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Abstract 

Owing to the emergence and rapid advances of new-generation information and digitalization technologies, 
the concept of model-driven digital twin has received widespread attentions and is developing vigorously. Driven 
by data and simulators, the digital twin can create the virtual twins of physical objects to perform monitoring, simula-
tion, prediction, optimization, and so on. Hence, the application of digital twin can increase efficiency and security 
of systems by providing reliable model and decision supports. In this paper, we propose a state-aware model learning 
method to simulate and analyze the lightweight protocol implementations in edge/cloud environments. We intro-
duce the data flow of program execution and network interaction inputs/outputs (I/O) into the extended finite state 
machine (EFSM) to expand the modeling scope and insight. We aim to calibrate the states and construct an accurate 
state-machine model using a digital twin based layered approach to reasonably reflect the correlation of a device’s 
external behavior and internal data. This, in turn, improves our ability to verify the logic and evaluate the security 
for protocol implementations. This method firstly involves instrumenting the target device to monitor variable activ-
ity during its execution. We then employ learning algorithms to produce multiple rounds of message queries. Both 
the I/O data corresponding to these query sequences and the state calibration information derived from filtered 
memory variables are obtained through the mapper and execution monitor, respectively. These two aspects of infor-
mation are combined to dynamically and incrementally construct the protocol’s state machine. We apply this method 
to develop SALearn and evaluate the effectiveness of SALearn on two lightweight protocol implementations. Our 
experimental results indicate that SALearn outperforms existing protocol model learning tools, achieving higher 
learning efficiency and uncovering more interesting states and security issues. In total, we identified two violation sce-
narios of rekey logic. These situations also reflect the differences in details between different implementations.
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Introduction
With the flourishing development of smart and digi-
tal technologies including Internet of Things (IoT), the 
fifth-generation cellular network (5G), cloud computing, 
and big data, various kinds of intelligent and digitalized 

products are widely revolutionizing today’s society [1–3]. 
To provide efficient monitoring, modeling, analysis, and 
optimization from an overall perspective for these smart 
systems and devices, digital twin, an emerging technol-
ogy based on model-driven to achieve physical-virtual 
convergence, is proposed [4, 5]. Digital twin can map 
the physical world to the digital world by using novel 
hybrid simulation and data-driven modeling approach 
[6]. Therefore, the digital twin model can support design 
decisions, function tests, logic verifications, and perfor-
mance statistics for the complex system [7].
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To evaluate and test the functionality, logic, and secu-
rity of network protocols in actual operation, model 
learning methods have been studied and applied in 
both researches and practical applications [8–12]. 
These methods employ automata learning algorithms 
and corresponding learning frameworks to automati-
cally establish a state-machine model of a protocol 
device’s behavior. The inferred state-machine model is 
then analyzed to uncover vulnerabilities and violations 
thus improving the security of the protocol systems. 
Serving as a complementary technique in model-driven 
digital twin construction, model learning is character-
ized by its simplicity, intuitiveness, and broad adapt-
ability. It offers a focused lens to examine the execution 
logic of protocols and identify anomalous behaviors 
[13–15].

Most current protocol automata learning are based 
on black-box setup, focusing exclusively on I/O interac-
tions. They assume that the model is finite and employ 
learning algorithms (such as L* [16] or TTT [17]) to infer 
hypotheses of the model. They also set an upper limit, 
known as the testing depth, for input sequence combina-
tions and perform equivalence queries, such as the Wp 
method [18], to confirm if the inferred hypothesis aligns 
with the true model. While this black-box approach is 
straightforward and requires minimal setup, it tends to 
produce models that only reflect observable interactions, 
neglecting the internal complexities of the program. This 
limitation gives rise to several challenges in inferring and 
analyzing protocol state machines: 

1. Difficulty in inferring accurate models: Black-box 
learning verifies the hypotheses through equiva-
lence tests constrained by a set testing depth [8–10]. 
If the testing depth is too low, the model may miss 
critical behaviors, such as a backdoor activated by a 
series of repeated messages. However, increasing the 
depth exponentially elevates query costs, particularly 
in worst-case scenarios. Restricted by learning time 
and query limitations, black-box learning struggles to 
uncover deep and concealed protocol states, imped-
ing the inference of an accurate model.

2. Limitations in identifying security risks: Since black-
box learning relies entirely on I/O observations, it 
lacks the capability to perceive or interpret other 
vital information within the protocol such as cryp-
tographic primitive algorithms [11, 12, 19]. This 
limitation not only hampers the discovery of logi-
cal issues at different program state nodes—such as 
authentication bypasses or key leakages—but also 
impedes the detection of code implementation prob-
lems, such as memory leaks, buffer overflows, or null 
pointer invocations.

3. Challenges in filtering redundant queries: To ensure 
the completeness of the state-machine model, black-
box learning typically queries all messages in every 
possible state. However, for certain states where the 
tested program has terminated its interactions—such 
as disconnection or periods of implicit silence—these 
queries become not only time-consuming but also 
minimally informative.

The aforementioned issues arise from the conventional 
black-box learning framework’s exclusive reliance on 
I/O observations. Mere parameter modifications can-
not overcome these limitations. Some scholars proposed 
potential solutions including learning register automatas 
from source code based on taint analysis [20], inferring 
state machines via symbolic execution [21], and deriv-
ing models from specification documents [22]. However, 
these methods are generally applicable only for small-
scale protocols or fall short in revealing vulnerabilities in 
real-world implementations.

To enhance the perception of state machines, a more 
comprehensive approach is required. In this study, we 
propose a state-aware model learning method that syn-
ergistically integrates network interaction I/O with 
filtered dynamic lifetime memory variables. This integra-
tion enables the inferred state-machine model to pro-
vide a more nuanced understanding of the system under 
learning (SUL), increasing the probability of discovering 
deep-level abnormal states and behaviors. As illustrated 
in Fig.  1, the first step involves instrumenting the SUL 
to monitor variables used during testing. Subsequently, 
the learning engine generates multiple rounds of mes-
sage queries based on the learning algorithms. A map-
per retrieves the results from these interactions with the 
SUL, while an execution monitor gathers state calibra-
tion information from filtered memory variables. Utiliz-
ing both I/O data and state calibration information, the 
learning engine incrementally constructs the protocol 
extended finite state machine (EFSM). This workflow 
continues until the learning process is completed, result-
ing in the final output of the state-machine model. For 
the inferred state machine, further analysis can be con-
ducted to identify the potential suspicious paths that cor-
respond to the search for program vulnerabilities.

We applied this novel method to develop SALearn, 
focusing on IKEv2 as our protocol for analysis. In recent 
studies, a lightweight version of the IKEv2 protocol has 
been standardized [23] and has been applied for multiple 
security schemes in edge/cloud environments [24–26]. 
We conducted tests on two widely used IKEv2 imple-
mentations—StrongSwan and Libreswan—and compared 
our method with existing model learning methods. Our 
experimental results demonstrate that state-aware model 
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learning not only reduces the learning time but also 
exhibits greater adaptability, enabling the discovery of 
more intriguing states and security issues. Specifically, we 
identified two violation scenarios as follows: abnormal 
management when rekeying IPsec SA in Strongswan and 
anomalous logic of rekeying IKE SA in Libreswan.

Our contributions in this study can be summarized as 
follows: 

1. First, we propose a state-aware model learning 
method that enhances the quality of inferred states 
by correlating them more closely with the internal 
dynamics of the program. Automated model-driven 
digital twins reduce barriers to understanding the 
behaviors and analyzing the security for lightweight 
protocol implementations.

2. Second, we develop SALearn based on the state-
aware model learning approach, designing a testing 
scheme and implementing a mapper for IKEv2 model 
learning.

3. Third, we conduct an extensive evaluation of two 
widely used IKEv2 implementations: Strongswan and 
Libreswan. Our results demonstrate that SALearn is 
more efficient in learning and is capable of discover-
ing more interesting states and security issues. We 
also discuss the impacts of the two specific violations 
we identified.

The remainder of this paper is structured as follows: 
Related works section provides an overview of the related 
work in the fields of model learning and state-aware 
fuzzing test. Preliminaries section offers background 
knowledge of network protocol models and IPsec. State-
aware model learning framework using digital twins 
section unveils a comprehensive framework and method-
ology for state-aware model learning. Experimental eval-
uation and analysis section introduces the results of our 

experimental evaluation and analysis. Finally, Conclu-
sion section concludes the article and proposes potential 
directions for future research.

Related works
Program states serve as observable running attributes 
that can differentiate program behaviors or can be com-
bined with certain specifications to determine the cor-
rectness of those behaviors. These states can further 
guide model inference or optimize adversarial test cases 
[27]. In the realm of network protocols, which are engi-
neered to fulfill communication, program states can be 
expressed from two levels: how the program processes 
response events, known as its external representation, 
and the data context within which the program oper-
ates, known as its internal representation [28]. Academic 
research in protocol analysis and testing has been exten-
sive, which includes model learning and state-aware 
fuzzing tests.

Model learning
Model learning, also known as state-machine inference, 
is a technique used for constructing state-machine mod-
els of both software and hardware systems. This is done 
by providing input and observing the corresponding 
output, which is crucial for comprehending the system’s 
functionality and behavior [29]. Existing research in this 
field can be broadly classified into two categories: active 
learning, which involves generating queries and analyz-
ing responses, and passive learning, which is based on 
collected samples. Our study predominantly focuses on 
the active learning approach.

The concept of model learning was formalized in 
1987 when Angluin proposed the L* learning algorithm, 
providing a foundational framework for modeling reac-
tive systems [16] . In 1999, Peled et  al. [30] applied 
model learning to software analysis. More recently, the 

Intermediate 
mapper

System under 
learning 
(SUL)

Concrete message

Received concrete
 message

Learning engine

Abstract message

Abstract message 
feedback

Execution 
monitor

Memory variables

Watch points

State calibration

State machine inference Compile-time
 instrumentation 

State machine

Output

Vulnerabilities
Further analysis

Fig. 1 Basic framework of state-aware based model learning method



Page 4 of 17Guo et al. Journal of Cloud Computing           (2024) 13:28 

model learning has been widely employed in network 
protocol testing [31]. For instance, Joeri de Ruiter and 
Poll [8] grabbed scholarly attention with their work 
on analyzing SSL/TLS protocols using state-machine 
inference. They created a tool called StateLearner for 
black-box state-machine inference and applied it to 
nine SSL/TLS implementations. Their approach led to 
the discovery of three security vulnerabilities, includ-
ing client authentication bypasses, encrypted data 
leakages, and anomalies during rekeying. Stone et  al. 
[9] conducted state-machine inference to seven Wi-Fi 
implementations and unearthed two downgrade attacks 
and one encrypted multicast leakage. Brostean et  al. 
[10] inferred state-machine models from three SSH 
implementations, identifying seven subtle violations of 
specifications. Furthermore, Brostean et  al. [11] pro-
posed a protocol state fuzzing framework for DTLS to 
analyze 13 widely used DTLS servers and discover four 
security vulnerabilities, including client authentication 
bypass and handshake sequencing anomalies. Moreo-
ver, Brostean et  al. [12] inferred state machines and 
constructed bug pattern catalogs to test implementa-
tion flaws. They tested 12 SSH and DTLS implementa-
tions and discovered 96 new vulnerabilities and errors.

Furthermore, model learning can be synergistically 
combined with other techniques such as symbolic exe-
cution, formal analysis, and fuzzing tests to broaden its 
scope and efficacy. For example, Marcovich et  al. [22] 
combined model learning and symbolic execution to 
directly infer state machines and message formats from 
binary codes. They developed PISE, a tool based on this 
hybrid method, which successfully inferred the com-
mand-and-control (C &C) protocol state machine for the 
Gh0st RAT malware. In a similar vein, Wang et  al. [32] 
combined model learning with formal analysis to create 
an automated solution, MPInspector, designed to scru-
tinize the security of message-passing (MP) protocols. 
When applied to nine popular IoT platforms—includ-
ing MQTT, CoAP, and AMQP—MPInspector identified 
252 attribute violations and proposed 11 different types 
of attacks within two realistic scenarios. Brostean et  al. 
[33] developed a tool called DTLS-Fuzzer that couples 
model learning with fuzzing tests. The tool can generate 
DTLS state-machine models and subsequently perform 
fuzzing tests based on the states to uncover specification 
violations or security vulnerabilities. Similarly, Shu and 
Yan [19] explored a new heuristic method based on finite 
state machine inference to guide the generation of black 
box fuzzy test cases for IoT network protocol implemen-
tation. They implemented IoTInfer for Bluetooth and 
Telnet protocols. The experimental results indicate that 
IoTInfor can effectively generate meaningful test cases 
based on state guidance.

Despite the promise of such hybrid approaches, most 
inferred state models remain heavily dependent on I/O 
interactions and show a limited understanding of the 
broader program context. To address this issue, Stone 
et  al. [34] combined runtime memory analysis with I/O 
observations developing a tool named StateInspector. 
Their approach enabled the exploration of deeper states 
within the program and was successfully tested on five 
TLS and two WPA/WPA2 protocol implementations, 
revealing two new CVEs in WolfSSL and IWD. Although 
effective for detecting backdoor behavior, this gray-box 
method largely focuses on candidate state variables in 
heap memory and may not be applicable to protocols 
that use stack memory or have system calls distributed 
across multiple subprocesses.

State‑aware fuzzing test
State-aware fuzzing generally refers to tracing program 
variables in network protocols to perceive insight into 
program states, thereby optimizing test-case generation 
and identifying vulnerabilities. The called program state 
refers to the complete execution context of a running 
program, encompassing all variable values from a soft-
ware perspective, as well as virtual memory and register 
states from a hardware perspective [28].These state vari-
ables are typically accessed and shared by different seg-
ments of the program and can influence control flows 
or memory access pointers either directly or indirectly. 
Therefore, comprehensively exploring these states is ben-
eficial to uncover hidden vulnerabilities in a program.

Recently, the field of state-aware fuzz testing has seen 
significant advancements. Aschermann et  al. [35] pro-
posed IJON, an innovative mechanism using artificial 
annotations to trace program states, which allows fuzz-
ers to explore a program’s behavior more systematically. 
Experimental evaluations indicate that IJON, based on 
manual annotations, can explore deeper into program 
states than traditional fuzzing or symbolic execution 
tools. Fioraldi et al. [27] developed InsvCov, which uses 
program invariants as boundaries to partition a pro-
gram’s state space. It employs a combination of control 
flow and program invariants as feedback for fuzz test-
ing. Similarly, Pham et al. [36] designed AFLNET, which 
leverages server response codes as indicators of program 
states in network protocols. AFLNET not only performs 
substantially better than its counterparts but also iden-
tified two new CVEs. Natella [37] designed StateAFL, a 
tool that employs localized sensitive hashing on long-
lifetime variables to identify program states. It incre-
mentally builds a protocol state machine for guiding 
the fuzzing process. Compared to AFLNET, StateAFL 
achieves comparable, if not superior, code coverage and 
produces more accurate state inferences. Ba et  al. [38] 
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developed SGFuzz, which annotates program states 
based on various variable types like enumerations and 
macros. Experimental data indicates that SGFuzz dis-
covers state errors and achieves code coverage more 
quickly than other mainstream stateful fuzzers. It has 
also unearthed eight new CVEs. Wen et al. [39] proposed 
MemLock, a memory-usage-oriented fuzzing technique. 
It uses extreme memory allocation values as additional 
feedback to detect memory leaks, outperforming other 
fuzzing techniques and identifying 15 new CVEs. Zhou 
et  al. [40] presented Ferry, a state-aware symbolic exe-
cution approach that considers conditionally branched 
and input-influenced variables. Experimental evalua-
tions demonstrate that compared to existing tools, Ferry 
achieves broader code coverage and triggers more states 
and vulnerabilities. Zhao et al. [28] developed StateFuzz, 
which employs static analysis to select long-lifetime, 
real-time updated variables that influence program 
control flow. It employs a unique feedback mechanism, 
proving effective in discovering new vulnerabilities and 
identifying 15 new CVEs. However, these state-aware 
approaches mainly focus on optimizing test-case gen-
eration using coarse-grained combinations of variables. 
They lack the nuance needed for fine-grained state cali-
bration and accurate state-machine inference.

Our study takes a different approach. We combine 
network interaction I/O with carefully selected dynamic 
lifetime memory variables for a more nuanced state cali-
bration. Compared to black-box model learning, our 
method offers a deeper understanding of the program’s 
internal context. Unlike Stone et  al.’s gray-box approach 
[34], we directly obtain runtime variable content, bypass-
ing limitations imposed by stack memory and multiple 
subprocesses. Lastly, distinct from state-aware fuzzing, 
our focus is on inferring a detailed state-machine model 
to improve the efficiency of discovering both crash errors 
and logic issues, setting our work apart from traditional 
state-aware fuzzing.

Preliminaries
In this section, we introduce the foundational concepts of 
network protocol models and the IPsec-IKE protocol.

Network protocol model
In general, a network protocol model depends on a server 
operating in a continuous cycle of receiving, processing, 
and responding to requests. In this scheme, both the cli-
ent and server participate in a session, marked by a series 
of request and response messages. This basic loop can 
be succinctly captured by the following pseudocode in 
Algorithm 1:

Algorithm 1 A network server process model

As the session progresses, driven by various external 
events, the internal execution of the program adjusts and 
adapts, leading to updates in the program’s state. In this 
context, “state” encompasses both the program’s external 
expected behaviors and internal runtime data.

Externally, the protocol’s state is typically reflected in terms 
of the actions the process is allowed to take, which events it 
expects to happen, and how it will respond to those events 
[37]. Most internet protocols elucidate their standardized 
states either through natural language descriptions or, less 
commonly, through finite state machines, as comprehen-
sively illustrated in RFC documents. These states are closely 
tied to the current stage of the protocol, where both inputs 
and outputs are fully contextualized within this framework.

Internally, the state of the program refers to a rigorously 
maintained execution environment that includes all pres-
ently active components. These facets are accessed and 
manipulated by various program operations, which in turn 
can impact the program’s control flow or memory point-
ers [28]. During the protocol’s execution, variables and 
data are created, used, and eventually released, residing 
in both heap and stack memory. These variables undergo 
updates as the server handles each request and response 
interaction. Nonetheless, among these variables, there 
exist indeterminate values, such as those associated with 
time, random numbers, and temporary keys. Although 
they impact the program’s operations, they lack the desira-
bility of distinguishing and designating a concrete state. In 
this paper, we focus on calibrating the state using variables 
that record previous program operations or user interac-
tions, possess deterministic values for the same operation, 
and are tied to critical nodes such as the client’s current 
authentication status or working directory [37]. By care-
fully filtering and monitoring these variables, we achieve a 
more nuanced understanding of the program’s state.

IPsec‑IKE protocol
IPsec [41–43] is a suite of security protocols that oper-
ate at the IP layer and is composed of three sub-pro-
tocols: IKE, AH, and ESP. The IKE protocol handles 
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cryptographic algorithm selection, session key nego-
tiation, and identity authentication. By contrast, AH and 
ESP are used for secure communication.

IKE serves as the signaling protocol for IPsec, over-
seeing secure communications by maintaining security 
associations (SAs): repositories of cipher and identity 
information for communicating parties. Initially, these 
parties set up an IKE SA, which is followed by negotiating 
an IPsec SA within the encrypted channel of the existing 
IKE SA. The IPsec SA is used for secure ESP or AH com-
munications, while the IKE SA manages this IPsec SA.

IKE exists in two versions: IKEv1 [42] and IKEv2 [43]. 
Compared to the multi-modal complexities of IKEv1, 
IKEv2 offers a streamlined approach with only four types 
of interactions: 

1. Initial exchange (IKE_SA_INIT)
2. Authentication exchange (IKE_AUTH)
3. Creating child SA exchange (CREATE_CHILD_SA)
4. Informational exchange (INFORMATIONAL)

Figure  2 illustrates the generic interaction flow within 
the IKEv2 protocol. Detailed explanations of payload 
field meanings and symbol notations are available in 
RFC7296 [43].

In the initial phase of communication, the two parties 
commence with the negotiation of cryptographic parame-
ters and identity authentication via IKE_SA_INIT and IKE_
AUTH interactions, respectively. Consequently, separate 
IKE SA and IPsec SA instances are established. The IPsec 
SA specifies parameters for safeguarding data communica-
tion. Moreover, during the course of communication, the 
CREATE_CHILD_SA interaction allows rekeying proce-
dures, facilitating the creation of new IKE SA or IPsec SA 

instances to ensure forward secrecy. The communication 
session concludes when both parties utilize notification pay-
loads to delete the established IPSec and IKE SAs.

State‑aware model learning framework using 
digital twins
In the following section, we delve into the intricate details 
of the overarching insight, framework, and methodology 
for state-aware based model learning. We describe the 
techniques for defining states, capturing relevant state 
variables, and the specific learning processes involved.

Insights from digital twins
Linking digital twins with a state-aware model learning 
approach for security analysis in lightweight protocol 
implementations entails combining these two principles 
to improve digital system knowledge and protection. 
We can integrate the proposed model with in the digital 
twins through a layer approach as shown in Fig. 3. 

1. Digital twin layer: This layer represents the system’s 
digital twins, which are virtual representations of 
physical elements. Device twin: A digital twin that 
represents particular system devices. Communica-
tion twin: A digital twin that records the channels 
and patterns of communication between devices. 
Data flow twin: A digital twin that depicts the data 
flow within the system. This layer’s digital twins cap-
ture real-time data using instrumentation and sen-
sors implanted into the represented things.

2. State-aware model layer: This layer incorporates the 
state-aware model learning technique, which entails 
developing models that comprehend the dynamic 
states and behaviors of lightweight protocols. Dynamic 
states and behaviors model: A model that encapsu-
lates the lightweight protocol’s numerous states and 

Fig. 2 General negotiation process for IKEv2 Fig. 3 Four layers of State-aware approach
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behaviors throughout operation. Algorithms for state 
machine learning: Algorithms included into the model 
for learning and adapting to observable patterns. The 
state-aware model is intended to develop and learn 
from data gathered by digital twins.

3. Integration layer: This layer allows data from digital 
twins to be integrated with the state-aware model. 
Data fusion: The process of merging real-time data 
from digital twins with state-aware model knowl-
edge. Correlation analysis: Methods for comparing 
data from digital twins to predicted states and behav-
iors provided by the state-aware model. This layer 
guarantees that the information gathered from the 
digital twins improves the state-aware model’s learn-
ing capabilities.

4. Security analysis and response layer: The purpose 
of this layer is to use the integrated information for 
security analysis and response. Anomaly detection: 
Using integrated data, the system discovers abnor-
malities in lightweight protocol implementations. 
This layer tries to improve system security by proac-
tively addressing possible security concerns.

Overall framework
Figure  4 describes the design of our state-aware based 
model learning framework, which comprises five major 
components: the state-machine learning engine, interme-
diate mapper, execution monitor, SUL, and vulnerability 
analysis and exploitation modules.

The state-machine learning engine employs a specific 
learning algorithm to generate multi-round message 
queries, process the results, and dynamically construct 
a protocol state-machine. It operates on an input alpha-
bet consisting of abstract protocol messages. Guided by 
the learning algorithm, sequences of abstract message 
requests are formed and dispatched to the intermediate 
mapper for further processing. Upon receiving feedback 
sequences from the mapper and the state calibration 
identifications provided by the execution monitor, the 
learning algorithm incrementally constructs a protocol 
state machine, eventually yielding the final state-machine 
model. To enhance the learning process’s efficiency and 
facilitate debugging, the engine comes equipped with fea-
tures for query caching and logging.

The intermediate mapper serves as a critical interme-
diary, bridging the gap between abstract and concrete 
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messages. It also captures specific watch points dur-
ing each packet transmission cycle. Functioning as a 
simulated client, the mapper converts abstract mes-
sage queries from the learning engine into actionable 
packet requests for the SUL. After the SUL processes 
these packet requests, the mapper converts the result-
ing concrete messages back into abstract form for the 
learning engine’s consumption. Each query cycle resets 
the SUL to its original state. The mapper processes 
each request in the query sequence sequentially, col-
lecting the responses, and then furnishing the learn-
ing engine with a feedback sequence composed of 
abstract response messages. During these interactions, 
the intermediate mapper not only simulates the client’s 
role but also maintains the session information with 
the SUL. If the message exchange involves encryption 
or decryption, the mapper handles these processes in 
real time, ensuring smooth interaction with the SUL. It 
also monitors and records various watch points related 
to SUL behavior during the learning phase—such as 
query initiation, encryption procedures, authentica-
tion completion, rekeying processes, disconnections, 
and query terminations—and communicates this data 
to the execution monitor, facilitating the selection of 
state-related variables.

The execution monitor plays a pivotal role in observ-
ing and filtering memory variables during the execution 
process of the SUL, it also calculates state calibration 
metrics in sync with specific watch points, thereby aiding 
the learning engine in crafting an accurate state machine. 
During each message interaction, the monitor identifies 
and logs variable values created by the SUL, focusing on 
those with lifetimes that align with the established watch 
points. Using hash calculations, it then derives the state 
calibration value pertinent to the current interaction. In 
this way, the execution monitor calculates the state cali-
bration sequence that correlates with the query sequence 
from the learning engine, forwarding this information for 
the construction of the state machine.

The SUL functions as the protocol server under evalu-
ation and can either be a white-box software library or 
a gray-box binary program that is susceptible to instru-
mentation. Before undergoing any tests, the SUL is com-
piled and instrumented to allow variable tracking during 
execution through shared memory.

The vulnerability analysis component scrutinizes the 
output state-machine model generated for the SUL, 
which involves using manual techniques or model check-
ing methods to identify suspicious pathways within the 
state machine. These are then cross-referenced with 
predefined specifications or debugging tools to identify 
violations.

Description of state
To describe the state model, enriched with both I/O 
and memory information, we introduce the following 
definitions:

Definition 1 An alphabet is a finite, nonempty set of 
single letters, denoted as � , such as � = a, b, ...  . The 
concatenation of letters is denoted as a · b , where the 
concatenation symbol · can be omitted.

Definition 2 An extended finite state machine (EFSM) 
with memory calibration based on alphabet � can be repre-
sented by a seven-tuple A =< S, s0, I ,O,M, δ, � > , where 

1. S is a finite, nonempty set of states;
2. s0 ∈ S is the initial state;
3. I ⊆ � is an input set;
4. O ⊆ � is an output set;
5. M is a set of memory calibrations;
6. δ : S ×� → S is the state transition function, where 

δ(s, i) = s1 means that the state machine accepts 
input i in state s and transitions to s1.

7. � : S ×� → O ×M is the state output function, 
where �(s, i) = (o,m) indicates that the state machine 
accepts input i in state s, generates output o, and 
updates its memory calibration to m.

State machines with memory calibration have graphi-
cal representations that describe states as nodes and state 
transitions as edges. Figure 5 illustrates a simple graphi-
cal example. When the state machine is in state s0 ∈ S 
and receives input i ∈ I , the state transition δ(s0, i) = s1 
and the output �(s0, i) = (o1,m1) correspond to an edge 
from s0 to s1 in the graph with the label i/(o1,m1) . Because 
memory-calibrated strings are only used to distinguish 
between different states and not as inputs for state transi-
tions, they can be omitted from graphical representations.

Definition 3 A finite sequence of concatenated letters 
is called a string and is denoted as ω , and the set of strings 
it forms is denoted as �∗ . The concatenation of letters 
can be extended to the concatenation of strings, denoted 
as ω1 · ω2 . In particular, ǫ denotes the empty string with a 

Fig. 5 An example of state machine
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length of 0. Similarly, I∗ ⊂ �∗ represents the set of input 
containing strings.

Definition 4 δ can be extended to �∗ by defining 
δ∗ : S ×�∗ → S , where

δ denotes a special form of δ∗ when the length of the 
second parameter is 1. Since it does not cause ambiguity, 
δ can be used instead of δ∗ to represent the state transi-
tion function.

Furthermore, the state output function �(s, i) of A can be 
extended to �∗ , that is, �(s, a · ω) = �(s, a) · �(δ(s, a),ω).

Definition 5 Binary relation ∼� is defined for 
∀s, s

′

, s ∼� s
′ if and only if ∀i ∈ I

∗, �(s, i) = �(s
′

, i) . It can 
be observed that this binary relationship is equivalent. 
The two equivalent states imply that the same input 
always produces the same output.

Definition 6 Based on the equivalence relation ∼� , an 
EFSM M =< SM , s0,M , IM ,OM ,MM , δM , �M > is con-
structed for state-aware model learning, where the sub-
script M is only used to distinguish the state machine, 
and is constructed as follows: 

1. SM = S/ ∼�;
2. s0,M ∈ SM is the initial state;
3. IM is a set of input strings that is a subset of �∗;
4. OM is a set of output strings;
5. MM is a set of memory calibrations;
6. δM(sM , iM) = s

′

M
 , where under the action of the 

equivalence relation ∼� , δM transitions the state from 
sM to s′

M
 upon receiving input iM;

7. �M(sM , iM) = (oM ,mM)∼�
 , where under the action 

of the equivalence relation ∼� , �M generates output 
oM and updates the memory calibration information 
to mM upon receiving input iM in state sM.

Capture memory state variables
In the EFSM model, states are described by a combination 
of network I/O behaviors and memory calibrations. Mem-
ory calibration, calculated from a specific set of memory 
variables during state transition, plays a significant role in 
determining the program’s behavior through that transi-
tion. We elaborate on these concepts as follows:

Definition 7 Dynamic lifetime state variables refer to a 
group of memory variables that consistently produce the 

(1)δ∗(s, ǫ) = s, ∀s ∈ S,

(2)
δ∗(s, a · ω) = δ∗(δ(s, a),ω),∀s ∈ S, a ∈ �,ω ∈ �∗

.

same value for identical inputs during a state transition 
instigated by message interactions. Importantly, the lifetime 
of these variables encompasses the time interval defined by 
the watch point range for that particular transition.

Watch point range refers to the time interval divided by 
the watch point. We define the watch points as follows:

Definition 8 Watch points refer to specific temporal 
markers associated with the start or end of learning que-
ries, as well as any alterations in security attributes that 
may occur during program runtime.

In this paper, we provide six watch points: initiation of 
queries, enabling of encryption, completion of authenti-
cation, rekeying, disconnection, and query termination. 
These watch points unfold chronologically from the start 
of each query round. Scenarios may arise where these 
watch points overlap (such as enabling of encryption and 
completion of authentication at the same time) or are 
absent by default (such as the absence of rekeying). Mem-
ory variables according to these watch points are used 
to refine state calibration, thereby making state partition 
more relevant to the protocol’s security attributes.

To collect real-time feedback regarding the proto-
col’s state, we need to instrument probes within the tar-
get program’s code during its compilation phase. These 
probes consist of external functions that are invoked 
during specific conditions. Running concurrently with 
the SUL, these probes detect triggering conditions and 
invoke external functions to either update or trace corre-
sponding state memory variables. The probes are strate-
gically placed in five specific code locations: query_start, 
memory_allocate, interaction_update, memory_deallo-
cate, and query_end. The specific functionalities of these 
probes are detailed in Table 1.

These functions invoked by the probes are initialized at 
the start of a query and continuously monitor relevant vari-
ables through both memory allocation and deallocation 
phases. During each iteration of interaction, these tracked 
data are updated to reflect the shifts in state variables. At 
the termination of the query, the functions sift through and 
identify dynamic lifetime memory variables, computing 
the state’s identification in the process. Information such as 
the start and end times of queries, interaction cycles, and 
watch points is transmitted to the probe’s external function 
through shared memory by the intermediate mapper. The 
architecture of this system is illustrated in Fig. 6.

Calculate state identification
Once a query round concludes, the monitor scrutinizes 
the memory variables involved in the interactions. It 
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then refines this list to further filter and determine the 
dynamic lifetime memory variables. These variables are 
used to compute unique state identifiers, commonly 
referred to as “state_id,” for each state transition.

Algorithm 2 Filter the dynamic lifetime memory vari-
ables and calculate the state identification

As shown in Algorithm  2, the process for computing 
state identification involves several steps. First, it 
excludes short lifetime variables that do not span any 
watch point range. Then, as interactions incrementally 
progress from the initial number, the variables encom-
passing the current watch point range are selectively fil-
tered. These filtered variables are sorted, and their hash 
values are computed to serve as the state identifiers for 
the ongoing program interactions. Utilizing this meth-
odology, the monitor calculates a sequence of state 
identifiers that align with the query sequence of the 

learning engine, facilitating the construction of a state 
machine.

Overall learning process
Our learning methodology is grounded in this state 
description and state identification method. The inputs 
for the learning algorithm include an alphabet, a happy 
flow (which is a standard negotiation sequence based 
on the given alphabet), a configurable depth for equiva-
lence checking, an optional dictionary of variables that 
are irrelevant to the SUL states, and a optional number 
of dry run repetitions. The output is a finely inferred 
state-machine model.

Algorithm 3 State aware based model learning

As shown in Algorithm  3, the learning process unfolds 
in two primary phases. The first phase centers on gather-
ing preliminary data and building an initial state-machine 
model. Leveraging the happy flow, initial query sequences 
are assembled and executed in a loop, with the monitor 
tracking and capturing relevant memory variables. The 
monitor uses the dictionary of state-irrelevant variables 
along with a differential comparison method to filter out 
unrelated variables. It also updates this filtering diction-
ary in real time. Upon capturing this data, the monitor 
assembles an initial state-machine model founded on the 
query outcomes. The second phase entails additional scru-
tiny of state variables and further refinement of the state-
machine model. The algorithm generates query sequences 

Table 1 Probe types and descriptions

Probe Description

Query_start Initialize the record data at the beginning 
of the query

Memory_allocate Record the address, size, and value of a mem-
ory area when it is allocated on the heap 
or stack

Interaction_update Update the interaction number and add 
record values of tracked variables

Memory_deallocate End the tracking of a memory when it 
is deallocated

Query_end Determine the dynamic lifetime memory 
variables and calculate the state identifica-
tion hash when the query terminates
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based on the existing alphabet and model. These queries 
are then iteratively executed, and the results are integrated 
into the state transition paths of the model. Specifically, if a 
new state is uncovered, the algorithm reiterates the query, 
employs differential testing to eliminate potential state-
irrelevant variables, updates the variable dictionary, and 
locks in the precise state identification. Moreover, the algo-
rithm performs equivalence checks at each iteration, con-
templating the consolidation of states with identical state 
identification. This iterative process continues until no new 
states emerge, culminating in a comprehensive and final-
ized state-machine model.

Specifically, the methodology for equivalence check-
ing operates as follows: Starting from a designated initial 
state, if two distinct sequences ultimately lead to states 
sharing the same state identification, the algorithm delves 
further. It either seeks I/O sequences that can differenti-
ate these similar states, guided by the pre-set equivalence 
checking depth, or it evaluates the feasibility of merging 
these states into one. This added layer of scrutiny ensures 
a robust and accurate representation of states within the 
final state-machine model. In addition, we set up judg-
ment and optimization for the disconnected state, which 
accurately identifies the normal communication end state 
through state identification, and no further query testing 
will be performed in this state.

Experimental evaluation and analysis
In this section, we delve into the experimental results, the 
inferred models, and the issues identified, all stemming 
from our state-aware model learning framework, SALearn.

IPsec implementations
We evaluated SALearn using two mainstream open-
source IPsec implementations: Strongswan and 
Libreswan. These implementations offer a range of 
IKEv2-based VPN functionalities, as outlined in Table 2.

Our experiments were conducted on two platforms:
The model learning platform: Ubuntu 20.04 OS + 11th 

Gen Intel (R) Core (TM) i9-11900 CPU + 32GB RAM + 
1T ROM

SUL platform: Ubuntu 20.04 OS + Intel Xeon E5-2680 
v2 CPU + 32GB RAM + 4T ROM

Learning scheme for IPsec
To develop a comprehensive model for IPsec, we utilized 
alphabets based on RFC7296 to facilitate learning under 
IKEv2 protocols.

In IKEv2, the alphabet focused primarily on standard 
negotiation messages and additional messages for rekey-
ing, deleting, and testing both IKE and IPsec SAs, detailed 
in Table 3. Importantly, we differentiate between new and 
old SAs based on their creation time, assigning labels that 
allow the mapper to retrieve them in chronological order. 

Fig. 6 Memory variables tracking architecture

Table 2 Information of IPsec SUL

SUL Version Auth method IKEv1/IKEv2 Support Description

Strongswan 5.9.9 Cert+PSK All An open-source, modular, and cross plat-
form IPsec VPN solution developed based 
on the FreeS/WAN project, but completely 
rewritten

Libreswan 4.11 Cert+PSK All An IPsec implementation for Linux that supports 
IKEv1, IKEv2, and most IPsec related exten-
sions. Based on the FreeS/WAN code library, it 
has been extended on this basis
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After a successful rekeying operation based on RFC7296, 
the mapper transitions the IPsec SA from the old to the 
new IKE SA, while maintaining the previously assigned 
labels. It is worth noting that the unrestricted creation 
of SAs can lead to models that are overly complex and 
difficult to analyze. Therefore, we imposed a constraint: 
each IKE SA can have no more than two associated IPsec 
SAs. If a rekeying request exceeds this limit, the map-
per returns a “None,” thereby keeping the number of SAs 
within our defined range.

To enhance learning efficiency, we implemented several 
optimization strategies and integrated a message inspection 
mechanism to aid in the detection of anomalous behavior. 

1. Mapper configuration and optimization: We config-
ured reasonable timeout periods for each message 
type to speed up transmission. The mapper’s message-
parsing mechanism was also fine-tuned to reduce 
inconsistent feedback. To build on this, we introduced 
a query result cache. If a test’s query sequence yielded 
a result that differed from a cached response, we con-
ducted multiple retests until a consistent response 
was confirmed as the final query outcome. To ensure 
reliable interactions, TCP transmission is employed 
between the learning machine and the mapper.

2. Time synchronization: A synchronized clock is main-
tained between the intermediate mapper and the 
execution monitor, ensuring accurate interaction 
counts and watchpoints.

3. State-machine model refinements: In the final learn-
ing state-machine model, edges with identical start 
and end points are combined to simplify model 
inspection and analysis. For transitions lacking prac-
tical significance-such as querying to delete an IPsec 
SA when none exists-the mapper directly returns 
a “None” response. As a result, irrelevant edges are 
omitted from the final model.

4. A mechanism is integrated into the mapper to scruti-
nize both incoming and outgoing messages. This fea-
ture checks for behaviors that deviate from expected 
responses and flags abnormal messages, which could 
be indicative of service crashes or other issues.

Learning result
We tested two leading IPsec implementations and com-
pared the performance of our approach, SALearn, with 
two existing tools: StateInspector [34] and StateLearner 
[8]. The statistical outcomes of the learning process are 
summarized in Table 4.

Table 3 IKEv2 learning alphabet

Alphabet Message type Description

IKE_SA_INIT IKE_SA_INIT 34 IKE SA initialization

IKE_AUTH_CERT IKE_AUTH 35 IKE certificate authentication

Rekey_IKE CREATE_CHILD_SA 36 Create new IKE SA

Rekey_ESP_over_Current_IKE CREATE_CHILD_SA 36 Create new IPsec SA(ESP) over current IKE SA

Rekey_ESP_over_Old_IKE CREATE_CHILD_SA 36 Create new IPsec SA(ESP) over old IKE SA

Delete_Current_ESP_over_Current_IKE INFORMATIONAL 37 Delete new IPsec SA(ESP) over current IKE SA

Delete_Old_ESP_over_Current_IKE INFORMATIONAL 37 Delete old IPsec SA(ESP) over current IKE SA

Delete_Current_ESP_over_Old_IKE INFORMATIONAL 37 Delete new IPsec SA(ESP) over old IKE SA

Delete_Old_ESP_over_Old_IKE INFORMATIONAL 37 Delete old IPsec SA(ESP) over old IKE SA

Delete_Current_IKE INFORMATIONAL 37 Delete current IKE SA

Delete_Old_IKE INFORMATIONAL 37 Delete old IKE SA

Test_Current_IKE_Current_ESP ESP Test current IPsec SA(ESP) over current IKE SA

Test_Current_IKE_Old_ESP ESP Test old IPsec SA(ESP) over current IKE SA

Test_Old_IKE_Current_ESP ESP Test current IPsec SA(ESP) over old IKE SA

Test_Old_IKE_Old_ESP ESP Test old IPsec SA(ESP) over old IKE SA

Table 4 Statistics of state-aware model learning

SUL Protocol Associated  
variables

Queries States Time 
(hh:mm)

Queries States Time 
(hh:mm)

Queries States Time 
(hh:mm)

SALearn StateInspector StateLeaner

Strong-
swan

IKEv2 122 672 29 00:41 - - - 9536 20 12:15

Libreswan IKEv2 47 1127 57 01:33 562 39 00:40 17634 43 23:42
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The results reveal that SALearn significantly outpaces the 
black-box learning tool StateLearner in terms of both the 
number of queries required and the time needed for model 
inference. This efficiency stems from SALearn’s use of cor-
related state variables, which allows for quicker differentia-
tion between distinct states without the need for exhaustive 
queries. This ability to finely distinguish states also results 
in a state-machine model with greater complexity and 
depth. When compared to the gray-box tool StateInspec-
tor, SALearn demonstrates comprehensive model inference 
capabilities. StateInspector’s limitations become evident 
when handling StrongSwan, as it can only trace the system 
calls in a single process. This constraint makes it incapable 
of capturing the right time to take a memory snapshot to 
filter candidate state memory for state-machine inference. 
Further, SALearn’s fine-grained variable calibration leads to 
the inference of models with a greater number of states on 
Libreswan, as compared to StateInspector.

Case analysis
In this subsection, we discuss the characteristics and 
shortcomings of these implementations based on the 
state-machine model inferred by SALearn. Presenting 
the complete model would be cumbersome; therefore, 
we have optimized it for clarity. First, we removed cer-
tain non-essential transition paths to highlight the crucial 
aspects of the model. For example, in the case of IKEv2, 
some key IKE and rekey ESP transitions were omitted. 

Second, irrelevant transitions were eliminated. Transi-
tions with a “None” response have been excluded. Finally, 
transitions with identical starting and ending nodes were 
merged, and any remaining unspecified input strings for 
the state were represented as “Other.”

To further clarify the state machine, each model fea-
tures bold lines to indicate normal negotiations (happy 
flows). Red dotted lines mark paths with issues were iden-
tified. Labels on the edges of the state-machine model 
correspond to the current state’s inputs and outputs, 
denoted by “IO.” Abbreviations are used to represent cor-
responding abstract messages. Labels for messages that 
resulted in meaningful responses and led to state transi-
tions are highlighted in larger font sizes. 

1. Strongswan IKEv2

Figure  7 presents a streamlined state-machine model of 
StrongSwan operating under the IKEv2 alphabet. The 
interaction sequence goes from states s0 to s1 and finally 
to s2, where IKE_SA_INIT and IKE_AUTH occur. In state 
s2, both parties establish IKE and IPsec SAs, thereby ena-
bling Encapsulating Security Payload (ESP) communica-
tions. Advancing from s2 to s3, and finally to s4, involves 
deleting the active IPsec and IKE SAs, culminating in 
a communication termination. Furthermore, Strong-
Swan prohibits the insertion of unexpected messages 
during negotiations prior to authentication. As a result, 

IKE_SA_INIT / IKE_SA_INIT

IKE_AUTH / IKE_AUTH

Rekey_IKE / No_Response
D_C_IKE / No_Response

Rekey_ESP_C_IKE / No_Response
IKE_SA_INIT / No_Response

D_C_ESP_C_IKE / D_ESP

Rekey_IKE / Rekey_IKE

s0

s1

s5

s2

s9

s3 s4

T_C_IKE_C_ESP / ESP
IKE_AUT / No_Response

IKE_SA_INIT / No_Response

s7

s11

Rekey_ESP_C_IKE / Rekey_ESP
D_O_ESP_C_IKE / D_ESP

D_C_IKE / D_IKE
s6 s8

Rekey_IKE / No_Response
D_C_IKE / No_Response

Rekey_ESP_C_IKE / No_Response
IKE_SA_INIT / No_Response
IKE_AUTH / No_Response

T_C_IKE_C_ESP / ESP
T_C_IKE_O_ESP / No_Response

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

D_O_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

D_C_ESP_C_IKE / D_ESP

D_O_IKE / D_IKE

D_C_ESP_C_IKE / D_ESP

T_C_IKE_O_ESP / ESP

D_O_ESP_C_IKE / D_ESP

D_C_IKE / D_IKE

s10
Rekey_IKE / Rekey_IKE

D_O_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

D_O_ESP_C_IKE / D_ESP

T_C_IKE_C_ESP / ESP
IKE_AUT / No_Response

IKE_SA_INIT / No_Response
Rekey_ESP_O_IKE /  No_Response

D_C_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

Rekey_ESP_O_IKE / No_Response

Rekey_IKE / Rekey_IKE

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / ESP
T_C_IKE_O_ESP / No_Response

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

Rekey_ESP_O_IKE / No_Response

D_C_IKE / D_IKE

Start

D_O_IKE / D_IKE

IKE_SA_INIT / No_Response
Rekey_ESP_O_IKE / No_Response

IKE_SA_INIT / No_Response

Fig. 7 Simplified state-machine model of StrongSwan with IKEv2 alphabet
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submitting an abnormal authentication request in state s1 
terminates the negotiation and transitions to state s5.

States s6, s7, s8, s9, s10, and s11 describe various sce-
narios that involve rekeying or deletion of IKE or IPsec 
SAs after completing authentication in state s2. Some of 
these states are interchangeable in terms of transitions. 
For instance, state s2 can morph into either s6 (by rekeying 
the IKE SA and then deleting the previous one) or s9 (by 
rekeying the IPsec SA and discarding the old one). Impor-
tantly, when multiple IPsec SAs are active, StrongSwan only 
supports ESP communication via the most recently estab-
lished SA, such as in states s9 and s10. Whether initiating 
direct ESP creation (transitioning from s2 to s9), rekeying 
IKE before ESP creation (going from s2 to s6 and then to 
s10), or creating an ESP prior to IKE rekeying (transitioning 
from s2 to s9 and then to s10), StrongSwan exclusively facil-
itates ESP communication through the latest tunnel. Delet-
ing the most recent ESP enables communication through 
the older, still-active ESP (transitioning from s9 to s11). 

2. Libreswan IKEv2

Figure  8 presents a simplified state-machine model of 
Libreswan operating under the IKEv2 alphabet. Like Strong-
Swan, the sequence from state s0 to s1 and then to s2 cov-
ers interactions involving IKE_SA_INIT and IKE_AUTH. 
Transitions from s2 to s3 and then to s4 are concerned with 
deleting the active ESP and IKE, effectively terminating the 
connection. Regarding the management of multiple ESPs, 
Libreswan also supports ESP communication through the 

most recently created instance, as evidenced by the transi-
tion from s2 to s5. However, once the latest ESP is deleted, 
the older ESPs cannot be reactivated for communication, as 
illustrated by the transition from s5 to s6.

In contrast to StrongSwan, Libreswan demonstrates 
more flexibility in state s1. Specifically, after completing 
the IKE_SA_INIT interaction, Libreswan can still com-
plete IKE_AUTH requests after receiving some unex-
pected request. Moreover, Libreswan allows the creation 
of an ESP on an older IKE channel, facilitating communi-
cation through that newly established ESP, as seen in the 
transition from s7 to s8. Note that ESPs created on these 
older IKE channels interfere with ESP communication on 
the current channel. Even deleting the ESP established on 
the older IKE channel does not reinstate the communica-
tion capabilities of the ESP on the current IKE channel, as 
shown by the transition from s8 to s9.

Discussion
Based on the comparative analysis between SALearn and 
various model learning tools, as well as SALearn’s perfor-
mance in dissecting different IPsec implementations, sev-
eral key observations emerge: 

1. SALearn exhibits superior efficiency in both query 
and learning times when compared to the traditional 
black-box learning tool, StateLearner. This efficiency 
advantage becomes increasingly noticeable as the 
scale and complexity of the learning objects escalate.
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D_C_ESP_O_IKE / D_ESP

D_O_IKE / D_IKE

T_C_IKE_C_ESP / ESP
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / No_Response
T_O_IKE_C_ESP / ESP

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

s0

s1 s2

s3

s5

s6

s4

s7

s8

s9

s10

Start

D_O_ESP_C_IKE / D_ESP

Rekey_ESP_C_IKE / Rekey_ESP

D_C_IKE / D_IKE

D_C_IKE / D_IKE

D_C_IKE / D_IKE

IKE_SA_INIT / No_Response
Other / None

D_O_IKE / D_IKE

D_C_IKE / D_IKE

D_C_ESP_C_IKE / D_ESP

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / No_Response
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

Fig. 8 Simplified state-machine model of Libreswan with IKEv2 alphabet
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2. When compared with the similar gray-box model 
learning tool StateInspector, SALearn offers broader 
applicability across protocol implementations. It 
relies solely on the collection of code instrumenta-
tion data for learning, thereby circumventing the 
limitations of StateInspector, such as stack memory 
constraints and multi-process complexities.

3. SALearn is capable of inferring comprehensive state-
machine models based on symbolic alphabets. These 
models faithfully encapsulate the intricate logic gov-
erning message interactions within the protocol 
implementations.

4. Analysis of the models generated by SALearn enables 
the identification of not only abnormal paths and log-
ical inconsistencies that contravene protocol specifi-
cations but also uncovers potential anomalous states. 
These findings can catalyze the detection of issues in 
the protocol’s code implementation.

Despite these strengths, SALearn is not without limitations: 

1. For SALearn to operate effectively, the protocol code 
needs to be instrumented, thereby imposing higher 
learning requirements compared with StateInspector 
and StateLearner.

2. The learning process in SALearn necessitates the 
gathering and filtering of state-variable information, 
introducing computational overhead.

3. The task of collating state-variable information to identify 
abnormal paths and states in SALearn involves manual 
effort, adding to the overall complexity of the process.

Further discussion on the implications of identified anomalies: 

1. Inconsistent IPsec SA Management in StrongSwan: 
The StrongSwan state machine under IKEv2 reveals 
that when multiple IPsec SAs are active, StrongSwan 
prioritizes communication through the most recently 
established ESP. Intriguingly, further packet analy-
sis shows that StrongSwan crafts response messages 
using the latest ESP key, even if a test request is sent 
using a previously established ESP key. Conversely, 
upon deleting the newest ESP and sending a test 
request via the previous ESP, StrongSwan invariably 
replies using the second most recent ESP. Accord-
ing to Section 2.8 of RFC 7296, “to rekey a child SA 
within an existing IKE SA, create a new, equivalent 
SA, and when the new one is established, delete the 
old one.” In contradiction to this specification, Strong-
Swan neither deletes the old IPsec SA upon establish-
ing a new one, nor prevents communication between 
the old and new IPsec SAs. This behavior violates the 
standards and undermines forward secrecy.

2. Flawed Logic in IKE SA Updating in Libreswan: The 
IKEv2 state machine for Libreswan reveals that the 
system allows for the creation of ESP on older IKE 
channels, and such ESPs are functional for regular 
communication. In contradiction to Section  2.8 of 
RFC 7296, which states that “after the new equivalent 
IKE SA is created, the initiator deletes the old IKE 
SA, and the Delete payload to delete itself MUST be 
the last request sent over the old IKE SA,” Libreswan 
neither mandates the deletion of the old IKE SA upon 
establishing a new one, nor restricts ESP creation on 
the old IKE SA. This lapse contradicts the RFC guide-
lines and compromises forward secrecy.

Conclusion
In this research, we introduce a state-aware model 
learning approach aimed at bridging the gap between 
inferred states and the inner workings of a protocol 
device. By synchronizing network interaction I/O and 
filtering dynamic memory variables across their life-
times, our method refines the inferred state machine to 
include more relevant elements. Our evaluation, cover-
ing two widely used IKEv2 implementations, reveals two 
instances where these systems violate expected behav-
ior. The results validate the efficacy of our approach; a 
digital twin paired with a state-aware model can give 
insights into predicted communication patterns in edge 
computing scenarios where devices connect with each 
other in a decentralized way utilizing lightweight pro-
tocols. Based on the learnt behaviors, the system may 
update its security measures in real-time, detecting any 
abnormalities or potential attacks on lightweight proto-
col implementations.

Regarding memory information management, the cur-
rent approach is somewhat simplistic, focusing primarily 
on the lifespan and values of memory variables for filter-
ing. This approach leaves much to be desired in terms of 
the precision and interpretability of these variables within 
the context of the program. To address this issue, future 
work could involve several improvements. First, utiliz-
ing more specific variables like macro definitions or enu-
merated types could refine state calibration and enhance 
its interpretability. Second, considering advanced analy-
sis methods such as symbolic execution or taint analy-
sis could provide a more accurate understanding of how 
variables influence program states, thereby honing the 
precision of state inference. Additionally, a formal analy-
sis model could be developed based on the inferred state 
paths and calibrated variables to assess compliance with 
security requirements. Taken together, this research not 
only broadens the methodologies available for proto-
col model learning but also offers valuable insights into 
enhancing the security analysis of network protocols.
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