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Abstract 

A small object Lentinus Edodes logs contamination detection method (SRW-YOLO) based on improved YOLOv7 
in edge-cloud computing environment was proposed to address the problem of the difficulty in the detection 
of small object contaminated areas of Lentinula Edodes logs. First, the SPD (space-to-depth)-Conv was used to recon-
struct the MP module to enhance the learning of effective features of Lentinula Edodes logs images and prevent 
the loss of small object contamination information, and improve the detection reliability of resource-limited edge 
devices. Meanwhile, RepVGG was introduced into the ELAN structure to improve the efficiency and accuracy of infer-
ence on the contaminated regions of Lentinula Edodes logs through structural reparameterization. This enables mod-
els to run more efficiently in mobile edge computing environments while reducing the burden on cloud computing 
servers. Finally, the boundary regression loss function was replaced with the WIoU (Wise-IoU) loss function, which 
focuses more on ordinary-quality anchor boxes and makes the model output results more accurate. In this study, 
the measures of Precision, Recall, and mAP@0.5 reached 97.63%, 96.43%, and 98.62%, respectively, which are 4.62%, 
3.63%, and 2.31% higher compared to those for YOLOv7. Meanwhile, the SRW-YOLO model detects better compared 
with the current advanced one-stage object detection model, providing an efficient, accurate and practical small 
object detection solution in mobile edge computing environments and cloud computing scenarios.

Keywords  Lentinula Edodes logs, Contamination detection, Mobile edge computing, Cloud computing, Small object 
detection

Introduction
Lentinula Edodes logs are critical carriers for Lentinula 
Edodes cultivation and are frequently contaminated by 
sundry bacteria during the cultivation process [1–3], 
causing substantial economic losses to enterprises. Cur-
rently, the contamination status of Lentinula Edodes logs 

still relies on manual inspection. Manual inspection is not 
only high in labor cost and low in efficiency, but it also 
requires high professional quality of inspectors and usu-
ally can only detect contamination of Lentinula Edodes 
logs when it is more obvious. Timely, accurate detection 
of initial contamination in Lentinula Edodes logs is cru-
cial for preventing further spread and generation of con-
tamination, ensuring quality and yield improvements.

In recent years, with the development of deep learn-
ing theory and edge cloud computing, detection algo-
rithms based on deep learning have been widely used 
due to their good generalization ability and cross-sce-
nario capabilities [4–7], and related needs for mobile 
edge computing and cloud computing have gradu-
ally emerged [8–13]. Many academic institutions and 
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industry researchers have invested in the field of edge 
cloud computing, and these studies have promoted 
the development of edge cloud computing and com-
puter vision technology [14–17]. In this context, the 
use of deep learning technology to process crop dis-
ease images has gradually become a research hotspot 
[18–20]. Zu et al. [21] used a deep learning method to 
identify contamination of Lentinula Edodes logs for 
the first time and proposed an improved ResNeXt-50 
(32 × 4d) model for Lentinula Edodes log contamina-
tion identification. The method improves the model 
by fine-tuning the six fully connected layers in the 
ResNeXt-50(32 × 4d) model to improve the accuracy 
of Lentinula Edodes logs contamination recognition, 
thereby breaking the situation of relying on manual 
detection with low efficiency and easy selection errors. 
However, this method has complex network structure 
and low detection efficiency, so it is not suitable for 
deployment in mobile devices or embedded devices, 
and cloud computing may provide it with more com-
puting resources. To this end, Zu et  al. [22] proposed 
Ghost-YoLoV4 for Lentinula Edodes logs contamina-
tion identification, which used a lightweight network, 
GhostNet, instead of a back-bone feature extraction 
network. This lightweight approach is well-suited for 
mobile edge computing, allowing real-time contamina-
tion identification on edge devices and alleviating the 
burden on cloud computing servers. Although schol-
ars have achieved certain results in Lentinula Edodes 
logs contamination detection using deep learning 
techniques, the detection effect of existing studies is 

unsatisfactory in the early stage of contamination due 
to small contamination areas, requiring small object 
detection. The difficulty of small object detection has 
been an important problem faced by object detection 
algorithms, and many scholars have conducted in-
depth studies for this purpose [23–27]. However, no 
relevant literature on deep learning for small object 
Lentinula Edodes logs contamination detection has 
been found in previous studies. This study combined 
cloud computing and edge computing to process shii-
take mushroom stick data, and designed an edge cloud 
computing framework for image enhancement and 
real-time detection on edge devices, as shown in Fig. 1. 
Edge devices with good network establish wireless 
network or data transmission connections with cloud 
servers. The cloud server receives and processes edge 
devices requests and performs corresponding algo-
rithm calculations. When receiving multiple requests 
from multiple mobile edge devices, the cloud server 
performs parallel computing in the cloud. After the 
calculation is completed, real-time responses are pro-
vided to the edge devices. The overall data training and 
testing framework maintains the accuracy of edge com-
puting resources in small object Lentinula Edodes logs 
contamination detection.

The YOLOv7 model proposed by Wang et  al. [28] 
has faster speed and higher accuracy on the COCO 
dataset, making it ideal for mobile edge computing and 
resource-constrained environments. This performance 
improvement is of great significance for applica-
tions deployed in mobile edge computing systems and 

Fig. 1  The edge cloud computing framework for image enhancement and real-time detection on edge devices
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providing services in cloud computing environments. 
In this study, we improved the YOLOv7 algorithm and 
proposed a model (SRW-YOLO) applicable to small 
object Lentinula Edodes logs contamination detection. 
First, SPD-Conv was introduced in the MP module of 
the network to highlight small object contamination 
object features, which helps to perform object detec-
tion more effectively on resource-constrained edge 
devices. Then, RepVGG was used to re-parameterize 
the ELAN structure in the backbone network, reduc-
ing the pressure on mobile edge inference computing 
and cloud server resources, and further improving the 
detection of small object Lentinula Edodes logs con-
tamination. Finally, the object location was regressed 
using the WIoU loss function paying more attention 
to ordinary-quality anchor boxes to improve overall 
detection performance of bacteriophage contamina-
tion condition.

Related work
Cloud computing
As a paradigm of distributed computing, cloud com-
puting decomposes large-scale data into sub-modules 
through a network center and then distributes it to 
a system composed of multiple servers for process-
ing and analysis. The calculation results are finally fed 
back to the central node [29, 30]. Cloud computing 
technology combines the characteristics of distributed 
computing, parallel computing and grid computing to 
build massive computing clusters and storage clusters 
to provide users with scalable computing resources and 
storage space at low cost. Currently, many companies 
have enterprise-level cloud computing platforms, such 
as Amazon Cloud Computing, Alibaba Cloud Com-
puting, Baidu Cloud Computing, etc. Compared with 
traditional application platforms, cloud computing 
platforms have the advantages of powerful computing 
power, unlimited storage capacity, and convenient and 
fast virtual services. However, for individuals and small 
companies, renting a cloud computing server involves 
additional costs. Therefore, in order to reduce cloud 
computing costs, a variety of new lightweight networks 
have been proposed for target detection. Common 
strategies include avoiding full connections in the net-
work, reducing the number of channels and convolu-
tion kernel size, and optimizing down-sampling, weight 
pruning, weight discretization, model representation, 
and encoding [31, 32]. However, there is currently a 
lack of a small object Lentinula Edodes logs contamina-
tion detection model suitable for mobile edge comput-
ing and cloud computing environments.

Edge computing
The architecture design of edge computing originated 
from cloudlet [33] proposed by Carnegie Mellon Uni-
versity in 2009. In 2016, the Wayne State University 
team [34] formally defined edge computing and con-
ducted in-depth research on its application scenarios. 
Subsequently, artificial intelligence solutions based on 
edge computing became a research hotspot. Hu et  al. 
[35] proposed a method to build a face detection video 
surveillance system based on mobile edge computing 
(MEC). This method uses different detection algorithms 
at the edge and the cloud, and decides whether it needs 
to be sent to the cloud based on the confidence of edge 
detection. Jia [36] discussed the application prospects 
of edge computing models based on distributed data 
collection and processing in intelligent video detection. 
Wang et al. [37] proposed an online monitoring system 
architecture for transmission lines based on the ubiq-
uitous Internet of Things by studying image recogni-
tion and mobile edge computing technology based on 
deep learning. However, it is difficult for existing edge 
detection models in agriculture to maintain a balance 
between accuracy and real-time performance.

Crop disease detection
In the field of agricultural production, ignoring the 
early signs of plant disease may lead to losses in food 
crops, which could eventually destroy the world’s econ-
omy. Anh et  al. [38] introduced a multi-leaf classifica-
tion model based on a benchmark dataset, utilizing a 
pre-trained MobileNet CNN model. Their approach 
demonstrated efficiency in classification, achieving 
a reliable accuracy of 96.58%. In another study [39], a 
multi-label CNN was proposed for the classification 
of various plant diseases, employing transfer learning 
approaches such as DenseNet, Inception, Xception, 
ResNet, VGG, and MobileNet. The authors claimed the 
novelty of their research as the first to classify 28 classes 
of plant diseases using a multi-label CNN. The Ensem-
ble Classifier was employed for plant disease classifica-
tion in [40], evaluated with two datasets—PlantVillage 
and Taiwan Tomato Leaves. Pradeep et  al. [41] pre-
sented the EfficientNet model, a convolutional neural 
network designed for multi-label and multi-class clas-
sification. The inclusion of a secret layer network in the 
CNN positively impacted the identification of plant dis-
eases. However, the model exhibited underperformance 
when validated with benchmark datasets. In [42], an 
effective, loss-fused, resilient convolutional neural 
network (CNN) was proposed using the benchmark 
dataset PlantVillage, achieving a notable classification 
accuracy of 98.93%. Despite enhancing classification 
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accuracy, the model faced challenges in real-time image 
classification under varying environmental conditions.

Materials and methods
Data acquisition
The dataset used in this study was sourced from the 
meticulously built database of the Smart Village Labo-
ratory at Shandong Agricultural University, which was 
specifically developed for this research. The data was col-
lected from a factory culture shed located in Shandong 
Province, China. A unique aspect of the data collection 
process was the installation of LED strip lights at regular 
intervals within the Lentinula Edodes log culture shed. At 
the same time, using cloud computing technology, Len-
tinula Edodes logs cultivators can monitor the lighting 
conditions in the Lentinula Edodes logs cultivation shed 
in real time, and remotely control the brightness and 
position of the LED strip lights to ensure a normal Len-
tinula Edodes logs cultivation environment to the great-
est extent. The acquisition equipment used in the study 
was composed of two devices: A Canon EOS 600D cam-
era and an IQOO8 cell phone. The image resolution cap-
tured by these devices ranged from 1900 to 4000 pixels 
in width and from 2200 to 4000 pixels in height. Based 
on the collected images of Lentinula Edodes logs, the 
logs were categorized into three distinct groups: Normal 
Lentinula Edodes logs, Aspergillus flavus-contaminated 
Lentinula Edodes logs, and Trichoderma viride-contam-
inated Lentinula Edodes logs, as distinctly delineated 
in Fig.  2. The dataset also included images of Lentinula 
Edodes logs that were contaminated by small objects. A 
comprehensive total of 3156 images were amassed, which 
comprised of 1734 images of normal Lentinula Edodes 
logs, 700 images of Aspergillus flavus-contaminated Len-
tinula Edodes logs, and 722 images of Trichoderma vir-
ide-contaminated Lentinula Edodes logs.

Data pre‑processing
In the realm of deep learning, it’s essential for models 
to undergo rigorous training using copious amounts of 
data, a practice that is paramount to avert the issue of 
overfitting. The adequacy and comprehensiveness of the 
dataset employed assume a pivotal role in the endeavor 
to bolster the accuracy of the model being proposed. In 
a quest to widen the sample size, this study embraced 
the technique of data augmentation. The strategy of data 
enhancement incorporated a plethora of morphological 
operations such as rotation of angle, adjustment of satu-
ration, alteration of exposure, flipping of images either 
up or down, and the application of random cropping, as 
distinctly delineated in Fig. 3. Through the implementa-
tion of these methodologies, an enlarged pool of samples 
could be generated, thereby enhancing the generalization 

capability and sturdiness of the model under considera-
tion. The expanded set of data samples comprised 2988 
images capturing normal Lentinula Edodes logs, 1912 
images showcasing Aspergillus flavus-tainted Lentinula 
Edodes logs, and a further 1512 images depicting Tricho-
derma viride-contaminated Lentinula Edodes logs. The 
grand total of these images reached 6412, each of which 
was archived in the jpg format.

Concurrently, labeling was deployed as an image anno-
tation tool. The types of annotations were meticulously 
categorized into three distinct groups: Normal, Aspergil-
lus flavus, and Trichoderma viride. The label files, in turn, 
were preserved in the yolo format. To conclude the data-
set’s preparation, it was systematically partitioned into 
three distinct subsets: a training set, a validation set, and 
a test set. The proportions of these sets were calculated at 
a ratio of 8:1:1. Specifically, the training set encompassed 
a total of 5130 images, while the validation and test sets 
each contained 641 images.

SRW‑YOLO model construction
In this study, an SRW-YOLO network model suitable 
for mobile edge computing and cloud computing envi-
ronments was designed for the problem of small object 
Lentinula Edodes log contamination detection, as 
shown in Fig.  4. Firstly, the MP module was improved 

Fig. 2  Example images of Lentinula Edodes logs. a, b normal, 
c, d Aspergillus flavus-contaminated, and e, f Trichoderma 
viride-contaminated
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Fig. 3  Renderings of data enhancements

Fig. 4  The network structure of SRW-YOLO
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by SPD-Conv to enhance the learning of small object 
features in the Lentinula Edodes log images and avoid 
the loss of fine-grained information. Secondly, RepVGG 
was introduced into the ELAN structure, and the struc-
ture was reparameterized to decouple the multi-branch 
structure and inference ordinary structure during model 
training, which further improved the efficiency and accu-
racy of inference for small object contaminated regions. 
Finally, the original boundary regression loss function 
was replaced with the WIoU loss function, which weak-
ens the influence of high-quality anchor boxes and low-
quality sample features and focuses on ordinary-quality 
anchor boxes, making the model output results more 
accurate. During the Lentinula Edodes logs cultivation 
phase, the mobile device collects images and transmits 
them to the cloud data processing center to generate the 
final mushroom stick detection image.

MP module based on SPD‑Conv
YOLOv7 uses an MP structure to downsample the input. 
Downsampling is usually implemented using convolu-
tional layers, pooling layers, or convolution with a step 
size greater than 1 to gradually reduce the spatial size of 
the input tensor and, thus, increase the perceptual field 
of the network. However, in the process of downsam-
pling, it was easy to cause the resolution of Lentinula 
Edodes log images to decrease too fast, which would 
lead to a loss of information about the location and size 
of Lentinula Edodes log contamination, thus reducing 
the accuracy of detection. Therefore, to solve this prob-
lem, the MP module was improved by introducing SPD-
Conv [43]. SPD-Conv consists of a space-to-depth (SPD) 
layer and a non-stride convolutional layer. The SPD layer 
slices an intermediate feature map X(S ∗ S ∗ C1) into 

a series of sub-maps f(x,y) by downsampling the feature 
maps inside the convolutional neural network and the 
entire network.

Given any (original) feature map X , fx,y which con-
sists of the feature map X i, j  is composed of the 
region where i + x and j + y are divisible by the scale.

Thus, each subsample is mapped down by a scale fac-
tor X . Finally, the sub-feature maps are stitched along 
the channel dimension to obtain a feature map X . 
Adding a non-stride convolution after the SPD feature 
transformation preserves all the discriminative feature 
information as much as possible, and the SPD-Conv 
structure is shown in Fig. 5

A total of five MP modules were constructed in the 
original model for the backbone network and the fea-
ture fusion network. Since there is a convolution of step 
2 in the second branch of the MP module, this study 
used SPD-Conv to replace the convolution of step 2 
in the MP of the feature fusion network, as shown in 
Fig.  6. Considering the large input image pixels, the 
number of parameters, and the computational effi-
ciency of the model, all convolutions with step size 2 in 
the network were not replaced in this study.

(1)

f0,0 = X[0 : S : scale, 0 : S : scale], f1,0 = X[1 : S : scale, 0 : S : scale], . . . ,

fscale,0 = X[scale − 1 : S; scale, 0 : S; scale]

(2)
f0,1 = X[0 : S : scale, 1 : S : scale], f 1, 1, . . . ,

fscale−1,1 = X[scale − 1 : S : scale, 1 : S : scale];

(3)

.

.

.

f0,scale−1 = X[0 : S : scale, scale − 1 : S : scale], f1,sclae−1, . . . ,

fsclae−1,sclae−1 = X[scale − 1 : S : scale, scale − 1 : S : scale]

Fig. 5  Illustration of SPD-Conv when scale = 2
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RepVGG‑based efficient aggregation network module
The efficient aggregation network module proposed in 
the original model is mainly divided into an ELAN [44] 
structure and an E-ELAN structure. The ELAN uses a 
special jump connection structure to control the long-
est gradient path, and the deeper network can learn 
and converge efficiently. The E-ELAN is an expansion, 
channel rearrangement, and transition layer architec-
ture without destroying the original gradient path of 
the ELAN or changing the merging bases to enhance 
the learning ability of the network. However, the effi-
cient aggregation network module may assign some 
important information to different groups and affect 
model performance. In addition, this module uses fewer 
convolutional layers, which can be challenging when 
dealing with the task of detecting small object contami-
nated areas of Lentinula Edodes logs. Therefore, in this 
study, the efficient aggregation network module was 
improved using RepVGG [45]. RepVGG decouples the 
training multi-branch topology and inference single-
way structure using structural reparameterization, as 
shown in Fig.  7. The structural reparameterization is 
mainly divided into two steps: the first step is mainly to 
fuse Conv2d and BN (Batch Normalization) as well as 

to convert the branches with only BN into one Conv2d, 
and the second step fuses the 3 × 3 convolutional layers 
on each branch into one convolutional layer; this struc-
ture can increase the nonlinearities of the model while 
reducing the computation during inference. At the same 
time, the reparameterization reduces the computation 
and memory usage, which helps to handle small object 
contamination detection tasks. The specific improve-
ment in this study is to introduce the RepVGG module 
in all ELAN structures in the backbone network.

Boundary regression loss function
In an object detection task, the bounding box regres-
sion loss function is critical to the performance of the 
model used. The role of the bounding box regression 
loss function is to measure the difference between the 
model-predicted bounding box and the true bounding 
box, which affects the detection effectiveness of the 
model. Low-quality samples, such as small object con-
tamination, exist in the dataset of Lentinula Edodes 

Fig. 6  Improvement of MP module

Fig. 7  Sketch of RepVGG architecture
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logs, and the geometric factors, such as distance and 
aspect ratio, taken into account by the traditional 
bounding box loss function will aggravate the penalty 
of low-quality examples, which may reduce the gener-
alization performance of the model. Therefore, in this 
study, WIoUv3 [46] was used as the boundary regres-
sion loss function for the model. WIoUv3 proposes 
outliers instead of IoU to evaluate the quality of anchor 
boxes and provide a sensible gradient gain allocation 
strategy. This strategy reduces the competitiveness of 
high-quality anchor boxes while minimizing harmful 
gradients generated by low-quality examples, which 
contributes to the speed of model convergence and 
the accuracy of inference, thus improving the over-
all performance of model detection. This is achieved 
by assigning outlier β an appropriate gradient gain 
depending on its size, with smaller or larger outliers 
β  being assigned smaller gradient gains that are more 
focused on ordinary-quality anchor boxes, with outlier 
β being defined as follows:

where L∗IoU is the monotonic focus factor and LIoU  is the 
sliding average of the momentum of m.

Distance attention was also constructed based on 
the distance metric, and a WIoUv1 with two layers of 
attention mechanisms was constructed as follows:

where LIoU is the degree of overlap between the predic-
tion box and the real box; (x, y) is the center coordinate of 
the predicted box; (xgt , ygt) is the center coordinate of the 
real box; and Wg and Hg are the length and width of the 
real box and the predicted box, respectively.

At this point, applying the outlier degree to LWIoUv1 
obtains LWIoUv3:

where LWIoUv1 is the attention-based boundary loss, and δ 
with α is the hyperparameter.

When the outlier degree of the anchor box satis-
fies β = C ( C is a constant value), the anchor box will 
obtain the highest gradient gain. Since LIoU  is dynamic, 
the quality classification criteria of the anchor boxes 
are also dynamic, which allows WIoUv3 to construct a 
gradient gain allocation strategy that best fits the cur-
rent situation at each moment.

(4)β =
L∗IoU
LIoU

∈ [0,+∞)

(5)

LW ·IoUv1 = RWIoULIoU

RWIoU = exp

(

(x−xgt)
2
+(y−ygt)

2

(

W 2
g +H2

g

)∗

)

(6)LW ·IoUv3 = rLW ·IoUv1, r =
β

δαβ−δ

Model training and evaluation
Model training
In this study, SRW-YOLO used the default hyperparam-
eters of YOLOv7. The learning rate was set to 0.01, SGD 
was selected for hyperparameter optimization, and the 
learning rate momentum was set to 0.937. Meanwhile, a 
pre-trained model was used for training assistance, which 
could help the model achieve better initial performance. 
The configuration of the experimental environment in 
this study is shown in Table 1.

Model evaluation
To verify the performance of Lentinula Edodes log con-
tamination detection, Precision, Recall, mAP, and FPS 
were used for evaluation in this study. The calculation 
equations are as follows.

where TP indicates that the object is a certain type of 
Lentinula Edodes logs and the network model detection 
also indicates a certain type of Lentinula Edodes logs. FP 
indicates that the object is not a type of Lentinula Edodes 
logs, but the network model detects a type of Lentinula 
Edodes logs. FN  indicates that the object is a certain 
type of Lentinula Edodes logs, but the network model 
detection indicates it is not a certain type of Lentinula 
Edodes logs. AP is the area enclosed by Precision and 
Recall on the curve. mAP is the average of all categorized 
AP values; when IoU is set to 0.5, it is mAP@0.5, and 

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)AP =

∫ 1

0
P(r)dr

(10)mAP =

∑C
i=1 APi

C

Table 1  Experimental environment configuration

Experimental Environment Details

Programming language Python 3.8.10

Operating system Linux

Deep learning framework Pytorch 1.11.0

CUDA Version 11.3

GPU RTX 3090

CPU Intel(R) Xeon(R) 
Platinum 8358P @ 
2.60 GHz
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mAP@0.5:0.9 means that the IoU threshold is between 
0.5 and 0.9.

Results and analysis
Model visualization analysis
After the training of the model, the feature extraction 
results of the first convolutional layer, the backbone mod-
ule, and the last convolutional layer were visualized and 
analyzed in this study using class activation mapping 
(CAM) [47]; the information of interest to the network 
model can be seen from the visualized feature map. This 
study randomly selects an image of small object Lenti-
nula Edodes logs contamination from the training set to 
visualize its characteristics. The red box area is the area 
contaminated by the Lentinula Edodes log. The visual 
analysis results are shown in Fig. 8. The figure shows the 
feature visualization images of the three improvement 
strategies of SPD-Conv, RepVGG, and WIoUv3 regres-
sion loss function and the three stages of the SRW-YOLO 
comprehensive improvement model. The three stages are 
the first convolutional layer, the feature extraction back-
bone layer and the last convolutional layer. The darker 
the red part, the more the model pays attention to this 
part of the image; this is followed by the yellow part. The 

bluer the heat map is, the more the model considers this 
part as redundant information.

As can be seen from the first layer convolutional fea-
ture map, the three improvement strategies mainly focus 
on the low-level features of the Lentinula Edodes logs, 
such as edges and textures. The feature map of the fea-
ture extraction backbone convolu-tional layer shows 
more advanced feature attention, and the focus is more 
localized. SRW-YOLO accurately locates small object 
contaminated areas, and the three im-provement strate-
gies all focus on the contaminated areas of the bacterial 
sticks rela-tively accurately. However, the three improve-
ment strategies all focus on more back-ground redundant 
information to varying degrees. It can be seen from the 
feature map of the last convolutional layer that the fea-
tures extracted by different im-provement strategies 
are more abstract and refined, revealing how the model 
focuses on discriminative features in the final stage. The 
above improvement strategies ulti-mately focused on two 
contaminated areas. However, SPD-Conv paid too much 
attention to the two areas and considered more redun-
dant pixels; Rep-Conv and WIoU3 also paid too much 
attention to the right areas. The feature extraction abil-
ity of the contaminated area below is weak; while SRW-
YOLO focuses on key pixel areas and is more accurate. 

Fig. 8  Visualization of the feature map



Page 10 of 14Chen et al. Journal of Cloud Computing           (2024) 13:14 

It can be observed from the feature maps from the back-
bone module to the last layer that the algorithm model 
proposed in this study plays a good role in reinforcing 
the feature maps, suppressing unnecessary features, and 
enabling better extraction of small object contamination 
feature information from the images.

Analysis of experimental results
To verify the positive impact of the improvement strat-
egy proposed in this study on the network, ablation 
experiments were conducted on the Lentinula Edodes log 
da-taset in this paper. Five sets of experiments were con-
ducted, and different improve-ment modules were added 
for comparison with YOLOv7, with Precision, Recall, 
mAP@0.5, and FPS being used as the measures. The 
results of the ablation experi-ments are shown in Table 2.

As can be seen from the above table, Experiment 1 pro-
vides the detection results of the original YOLOv7 net-
work. In Experiment 2, Precision, Recall, and mAP@0.5 
improve by 2.33%, 1.93% and 1.97%, respectively. This 
indicates that during the model downsampling process, 
SPD-Conv effectively alleviates the impact of the rapid 
decrease in resolution of the mushroom stick image, 
thereby strengthening the learning of effective feature 
representation of the Lentinula Edodes logs image and 
avoiding the loss of fine-grained information, and helping 
improve the accuracy of mobile edge device detection. In 
Experiment 3, Precision, Recall and mAP@0.5 improve by 
1.77%, 0.51% and 1.56%, respectively. This indicates that 
after using structural re-parameterization to improve 
the efficient aggregation network module in the model, 
RepVGG can reduce the computational load and mem-
ory usage of model inference while improving the effi-
ciency and accuracy of inference on Lentinula Edodes 
logs contaminated areas, and reducing the pressure of 
mobile edge computing inference. and the burden on 
cloud servers. In Experiment 4, YOLOv7 improves Pre-
cision by 1.56%, Recall by 1.05% and mAP@0.5 by 1.58% 
over the YOLOv7 algorithm after using WIoUv3 as the 
boundary regression loss function of the network. This 
indicates that when YOLOv7 adopts WIoUv3, through a 
wise gradient gain allocation strategy, the model is more 

focused on ordinary-quality Lentinula Edodes logs detec-
tion anchor boxes, making the model output results more 
accurate. In Experiment 5, the Precision improves by 
3.15% and mAP@0.5 improves by 2.64% over the YOLOv7 
algorithm. This shows that when the SPD-Conv module 
and RepVGG module are introduced into the original 
network, the network inference efficiency is improved 
while avoiding the loss of location and size information 
of bacteriophage contamination, which in turn improves 
the accuracy of detection. Experiment 6 integrated the 
above improved methods, and it can be clearly seen that 
the detection effect is the best. Precision reaches 97.63%, 
which is 4.62% better than YOLOv7; Recall reaches 
96.43%, 3.63% higher than YOLOv7; and mAP@0.5 
reaches 98.62%, which is 2.31% better than YOLOv7. At 
the same time, it also maintains good real-time detection, 
which can meet the requirements of small object Lenti-
nula Edodes logs contamination detection in mobile edge 
computing and cloud computing environments.

The ablation experiments can only verify the effective-
ness of the improved strategy in this study relative to the 
original algorithm, but whether it can reach the leading 
level in different models still needs further proof. There-
fore, under the same experimental conditions, a series of 
comparative experiments were conducted in this study 
to compare the performance of the improved method 
with the current mainstream one-stage object detection 
method using the Lentinula Edodes log dataset.

A comparison of the training results of different mod-
els is shown in Fig. 9. From the figure, it can be seen that 
the value of mAP@0.5 of the improved algorithm in this 
study is significantly higher than the other three models.

Figure 10 presents a comparison of the regression loss 
curves for different models with training time. After 40 
iterations, the loss curves of different models gradually 
and steadily converge. It can be seen that YOLOv6m 
has poor loss convergence in this dataset and YOLOv5l 
has an overfitting problem after 100 training iterations. 
YOLOv5l and YOLOv6m are much less effective than 
YOLOv7 in terms of regression loss. The model proposed 
in this study shows a better drop rate and convergence 
ability than YOLOv7, thus proving that the improvement 

Table 2  Results of ablation experiments

Number Model Precision Recall mAP@0.5 FPS

1 YOLOv7 93.01% 92.80% 96.31% 56

2 YOLOv7 + SPD-Conv 95.34% 94.73% 96.88% 52

3 YOLOv7 + RepVGG 94.78% 93.31% 96.47% 53

4 YOLOv7 + WIoUv3 94.57% 93.85% 96.49% 64

5 YOLOv7 + SPD-Conv + RepVGG 96.16% 96.05% 97.55% 51

6 YOLOv7 + SPD-Conv + RepVGG + WIoUv3 97.63% 96.43% 98.62% 62
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of the boundary regression loss function improves the 
convergence ability of the network.

Table  3 lists the comparison results of the evalua-
tion metrics of different models. ResNeXt-50 (32 × 4d), 
MobilenetV3-YOLOv4 and Ghost-YOLOv4 are Zu’s 
research methods. Compared with the mainstream 
YOLO series algorithms, the performance of these meth-
ods in small object Lentinula Edodes logs contamina-
tion detection needs to be improved. Compared to other 
models, although the detection speed of the SRW-YOLO 

Fig. 9  Comparison of training box_loss curves of different models

Fig. 10  Comparison of training box_loss curves of different models

Table 3  Comparison of evaluation indicators of different models

Model mAP@0.5 Recall mAP@0.5:0.9 FPS

ResNeXt-50 (32 × 4d) 93.32% 91.12% 87.13% 17

MobilenetV3-YOLOv4 92.16% 89.11% 84.77% 30

Ghost-YOLOv4 93.04% 91.15% 86.56% 36

YOLOv5l 94.79% 92.68% 87.51% 67

YOLOv6m 95.82% 93.29% 91.32% 48

YOLOv7 96.31% 92.80% 91.66% 56

SRW-YOLO 98.62% 96.43% 92.39% 62
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model proposed in this study is not the highest, it is 
much better than other models in the evaluation met-
rics of mAP@0.5, Recall, and mAP@0.5:0.9, This allows 
the model to maintain a good balance between detection 
accuracy and real-time performance.

At the same time, in order to further demonstrate the 
superiority of the SRW-YOLO model improvement strat-
egy, Table 4 lists the comparison results of the evaluation 
indicators of YOLOv7 and SRW-YOLO in three classes 
of Lentinula Edodes logs contamination detection. Com-
pared with YOLOv7, SRW-YOLO has improved to varying 

degrees in the evaluation indicators of Precision, Recall 
and mAP@0.5. Among them, the original model has 
the worst effect in detecting Aspergillus flavus contami-
nated Lentinula Edodes logs, but the SRW-YOLO model 
improves Precision, Recall and mAP@0.5 by 8.12%, 5.33% 
and 2.36% respectively compared with YOLOv7. This 
shows that the SRW-YOLO model proposed in this article 
has more advantages in actual detection and can accurately 
detect different classes of Lentinula Edodes logs.

For a more intuitive understanding of the performance 
of the models, Fig.  11. Shows the detection results of 

Table 4  Comparison of evaluation indicators of different classes

class model

YOLOv7 SRW-YOLO

Precision Recall mAP@0.5 Precision Recall mAP@0.5

Normal 95.62% 94.44% 99.53% 97.45% 96.81% 99.71%

Aspergillus flavus 87.71% 93.32% 95.37% 95.83% 98.65% 97.73%

Trichoderma viride 95.75% 86.16% 93.22% 99.73% 91.24% 97.31%

Fig. 11  Detection results of different models
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the four models for a randomly selected image in the 
test set, with the red box in the figure showing the area 
contaminated by Trichoderma viride. Although all four 
models are able to detect the type of Lentinula Edodes 
logs, YOLOv5l, YOLOv6m, and YOLOv7 have lower 
confidence in the detection of the object and poorer 
detection results. In contrast, SRW-YOLO has obvious 
superiority with 95% object confidence and accurately 
detects small object contaminated areas.

In summary, the Lentinula Edodes log contamination 
detection model proposed in this study has strong gen-
eralization ability and robustness. During the Lentinula 
Edodes logs cultivation stage, this model can better 
locate areas with small contamination objects in Lenti-
nula Edodes logs and accurately detect the type of Len-
tinula Edodes log contamination.

Conclusion
In this study a model for small object Lentinula Edodes 
logs contamination detection (SRW-YOLO) suitable for 
mobile edge computing and cloud computing environ-
ments was constructed based on YOLOv7. SPD-Conv 
was introduced in the MP module of the feature fusion 
network to improve the learning ability of the model for 
small object contamination location and semantic infor-
mation of Lentinula Edodes logs, which helps to enhance 
the accuracy of mobile device detection with limited 
resources; the ELAN structure in the backbone network 
was reparameterized and the RepVGG architecture was 
used to realize the decoupling of training and inference 
to efficiently and accurately detect the types of Lentinula 
Edodes logs and reduce mobile edge computing infer-
ence pressure and cloud server burden; the WIoU loss 
function was set as the boundary regression loss of the 
network function to reduce the competitiveness of high-
quality anchor boxes while minimizing harmful gradients 
generated by low-quality samples to improve the overall 
performance of Lentinula Edodes logs contamination 
condition detection. Compared to the current main-
stream one-stage object detection model, the experi-
mental results showed that the detection of small object 
Lentinula Edodes log contamination by SRW-YOLO is 
significantly better. In summary, SRW-YOLO provides an 
efficient, accurate and practical small object contamina-
tion detection method that can be deployed to Android 
mobile devices or embedded devices. In addition, com-
panies or individuals using the network proposed in this 
study can reduce the performance of cloud computing 
servers and reduce the cost of renting cloud computing 
servers.

However, there are still some areas for improvement. 
The current Lentinula Edodes logs dataset has a relatively 
simple background, and the model may not perform well 

when the background is more complex or the data col-
lection environment is dimmer. Therefore, in subsequent 
work, the dataset will be further improved and the pro-
posed Lentinula Edodes logs contamination detection 
method will be optimized.
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