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Abstract
The fast human climate change we are witnessing in the early twenty-first century is inextricably linked to the 
health and function of the biosphere. Climate change is affecting ecosystems through changes in mean conditions 
and variability, as well as other related changes such as increased ocean acidification and atmospheric CO2 
concentrations. It also interacts with other ecological stresses like as degradation, defaunation, and fragmentation.
Ecology and climate monitoring are critical to understanding the complicated interactions between ecosystems 
and changing climate trends. This review paper dives into the issues of ecological and climate monitoring, 
emphasizing the complications caused by technical limits, data integration, scale differences, and the critical 
requirement for accurate and timely information. Understanding the ecological dynamics of these climatic impacts, 
identifying hotspots of susceptibility and resistance, and identifying management measures that may aid biosphere 
resilience to climate change are all necessary. At the same time, ecosystems can help with climate change 
mitigation and adaptation. The processes, possibilities, and constraints of such nature-based climate change 
solutions must be investigated and assessed. Addressing these issues is critical for developing successful policies 
and strategies for mitigating the effects of climate change and promoting sustainable ecosystem management. 
Human actions inscribe their stamp in the big narrative of our planet’s story, affecting the very substance of the 
global atmosphere. This transformation goes beyond chemistry, casting a spell on the physical characteristics 
that choreograph Earth’s brilliant dance. These qualities, like heavenly notes, create a song that echoes deep into 
the biosphere. We go on a journey via recorded tales of ecological transformation as they respond to the ever-
shifting environment in this text. We peek into the rich fabric of change, drawing insight from interconnected 
observatories. Nonetheless, this growing symphony is set to unleash additional transformational stories - narratives 
of natural riches and rhythms that are both economically and environmentally essential. Understanding these 
stories is essential for navigating this developing epic. A roadmap for sustainable development necessitates 
the ability to comprehend these stories, a problem that resonates across the breadth of monitoring programs, 
particularly in the infancy of integrated sites.
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Introduction
Good monitoring is essential for sustainable ecologi-
cal management, the recovery of vulnerable species, and 
environmental reporting [1, 2]. Monitoring is especially 
vital in a changing environment, particularly in reaction 
to climate change and increased human use of natural 
resources [3, 4]. There are five important reasons to mon-
itor: Understanding the way a system operates (including 
the efficacy of management actions); increasing aware-
ness about a problem; engaging the public and leverag-
ing effort; and identifying dangers or opportunities [5]. 
Monitoring is regarded as an essential component of 
global initiatives such as the Convention on Biological 
Diversity [6], national-level biodiversity management 
directives [7], the preservation of specific ecosystem 
integrity (e.g. [8]), and the protection of specific endan-
gered species [9]. The interconnectedness between eco-
logical systems and climate dynamics is well-established, 
with ecological processes being significantly influenced 
by climate variations. Monitoring these interactions is 
crucial for predicting and responding to environmental 
changes, but it comes with a set of intricate challenges 
that necessitate comprehensive investigation. In the intri-
cate tale of our planet, human activities etch their mark 
across the global canvas. The composition of Earth’s 
atmosphere is no exception, undergoing a transforma-
tion shaped by anthropogenic endeavours. A crescendo 
of increasing carbon dioxide, methane, nitrous oxide, 
HFCs, and perfluorocarbons resonates through the air, 
heralding this change. Moreover, the chemistry of precip-
itation in regions like North America, Europe, and Asia 
has been redefined by the touch of sulphur and nitro-
gen compounds [10]. These shifts ripple beyond chem-
istry, altering the very physiognomy of the atmosphere. 
From the depletion of stratospheric ozone to the birth 
of ground-level ozone [11, 12] and the nuanced dance of 
the radiation balance, these metamorphoses script a new 
narrative. As the radiation balance sways, it whispers of 
a warming world, with the promise of local and regional 
temperature changes as diverse as nature’s palette. As we 
peer into these changing verses, environmental monitor-
ing emerges as the sentinel, watching over Earth’s pulse 
and melody. Environmental monitoring is a maestro con-
ducting a symphony of objectives: unveiling problems, 
fashioning solutions, appraising the efficacy of control 
actions, and highlighting emerging concerns. A star in 
this performance is the integrated monitoring site – the 
ecological observatory. Nestled within this realm are 
long-term endeavors characterized by multidisciplinary 
scrutiny, united with meticulous research. In the pursuit 
of understanding, these sites dare to manipulate eco-
systems as expansive as lakes or wetlands. This grand 
endeavor of integrated monitoring is driven by a purpose: 
to distill a tapestry of data that not only paints change 

but also deciphers its origins. This revelation of cause 
and effect is the bedrock of designing pollution control 
strategies. In the Canadian saga, the story of acid rain’s 
impact unfurled through the lens of integrated monitor-
ing, with sites like Dorset, Ontario, revealing its narra-
tive. A symphony of data from 15 sites across Canada and 
the United States united to compose a target loading of 
20 kg wet sulphate ha − 1 yr − 1, a cornerstone adopted as 
Canadian policy in 1984. But these sites offer more than 
snapshots – they share epics. As the human population 
surges relentlessly forward, an ever-mounting strain is 
placed upon the delicate equilibrium of food demand. 
This imperative crescendo necessitates resolute action 
to safeguard food security for both the present and the 
unfolding tapestry of generations to come [13, 14, 15]. 
Within the pages of scholarly discourse, a legion of 
visionary researchers has proffered an array of inventive 
pathways, orchestrating a symphony of methodologies to 
perpetually surreal agricultural processes and fortify the 
bastions of food security. Here in lie some of their distin-
guished contributions:

A prelude to the agricultural harvest, yield estimation 
statistics stand as a sagacious guide for farmers, inform-
ing pivotal decisions such as the judicious application of 
fertilizers. Moreover, these statistics serve as sentinels, 
forewarning of potential threats like the encroachment of 
insects and the specter of drought, affording the oppor-
tunity for pre-emptive countermeasures [16]. The harmo-
nious supply of major crops to meet demand requires an 
ongoing sonnet, a monitoring of crops throughout their 
growth. To avert the dissonance of scarcity and surplus, 
a global classification of crops during their seasonal cre-
scendo becomes imperative [17]. A view of land trans-
formation unfolds, extending the frontiers of effective 
croplands by repurposing fallow expanses. Yet, this bal-
let is not without consequences—abrupt land conversion, 
a metaphorical thunderclap, amplifies greenhouse gas 
emissions, casting a shadow over climate and local eco-
systems. Enter land cover mapping, a cartographic aria, 
offering insights into the topography of interest, unrav-
elling the sustainability and aptitude of the land for spe-
cific crop ballets [18]. The symphony of cultivation faces 
climatic crescendos in the form of drought and flood. 
To harmonize with these tempests, it is imperative to 
identify cultivars resilient to the strains of unfavourable 
weather, orchestrating a resilient response to minimize 
the discordant notes of crop loss [19].

The monitoring of these agricultural opuses has been 
relegated to the human touch, a laborious, costly, and 
error-prone ballet. Inspectors pirouette within a con-
fined farmland, examining but a fragment within a spe-
cific temporal cadence. Expertise is a constraint; multiple 
inspectors may broaden the stage but at the cost of an 
opulent production [20]. The quality of the inspection 
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is a symphony directed by the knowledge and skill of 
the conductor. Yet, the outcome may falter, a potential 
discord echoing through the agricultural composition 
[21]. To liberate this agrarian way from its earthly con-
straints, remote sensing emerges as a celestial maestro, 
conducting agricultural symphonies with ethereal preci-
sion. Amidst the cosmic advantages of this technologi-
cal overtone. Remote sensing unfurls its celestial cloak, 
enveloping vast expanses in its watchful gaze. The data, 
a celestial heartbeat, repeats within short intervals, creat-
ing a cosmic time-series database for an opulent moni-
toring spectacle [22]. The approach of remote sensing 
knows no boundaries, collecting data across myriad 
scales and resolutions. Its purpose is cosmic, unfettered 
by earthly constraints, a versatile spectacle for myriad 
applications [23, 24]. Remotely sensed data ascend to the 
astral realms of laboratories, where high-processing com-
puters conduct celestial analyses for multiple applications 
simultaneously. No longer tethered to earthly confines, 
the need for physical presence or processing of modest 
data samples becomes a relic of the past [25]. Remote 
sensing devices, cosmic minstrels, record the celestial 
ballet of electromagnetic radiation absorption and reflec-
tion from plants. This cosmic melody unveils the biotic 
intrigues of insects and pesticides, alongside the abiotic 
echoes of drought and flood—celestial stresses upon the 
earthly stage [26].

A challenge enshrouds the realm of ecological vari-
ables: how to distil the essence of intricate ecological 
systems into measures that encapsulate the whole yet 
remain manageable and effective for scrutiny and mod-
elling. Fluctuations in weather conditions, particularly 
abrupt changes, can induce stress in crops, with reper-
cussions that are intricate, interwoven, and often specific 
to certain crops, growth stages, and genetic varieties. 
The quest for precise crop condition monitoring neces-
sitates the identification of an optimal baseline product 
and a compatible remote sensing product at a spatial res-
olution conducive to minimizing uncertainties [27]. For 
example, discerning between irrigated and rainfed crops 
becomes crucial, particularly in dry seasons, allowing for 
location-specific monitoring tailored to individual irriga-
tion conditions. Nevertheless, prevailing crop condition 
monitoring methods predominantly rely on low-resolu-
tion satellite data, which, with their coarse pixels, seldom 
reflect the conditions of individual crops unless within 
expansive parcels [28].

The advent of Sentinel-2–like satellite data brings 
promise to medium- to high-resolution crop condition 
monitoring, albeit requiring substantial data processing. 
However, the pursuit of high spatial resolution introduces 
challenges such as geolocation mismatch and impacts 
from soil backgrounds. The call is for users to wield the 
freedom to choose the spatial scale data that aligns with 

their unique monitoring targets, recognizing the poten-
tial limitations in detecting crop stress driven by drought 
[29].

Drought emerges as a formidable natural disaster, 
inflicting extensive stress and yield losses, with drought 
assessments integral to Crop Monitoring Systems 
(CMSs). The transition from meteorological drought to 
agricultural drought, spurred by a dearth of precipitation 
and heightened evaporation rates, precipitates reductions 
in crop yield or even complete failures. Various drought 
indices, including the Standardized Precipitation Index 
(SPI) [30]. Despite these advances, challenges persist in 
comprehensively determining the impacts of nutrients, 
diseases, and pests on crop stress.

The forecasting of crop production involves a delicate 
interplay of crop area estimates and yield predictions 
within specific agro-ecological regions, administrative 
units, and crop types. Two methodological approaches, 
crop type mapping and geostatistical methods, converge 
to derive crop area estimations, with the former not only 
contributing to crop area estimation but also furnish-
ing foundational data for crop condition assessment and 
yield prediction [31]. Despite strides in crop-mapping 
studies, most are confined to local areas heavily reliant 
on field data, lacking transferability to broader regions. 
Additionally, methodologies often depend on local 
knowledge of management practices, phenology, and 
prior insights into cropping patterns [32]. Geostatisti-
cal methods for deriving crop areas hinge on field survey 
information, satellite data, and statistical inference. The 
uncertainties and time lags associated with these meth-
ods render them impractical for precise crop area esti-
mation. Conversely, remote sensing emerges as a beacon, 
easily distinguishing between cropped and non-cropped 
arable lands, allowing for the estimation of cropped areas 
with relatively low error rates [33]. Four satellite-driven 
methods for predicting crop yields ahead of harvest face 
uncertainties, particularly in extreme climatic conditions, 
highlighting the frailty of the yield prediction component 
in current crop monitoring models and vegetation indi-
ces (VIs) [34]. Understanding the determinants of crop 
yields, especially in challenging climates, remains a press-
ing frontier in the realm of crop monitoring.

Deep learning methods for Crop and Remote 
Sensing:

Convolutional Neural Networks (CNNs):
Image Classification: CNNs are a fundamental deep 

learning architecture used for image classification tasks 
in both climate and ecology. In climate research, they are 
applied to satellite and weather radar images to classify 
cloud patterns, detect cyclones, or identify land cover 
types. In ecology, CNNs are used to classify species 
based on camera trap images or analyze satellite imagery 
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to monitor deforestation or changes in vegetation cover 
[35].

Recurrent Neural Networks (RNNs): Time-Series 
Analysis: RNNs, including LSTM networks, are crucial 
for analyzing time-series data in climate and ecology. In 
climate science, RNNs can model and predict tempera-
ture trends, precipitation patterns, and sea-level rise. In 
ecology, they can capture temporal dependencies in wild-
life migration, breeding, or population dynamics.

Generative Adversarial Networks (GANs): Data Aug-
mentation: GANs are employed to generate synthetic 
data that can augment limited datasets in both fields. In 
climate research, GANs can generate additional climate 
data points to improve model training. In ecology, GANs 
can create synthetic images of rare species to balance 
training datasets.

Transfer Learning: Fine-Tuning Pretrained Models: 
Transfer learning is especially valuable in scenarios where 
labeled data is scarce. Researchers can take pretrained 
deep learning models, such as CNNs trained on large 
image datasets like ImageNet, and fine-tune them for 
specific climate and ecology tasks. This approach reduces 
the amount of data required for training and speeds up 
model development.

Spatial-Temporal Models: Capturing Complex Pat-
terns: In both climate and ecology, complex patterns 
often emerge from the interaction of spatial and temporal 
factors. Specialized deep learning architectures like 3D 
CNNs or spatiotemporal CNNs are used to capture these 
dependencies. They can be applied to climate modeling 
for simulating weather patterns and ecosystem dynamics 
in ecological research.

Attention Mechanisms: Long-Range Dependencies: 
Attention mechanisms, popularized by Transformer 
models, are used to capture long-range dependencies in 
ecological and climate data. They enable models to focus 
on relevant information across time and space. In ecol-
ogy, attention mechanisms can be applied to analyze 
species distribution patterns influenced by various envi-
ronmental factors.

Graph Neural Networks (GNNs): Modeling Ecological 
Networks: GNNs are vital in ecology for modeling com-
plex ecological networks, such as food webs, mutualistic 
interactions, or habitat connectivity. They allow research-
ers to understand the structure and dynamics of eco-
systems and predict the consequences of species loss or 
habitat fragmentation.

Deep Reinforcement Learning (DRL): Optimizing 
Decision-Making: DRL techniques can optimize deci-
sion-making processes in climate adaptation and eco-
system management. For example, they can be used to 
find optimal resource allocation strategies for conserva-
tion efforts or determine the best time for planting crops 
based on climate conditions.

Time-Series Forecasting: Predictive Modeling: Deep 
learning models like Prophet or WaveNet are applied to 
climate and ecological time-series data for accurate fore-
casting. In climate science, they can predict temperature 
and precipitation trends. In ecology, they can forecast 
population dynamics or disease outbreaks in wildlife 
populations.

Anomaly Detection: Identifying Unusual Patterns: 
Deep learning-based anomaly detection methods, such 
as autoencoders, are used to identify unusual patterns 
or outliers in environmental data. For instance, they can 
detect pollution events in water bodies or abnormal cli-
mate conditions that may signify climate change-related 
anomalies.

Natural Language Processing (NLP): Text Data Anal-
ysis: In addition to numerical data, climate and ecology 
research often involves textual data from research papers, 
climate reports, and environmental policies. NLP tech-
niques can be applied to extract insights, summarize 
findings, and aid in data integration and information 
retrieval.

Multi-Modal Fusion: Comprehensive Data Integra-
tion: Deep learning models can combine data from vari-
ous sources, such as satellite imagery, climate data, and 
sensor readings. By fusing multi-modal data, researchers 
gain a holistic understanding of environmental changes 
and their impacts, allowing for more informed decision-
making [36, 37].

Figure 1 shows structure of deep learning models, deep 
learning methods play a vital role in advancing climate 
and ecology research by enabling the analysis of complex, 
multi-dimensional data, leading to better climate predic-
tions, more effective conservation efforts, and a deeper 
understanding of our planet’s ecosystems. These tech-
niques continue to evolve and offer exciting opportuni-
ties for addressing pressing environmental challenges.

Concerns and challenges
Although leveraging remote sensing in agriculture holds 
the potential to revolutionize farming practices in the 
face of diverse challenges, offering valuable insights 
into crop conditions across different scales throughout 
the entire growing season. Armed with information on 
crop status, farmers can make informed decisions using 
cutting-edge technologies such as geospatial technol-
ogy, the Internet of Things (IoT), Big Data analysis, and 
artificial intelligence (AI). Precision agriculture (PA) 
strategically employs these emerging technologies to 
optimize agricultural inputs, enhance production effi-
ciency, and minimize input losses [38, 39]. The utilization 
of remote sensing technology in precision agriculture has 
witnessed a significant surge over the past few decades. 
However, to unlock its full potential, it is imperative to 
develop an accessible yet reliable workflow for real-time 
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remote sensing applications in precision agriculture. This 
undertaking is essential given the intricacies of image 
processing and the substantial technical knowledge 
and skills required. The realization of accurate yet user-
friendly systems is anticipated to drive broader adoption 
of remote sensing technologies in both commercial and 
non-commercial precision agriculture applications.

Monitoring depends on a small number of indicators
By limiting the number of variables to one or two, the 
emphasis of the ecological management program is nar-
rowed, and an oversimplified understanding of spatial 
and temporal relationships is fostered. This simplifica-
tion frequently results in bad management judgments. To 
successfully monitor the numerous degrees of complex-
ity within an ecological system, variables should be cho-
sen from multiple levels of the ecological hierarchy. As a 
result, a fundamental problem is to identify a set of mea-
surements that provide interpretable signals, can be used 
to track ecological conditions at a reasonable cost, and 
cover the whole range of ecological variation.

Choice of ecological variables
Goals and objectives that are unclear or ambiguous 
might result in “the wrong variables being measured in 
the wrong place at the wrong time with poor precision 
or reliability” [40]. To focus monitoring on present and 
future management concerns, primary goals and objec-
tives should be established early in the process. The vari-
ables that are most closely related to those management 
issues can then be chosen to assess system attributes. 
However, society has traditionally chosen resource man-
agement goals that are purely concerned with short-term 
profit (for example, maximum crop output in agricultural 

systems or maximum lumber production in forests). 
These objectives may threaten the long-term viability of 
healthy ecological systems [41]. Management objectives, 
and therefore variable selection, should be linked to an 
awareness of the short-term and long-term implications 
of resource management decisions.

Lack of scientific rigor
The lack of comprehensive techniques for identifying 
ecological variables makes validating the information 
supplied by such factors problematic. Until conventional 
techniques for choosing and utilizing variables are devel-
oped, interpretation of their change through place and 
time remains uncertain [24]. The development and appli-
cation of standard processes for the selection of ecologi-
cal variables allows for repeatability, eliminates bias, and 
imposes discipline on the selection process, ensuring that 
the variables chosen address management issues.

Technological limitations
One of the major difficulties for climate monitoring will 
be to integrate passive sensor data directly from smart-
phones or wearables, as well as human perception data, 
into official data streams while completely respecting pri-
vacy and complying with the EU’s GDPR. Data donation 
for science is becoming a new trend, with organizations 
like Open Humans providing academics, enterprises, 
NGOs, and policymakers with unparalleled access to 
new data sources and amounts. Standard smartphones 
and wearables now give, among other things, location, 
movement, individual carbon mobility footprints, health 
data, and much more. Advances in technology have 
undeniably improved monitoring capabilities, yet certain 
ecological and climate processes remain challenging to 

Fig. 1 Structure of deep learning models
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observe accurately. Remote sensing tools, for instance, 
provide valuable insights, but they may not capture fine-
scale ecological interactions. Additionally, technological 
limitations hinder real-time data acquisition, hindering 
our ability to grasp rapidly occurring changes [42, 43].

A new environmental science strategy to research-
ing human emotions in cities has also been presented, 
which is linked to wearables. By identifying the relation-
ship between stress and well-being, we may gain a deeper 
knowledge of urban stress. Wearables and other low-
cost sensors have an untapped potential for expanding 
our understanding of aspects that can assist to enhance 
human well-being, access to green space, city planning, 
and implementing actions to reduce cities’ carbon emis-
sions [44, 45]. Environmental research has traditionally 
been a Global North activity, restricted to more wealthy 
nations where individuals have time for voluntary work 
and unpaid hobbies. Nonetheless, owing to digital tech-
nology, the Global South has jumped ahead of several 
critical stages of development, with mobile phone satu-
ration high in many areas where there are no landlines. 
Environmental activities are far less popular in emerging 
countries, as evidenced by data from various open envi-
ronmental science platforms, such as iNaturalist.

Data integration
The integration of diverse data sources, such as satel-
lite imagery, ground-based measurements, and model-
ling outputs, is essential for a holistic understanding of 
ecosystems and climate. However, this integration poses 
challenges in terms of data compatibility, accuracy, and 
calibration. Effective data integration techniques must be 
developed to create comprehensive models that reflect 
the complex reality of these systems. Three key techno-
logical problems have been identified in reviews of eco-
logical informatics: data dispersion, heterogeneity, and 
provenance [46, 47, 48]. Ecosystems and ecosystems dif-
fer across the world, and data is collected at thousands 
of sites. Although major research projects, institutes, and 
agencies typically manage large amounts of data repre-
senting relatively few data sets, most ecological data are 
difficult to discover and preserve because they are con-
tained in relatively small data sets dispersed among tens 
of thousands of independent researchers. Due to the 
range of themes addressed by ecologists and the many 
experimental techniques utilized by different research-
ers, data heterogeneity poses problems. Data prov-
enance—origins and history—is required when, as in 
ecological research, intriguing results emerge after com-
plicated, multistep data collecting, modeling, and analy-
sis procedures.

Scale disparities
Ecological processes operate at various spatial and tem-
poral scales, which can pose challenges when attempting 
to draw meaningful conclusions. Upscaling observations 
from small plots to larger landscapes often leads to over-
simplification, while downscaling global climate mod-
els to regional or local scales may result in loss of detail. 
Bridging these scale disparities requires sophisticated 
methodologies that consider multiscale interactions.

Interdisciplinary collaboration
Ecology and climate monitoring inherently demand inter-
disciplinary collaboration among scientists from diverse 
fields such as biology, climatology, geology, and sociol-
ogy. Effective communication and collaboration can be 
challenging due to differences in terminology, meth-
odologies, and research priorities. Establishing com-
mon ground and fostering interdisciplinary teamwork is 
essential to overcome these barriers. Another significant 
problem is the vital necessity to monitor the provenance 
of generated data objects and scientific conclusions from 
data collection to quality assurance, analysis, modelling, 
and, finally, publishing [49]. Provenance is especially cru-
cial in supporting scientific conclusions used in policy 
and management decisions, because field experiments 
and procedures may be difficult to replicate due to the 
difficulties of recreating environmental circumstances. 
Computer scientists are making significant progress in 
creating methods to capture evidence information. Data 
processing and analysis information that led to a specific 
set of results may be documented using scripted analytic 
tools like R and scientific workflow platforms like Kepler 
and Taverna.

Data quality and uncertainty
The accuracy of monitoring data is pivotal for making 
informed decisions. However, ecological and climate data 
often contain uncertainties due to measurement errors, 
incomplete coverage, and modelling assumptions. Devel-
oping robust techniques for quantifying and communi-
cating these uncertainties is crucial to ensure that policy 
decisions are based on a realistic understanding of poten-
tial outcomes. However, just a small percentage of the 
ecological data collected is easily discoverable and acces-
sible, much alone valuable. Based on our personal experi-
ence in developing data archives for ecology, we estimate 
that less than 1% of the ecological data gathered is avail-
able following the publication of associated conclusions 
[50, 51]. We provide opinions of distilled data through 
presentations and publications rather than direct access 
to data. To reap the benefits of ecological and environ-
mental synthesis, we must address the technological 
and sociocultural barriers that have impeded free access 
to data. While “open data” will improve and accelerate 
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scientific progress, there is also a need for “open science,” 
which preserves not just data but also analyses and tech-
niques, resulting in greater openness and repeatability of 
discoveries. It has been emphasized that environmental 
research programs should attempt to reach a bigger audi-
ence that more accurately represents society. Further-
more, scientists must be more open to engaging with the 
general public and communicating science in a clearer 
and simpler manner, such as by avoiding jargon and com-
municating in ways that are clearer and more intelligible 
to non-specialists. Scientists must leave their ivory tow-
ers and connect more broadly with society and people.

Access to resources and infrastructure
Monitoring initiatives require substantial resources, 
including funding, technology, and trained personnel. In 
some regions, especially developing countries, limited 
access to these resources can hinder effective monitoring 
efforts. Addressing this challenge involves international 
cooperation, capacity building, and technology transfer 
to ensure comprehensive global monitoring coverage.

Addressing Dynamic systems
Ecological and climate systems are inherently dynamic 
and subject to nonlinear behaviours. Traditional linear 
modelling approaches may fall short in capturing the 
complexity of these systems. Embracing dynamic model-
ling techniques, such as agent-based models and system 
dynamics, can provide a more accurate representation 
of the interactions between ecological processes and cli-
mate dynamics.

Policy implications
Accurate ecological and climate monitoring data directly 
influence policy decisions aimed at mitigating climate 
change impacts and preserving biodiversity. The chal-
lenges in collecting, integrating, and interpreting this data 
necessitate policy frameworks that are adaptable, evi-
dence-based, and incorporate feedback loops to account 
for evolving scientific understanding. When designing 
technical solutions for handling ecological information, 
the variability of ecological data must be considered. 
Ecology’s multiplicity of subdisciplines (e.g., ecosystems/
community ecology, marine/freshwater/terrestrial ecol-
ogy, and plant/animal/microbial ecology) results in het-
erogeneous data. Furthermore, neighbouring disciplines 
in earth and life science, as well as important fields in the 
social sciences and humanities, have their own terminol-
ogy, specific measurements, and experimental designs, all 
of which contribute to heterogeneity.

Another significant difficulty in climate monitoring is 
determining ways to motivate individuals to engage in 
science and answer the question, “What’s in it for me?” 
Clear communication on how the data is being utilized 

and why the data is so vital is critical in this case. For 
example, a variety of incentives, such as prizes and co-
authorship [52] and information nudges, such as the 
Earth Challenge (EARTHDAY.ORG, 2022), have been 
tried to increase engagement and retention, although 
Peoples are also intrigued in assisting science and chal-
lenging themselves intellectually [53].

Crop remote sensing Recognition algorithms
The fundamental process of crop remote sensing recog-
nition involves judging and extracting category attribute 
information based on the characteristic differences dis-
played in remote sensing data. Essentially, it is a clas-
sification problem. In the field of crop remote sensing 
recognition, the development of classification algorithms 
can be summarized into three stages, early strong learn-
ing methods, ensemble learning methods based on weak 
learning, and deep learning methods represented by neu-
ral networks. In this paper, early strong learning methods 
and ensemble learning methods are collectively referred 
to as traditional machine learning methods, for contrast 
with the current research focus—deep learning methods.

Crop remote sensing Recognition based on traditional 
machine learning methods
Early strong learning methods involve constructing a 
single classifier using probabilistic statistical methods to 
complete the classification task Fig. 2 shows applications 
in different fields of ecology. Typical algorithms include 
the minimum distance method, maximum likelihood 
method, decision tree method, support vector machine, 
etc. The maximum likelihood method is one of the most 
commonly used supervised classification methods, 
assuming that the data approximately follows a normal 
distribution. It uses the training dataset to calculate fea-
tures such as mean, variance, and covariance, establish-
ing the prior probability density functions for each class. 
This enables the calculation of the membership probabil-
ity for pixels to complete the classification. The maximum 
likelihood method is widely used in crop remote sensing 
classification due to its simplicity, ease of implementa-
tion, and integration of Bayesian theory and prior knowl-
edge into the classification process. It performs optimally 
compared to other traditional classification methods. 
However, it is suitable for multispectral data with fewer 
bands, and its performance is less effective in hyperspec-
tral image classification. Decision trees are a classifica-
tion method based on inductive reasoning. They define 
and continuously update rules for dividing spectral, color, 
and spatial information in remote sensing images until 
no further division is possible. Decision tree algorithms 
are easy to understand, highly operational, capable of 
handling multi-output problems, and widely used in crop 
remote sensing recognition. However, their drawback is 
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poor generalization ability, especially when dealing with 
high-dimensional data. Support Vector Machine (SVM) 
is based on structural risk theory, quadratic optimization 
theory, and kernel space theory. It seeks the optimal clas-
sification hyperplane in a high-dimensional feature space, 
solving complex classification and regression problems. 
SVM shows stability and high classification accuracy in 
crop remote sensing, but its performance is poor in solv-
ing multi-class classification problems and high-dimen-
sional feature spaces, and the correct selection of the 
kernel function lacks theoretical basis.

Ensemble learning algorithms integrate the results of 
a series of independent or non-independent weak learn-
ers using a certain strategy to obtain the final result, 
surpassing the performance of individual learners. The 
construction process includes generating basic classi-
fiers and merging classification results. Common meth-
ods for generating basic classifiers include Bagging and 
Boosting. Bagging uses random sampling with replace-
ment to construct different training datasets for classifier 

generation. Boosting initially assigns equal weights to dif-
ferent samples, then decreases the weights of correctly 
classified samples and increases the weights of misclas-
sified samples during training. This focuses the learning 
algorithm on misclassified samples, and the final model 
is obtained through weighted combination. The advan-
tages of ensemble learning are as follows: (1) Statistical 
aspect: multiple learners can obtain a relatively stable 
hypothesis space to reduce generalization errors (2). 
Computational complexity: ensemble learning can effec-
tively reduce the possibility of the algorithm falling into 
local optima (3). Hypothesis space: multiple learners can 
expand the hypothesis space, facilitating the learning of 
better approximations. In crop remote sensing recogni-
tion, the most widely used machine learning methods 
are random forests, Adaboost, gradient boosting trees, 
etc. Although traditional machine learning methods can 
effectively recognize crops in different regions, their reli-
ance on shallow direct observation features and manually 
designed features during the recognition process leads to 

Fig. 2 Applications of AI in different fields of ecology
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poor learning ability for deep-level features and the lack 
of co-learning ability for different types of features in 
remote sensing data.

Crop remote sensing Recognition based on deep learning
Deep learning, as a branch of machine learning, aims 
to establish neural networks that simulate human brain 
analysis and learning. It utilizes massive training data to 
drive deep neural networks to learn more useful deep-
level features, ultimately improving classification accu-
racy. Deep neural network models have a large number of 
parameters, providing the model with sufficient complex-
ity. On the one hand, the model has enough complexity, 
and on the other hand, it has the ability to learn fea-
tures from end to end in the data, replacing manual fea-
ture engineering based on human experience and prior 
knowledge. In recent years, deep learning based on artifi-
cial neural networks has made breakthroughs in machine 
learning and data mining, including remote sensing, 
benefiting from the flexibility in feature representation, 
end-to-end feature learning without relying on expert 
knowledge, automation, and computational efficiency.

Convolutional Neural Network (CNN) is one of the 
most successful architectures in deep learning. CNN has 
high computational efficiency in the learning process and 
is sensitive to spatial relationships in image data, making 
it the most effective model for recognizing 2D features 
in image patterns. In the remote sensing domain, 2D 
CNN has been widely used for extracting spatial features, 
enabling target detection and semantic segmentation 
based on high-resolution images. Another major appli-
cation of CNN is in the classification of hyperspectral 
images, where 1D, 2D, and 3D CNNs are used to extract 
spectral features, spatial features, and ‘spectral-spatial’ 
features, respectively. In crop remote sensing classifica-
tion, research has shown that 2D convolutional opera-
tions in the spatial domain achieve better accuracy than 
1D convolutional operations in the spectral domain. 
Concatenating multispectral images at different growth 
stages and applying 1D convolutional operations in 
the spectral domain also improves the accuracy of land 
cover classification. Although convolutional operations 
can effectively extract features in the spatial, spectral, 
or ‘spectral-spatial’ domains, CNNs are rarely used for 
extracting features in the temporal domain, i.e., they can-
not effectively extract temporal change features in time 
series remote sensing data.

Recurrent Neural Network (RNN) is another type 
of deep learning network model specifically designed 
to handle time series data. Due to its ability to capture 
dependencies in long sequence data, RNNs have achieved 
success in various remote sensing applications. For exam-
ple, RNNs have been successfully used to analyze spec-
tral correlations and trends in time series of multispectral 

data. Combining CNNs and RNNs for image classifica-
tion involves using CNNs to generate multi-level convo-
lutional feature maps and then using RNNs as decoders 
to recursively collect multi-scale feature maps and aggre-
gate them sequentially to form high-resolution seman-
tic segmentation images. RNN networks have many 
improved models to enhance learning efficiency, with 
the most famous being the Long Short-Term Memory 
(LSTM) network, mainly designed to address the van-
ishing gradient and exploding gradient problems during 
long sequence training processes. Compared to ordinary 
RNNs, LSTMs perform better in tasks such as change 
detection based on long time series data and crop clas-
sification. Furthermore, combining CNNs and LSTMs, 
where 2D convolutional operations extract spatial feature 
information and LSTMs capture temporal dependencies 
in time series data, has achieved better results than tradi-
tional methods.

Represented by the LSTM, recurrent neural networks 
have significant advantages in extracting features from 
time series remote sensing data. However, RNNs based 
on threshold mechanisms tend to experience vanishing 
gradients and difficulties in capturing long-range infor-
mation dependencies when dealing with long time series 
data as shown in Fig. 3. To address this, Transformer net-
works based on self-attention mechanisms have emerged. 
Currently, Transformer models and their variants have 
become the mainstream methods for solving sequence-
related problems and have achieved success in crop 
classification recognition based on time series remote 
sensing data, becoming a hot research topic.

Issues and prospects
In general, current remote sensing models for crop yield 
estimation exhibit a variety of forms, but in practical 
applications, they often face challenges such as insuf-
ficient generalization ability, lagging monitoring timeli-
ness, and insufficiently detailed mapping of yields. These 
issues make it difficult to meet the requirements of cur-
rent precision agriculture for the timeliness and spatial 
resolution of crop yield estimation [54].

With the increase in high-resolution, hyperspectral 
resolution, and high temporal resolution remote sensing 
data, as well as the development of technologies such as 
deep learning, researching how to couple deep learning 
with crop growth models to construct scalable and effi-
cient transplantable fine-scale crop yield remote sensing 
dynamic estimation models is a potential research direc-
tion [55]. Fully utilizing crop growth models to simulate 
crop growth under different point scales and environ-
mental conditions, capturing crop growth patterns, and 
using deep learning methods to learn and model the 
capabilities of complex situations, completing spatial 
extrapolation, and achieving mechanistic constraints 
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with deep learning is a promising avenue for future 
research.

Remote sensing-based climate and crop monitoring 
using AI offers tremendous potential for enhancing agri-
cultural practices and understanding climate patterns. 
However, it also presents several challenges that need to 
be addressed for effective implementation. Here are some 
key issues and complexities:

Data quality and availability Inconsistent and low-
quality data from remote sensors can lead to inaccuracies 

in climate and crop monitoring. Limited access to histori-
cal data and real-time information can hinder long-term 
analysis and decision-making.

Data integration Integrating data from various sources, 
including satellite imagery, weather stations, soil sen-
sors, and drone surveys, can be complex and may require 
sophisticated data fusion techniques. Ensuring interop-
erability between different data formats and platforms is 
challenging.

Fig. 3 Remote sensing data collection sources

 



Page 11 of 14Han et al. Journal of Cloud Computing           (2024) 13:34 

Data Processing Processing large volumes of remote 
sensing data requires significant computational resources 
and may lead to scalability issues. Preprocessing tasks 
such as atmospheric correction and data calibration are 
crucial but computationally intensive.

Data interpretation Developing algorithms and mod-
els that can accurately interpret remote sensing data to 
monitor climate and crop conditions is a complex task. 
Different crops and regions may require customized 
approaches, making generalization difficult.

Machine learning and AI models Building robust AI 
models for climate and crop monitoring demands access 
to large and diverse datasets for training and validation. 
Ensuring the models’ reliability and interpretability is 
essential for decision-making in agriculture.

Scalability Scaling up remote sensing and AI-based 
monitoring systems to cover large agricultural areas can 
be challenging, especially in resource-constrained regions.

Privacy and Data Security Collecting and sharing 
remote sensing data, especially high-resolution imagery, 
can raise privacy concerns. Protecting sensitive infor-
mation and complying with data privacy regulations are 
essential.

Accessibility Ensuring that remote sensing and AI-
based tools are accessible to farmers, policymakers, and 
researchers globally can be a logistical challenge.

Infrastructure and connectivity Many remote agricul-
tural areas lack reliable internet connectivity and infra-
structure to support data transmission and access to 
AI-based tools.

Cost Implementing remote sensing and AI technologies 
can be expensive, both in terms of hardware and software 
requirements. Cost-effective solutions need to be devel-
oped to make these technologies accessible to a wider 
range of users.

Skill gap There may be a shortage of skilled professionals 
who can effectively utilize remote sensing and AI technol-
ogies for climate and crop monitoring. Capacity-building 
and training programs are necessary to bridge this gap.

Ethical considerations Ethical concerns, such as the use 
of AI in agriculture, data ownership, and the potential for 
technology-driven disparities, need to be addressed.

Addressing these challenges requires collaborative efforts 
from governments, research institutions, private com-
panies, and local communities. Innovative solutions, 

increased data sharing, and ongoing research are essen-
tial to navigate the complexities of remote sensing-
based climate and crop monitoring using AI and realize 
its full potential for sustainable agriculture and climate 
resilience.

Conclusion
The challenges in ecology and climate monitoring are 
multifaceted and intertwined, demanding collabora-
tive efforts across scientific disciplines, technological 
innovation, and international cooperation. Overcom-
ing these challenges is imperative to develop effective 
strategies for climate adaptation, ecosystem manage-
ment, and the safeguarding of our planet’s ecological 
and climatic equilibrium. As technology advances and 
our understanding deepens, it is crucial that the scien-
tific community remains agile and proactive in address-
ing these challenges to ensure a sustainable future for all 
living beings. These instances of environmental change 
were chosen to highlight that long-term monitoring has 
already recorded various environmental reactions to 
changing atmospheric chemistry. In my opinion, there 
will be more sophisticated ecological reactions to the 
constantly changing chemical and physical features of the 
atmosphere. As a result of continued stratospheric ozone 
depletion, we may anticipate greater UV-B radiation 
reaching the earth’s surface [56]. This has the potential to 
have a wide range of ecological consequences. Measuring 
biological impacts and understanding relationships with 
other stressors, such as acid rain, that may influence the 
same ecosystem will be challenging and would need inte-
grated monitoring.

Some experts anticipate that the prevalence of insects 
and illnesses will rise as these creatures adapt to new eco-
logical settings. The balsam woolly adelgid, for example, 
cannot endure a winter cold of − 34 degrees Celsius. If 
this value is not attained as a result of climate change, 
the length and intensity of epidemics will rise [57]. The 
impact on forests may outweigh the physical impacts of 
climate change, such as drought. There is evidence that 
insects are already adjusting in the Canadian Boreal 
Shield. The time of the spruce bud worm life-cycle, for 
example, has been seen to alter by 3–7 days during the 
last 25 years [58]. The aquatic, forest, and agricultural 
resources that are being impacted by climate change 
constitute the foundation of many North American 
economies. Defining and comprehending changes will be 
critical for long-term resource management. Any cause-
and-effect correlations utilized to justify pollution con-
trol and resource management initiatives must withstand 
thorough scrutiny. This poses a significant challenge for 
monitoring programs, particularly integrated monitoring 
sites that can give the long-term perspective backed by 
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process research and experimental data required for sci-
entific defence of proposed management strategies.

The difficulties many people have in accessing relevant 
and timely quality-controlled data and information in 
formats that can be easily incorporated into specific anal-
yses with other data sources are significant challenges 
to building stakeholders’ capacity to use climate infor-
mation in research and decision-making activities [59]. 
Many challenges exist in terms of data, services, practice, 
and policy (IRI 2006), which must be solved if climate 
and environmental information are to play an important 
role in decreasing climate-related hazards.

  • Multidisciplinary Maze: The challenge of 
defining research’s purpose resonates differently 
among diverse communities. The lack of a 
shared understanding often hinders the cohesive 
orchestration of multi-disciplinary endeavours.

  • Elusive Data: The tapestry of evidence requires 
threads of relevant, accessible data, locally and 
globally. The absence of a seamless thread weaves 
gaps in policy-relevant evidence essential for 
decision-making.

  • Knowledge Generation Gap: The canvas of new 
knowledge remains half-painted due to insufficient 
prowess in deciphering, assessing, and integrating 
climate information into the intricate weave of 
research questions.

  • Tools in Dearth: The symphony of data requires 
tools that harmonize space and time, interfacing 
seamlessly with other research software. Yet, gaps 
exist in tools that can perform this complex dance.

  • Fenced Knowledge: Policies and technological 
tangles lock knowledge within silos, inhibiting 
the creation of networks among researchers with 
common objectives, hindering the collective 
advancement.

  • Adapting Policies: The environment of policies and 
practice often lags behind the dynamic pulse of new 
knowledge, failing to respond promptly to emerging 
insights into shifts in disease risk.

Amidst these hurdles, a clarion call emerges for action-
able insights. The keystone to informed choices lies in 
the embrace of accurate, timely information that paints 
the climatic and environmental canvas. This information 
should not be an enigma but a beacon, accessible at the 
right time and place, illuminating the path of decision-
makers. As we navigate these challenges, creativity must 
intertwine with commitment, steering us towards a land-
scape where climate information serves as a compass, 
guiding us to a more resilient and informed future.
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