
Li et al. Journal of Cloud Computing           (2024) 13:25  
https://doi.org/10.1186/s13677-024-00592-1

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Improving efficiency of DNN-based 
relocalization module for autonomous driving 
with server-side computing
Dengbo Li1,4, Hanning Zhang2,3, Jieren Cheng1,4* and Bernie Liu5 

Abstract 

The substantial computational demands associated with Deep Neural Network (DNN)-based camera relocalization 
during the reasoning process impede their integration into autonomous vehicles. Cost and energy efficiency consid-
erations may dissuade automotive manufacturers from employing high-computing equipment, limiting the adoption 
of advanced models. In response to this challenge, we present an innovative edge cloud collaborative framework 
designed for camera relocalization in autonomous vehicles. Specifically, we strategically offload certain modules 
of the neural network to the server and evaluate the inference time of data frames under different network segmenta-
tion schemes to guide our offloading decisions. Our findings highlight the vital role of server-side offloading in DNN-
based camera relocation for autonomous vehicles, and we also discuss the results of data fusion. Finally, we validate 
the effectiveness of our proposed framework through experimental evaluation.
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Introduction
Autonomous driving technology is a longstanding chal-
lenge in academia and the automotive industry, neces-
sitating precise environmental maps and accurate 
self-positioning for a safe and stable driving experience. 
The emergence of mobile edge computing has prompted 
exploration for its application in intelligent vehicles [1–5]. 
Relocalization plays a crucial role in the application of 
autonomous vehicles, allowing them to achieve precise 
orientation within high-precision maps. Currently, edge 

computing and artificial intelligence technologies are 
extensively employed in this domain [6–12].

The traditional relocalization method involves build-
ing a feature descriptor database based on the existing 
map data and matching the query image with the feature 
descriptor [13–15]. Currently, many efficient retrieval 
methods exist, such as deep learning-based descrip-
tor construction [16, 17], word bag models [18, 19], and 
VLAD [20]. Previous researchers have used priority cor-
respondence search and 3D point division to improve 
positioning efficiency [21, 22]. Additionally, they have 
utilized SIFT features and correspondence between 3D 
points and 2D points in the scene to enhance positioning 
accuracy [23, 24]. The traditional camera relocalization 
approach relies heavily on shallow feature information in 
the scene, which can lead to poor relocalization accuracy, 
large drift, and other failures.

In recent years, there has been a growing interest in 
using deep learning-based scene construction models to 
perform pose regression. PoseNet [25] was the first to 
propose using the GoogleNet [26] depth neural network 
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to directly return the 6-DoF pose of an input image. This 
method leverages the powerful feature extraction capa-
bilities of neural networks to capture contextual features. 
The accuracy of pose estimation can be further improved 
by adding uncertainty measures and geometric loss to the 
PoseNet framework [27, 28]. RobustLoc [29] obtained 
robustness to environmental disturbances from differ-
ential equations, extracted feature maps using CNN, 
and estimated vehicle attitude using a branch attitude 
decoder with multi-layer training. This method achieved 
robust performance in various environments. Simply 
using sparse descriptors can also regress scene coordi-
nates without the need for dense RGB images [30]. The 
basic connection and coupling between multiple tasks 
can improve the model’s understanding of the scene, fur-
ther improving positioning performance [31, 32].

Despite the significant advancements achieved by deep 
learning-based relocation methods in terms of perfor-
mance and scene adaptability, certain inherent challenges 
remain to be addressed. For instance, while the problem 
of memory resource allocation is mitigated by represent-
ing the map as a deep neural network, the reasoning 
process still relies heavily on computational resources. 
Considering that computing on self-driving cars is usu-
ally limited by factors such as power consumption and 
cost (higher-performance hardware brings higher costs), 
this will in turn affect the autonomy of the car. Edge com-
puting technology brings opportunities to solve these 
confusions [33–36].

We use mobile edge computing offloading to solve 
these problems. Our framework enables autonomous 
vehicles to perform complex model reasoning and pro-
vide relocation information for the vehicle without 
relying on on-board high-performance computing equip-
ment. The main contributions of this article are:

• a cross-device edge-cloud collaborative offloading 
framework for autonomous vehicle camera relocali-
zation eases the requirements of autonomous vehi-
cles for high-performance computing equipment,

• the advantages of our proposed framework in 
terms of computational efficiency are demonstrated 
through simulation experiments on an advanced 
MapNet series relocalization model.

• by improving the two performance indicators of fre-
quency and route, we demonstrate the prospects of 
our framework in multi-source information fusion.

Related work
MapNet series camera relocation scheme
This series comprises an enhanced version of PoseNet 
[25] and two newly proposed architectures, MapNet [37] 
and MapNet +  + . The backbone network of PoseNet 

adopts GoogleNet [26], and the representation of the 
direction when returning to posture is a four-dimensional 
unit quaternion. The authors of the MapNet series have 
pinpointed shortcomings in this approach, as detailed 
in their paper. To address these issues, they replaced the 
backbone network GoogleNet with ResNet34 [38], and 
changed the direction representation to the logarithm of 
a unit quaternion.

In this method, both the absolute pose loss of each 
input image frame and the relative pose loss between 
two image pairs related to this frame are minimized. 
The learned pose feature distribution using this method 
has a strong correlation with the actual value, and the 
combination of absolute and relative loss ensures global 
consistency in pose estimation, leading to a significant 
improvement in relocation performance.

Due to the labor-intensive and costly nature of labe-
ling data, a significant amount of unannotated data 
exists in the real world, such as robot trajectory and GPS 
data obtained via visual odometer calculations. Map-
Net +  + leverages these unmarked data to fine-tune the 
supervised training network in a self-supervised manner, 
the performance of pose estimation has been improved.

Upon obtaining the absolute pose of the targeted frame 
through MapNet +  + , the proposed approach utilizes the 
pose graph optimization (PGO) [39] algorithm to fuse 
the absolute pose with the relative pose between frames 
obtained by the VO algorithm, thereby establishing a 
longer constraint on the corresponding trajectory for 
the targeted frame. The integrated method enhances the 
accuracy of pose estimation.

Mobile edge computing offloading computing resources
The CORA [40] algorithm leverages reinforcement learn-
ing technology to tackle challenges posed by dynamic 
environments in edge cloud collaboration.The adap-
tive DNN inference acceleration framework [41] utilizes 
neural networks to learn features associated with infer-
ence delay and identify the optimal partitioning point.
The model training strategy based on edge cloud col-
laboration [42] can achieve power-sharing in edge cloud 
computing, ensuring ample computing power for model 
training. SwarmMap [43] extends collaborative visual 
SLAM services in edge offloading settings to minimize 
data redundancy.Utilizing an edge cloud diversion mech-
anism ensures traffic service quality and facilitates effi-
cient allocation of edge-side resources [44]. The delay in 
mobile edge computing can be minimized by decompos-
ing the edge cloud resource allocation problem to calcu-
late optimal task allocation ratios and resource allocation 
strategies, respectively [45]. RecSLAM [46] employs lay-
ered map fusion technology to ensure workload balanc-
ing among edge servers. EDDI framework [47] supports 
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collaborative on-demand inference acceleration, address-
ing optimization challenges and meeting user latency 
requirements.Implementing a Block Reuse Mechanism 
(CRM) [48] for cloud and remote nodes can reduce the 
data required for image construction and enhance con-
tainer update efficiency.

Methods
In this section, we aim to introduce the DNN-based relo-
cation module and the challenges it encounters, followed 
by the presentation of the advanced design of the DNN-
based relocation module, which constitutes an upgraded 
version of the MapNet [37] series relocation meth-
ods that supports the offloading of the computation-
ally intensive reasoning process to the server. Our goals 
for this upgraded version are two-fold: first, to enhance 
the reasoning speed of the network on the autonomous 
vehicle without requiring high-performance computing 
equipment; second, to ensure that our proposed method 
achieves the same accuracy as the original relocation 
model, particularly in terms of attitude regression. We 
note that we will not delve into the optimization of vehi-
cle posture using PGO [39] in a sliding window, which is 
a separate step from the MapNet reasoning model, since 
it necessitates posture estimation from multiple frames 
of images. Our focus remains solely on the computation 
and reasoning involved in the original MapNet series 
model for autonomous vehicle posture regression.

Overview of DNN‑based Relocalization Module
The left part of Fig.  1 depicts the pose reasoning flow-
chart based on the MapNet [37] series camera relocali-
zation method. It can be observed that the relocalization 
module of the autonomous vehicle first acquires an envi-
ronmental image (or frame) via the visual sensor, which 

is subsequently fed into a deep neural network (DNN)-
based scene representation model. The system accepts 
regular RGB images, though it can also accept color and 
depth images simultaneously. Ultimately, the network 
reasoning outputs a pose.

Challenges in DNN‑based Relocalization Module
The current deep neural network model consists of mul-
tiple hidden layers, and the processing of each frame is 
performed through each layer in turn, which requires a 
lot of calculations on the terminal device. This is espe-
cially challenging for devices without high-performance 
computing capabilities. During the posture estimation 
process of autonomous vehicles, the visual sensor cap-
tures environmental frames in a sequential manner. If 
the previous frame has not completed processing within 
the system, subsequent frames will not be estimated 
until processing for the previous frame has completed. 
This results in a delay in obtaining posture data and 
poses challenges for accurate vehicle posture correction. 
As shown in Fig. 2, the visual sensor may capture addi-
tional image data while processing a particular frame. 
In practical applications, it is not feasible to wait for the 
completion of processing for the previous frame before 
commencing processing for the subsequent frame, as this 
would not meet real-time processing requirements.

Offloading strategy
We propose a solution to address the time-consuming 
nature of the relocation module by offloading its compu-
tation to the server, while allowing subsequent process-
ing to be carried out on the mobile device. The detailed 
reasoning process of the upgraded version is depicted in 
the right part of Fig. 1. We propose a strategy in which 
the less computationally demanding parts of the module 

Fig. 1 Original: The relocation framework for the MapNet series. Feed the environmental photos collected by the sensors into the network 
for reasoning, and finally obtain the pose. Advanced: The upgraded version of the relocation framework splits the network, uploads the portion 
that consumes computing resources to the server for calculation, and finally returns the results to the mobile terminal for subsequent 
processing(The network types available for both frameworks are PoseNet-new version, MapNet, and MapNet + +)
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are computed locally, while the more intensive ones are 
offloaded to the server for processing. The server’s higher 
computing power enables it to complete these calcula-
tions efficiently, after which it returns the results to the 
mobile device.

In response to the imperative for specific preprocess-
ing of environmental frames and the potential require-
ment for terminal devices to conduct partial inference for 
heightened efficiency in specific scenarios, our terminal 
devices necessitate a certain level of computing power. 
However, the performance criteria are significantly 
diminished.

The network layering strategy for the MapNet [37] 
series of backbone networks is determined by calculating 
the offload times of several key layers. Our framework is 
designed to facilitate cloud-edge collaborative comput-
ing across three entities: local mobile devices, servers, 
and LAN. The model is deployed on both local mobile 
devices and servers. To conduct posture inference based 
on the offload strategy, we first establish data communi-
cation between the mobile device and server.

Figure 3 depicts the pipeline of the repositioning mod-
ule in the upgraded autonomous vehicle proposed in this 
study. During the reasoning process, the local mobile 
device’s visual sensor initially captures the environmen-
tal photograph, which is subsequently preprocessed to 
conform to the predefined input shape of the network. 
Meanwhile, the server opens a port to await the unload-
ing request transmitted from the mobile device. Upon 
receiving the processing request from the mobile termi-
nal, the server executes DNN to reason about the rele-
vant data. Finally, the reasoning result is returned to the 
mobile device and used for vehicle auxiliary positioning. 
As can be seen, the upgraded relocalization pipeline pro-
duces more pose data than the method in Fig. 2 that only 
performs inference locally, because the inference time for 
a single frame is greatly reduced. While these changes 
are simple in theory, integrating these aspects to oper-
ate in a coordinated manner presents significant chal-
lenges. While this study proposes a conceptual offload 
design for the network, integrating the framework into a 
specific relocation scheme is imperative to determine the 

Fig. 2 The simulation pipeline of the original relocation framework, with red lines indicating discarded frames. Due to the huge amount 
of time spent in reasoning each frame, the environment frames captured by the sensor will be discarded during this period, and the vehicle will 
only receive a small amount of pose information

Fig. 3 The upgraded version repositions the simulation pipeline of the framework, with red lines indicating discarded frames. After offloading 
the computation with the help of the server, the inference time for each frame is significantly reduced. Compared to the previous framework, 
vehicles will receive more pose information at the same time
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appropriate implementation of the offload. To validate 
the feasibility of our concept, we implemented the reloca-
tion framework based on MapNet [37] series.

Experimental Results
Setup
To evaluate our proposed offloading strategy, we con-
ducted simulation experiments using two different 
computing devices to represent the mobile and server 
ends respectively. A low-cost development board, the 
NVIDIA Jetson Nano development kit with Quad-core 
ARM A57 CPU, 128-core Maxwell GPU (1.43  GHz), 
and 4  GB memory, was used as the computing center 
for simulating an autonomous vehicle. For the server 
module, we used a Dell notebook computer equipped 
with Intel (R) Core (TM) i5-7300HQ CPU (2.50  GHz, 
4-core), NVIDIA GeForce GTX 1050 GPU, and 8  GB 
memory. The main difference between the server mod-
ule and the mobile terminal is the higher performance 
processor of the former. Both devices run on Ubuntu 
18.04LTS operating system and are connected to the 
same LAN. We chose L-

AN for data transmission because the focus of this 
work is on the impact of computing power on system 
performance.

Dataset
We employed the Oxford Robot dataset [49] and the 
7Scenes dataset [50] as the input sources for our exper-
iments, which were also used in the original MapNet 
[37] series. The Oxford Robot dataset was captured by 
a vehicle driving twice a week in the center of Oxford, 
over the course of more than a year. This dataset 
includes almost 20 million images and encompasses 
various weather conditions, allowing us to study the 
performance of autonomous vehicles in real-world 
and dynamic urban scenes. We selected the loop and 
full sequences mentioned in the original MapNet series 
paper, both of which comprise a large number of con-
tinuously captured road photos. The 7Scenes data-
set includes RGB-D image sequences of seven indoor 
scenes, which were recorded by handheld Kinect 
RGB-D cameras. Each sequence in this dataset contains 
500–1000 frames, and each frame includes an RGB 
image, depth image, and pose.

Experimental details
To ensure the applicability and effectiveness of the pro-
posed framework, we employed a different approach 
compared to loading data in batches into the network. 
we utilized OpenCV to read the photos in the dataset 

frame by frame at the mobile end, which simulates the 
real-world data reading scenario of autonomous vehi-
cles on the road.

Network split
Given that the network structure of MapNet [37] 
is derived from the PoseNet(new version) network 
with a ResNet34 [38] backbone, and the modification 
has only a slight impact on the computation, we con-
ducted a network splitting experiment on the middle 
layer of the PoseNet(new version) network to repre-
sent our approach. To account for network transmis-
sion rate and fluctuation, we selected 100 consecutive 
images from the 7Scenes [50] dataset for the experi-
ment and calculated the inference time for each image. 
The results were averaged to examine the effect of dif-
ferent layers of the neural network on inference time, 
as show in Fig.  4(d). In order to simulate realistic 
scene, we also conducted single-frame splitting infer-
ence. Tables  1 and 2 summarizes the final results for 
the two approaches. The main reason for the fluctua-
tion in inference time from bn1 to fc is that the max-
pool layer reduces the size of the tensor. At this time, 
the data transmission time between devices is greatly 
reduced. Table  3 shows the parameter amounts of 
the main layers. It can be found that after bn1, as the 
parameter amount increases, the inference time gradu-
ally increases. Our findings demonstrate that unloading 
all images is more conducive to on-device inference. 
we choose to offload the entire image and subsequently 
upload it to the server for inference.

Communication delay analysis
Since in actual situations, we also need to consider the 
impact of communication on inference time, we calcu-
lated the local computing time and server-side comput-
ing time of the data set during the inference process. 
The remaining space in the middle is their communi-
cation time. Figure  4(d) shows the correspondence 
between communication time and total inference time. 
The total size of the model parameters is 85.25MB. 
From the figure we can find that no matter where the 
local inference is, At one level, the communication time 
only fluctuates within a small range.

Configuration difference comparison
Figure  5 shows a comparative experiment of two 
sequences on the 7Scenes dataset. By using GeForce 
GTX for relocalization model inference, we observed 
that advanced devices can infer the entire model in 369 s,  
but if the model is only run on the local device, the 
model only infers few trajectories in the same time.
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Offloading time comparison
Building upon the current configuration, we select a 
predetermined number of frames from the dataset for 
our unloading tests and subsequently compare the out-
comes of the two distinct configurations.

Local pose calculation Run PoseNet(new version), 
MapNet, MapNet +  + on Jetson nano.

Fig. 4 a PoseNet (new version) inference time. b MapNet inference time. c MapNet +  + inference time. d Network splitting experiments were 
conducted on the 7Scenes dataset. The abscissa represents the layer at which the network infers termination on mobile devices. For example, relu 
indicates that the network infers to this layer on the mobile device, and the remaining network inferences are performed at the server. The blue line 
represents the time it takes to complete inference, and the orange line represents the time it takes to communicate

Table 1 Single and multi frame network split results on the 
7Scenes dataset(null-maxpool)

local inference to null conv1 bn1 relu maxpool

average of 100 frames 
time/s

0.4710 1.0022 1.0804 1.0672 0.6140

single frame time/s 0.5612 1.2357 1.1516 1.5340 0.6589

Table 2 Single and multi frame network split results on the 7Scenes dataset(layer1-end of )

local inference to layer1 layer2 layer3 layer4 avgpool fc

average of 100 frames time/s 0.7287 0.7480 1.0426 1.1310 1.1010 1.1099

single frame time/s 0.8266 0.7595 0.8537 0.9657 0.8700 0.8609
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Server‑side computing Use our proposed offloading 
strategy to unload the three models.

Figure  4 illustrates the model reasoning time under 
two different configurations. It is evident that the pow-
erful computing capability of the server has significantly 
improved the reasoning speed of the model.

Inference in Oxford RobotCar dataset and 7scenes dataset
Based on the aforementioned simulation results, we 
performed experiments on two datasets, namely Robot-
Car [49] and 7Scenes [50]. The network model selected 
for evaluation was the original paper’s best-performing 

model, MapNet +  + , without any PGO [39] optimiza-
tion. We evaluated the model’s performance from three 
perspectives: accuracy, route, and inference frequency of 
two different schemes.

Accuracy
In the experiment conducted on the loop sequence of 
the RobotCar dataset, the red dots illustrated in Fig.  6 
symbolize the inference outcomes derived from the 
offloading framework, while the green dots denote 
the groundtruth values. It has been observed that 
the obtained inference results closely resemble those 
detailed in the original paper, albeit with potential 

Table 3 Parameters of each layer of the network

layer Conv1 Bn1 Layer1 Layer2 Layer3 Layer4 Fc

params 9408 128 221,952 1,116,416 6,822,400 13,114,368 1,050,624

Fig. 5 Row 1: 7Scenes-pumpkin-07. Row 2: 7Scenes-fire-04. The left side is the local posture calculation, and the right side is the posture calculation 
on the server. The time is 369 s
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influences from modifications in machine specifica-
tions. Specifically, the MapNet +  + inference results 
exhibit only isolated deviations, exerting no discernible 
impact on the overall situation and avoiding the genera-
tion of cumulative errors. Noteworthy, the DNN-based 
scene representation model has demonstrated superior 
performance when compared to GPS.

Inference frequency
In the field of autonomous driving, sensor fusion is an 
advanced approach for assisting vehicle localization. Our 
upgraded relocation scheme can serve as both a stan-
dalone localization module and as a branch of a multi-
sensor scheme. The results depicted in Fig. 7 reveal that 
our enhanced framework has the capability to generate 
a larger amount of posture data within the same time 
period. These data can be integrated with the readings 
from other sensors to correct the attitude of the vehicle, 
which is of significant practical value.

Route
If the model needs to output its pose for each frame, 
our proposed scheme can achieve a longer trajec-
tory within the same time period. As shown in Fig. 8, 
a comparison of the reasoning track results between 
the two schemes demonstrates that our upgraded ver-
sion is capable of covering a greater distance over time, 
which further underscores the advantages of our pro-
posed framework.

Discussion on data fusion
In the original paper, PGO [39] was utilized by the 
author to optimize the results generated by Map-
Net +  + . This method led to an average translation 
error that was even less than the average translation 
error of GPS. Nevertheless, our observation revealed 
that after averaging the results of GPS and Map-
Net +  + , the final result was better than that of Map-
Net + PGO. Figure  9 displays the overall distribution 

Fig. 6 Comparison of MapNet +  + inference results and GPS results of loop sequences in RobotCar dataset

Fig. 7 Row 1: local run frequency results. Row 2: Offloading run frequency results. Green for groundtruth and red for inference result. From left 
to right are testing sequences:RobotCar-loop,RobotCar-full,7Scenes-Chess-05,7Scenes-Office-06,7Scenes-Heads-01
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of the error data from both sets. We observed that 
although MapNet +  + had some large outliers, the 
overall variance was smaller than that of the GPS data. 
Our analysis revealed that the reason why the average 
result was better is that the average value can reduce 
noise, particularly when the error of some frames is too 
large, leading to more stable overall data. This provides 
a novel approach to DNN-based autonomous vehicle 
relocation solutions. In practical applications, we can 
integrate the network output results and GPS data to 
provide additional auxiliary information for the pose 
correction of autonomous vehicles.

Conclusion
In this paper, we have presented a novel framework 
for automatic vehicle relocation based on DNN. Our 
approach involves offloading the reasoning process 
to a server, which reduces the computational burden 
on mobile devices. We have demonstrated the effec-
tiveness of our framework using the MapNet series 
of relocation schemes. Our experimental results 
show that our proposed framework can significantly 
enhance the reasoning efficiency of DNN-based relo-
cation modules in autonomous vehicles. The improved 
reasoning frequency and route performance highlight 

Fig. 8 Local-200: run on the mobile device for 200 s. local-300: Run on the mobile device for 300 s. offload-200: Run using the offloading strategy 
for 200 s. offload-300: Run using the offloading strategy for 300 s. From top to bottom are testing sequences:RobotCar-loop,RobotCar-full,7Scenes-C
hess-05,7Scenes-Office-06,7Scenes-Heads-01. We provide the groundtruth as a comparison in the fifth column
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the practical significance of our approach. This work 
also have potential values in some other fields as cloud 
robotics [51–54]. In future research, we will emphasize 
uncertainty estimation and privacy security in edge 
cloud collaboration, and will continue to explore com-
munication issues in offloading and offloading of large 
model architectures. Our goal is to address these chal-
lenges through innovative learning methods, contrib-
uting significantly to the development of edge cloud 
collaboration technology.
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