these four algorithms. It can be 
seen from the figures and table:

•	 The flight trajectories of the UAV and the planned 
paths almost coincide, indicating that the path 
planned by the proposed algorithm is feasible for real 
flight.

•	 Compared with the other three algorithms, the 
PSAACO algorithm uses a shorter completion time, 
which proves that the PSAACO has better perfor-
mance.

•	 The difference between the planned comple-
tion time and the simulated completion time is 
very small, ranging from 24 and 28.36 seconds, 
and the percentage of the difference is between 
5.4% and 6.9%. It shows that the values of the 
main performance metrics used in this paper are 
almost consistent with the real values, and have 
high applicability.

Conclusion
In this paper, we propose the PSAACO algorithm 
to plan paths for areas of interest. The algorithm is 
improved by applying grid-mapping of the area, inver-
sion and insertion operators, self-adaptive parameters, 
and parallel computing. Two metrics, completion time 
and energy consumption, are used to compare and 
evaluate the performance of PSAACO algorithm. The 
performance improvement experiments show that self-
adaptive parameter setting and parallel computing can 
improve the performance of PSAACO algorithm, and 
the improvement is greater when the areas are large 
or the no-fly zones are complex. In the performance 
comparison experiments with other algorithms and 
existing works, PSAACO has excellent comprehen-
sive performance on CPP, and has a great gain in the 
four indicators of total path length, total turning angle, 
energy consumption and completion time. The DFA is 
also proposed to deal with the NFZs in the areas. The 
DFA can dynamically add vertices and only calculate 
the changes caused by these vertices. However, the 
approach proposed in this paper also has some limita-
tions, such as the use of parallel computing requires 
high-performance computing equipment; the algorithm 

runs slowly when the areas of interest are large. In the 
future works, we aim to speed up the algorithm, and 
evaluate the work when the areas are larger or the no-
fly zones are more complex.
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