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Abstract 

Cotton, a crucial cash crop in Pakistan, faces persistent threats from diseases, notably the Cotton Leaf Curl Virus 
(CLCuV). Detecting these diseases accurately and early is vital for effective management. This paper offers a compre‑
hensive account of the process involved in collecting, preprocessing, and analyzing an extensive dataset of cotton leaf 
images. The primary aim of this dataset is to support automated disease detection systems. We delve into the data 
collection procedure, distribution of the dataset, preprocessing stages, feature extraction methods, and potential 
applications. Furthermore, we present the preliminary findings of our analyses and emphasize the significance of such 
datasets in advancing agricultural technology. The impact of these factors on plant growth is significant, but the intru‑
sion of plant diseases, such as Cotton Leaf Curl Disease (CLCuD) caused by the Cotton Leaf Curl Gemini Virus (CLCuV), 
poses a substantial threat to cotton yield. Identifying CLCuD promptly, especially in areas lacking critical infrastructure, 
remains a formidable challenge. Despite the substantial research dedicated to cotton leaf diseases in agriculture, deep 
learning technology continues to play a vital role across various sectors. In this study, we harness the power of two 
deep learning models, specifically the Convolutional Neural Network (CNN). We evaluate these models using two dis‑
tinct datasets: one from the publicly available Kaggle dataset and the other from our proprietary collection, encom‑
passing a total of 1349 images capturing both healthy and disease‑affected cotton leaves. Our meticulously curated 
dataset is categorized into five groups: Healthy, Fully Susceptible, Partially Susceptible, Fully Resistant, and Partially 
Resistant. Agricultural experts annotated our dataset based on their expertise in identifying abnormal growth patterns 
and appearances. Data augmentation enhances the precision of model performance, with deep features extracted 
to support both training and testing efforts. Notably, the CNN model outperforms other models, achieving an impres‑
sive accuracy rate of 99% when tested against our proprietary dataset.

Keywords Cotton leaf curl disease virus (CLCuV), Cotton leaf curl disease (CLCuD), Dynamic weighted layering model 
(DWLM), Convolutional neural network (CNN)

*Correspondence:
Zhihua Hu
huzhihua@hgnu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00582-9&domain=pdf


Page 2 of 18Nazeer et al. Journal of Cloud Computing           (2024) 13:50 

Introduction
Plant diseases stand as formidable adversaries, wield-
ing significant influence over food production. They 
exact a heavy toll on crop yields, inflicting economic 
losses and at times even obstructing agricultural activi-
ties. As emphasized by [1], the effective management 
and control of diseases are paramount to mitigate out-
put losses and ensure the sustainability of agriculture. 
This underscores the critical need for ongoing crop 
monitoring paired with swift and precise disease detec-
tion. In tandem with the burgeoning global population, 
there arises an unprecedented demand for increased 
food production, as articulated by the Food and Agri-
culture Organization (FAO) [2]. This imperative must 
harmonize with the imperative to preserve natural 
ecosystems, advocating for environmentally friendly 
farming practices. The challenge is multifaceted: sus-
taining the nutritional value of food while ensuring its 
widespread safety [3–7]. Meeting this challenge neces-
sitates the adoption of novel scientific approaches for 
diagnosing leaf diseases and managing crops. Further-
more, these innovative technologies must extend their 
reach to encompass large-scale ecosystem surveil-
lance. At the heart of this quest lies the crucial task of 
accurately identifying crop diseases [8]. Manual tech-
niques, as delineated by Miller et al., fall short when it 
comes to covering extensive crop areas and providing 
early insights for decision-making [9]. Consequently, 
researchers have been relentless in their pursuit of 
automated and practical solutions for disease detec-
tion. Deep Learning (DL)-based models have emerged 
as formidable allies in this endeavor, transcending the 
limitations of traditional classification methods [4–7]. 
They represent the vanguard of technology in the field 
of plant disease detection. DL, a sophisticated tech-
nique with a track record of success across diverse 
domains [10], operates by abstracting data at a high 
level through a series of transformative operations [11]. 
This transformative approach heralds a new era in the 
quest to safeguard our crops and nourish our growing 
global population.

Agriculture constitutes a vital pillar of Pakistan’s 
economy, contributing substantively to its Gross 
Domestic Product (GDP) by a proportion of around 
19% and engaging approximately 38% of its labor force 
[12]. This economic dependency underscores the piv-
otal role of crop health in sustaining food security and 
production. The primacy of cotton cultivation in Paki-
stan is noteworthy, as it is not only a principal cash 
crop, adding 0.6% to the GDP, but also contributes 
2.4% to the value addition within the agricultural sec-
tor [13]. Termed "white gold" in developing economies, 
the success of cotton growth is conditioned by both 

environmental factors and prudent human manage-
ment practices.

However, diseases like the Cotton Leaf Curl Virus 
(CLCuV) pose serious threats to cotton yields. Timely 
and accurate disease detection is crucial for implement-
ing appropriate management strategies. A noticeable 
gap exists in the prevailing methodologies for detecting 
the Cotton Leaf Curl Disease (CLCuD), which neces-
sitate significant manual intervention. This underscores 
the exigency for a comprehensive, automated frame-
work capable of discerning the disease across multiple 
scales, robustly navigating challenging contexts, and 
furnishing timely guidance for strategic interventions 
to mitigate economic losses. The transformative poten-
tial of deep learning and machine learning paradigms 
has significantly propelled the detection of plant leaf ail-
ments, notably the Cotton Leaf Curl Disease (CLCuD) 
[14]. These techniques harness sophisticated algorithms, 
adept at discerning intricate patterns within extensive 
datasets, thereby engendering the formulation of accu-
rate and efficacious detection models. The current work 
aims to implement an optimized deep learning model to 
describe the state-of-the-art identification and examina-
tion of Cotton plant disease detection problems using a 
particular class of deep learning (DL) called CNN, which 
extends traditional Artificial Neural Networks (ANN) by 
adding more "depth" to the network and the various con-
volutions that enable the data to be successfully applied 
in various image-related problems [15].

In the domain of CLCuD detection, (CNNs) and analo-
gous deep learning architectures possess the capacity to 
dissect leaf images, thereby unveiling markers indicative 
of CLCuD and adeptly discriminating between healthy 
and afflicted leaves. Additionally, the CLCuD detection 
sphere embraces machine learning mechanisms such as 
Random Forest, Support Vector Machines (SVM), and 
K-Nearest Neighbors (KNN). These algorithms scrupu-
lously scrutinize foliar data to discern patterns charac-
teristic of CLCuD, enabling the classification of leaves 
into healthy and pathological categories. Noteworthy 
is the endeavor of [16], who curated a dataset of cot-
ton leaf images, subjected them to noise reduction and 
contrast enhancement, subsequently extracting texture 
structures using the Grey Level Co-occurrence Matrix 
(GLCM) and shape features via Histogram of Oriented 
Gradients (HOG). A Support Vector Machine (SVM) 
classifier, trained on these features, demonstrated effi-
cacy. Similarly, [17] embarked on preprocessing a cotton 
leaf image dataset through resizing and grayscale conver-
sion, leveraging the VGG-16 architecture coupled with 
transfer learning and data augmentation. The ensuing 
model’s performance was assessed vis-à-vis metrics and 
contrasted with other deep learning models. Importantly, 
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their model exhibited superior performance, further sub-
stantiated through sensitivity analysis across diverse dis-
ease categories. This research yielded a methodological 
blueprint for robustly identifying and classifying cotton 
leaf diseases, buttressed by deep learning models. Pres-
ently, the predominant landscape of CLCuD detection 
accentuates the scrutiny of macroscopic leaf attributes, 
while the nuanced micro and nano scales of disease pro-
gression often remain sidelined. The intrinsic disposi-
tion of our self-curated dataset culminates in 252, 132, 
350, 285, and 330 instances for the respective classes of 
Fully Resistant (FR), Partially Resistance (PR), Healthy 
(H), Partially Susceptible (PS), and Fully Susceptible (FS) 
as depicted in Fig. 1. The assemblage of our self-collected 
dataset encompasses 1349 images spanning five distinct 
classes (FS, PS, H, PR, FR), where 1052 images are ear-
marked for training and 297 for testing. The dataset avail-
able to the public is characterized by a binary distinction, 
with one class comprising 418 instances associated with 
the Curl-Virus category, and the other class containing 
426 instances denoting the Healthy category. Transition-
ing into the subsequent phase, we adopt an exhaustive 
array of preprocessing techniques, orchestrated to extract 
multifarious features from the encompassing image data-
set. This elaborate feature extraction process serves as a 
precursor to our utilization of two distinct Deep Learn-
ing (DL) models, specifically CNN, for the fundamental 
task of classifying the Cotton Leaf Curl Disease (CLCuD).

In the culminating phase of our endeavor, the image 
dataset undergoes a classification operation, facilitated 
by the CNN model, which is driven by meticulously cal-
culated weights. The CNN paradigm is renowned and 
extensively employed in the realm of image recognition 
and classification, a fact well-established within the schol-
arly domain [4–7, 18]. The ambit of this research encom-
passes the design and instantiation of a Vision model 
characterized by a stratified architecture comprising 

seven distinct layers: conv2d_2, max_pooling2d_2, 
conv2d_3, max_pooling2d_2, flatten_1, dense_2, and 
dense_3. This dual-pronged model fabric has been metic-
ulously conceived to effectively disentangle the nuanced 
domains of susceptibility and resistance pertaining to the 
Cotton Leaf Curl Disease (CLCuD), predicated on the 
discernible symptomatic attributes. This study focuses 
on exploring the complexities of building a robust data-
set of cotton leaf images, investigating feature extraction 
techniques, investigating preprocessing techniques, and 
thinking about the potential uses of such datasets in dis-
ease diagnosis and agricultural research.

The holistic appraisal encompasses quintessential met-
rices, viz. training accuracy, testing accuracy, training 
loss, and testing loss. Notably, our proposed model’s per-
formance acumen on our in-house dataset is conspicu-
ously prominent, characterized by an illustrious training 
accuracy index of 94.57%, complemented by a compelling 
testing accuracy record of 99%.

The present research makes a series of notable contri-
butions, including but not limited to:

• Recognize the many kinds of cotton leaf diseases and 
their frequency.

• Recognize the connection between environmental 
elements and cotton leaf diseases.

• Propose an automated CLCuD detection method 
that accurately classifies susceptibility scale levels by 
cotton leaf images.

• Capture multiple images to build a self-collected 
dataset that classifies CLCuD based on visual symp-
toms.

• Pre-processing steps are applied to the captured 
images, resizing images, normalizing image, aug-
mentation, and the cleaning step start in which blur 
images are removed and the background of images is 
replaced with a neutral color for better visibility.

Fig. 1 CLCuV susceptibility scale level
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• To extract features from images, apply preprocessing 
approaches.

• To implement an optimized deep learning model for 
predicting susceptibility levels of the CLCuD self-col-
lected dataset as well as the downloaded dataset.

Researchers may utilize this knowledge to create new 
strategies for avoiding and controlling cotton leaf dis-
eases, and farmers can use it to recognize and manage 
diseases in their farms. The step-by-step process of how 
our models is to get input image, perform pre-processing 
steps, segmentation, features extractions, and classifica-
tion in Fig. 2.

Literature review
Numerous studies have been done to develop meth-
ods that can help identify crops in an agricultural set-
ting to find the best answer to the issue of crop disease 
detection.

Abade et al., akin to vigilant gardeners, meticulously 
examined CNN algorithms tailored for the detection of 
plant diseases. Their journey through 121 papers span-
ning the decade from 2010 to 2019 unveiled Plant Vil-
lage as the quintessential dataset, while the resounding 
echo of Tensor Flow emerged as the most frequented 
framework in this botanical symphony [19]. Dhaka 
et  al., with the precision of botanists, sketched the 
blueprint of CNN models deployed in the identification 
of plant diseases through leaf images. They embarked 
on a comparative expedition, scrutinizing CNN mod-
els, pre-processing techniques, and the frameworks 
that cradle them. Their exploration extended to the fer-
tile terrain of datasets and performance metrics, vital 
signposts in the quest for model prowess [20]. Mean-
while, Nagaraju et  al., akin to data archaeologists, 
embarked on a journey to unearth the gems of datasets, 
pre-processing techniques, and the mystical arts of 

Deep Learning in the realm of plant disease diagnosis 
[21]. With an analytical lens, they dissected 84 papers, 
discovering that many DL methods yearned for the 
keen insight of suitable pre-processing techniques to 
unlock their full potential. Kamilaris et al., the pioneers 
of agricultural innovation, charted the course of DL 
approaches as they ventured into solving the multifac-
eted challenges of agriculture. Their findings, like fertile 
soil, revealed that DL methods outshone conventional 
image processing techniques, promising greener pas-
tures in agricultural technology [22].

Fernandez-Quintanilla et al., the sentinels of weed con-
trol, focused their gaze on the evergreen battlegrounds 
of agricultural fields. They surveyed both the remote 
realms and the grounded territories of weed-monitoring 
technologies. Their prognosis: Weed monitoring is the 
linchpin in the battle for weed control, and the future 
holds the promise of harnessing sensor data, stored in 
the boundless expanse of the public cloud, to be wielded 
judiciously in the crucible of crop protection [23]. Lu 
et al., the maestros orchestrating the symphony of plant 
disease classification, tuned their instruments to the 
resonance of CNN. Their composition evaluated the cre-
scendos and diminuendos of CNN in the realm of plant 
disease classification, identifying the need for more intri-
cate datasets to compose a harmonious melody [24]. Gol-
hani et al., the virtuosos of hyperspectral data, painted a 
portrait of leaf disease identification. They illuminated 
the challenges and the shimmering prospects in the 
realm of hyperspectral data. Their canvas extended to the 
realm of NN approaches, offering a swift brushstroke on 
SDI development [25]. Bangari et al., the connoisseurs of 
disease detection, plucked the strings of CNN in the con-
text of potato leaf diseases. Their review, akin to a mas-
terful composition, resonated with the chorus that CNNs 
excelled in disease detection, weaving a harmonious tap-
estry of accuracy in the annals of plant pathology [26].

Fig. 2 Flow chart of this study
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The landscape of disease detection methodolo-
gies has witnessed a dynamic transformation with the 
emergence of the dynamic weighted layering model, a 
promising Deep Learning (DL)-based technique geared 
towards detecting Cotton Leaf Curl Disease (CLCuD). 
Rooted in the utilization of multiple layers of nodes 
endowed with adaptable weights, this model is tailored 
to optimize performance, garnering considerable atten-
tion across diverse investigations.

In a related vein, Pechuho, Khan, and Kalwar [27] pre-
sent an intriguing machine learning-based approach to 
the identification of cotton crop diseases. Their endeav-
ors encompass dataset compilation, preprocessing, and 
the employment of CNN fortified by transfer learning, 
culminating in a superior classification proficiency that 
surpasses the ambit of alternative Machine Learning 
(ML) techniques across various evaluation metrics.

Conversely, the study by Tripathy [16] unfolds with 
the curation of a dataset housing cotton leaf images 
stratified across three distinct categories. Texture 
structures extracted via Grey Level Co-occurrence 
Matrix (GLCM) and shape features derived through 
Histogram of Oriented Gradients (HOG) serve as piv-
otal features. In this context, a Support Vector Machine 
(SVM) assumes the role of classifier, constituting a 
robust model for discerning and classifying instances 
within the dataset. A compelling manifestation of the 
nexus between DL and image analysis is encapsulated 
within Magsi, Shaikh, Shar, Arain, and Soomro’s [28] 
research, wherein a dataset comprising 1600 images of 
CLCuD-infected cotton plants is harnessed. The model 
construction hinges on Information Processing (IP) 
techniques, facilitating the extraction of color and tex-
tual attributes. Propelled by a deep CNN, this approach 
navigates decision-making and classification tasks with 
finesse, yielding an efficacious framework capable of 
identifying the severity of CLCuD in a swift fashion. 
This outcome culminates in timely intervention strate-
gies, instrumental in abating potential losses.

Zhu et  al. [29] put forth an innovative methodology 
to decipher crop diseases, predicated upon the synergy 
of a Transformer Encoder and Centerloss optimization. 
This amalgamation fosters heightened feature analysis 
and accentuates differentiation between distinct dis-
eases, triumphing over impediments like focal disease 
spot recognition and confusion engendered by resem-
bling diseases. A novel approach surges to the fore-
front within Li, Wang, and Hu’s [30] study, wherein a 
CNN architecture with three pivotal modules—feature 
extraction, classification, and augmentation—takes 
center stage. Propelled by residual connections and 
spatial pyramid pooling, this model systematically out-
paces conventional ML techniques, an accomplishment 

vividly illustrated through a comprehensive array of 
evaluation metrics.

In a similar vein, Amin, Darwish, Hassanien, and 
Soliman [31] meticulously orchestrate a methodology 
underscored by feature abstraction and classification. 
Underpinned by data augmentation to recalibrate input 
data distribution, this approach employs a pre-trained 
VGG-16 model for feature extraction. The resultant 
model is subjected to meticulous hyperparameter tun-
ing, culminating in a classification proficiency marked by 
accuracy and efficacy.

Equally noteworthy, Naeem et al. [17] delve into data-
set compilation, preprocessing, and classification within 
the domain of cotton leaf disease identification. Lean-
ing on the VGG-16 architecture with transfer learning 
and augmented data strategies, their model vaults ahead 
of rival deep learning models. The culmination of their 
study encompasses a sensitivity analysis tailored to ascer-
tain the model’s efficacy across diverse disease categories. 
Collectively, this panorama of literature unfolds a tapes-
try of diverse methodologies and approaches, coalesc-
ing around the common pursuit of robust and accurate 
disease detection techniques within the realm of agricul-
ture. In the Table  1 different paper accuracy results are 
compared.

Methodology
Our proposed technique offers a systematic method for 
the rapid identification of the susceptibility scale levels of 
Cotton Leaf Curl Disease (CLCuD) using picture files. In 
the process, the Cotton Leaf Curl Virus (CLCuV) exhibits 
a variety of modifications that are categorized by look-
ing at DNA patterning. Figure  3 provides a schematic 
representation of the process’s steps. In the first stage of 
our suggested method, a wide range of pictures of cotton 
plants are taken, making it easier to create a self-curated 
dataset. The second phase then involves obtaining a pub-
licly available dataset on cotton leaf disease from the 
Kaggle platform. The third step entails taking stand-out 
features from the image dataset. By using a variety of 

Table 1 Comparative results of models

Ref Algorithm Dataset Accuracy

(Kumbhar et al., 2019) [32] CNN Cotton leaf disease 89

(Tripathy 2021) [16] SVM Cotton leaf disease 92.4

(Pechuho et al., 2020) [27] CNN Cotton leaf disease 91

(Sarwar et al., 2021) [33] R‑CNN Cotton leaf disease 87.1

(Dubey et al., 2018) [34] SVM Cotton leaf disease 94

(Rai & Pahuja, 2023) [35] Deep CNN 2293 images 97.98

Proposed CNN 1349 99
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preprocessing approaches, such as image resizing, image 
normalization, and image augmentation, this extraction 
process is made easier. In order to classify CLCuD, these 
processed datasets are then fed into a Deep Learning 
(DL) model, specifically a CNN.

The model is expanded in the last stage of our suggested 
methodology to categorize susceptibility scale levels into 
five different groups: Fully Resistant (FR), Partially Resist-
ant (PR), Healthy (H), Partially Susceptible (PS), and Fully 
Susceptible (FS). The weights associated with the used 
model have been calculated and used to give these cat-
egories. Based on measures for both training accuracy 
and testing accuracy, the CNN model’s performance is 
assessed. This thorough methodology guarantees reliable 
detection and categorization of CLCuD susceptibility 
levels and may have implications for improving disease 
control tactics in cotton farming.

Following steps are exist in the proposed frame work 
Self-collected dataset description, downloaded dataset 
description, feature extraction and preprocessing, con-
struction of CNN model and results.

Data collection
The images constituting the cotton leaf disease dataset 
were gathered from diverse cotton fields located in Mul-
tan, Pakistan. Specifically, the following locations were 
chosen:

• Muhammad Nawaz Sharif University of Agriculture 
Multan (35% of the images).

• Bahauddin Zakariya University Multan (35% of the 
images).

• Other cotton-cultivated areas within Multan (20% of 
the images).

• Plants that were deliberately inoculated with the Cot-
ton Leaf Curl Virus (CLCuV) (10% of the images).

These locations were carefully selected to ensure that 
the dataset accurately represented a range of cotton cul-
tivation conditions and various levels of disease severity. 
To capture these images, a DSLR camera was employed, 
configured with the following settings:

– Image formats: JPEG and PNG.
– Image resolution: 256x256 pixels.
– ISO: 100
– Shutter speed: 1/100 second
– Aperture: f/8

These settings were specifically chosen to yield high-
quality images that exhibit a consistent and standardized 
appearance across the dataset.

Dataset description
The dataset that used in this is given in the following 
(Tables 2, 3 and 4). Table 2 show the detail self-collected 
with number of training and testing images with each 
class. Fully Resistant (FR): This category encompasses 
images of cotton leaves entirely impervious to CLCuV. 
These FR cotton leaves exhibit no indications of CLCuV 
infection. Partially Resistant (PR): Within this class, 

Fig. 3 Proposed framework
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you’ll find images of cotton leaves that possess partial 
resistance to CLCuV. PR cotton leaves may display mild 
CLCuV symptoms, but they can recover and yield nor-
mally. Healthy(H): This classification comprises images 
of robust and uninfected cotton leaves. Healthy cotton 
leaves maintain their natural green color and regular 
shape. Partially Susceptible (PS): In this category, you’ll 
discover images of cotton leaves that display partial sus-
ceptibility to CLCuV. PS cotton leaves manifest moderate 
CLCuV symptoms, which may reduce their yield poten-
tial. Fully Susceptible (FS): This category features images 
of cotton leaves highly susceptible to CLCuV. FS cotton 
leaves exhibit severe CLCuV symptoms, often resulting 
in crop failure.

Table  3 shows the symptoms of self-collected dataset 
and Table  4 shows the number of training and testing 
images with each belonging class in downloaded dataset.

Table  3 shows that PS class has 233 and 52 images 
respectively for train and test, in this the leaf color 
become darker. The complete curl leaf cup shape upward 

and downward belongs to this FS class contain 277 train 
and 53 test images.

In the Table 4 a description about downloaded dataset 
is given in detail. It contains two classes Curl-Virus and 
healthy.

Preprocessing and feature extraction
After the pictures were shot, they were cleaned to get 
rid of blurry pictures and change the background color 
to something neutral. Various image processing methods 
were chosen to reduce noise and make the cotton leaves 
more visible in the photos.

Image resizing
To diminish the dimensions of images, a resizing func-
tion within the realm of Image Processing is harnessed, 
employing a computer vision library within the Python 
programming framework. The entirety of the cotton leaf 
images undergoes a harmonizing transformation, con-
formed to a standardized size of 256 by 256 pixels (width 
* height) as shown in Fig. 4.

R represents the resized image. Re is the resizing opera-
tion applied to the original image. I stand for the original 
image.  WO and  HO are the width and height of the origi-
nal image, respectively.  Wr and  Hr are the desired width 
and height for the resized image.

Image normalization
The process of aligning the intensity values of resized 
cotton leaf images with a predetermined range was suc-
cessfully achieved through a procedure of normalization. 
This operation was executed within the context of the 
Python programming language, facilitated by the Google 
Colab platform. By subjecting the images to this normali-
zation process, their intensity values were meticulously 
recalibrated to harmonize with the desired range. This 
recalibration engendered greater uniformity and coher-
ence among the data, thereby fostering a more conducive 
environment for subsequent analytical undertakings. The 
equation encapsulating the essence of normalization is 
represented as follows:

X represents the original data value.  XN is the normal-
ized value of X. X mn is the minimum value of the data. 
X mx is the maximum value of the data. This equation 
transforms the data value X into a normalized value that 
falls within the range of 0 to 1 based on its relationship 
with the minimum and maximum values of the dataset as 
display in Fig. 5.

(1)R = Re(I ,Wo,Ho,Wr,Hr)

(2)XN =
Xmx− Xmn

X− Xmn

Table 2 Detail of self‑collected dataset

The self-collected dataset contain 5 classes FR class indicate the symptom of 
enation of small leaves contain 186 train images and 66 test images. The class 
PR has 77 train images and 55 test images specify vein thickness in leaves. Train 
images 279 and test images 71 belongs to class H

Class No. of train images No. of 
test 
images

FR 186 66

PR 77 55

H 279 71

PS 233 52

FS 277 53

Table 3 Self‑collected dataset class symptoms

Classes Symptoms

FR Enation of small leaves

PR Thickness of veins

H No symptoms

PS Color darkening

FS Complete Leaf curl

Table 4 Detail of downloaded dataset

Class No. of train images No. of 
test 
images

Curl‑Virus 320 98

Healthy 319 107
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Fig. 4 Sample images of self _collected dataset

Fig. 5 Sample of original image and resized image
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Image augmentation
An amplified quantum of data becomes imperative to aug-
ment the efficacy of model training. In response to this req-
uisition, the methodology of data augmentation assumes 
prominence. This approach entails the fabrication of novel 
data instances derived from the preexisting repository, 
thereby engendering a deliberate expansion of the dataset’s 
magnitude.

This augmentation endeavor encompasses a spectrum 
of operations administered to images, encompassing rota-
tional manipulations, mirror reflections, spatial cropping, 
and the incorporation of perturbations or distortions. The 
assimilation of these manifold alterations into the dataset 
confers upon the model a more comprehensive and diver-
sified pedagogical trajectory, thus amplifying its resilience 
and refining its performance throughout the training regi-
men as shown in Fig. 6.

D represent the original dataset containing N instances. 
Data augmentation introduces a set of M augmentation 
operations denoted as A = {A1,  A2,  A3, ….  AM}, each rep-
resenting a specific data transformation. This results in 
an augmented dataset ′ D ′ containing N × M instances, 
where n*m = W:

where ′ D ′ is the augmented dataset, D i is the i-th 
instance after augmentation, and M represents the 
number of augmentation operations. Each augmenta-
tion operation A j modifies an instance D i according to 
the operation’s characteristics, producing a transformed 
instance D I j:

(3)D′ = {D1,D2..., DW}

(4)Di, j = Aj(Di)

where  Di, j denotes the instance after applying the j-th 
augmentation operation to the i-th original instance, and 
A j is the j-th augmentation operation. In this manner, 
the augmented dataset ′ D ′ is constructed, comprising a 
diverse collection of transformed instances that enhance 
the dataset’s richness and facilitate improved model 
training.

Proposed model
Specifically, we employed CNN model. The purpose of 
employing these models was to assess the outcomes gen-
erated from both datasets.

CNN model
A common class of ANN used in image processing and 
recognition is referred to as CNN. Numerous advances 
in CNN architectures have been presented since the 
1998 release of LeNet-5 [36]. Additionally, learning relied 
on extracting interesting variables called features prior 
to the development of DL for computer vision. These 
techniques, meanwhile, necessitate a good deal of prior 
knowledge in image processing. With the advent of CNN 
[37], image processing was revolutionized, and manual 
feature extraction was done away with. The classification, 
segmentation, face recognition, and object recognition 
of images are increasingly frequently performed using 
CNNs. Many organizations have effectively used them 
in a variety of fields, including health, the web, postal 
services, etc. Images, video, sound, speech, and natural 
language can all be fed into CNN [38, 39]. Convolution, 
pooling, Relu correction, and fully connected layers are 
all simply stacked together to form CNN (see Fig.  7), 
which starts with a convolution layer and progresses 

Fig. 6 Sample of resized image and normalized image
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through the following layers: pooling, Relu correction, 
and finally a fully-connected layer [40–43].

The proposed CNN model is structured as a compo-
sition of seven distinct layers, namely conv2d_2, max_
pooling2d_2, conv2d_3, max_pooling2d_2, flatten_1, 
dense_2, and dense_3. Within the domain of Deep 
Learning, CNNs have attained a prominent stature due 
to their efficacy in tasks encompassing the classifica-
tion of images, detection of objects, and segmentation 
of images. This model class operates through a pro-
cess of feature extraction from input images via con-
volutional layers, subsequently facilitating a process 
of subsampling through pooling layers, and ultimately 
culminating in the process of classification through 
fully connected layers. The inherent architecture of 
CNNs conventionally integrates convolutive, pooling, 

and fully connected strata, which are further fortified 
by the infusion of normalization, activation, and regu-
larization layers. This augmentation serves the dual 
purpose of optimizing performance and mitigating the 
challenges of overfitting. These intrinsic architectural 
attributes find explication within Fig.  7. It is notewor-
thy that CNNs have engendered remarkable progress 
within the domain of computer.

Vision, establishing their pervasive utilization across 
pivotal domains such as autonomous vehicular naviga-
tion, the analysis of medical imagery, and the domain 
of facial recognition. transformations, including the 
establishment of a consistent image size, potential con-
version to grayscale or RGB color formats, and the nor-
malization of pixel values to a standardized range of 0 
to 1 as shown in Fig. 8.

Fig. 7 CNN architecture

Fig. 8 Sample of normalized image and augmented image
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Input layer The input configuration of the proposed 
model encompasses two distinct sets of images, allo-
cated to both the training and testing datasets. These 
input images undergo a preliminary preprocessing phase, 
ensuring their compatibility with the CNN architecture. 
This preprocessing entails several This preparatory stage 
facilitates optimal data representation and harmonizes 
the images for subsequent processing within the CNN 
framework.

Convolutional layer Our proposed model architecture 
integrates two essential convolutional layers, specifically 
referred to as con2d_2 and conv2d_3, as shown in Fig. 9. 
These layers play a fundamental role in extracting mean-
ingful and pertinent features from the input images dur-
ing the model’s training phase. The initial layer, con2d_2, 
is responsible for receiving input images and subse-
quently transmitting the generated output to the subse-
quent processing stage. Through this process, the input 
images are transformed, yielding an output matrix with 
dimensions (64, 64, 32), accompanied by a parameter 
count of 896. Following con2d_2, the subsequent layer, 
conv2d_3, becomes operative. This layer takes input from 
the preceding max_pooling2d_2 layer and contributes to 
the derivation of output parameters. The input configura-
tion for conv2d_3 is defined as (32, 32, 32), culminating 
in an output shape of (32, 32, 32). Consequently, the layer 
encompasses 9248 parameters. The mathematical formu-
lation underlying convolutional layers can be succinctly 
expressed as follows:

Where F[l,m,n,k] = Q Y is the output feature map, b is 
the bias, F is image features, Fm is input feature map.

Max pooling layer Max_pooling2d_2 and Max_
pooling2d_3, two crucial max pooling layers, are cleverly 
used to achieve dimensional reduction in image pixel 
representations. The second layer of our unique CNN 
model, called Max_pooling2d_2, receives input from the 
Conv2d_2 output matrix and manages the dimensionality 
reduction. A reduced output matrix with the dimensions 
(32, 32, 32) is produced by transforming the initial input 
matrix, which has (64, 64, 32) dimensions, as shown in 
Fig. 10.

Our model’s fourth layer, Max_pooling2d_3, acts as 
a bridge between the Conv2d_3 and Flatten_1 layer. It 
produces an output matrix with dimensions (16, 16, 32) 
by operating on an input matrix of shape (32, 32, 32), 
which is produced from the preceding layer. Following 
that, this matrix is propagated to the following layer for 
additional processing. The mathematical model dem-
onstrating the functionality of the Max_pooling layer is 
expressed concisely as follows:

where Ft is output feature map, Mp max_over _pool, Fp 
Input feature map, isd is istride, jsd is jstride.

(5)
Y (I , J ,K ) = b(K )+ (Q × Fm(i+ 1, j +m,n))

(6)Ft(i, j, k) = Mp(Fp(isd + l, jsd +m, k))

Fig. 9 CNN convolutional level function



Page 12 of 18Nazeer et al. Journal of Cloud Computing           (2024) 13:50 

Flatten layer Flatten_1, situated as the fifth layer in the 
model, orchestrates a nuanced transition by molding the 
input matrix sourced from Max_pooling2d_3. This trans-
formation yields a structured array, subsequently routed 
to the subsequent dense layer for intricate computational 
analysis. Characterized by dimensions (16, 16, 32) for 
the input matrix, it engenders an array with dimensions 
(8192). Crucially, the pivotal role of Flatten_1 resides in 
its intricate facilitation of neural network architecture—
an artful reconstitution of the input tensor into a refined 
unidimensional vector. The equation for the Flatten_1 
layer can be written as:

where y is output, I is input value, rep is reshape, bs is 
batch_size.

Dense layer
The bespoke CNN architecture incorporates a tan-
dem of dense layers—Dense_2 and Dense_3. Serving 
as the sixth stratum, Dense_2 engenders a complexity 
of 1048704 parameters. It transmutes the input array 
stemming from Flatten_1, channeling it to the ensu-
ing Dense_3 layer. Imbued with an input array charac-
terized by dimensions (8192), Dense_2 orchestrates a 
reduction, yielding an output array of dimensions (156). 
This array, in turn, is propagated to the subsequent 
layer. In a parallel fashion, the ultimate and terminal 

(7)Y = i.rep(s, − 1)

layer, Dense_3, concludes the model’s architecture, 
encapsulating 645 parameters. Drawing its input from 
Dense_2, furnished with an input array bearing dimen-
sions (156), Dense_3 undertakes the task of mapping it 
onto 5 distinct classes. This predictive mapping serves 
to ascertain the susceptibility scale level of CLCuD. The 
mathematical essence of the Dense layer finds articula-
tion in the ensuing equation.

where Y is output, a is activation, W is dot values, is 
input, wm is weight _matrix, bv bias vector.

Output The output is meticulously mapped across sus-
ceptibility to resistance levels of CLCuD, defining dis-
crete data classes corresponding to distinct scale levels.

Experiments and result
The experimental configuration entails the deployment 
of a 238 GB Solid State Disk and a motherboard with 12 
GB of RAM. The system is operational with Windows 10 
Pro as the operating system, supported by an Intel (R) 
Core (TM) processor. The experimentation environment 
further incorporates the utilization of Google Colab plat-
form, Python programming language, and the availability 
of a Google Colab GPU.

Evaluation matrix
In the context of assessing machine learning models, 
commonplace performance metrics encompass accuracy 

(8)Y = a(W (i,wm)+ bv)

Fig. 10 Pooling function of CNN model
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and loss. The formulation denoting accuracy finds 
prevalent application as a quintessential measure for 
evaluation.

The count of accurate predictions represents instances 
where the model’s output coincided with the true antici-
pated result. Conversely, the aggregate count of predic-
tions pertains to the cumulative instances upon which 
the model’s predictions were applied. The formulation 
governing the loss metric is contingent upon the intrinsic 
nature of the problem under consideration. For classifica-
tion problems, a commonly used loss function is cross-
entropy loss, which is defined as:

where y_pred = yp. Within this context, N signifies the 
count of instances subjected to analysis. The variable y 
denotes the veritable label, encompassing binary values 

(9)Accuracy =
TP + FP

TP + FP + TN + FN

(10)
Loss = − 1/N × sum(y × log(yp)+ (1− y)× log(1− yp))

of either 0 or 1. Conversely, y_pred encapsulates the pre-
dictive probability attributed to the affirmative class.

Comparison of accuracy
The scrutiny encompasses a comparative analysis of 
accuracy metrics between the self-collected dataset and 
the downloaded dataset.

Table  5 provides a comprehensive exposition of the 
training and testing accuracy measurements pertaining 
to both datasets, namely the self-collected and down-
loaded datasets. Evidently, the tabulated results under-
score that the self-collected dataset yields a training 
accuracy of 94.57% coupled with an impressive testing 
accuracy of 99%. Conversely, the downloaded dataset 
demonstrates commendable training accuracy of 97.49%, 
juxtaposed with a testing accuracy of 89.71%. Figure  11 
serves as an illustrative repository, visually presenting 
the graphical depictions of training accuracy and testing 
accuracy for both datasets.

Within this tabulation, the initial column encapsulates 
the accuracy manifestations derived from the self-col-
lected dataset, while the subsequent column delineates 
the accuracy metrics originating from the downloaded 
dataset. The x-axis of the accuracy graphs delineates a 
spectrum spanning from 0 to 20 epochs, parameters 
germane to the custom CNN model’s utilization. Con-
currently, the y-axis offers a continuum ranging from 
zero percent to one hundred percent, symbolizing the 
accuracy spectrum. The graphical representation is 

Table 5 Training and testing accuracy

Dataset Training Testing

Self‑collected 94.57 99

Downloaded 97.49 89.71

Fig. 11 Accuracy graph of both datasets
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characterized by a distinctive blue line, emblematic of the 
training trajectory, while the orange line, conversely, sig-
nifies the testing trajectory of the model.

Comparison of loss
The CNN model which painstakingly compiles the train-
ing and testing loss metrics for both the self-collected 
and downloaded datasets.

Contained within Table  6 is a comprehensive exposi-
tion of the training and testing loss metrics, effectively 
encapsulating the intricacies of both the self-collected 
and downloaded datasets.

Noteworthy is the discerning insight provided by the 
tabulated data, revealing that the self-collected dataset 
exhibits a training loss of 16.38%, accompanied by a rela-
tively modest testing loss of 6.56%. In stark contrast, the 
downloaded dataset showcases a more favorable train-
ing loss of 8.36%, while the testing loss exhibits a notably 
higher magnitude of 52.67%. Figure 12 delineates graphs 
portraying training and testing loss for both datasets. The 
initial column pertains to the self-collected dataset’s loss, 
while the second column pertains to the downloaded 
dataset’s loss. The x-axis portrays epochs ranging from 0 
to 20 for the custom CNN model, and the y-axis signifies 

loss from 0 to 100 percent. Blue lines represent train-
ing loss, while orange lines depict testing loss. Notably, 
the self-collected dataset demonstrates declining loss as 
epochs increase, concurrent with an ascending accuracy 
trend as shown in Fig. 13. The experimental outcomes are 
as follows:

• The application of preprocessing procedures encom-
passing background removal, data augmentation, and 
image resizing enhances the dataset’s quality.

• Expert annotation of the Self-Collected dataset, 
guided by meticulous disease symptom assessment, 
facilitates the establishment of a susceptibility scale 
level mapping.

• The utilization of the Self-Collected dataset yields 
superior model performance outcomes when con-
trasted with the downloaded dataset.

Recent advancements across various scientific and 
engineering disciplines are well-captured through a 
series of innovative studies. Zhou et  al. [44] and Qi 
et  al. [45] have made significant strides in remote sens-
ing and image processing. Zhou et  al. [44] developed a 
novel method for LiDAR hidden echo signal decomposi-
tion, while Qi et al. [45] enhanced image quality through 
a brightness correction algorithm. Lin et  al. [46] dem-
onstrated the application of AI in practical fields like 
construction and infrastructure, focusing on pavement 
anomaly detection. The study by Y. et al. [47] illustrates 

Table 6 Training and testing loss

Dataset Training loss Validation loss

Self‑collected 16.38 6.56

Downloaded 8.36 52.67

Fig. 12 Loss graph of both datasets
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the potential of data analytics in knowledge graph com-
pletion, enhancing information systems.

In the realm of electronics and communication, Jiang 
and Li [48] improved interference cancellation sys-
tems, and Wang et al. [49] developed a biosensor system 
for explosive detection, showcasing interdisciplinary 
research. Liu et al. [50] and Dang et al. [51] leveraged AI 
in creative and analytical applications, with the former 
creating photo-realistic images from sketches and the 
latter developing a feature matching method based on 
convolutional neural networks. Healthcare technology 
saw advancements with the surgical instrument localiza-
tion algorithm by Siyu Lu et al. [52], indicating progress 
in surgical precision. In environmental applications, 
Cheng et al. [53] utilized machine learning for vegetation 
mapping, and Zheng et  al. [54] in agricultural monitor-
ing. Tao et al. [55] applied AI in defect recognition, while 
Zhou et  al. [56] and another study by Zhou et  al. [57] 
focused on enhancing signal detection in remote sensing. 
Object and vehicle detection were advanced by Zhang 
et al. [58] and Li et al. [59], respectively.

Predictive maintenance was addressed by Zhao et al. 
[60] in aero-engine life prediction. Control systems for 
multi-agent and autonomous underwater vehicles were 
explored by Hu et  al. [61] and Chen et  al. [62]. Liao 
et al. [63] and Ding et al. [64] applied AI to detect fake 

news and taxi fraud. Zhang et  al. [65] explored cloud 
management systems, and network resource allocation 
and wireless communication were the focus of Xuemin 
et al. [66] and Lyu et al. [67]. Traffic anomaly detection 
by Xu et al. [68] and transportation detection by Chen 
et  al. [69] show the breadth of technology’s impact, 
while Ma et  al. [70] enhanced pavement assessment 
techniques. Lastly, Jin et  al. [71] created a dataset for 
image quality assessment, reflecting the diversity and 
depth of current technological advancements across 
sectors.

The study presented here, focusing on the use of deep 
learning models, specifically Convolutional Neural Net-
works (CNN), for the detection of Cotton Leaf Curl 
Disease (CLCuD), marks a significant advancement in 
agricultural technology, particularly in crop disease man-
agement. By successfully harnessing deep learning to 
analyze a comprehensive dataset of cotton leaf images, 
the research addresses a critical challenge in agricul-
ture, especially in regions with limited resources. The 
high accuracy rate of 99% achieved by the CNN model 
underscores the potential of AI in transforming disease 
detection processes, leading to more efficient and timely 
interventions. This approach not only contributes to 
improving cotton yields by mitigating the impact of dis-
eases like CLCuV but also paves the way for integrating 

Fig. 13 Comparative graph of accuracy and loss of both datasets after augmentation
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advanced technologies in agriculture. The methodology 
and findings of this study could be instrumental in devel-
oping automated, accurate, and accessible disease detec-
tion systems, thereby enhancing crop management and 
supporting sustainable agricultural practices globally.

Conclusion
The symphony of ecological forces is essential to the 
complex effects of plant growth and development. Sticki-
ness, temperature, water availability, sunlight, and nutri-
tion are just a few of the variables that play a role in the 
environmental orchestra that determines a plant’s jour-
ney. The threat of crop diseases lurks menacingly within 
this happy coexistence, posing a significant threat to agri-
cultural output and global food security. Problems with 
illness detection are frequently worsened by insufficient 
infrastructure in many parts of the world. Enter the cen-
terpiece of our project: a carefully prepared dataset on 
cotton leaf disease. This data collection is a gold mine 
that unlocks a world of inventive possibilities.

Using AI for Early Detection: Visualize a world in 
which cutting-edge machine learning models, cultivated 
on this dataset, serve as field sentinels. They quickly and 
precisely identify the unmistakable symptoms of cotton 
leaf diseases. These digital guardians, which are inte-
grated into mobile apps and web services, provide farm-
ers with real-time assistance, reversing the tide in the 
war against crop diseases. Beyond practical uses, this 
dataset serves as a fruitful research environment for the 
advancement of science. Armed with this wealth of infor-
mation, researchers set out to solve the riddles of cotton 
leaf diseases. They make clear the complex connections 
between the frequency of diseases and the dynamic envi-
ronmental web. Their results open the door for creative 
ways to safeguard crops and guarantee food security. 
Education and Empowerment: By illuminating the road 
for farmers, the dataset serves as a cornerstone of educa-
tion. Resources start to appear that are vibrant, like inter-
esting pamphlets and posters. By teaching others about 
cotton leaf diseases and the art of detection and manage-
ment, they take on the role of teachers. With their newly 
acquired knowledge, farmers protect their crops, foster-
ing abundant harvests. Switching gears, we go into the 
world of Cotton Leaf Curl (CLC) Disease, a scourge that 
plagues cotton plants and is brought on by the Cotton 
Leaf Curl (CLC) Gemini virus. Deep learning technol-
ogy is emerging as a strong force that cuts across numer-
ous industries in the large field of agricultural research. 
Here, the scene is ready for the CNN models to identify 
pictures of cotton leaves. Two datasets take center stage, 
one chock full of Cotton Leaf Curl Disease-related pho-
tos and the other a self-assembled treasure trove of 842 
and 1349 images, respectively. The power of the CNN is 

amplified by augmentation techniques, providing thor-
ough training. The data, which includes training, testing, 
loss, and accuracy, paints an interesting picture. Within 
the self-assembled dataset, CNN achieves an astounding 
99% accuracy, demonstrating the power of deep learn-
ing. The voyage is still far from finished. The horizons 
of the future hold out hope for progress. The first steps 
toward bigger accomplishments include a wide range of 
ecological circumstances, an expanded dataset including 
various regions, and model improvements. This dataset 
is a priceless resource for researchers and programmers 
exploring the boundaries of cotton leaf disease detection, 
prevention, and management. It shines as a beacon of 
information, directing varied minds toward the objective 
of protecting our essential crops thanks to its balanced 
distribution, spanning both the sick and the healthy, and 
its open accessibility.

The voyage is still far from finished. The horizons of the 
future hold out hope for progress. The first steps toward 
bigger accomplishments include a wide range of ecologi-
cal circumstances, an expanded dataset including various 
regions, and model improvements.
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