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Abstract 

Anomaly detection in Wireless Sensor Networks (WSNs) is critical for their reliable and secure operation. Optimizing 
resource efficiency is crucial for reducing energy consumption. Two new algorithms developed for anomaly detection 
in WSNs—Ensemble Federated Learning (EFL) with Cloud Integration and Online Anomaly Detection with Energy-
Efficient Techniques (OAD-EE) with Cloud-based Model Aggregation. EFL with Cloud Integration uses ensemble 
methods and federated learning to enhance detection accuracy and data privacy. OAD-EE with Cloud-based Model 
Aggregation uses online learning and energy-efficient techniques to conserve energy on resource-constrained sen-
sor nodes. By combining EFL and OAD-EE, a comprehensive and efficient framework for anomaly detection in WSNs 
can be created. Experimental results show that EFL with Cloud Integration achieves the highest detection accuracy, 
while OAD-EE with Cloud-based Model Aggregation has the lowest energy consumption and fastest detection time 
among all algorithms, making it suitable for real-time applications. The unified algorithm contributes to the system’s 
overall efficiency, scalability, and real-time response. By integrating cloud computing, this algorithm opens new 
avenues for advanced WSN applications. These promising  approaches for anomaly detection in resource constrained 
and large-scale WSNs are beneficial for industrial applications.

Keywords  Wireless sensor networks, Online anomaly detection, Energy efficiency, Federated learning, Machine 
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Introduction
Wireless Sensor Networks (WSNs) are a crucial tech-
nology used in a variety of fields, such as environmen-
tal monitoring, industrial automation, healthcare, and 
smart cities. These are networks composed of spatially 
distributed autonomous sensors to monitor physical or 

environmental conditions. Several small sensor nodes 
collect data such as temperature, humidity, motion, and 
send it to a central base station for processing. However, 
because WSNs are open and distributed, they are vulner-
able to security threats, such as anomalies and malicious 
attacks. To ensure the reliability and security of WSNs, 
anomaly detection is essential, as researched by Liu 
et  al. in [1]. Detecting unusual behavior or unexpected 
events in sensor data can help identify potential faults, 
intrusions, or environmental changes, enabling timely 
responses and preventive actions. Traditional rule-based 
and statistical anomaly detection methods are not very 
effective in dynamic and complex WSN environments. 
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Therefore, more advanced and adaptive anomaly detec-
tion techniques are necessary to address the changing 
challenges in WSNs.

Background and Motivation
Machine Learning (ML) has proven to be highly effec-
tive in improving anomaly detection capabilities in vari-
ous domains in recent years as researched by Mahesh 
et. al in [2]. The ability of ML algorithms to learn pat-
terns and relationships from data makes them ideal for 
detecting anomalies in WSNs. However, the deployment 
of ML models directly on resource-constrained sen-
sor nodes presents challenges due to limited comput-
ing power, memory, and energy constraints. Traditional 
anomaly detection approaches may not be well-suited 
for the dynamic and resource-limited nature of WSN 
environments.

Moreover, in large-scale WSN deployments, data may 
be spread across multiple sensor nodes, making central-
ized data processing unfeasible and raising concerns 
about privacy and communication overhead. The inte-
gration of cloud computing in WSNs offers a promising 
solution to address these challenges. Cloud computing 
provides elastic and scalable resources that can augment 
the computational capabilities of resource-constrained 
sensor nodes. By leveraging cloud resources, ML models 
can be trained and aggregated efficiently, enabling col-
laborative model training without compromising data 
privacy.

Federated Learning (FL) is a promising approach that 
complements cloud integration in WSNs [3]. Deng et al. 
[4] introduces an intelligent trusted and secure edge 
computing (ITEC) system for IoT malware detection, 
achieving up to 98.52% accuracy. Lu et  al. [5] devises a 
Truthful incEntive mechAnism (TEA) to encourage par-
ticipation in vertical federated learning, outperforming 
existing methods in ensuring truthfulness and maximiz-
ing social utility. Lastly, a novel adaptive blockchain-
enabled FL framework for Intelligent Transportation 
Systems (ITS) optimizes decentralized vehicular data 
flows, enhancing communication efficiency and scal-
ability while addressing throughput limitations and reli-
ability issues [6]. The Intelligent Computation Offloading 
algorithm is limited by its dependency on stable network 
connectivity, resource availability, scalability challenges, 
security concerns, algorithm overheads, device heteroge-
neity, and lack of adaptability.

FL enables ML models to be trained locally on indi-
vidual sensor nodes, utilizing the available data while 
preserving data privacy. Only aggregated model 

updates are sent to a central cloud server for global 
model refinement. This decentralized approach ensures 
data privacy while leveraging the collective knowl-
edge of the network. The cloud acts as a central entity 
for model aggregation, enabling efficient collaboration 
and real-time response in the anomaly detection pro-
cess. The current anomaly detection methodologies 
can be improved largely in terms of accuracy, energy 
consumption, or scalability, thereby, the need for 
novel approaches is large. There is a lack of sufficient 
resource-aware anomaly detection techniques suit-
able for WSNs. Existing methods do not sufficiently 
address the need for accurate detection while conserv-
ing energy and minimizing communication overhead.

There is a need for optimized anomaly detection in 
WSNs. To achieve this, new and improved techniques 
are explored that prioritize accuracy, energy efficiency, 
and scalability. By optimizing resource efficiency, energy 
consumption can be reduced, and communication over-
head can be minimized. To improve anomaly detection 
in WSNs, advanced techniques like Federated Learning, 
Online Anomaly Detection with Energy-Efficient Tech-
niques, and cloud computing are investigated to uncover 
their potential benefits.

Problem statement and research objectives
This research aims to create an effective and precise 
method for detecting anomalies in WSNs, taking into 
account the network’s resource constraints and dis-
tributed nature. Anomaly detection plays a vital role in 
ensuring the dependable and secure operation of WSNs 
as shown in [7]. However, traditional approaches may not 
be suitable for the dynamic and resource-limited envi-
ronment of WSNs. Imbalanced data can cause biased 
results and poor performance in detecting anomalies. 
Traditional methods observed by Dwivedi et  al. in [8] 
require manual feature engineering, struggle to adapt to 
changing data patterns, and lack scalability. Conventional 
models can be confusing and struggle to label true anom-
alies or miss non-anomalous instances. They might not 
generalize well and can lack interpretability. Additionally, 
managing false positives can be challenging, and some 
models may be difficult to explain. The objective of this 
research is to overcome these challenges and improve the 
reliability and security of WSNs by developing innovative 
anomaly detection algorithms.

•	 Develop Ensemble Federated Learning (EFL) and 
Online Anomaly Detection with Energy-Efficient 
Techniques (OAD-EE) algorithms.
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•	 Create a unified Cloud-Enabled Anomaly Detection 
Framework.

•	 Evaluate algorithm performance in WSNs for detec-
tion accuracy, energy usage, communication over-
head, and detection time.

•	 Test algorithms using real-world industrial WSN 
data, comparing their performance with traditional 
approaches.

The aim of this research is to develop new and effec-
tive techniques for detecting anomalies in WSNs that 
are suitable for environments with limited resources and 
distributed networks. The inclusion of cloud comput-
ing in the proposed algorithms improves the scalability, 
efficiency, and real-time response of the online anomaly 
detection system. This leads to more secure and depend-
able operation of WSNs in different applications.

Overview of the proposed approach
The proposed research leverages two innovative algo-
rithms: EFL with Cloud Integration and OAD-EE with 
Cloud-based Model Aggregation, alongside a Baseline-
AD. EFL combines the strengths of ensemble methods, 
federated learning, and cloud to achieve improved detec-
tion accuracy and data privacy. It’s a machine learning 
approach where multiple devices or nodes collaboratively 
train a model without sharing their data directly. Instead, 
the model is trained locally on each node, and only the 
model updates or summaries are shared and aggregated. 
This technique maintains data privacy while leveraging 
collective knowledge from decentralized data sources. 
OAD-EE utilizes online learning and energy-efficient 
techniques to detect anomalies in real time while con-
serving energy on resource-constrained sensor nodes. 
The Unified Cloud-Enabled Anomaly Detection Frame-
work combines the benefits of both these algorithms. The 
Baseline-AD represents the traditional approach using 
standard anomaly detection techniques.

The process, data set, and experimental configuration 
utilized to assess the efficiency of the suggested algo-
rithms will be outlined in the upcoming sections. Sub-
sequently, the results will be scrutinized to gauge the 
success of each algorithm in improving the identification 
of anomalies in WSNs. These conclusions will offer use-
ful perspectives to create effective and sturdy anomaly 
detection systems in the context of IoT and Industrial IoT 
applications. The proposed approach outperforms other 
state-of-the-art approaches in several ways. It achieves 
improved efficiency, enhanced resource utilization, 
reduced latency, lower energy consumption, enhanced 
scalability, improved quality of service, superior 

reliability, and better security and privacy measures. 
These achievements establish the proposed algorithm 
as a significant advancement in computation offloading, 
providing notable improvements in performance metrics 
compared to state-of-the-art approaches.

The combined approach of EFL, OAD-EE, and cloud 
computing has shown to enhance the accuracy, precision, 
recall, and F1 score compared to traditional anomaly 
detection methods which improves Anomaly Detection 
Performance. The integration of cloud computing opti-
mizes scalability, real-time response, and resource utili-
zation, making the system more adaptable to changing 
workloads in WSNs leading to Efficient Resource Utili-
zation. Techniques like OAD-EE optimize energy con-
sumption, ensuring more efficient usage of resources 
which is critical in WSNs where Energy Efficiency is a 
major concern. The proposed scheme minimizes false 
alarms (false positives), leading to more reliable and 
trustworthy anomaly detections, which is crucial for 
avoiding unnecessary alerts during normal operations 
and Reduced False Alarms. Comparative analyses against 
state-of-the-art models demonstrate competitive accu-
racy, communication overhead, and computational com-
plexities, positioning the proposed approach favorably 
and providing comparative performance.

Related work
Anomaly detection in WSNs is a critical task to ensure 
network reliability, security, and efficient operation. 
Over the years, researchers have explored various tech-
niques to tackle the challenges of detecting anomalies 
in dynamic and resource-constrained WSN environ-
ments. In this section, we provide an in-depth review of 
the existing literature on anomaly detection in WSNs and 
discuss relevant approaches that utilize ML and Multi-
Parameterized Edit Distance.

Anomaly detection in WSNs
Early approaches to anomaly detection in WSNs were 
primarily based on rule-based methods and statistical 
techniques, such as the z-score method and cumula-
tive sum algorithm as explained by Cauteruccio et. al. in 
[9]. These methods were often heuristic-based [10] and 
relied on fixed threshold values, assuming that sensor 
data follow a specific distribution. However, such simplis-
tic approaches have limitations in handling non-linear 
and complex data patterns, leading to a high false posi-
tive rate and low detection accuracy. When choosing an 
approach to detect anomalies, the most crucial factor to 
consider is the underlying detection method or strategy 
as shown by the authors in [11]. In this context, using 
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specific metrics to detect anomalies also falls under the 
category of methods. This category offers a wide range 
of options as numerous ideas and concepts from various 
fields have been adapted for anomaly detection. Figure 1 
illustrates the primary classes of methods.

To overcome the limitations and enhance anomaly 
detection performance, researchers turned to ML-based 
approaches. Supervised ML algorithms, such as Support 
Vector Machines (SVM) [12], Decision Trees (DT) [13], 
and Random Forests (RF) [14], have been widely applied 
to learn normal data patterns and identify deviations 
as anomalies. These algorithms have shown promising 
results in detecting known anomalies with high accuracy. 
However, they often require labeled training data, which 
can be challenging to obtain in WSNs due to the scarcity 
of labeled anomaly instances [15] and the distributed 
nature of the data.

Federated learning for anomaly detection
In recent years, FL has emerged as a promising solu-
tion for collaborative model training without sharing 
raw data in privacy-sensitive environments like WSNs. 
Authors in [16] used FL-based anomaly detection to 
identify intrusion in the Internet of Things networks. 

FL allows individual sensor nodes to train ML models 
locally using their data while preserving data privacy. 
Model updates are aggregated in a privacy-preserving 
manner at a central server, enabling the creation of a 
global model that captures the knowledge from all 
nodes. FL-based anomaly detection in WSNs has been 
explored in several studies. By leveraging FL, these 
approaches enable the detection of distributed anoma-
lies across multiple sensor nodes without compromis-
ing data privacy. The collaborative nature of FL allows 
the models to adapt to local variations in sensor data, 
enhancing the overall anomaly detection performance. 
Moreover, FL mitigates the need for transmitting raw 
sensor data to a central location, reducing communi-
cation overhead and conserving energy in resource-
constrained WSNs.

Multi‑Parameterized edit distance for anomaly detection
Edit distance is a powerful concept used in various 
domains, including natural language processing and 
time series analysis. In the context of anomaly detec-
tion, Multi-Parameterized Edit Distance (MPED) has 
been proposed as a similarity metric to measure the 

Fig. 1  Taxonomy of anomaly detection methods
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difference between sensor data instances. MPED con-
siders multiple parameters and their relationships, 
enabling the detection of complex anomalies that 
involve changes in multiple data dimensions. Several 
studies have explored the effectiveness of MPED-based 
anomaly detection in WSNs [9]. By considering mul-
tiple parameters simultaneously, MPED can capture 
the intricate patterns of anomalies in sensor data, lead-
ing to improved detection accuracy and reduced false 
alarms. The ability to capture correlations between 
parameters makes MPED a suitable candidate for 
detecting anomalies that manifest across multiple 
dimensions in WSNs, such as sudden changes in tem-
perature and pressure or unusual combinations of sen-
sor readings.

Integration of machine learning and multi‑parameterized 
edit distance
Recent research [17] has shown the potential of inte-
grating ML algorithms with MPED for anomaly detec-
tion in WSNs. By combining the strengths of both 
approaches, these hybrid methods achieve a compre-
hensive analysis of sensor data. ML algorithms provide 
the capability to learn and adapt to data patterns, while 
MPED enhances the sensitivity to anomalies across 
multiple parameters. These hybrid approaches [18] 
have demonstrated promising results in identifying 
complex and distributed anomalies in WSNs. By lev-
eraging the complementary features of ML and MPED, 
they offer a more robust and accurate anomaly detec-
tion framework for real-world WSN deployments. The 
integration of ML and MPED enables the detection of 
previously unknown and subtle anomalies that might 
be missed by traditional anomaly detection methods as 
researched by Dorfman et. al. in [19].

The literature review highlights the evolving land-
scape of anomaly detection in WSNs, with an increas-
ing focus on ML-based approaches, Federated 
Learning, and Multi-Parameterized Edit Distance. 
These techniques address the challenges posed by the 
distributed and resource-constrained nature of WSNs 
[20] while enhancing the accuracy and efficiency of 
anomaly detection. The integration of ML and FL 
enables collaborative and privacy-preserving model 
training, making it well-suited for large-scale WSN 
deployments. Additionally, the adoption of MPED-
based approaches similar to the research in [21] allows 
for a more comprehensive analysis of multi-dimen-
sional sensor data [22], leading to improved anomaly 
detection performance.

The synthesis of ML and MPED in hybrid anomaly 
detection approaches presents a compelling direction 
for future research in this domain. The development 
of innovative and efficient algorithms that leverage the 
strengths of these techniques has the potential to sig-
nificantly advance anomaly detection capabilities in 
WSNs [23], making them more resilient to emerging 
security threats and ensuring reliable operation in criti-
cal applications. [24] proposes ARSH-FATI-CHS algo-
rithm for Cluster Head Selection in WSN. Enhances 
network lifetime by 25% compared to PSO by reducing 
communication energy consumption. Survey in [25] 
examines IoT-SC synergy, reviews energy optimization 
techniques and workload mapping strategies from 2001 
to 2021.

Methodology
For this research, a real-world dataset from an industrial 
WSN deployment is utilized. The dataset consists of sen-
sor readings collected from a network of sensor nodes 
deployed in an industrial setting. The sensor nodes [19] 
record various parameters, such as temperature, pres-
sure, humidity, and vibration levels, at regular intervals. 
The experimental setup involves the simulation of WSN 
scenarios using the collected dataset. The dataset is par-
titioned into training and testing sets to evaluate the per-
formance of the anomaly detection algorithms. To mimic 
the distributed nature of WSNs, the sensor nodes are 
represented as separate entities, each processing its data 
locally. The communication among nodes is emulated 
using communication protocols [3, 26–29], and data 
aggregation is performed in a privacy-preserving manner 
to ensure data privacy and security.

The dataset and experimental setup enable the evalu-
ation of the three proposed algorithms under realistic 
WSN scenarios. The Ensemble Methods for Anomaly 
Detection, Federated Learning, and Online Anomaly 
Detection with Energy-Efficient Techniques offer distinct 
advantages in detecting anomalies in WSNs. The ensem-
ble approach enhances accuracy by leveraging multiple 
ML models, FL ensures data privacy and collaborative 
learning, while the online method provides real-time 
detection while conserving energy. The results from the 
experiments will provide valuable insights into the effec-
tiveness and trade-offs of each algorithm, guiding the 
design of efficient and robust anomaly detection systems 
for WSNs ([30, 31] https://​github.​com/​apano​uso/​wsn-​
indfe​at-​datas​et/).

The following steps are performed to implement 
the proposed work: The data from sensors deployed 
in an industrial environment has been collected and 

https://github.com/apanouso/wsn-indfeat-dataset/
https://github.com/apanouso/wsn-indfeat-dataset/
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preprocessed by cleaning missing or incorrect val-
ues, normalizing it, selecting the features needed, and 
detecting any outliers. The data has been divided into 
two sets: training and testing, with a 70–30 split com-
monly used for training and testing respectively. Mod-
els suitable for anomaly detection, such as DT, RF, 
SVM, KNN, and ANN have been selected and their 
hyperparameters have been tuned using techniques 
like random search to find the best set of hyperpa-
rameters within the specified range. Ensemble learn-
ing methods, such as weighted averaging and stacking, 
have been used to combine the models’ predictions and 
appropriate weights have been assigned to each model 
according to their importance in the final ensemble. 
The combined model has been evaluated using per-
formance metrics such as accuracy, precision, recall 
(sensitivity), specificity, F1 score, and AUC of the ROC 
curve. Cross-validation has been performed to obtain 
a more reliable estimate of the model’s performance. 
The energy consumption and communication over-
head of the models have been analyzed, taking into 
account their deployment in wireless sensor networks. 
The proposed scheme has been integrated with cloud 
computing to enhance scalability, resource utiliza-
tion, and real-time response in detecting anomalies in 
WSNs. Cloud resources have been optimized for effi-
cient model training, aggregation, and data analytics. 
Security measures have been implemented to safeguard 
sensitive sensor data during cloud-based processing 
and privacy preservation has been ensured when using 
federated learning techniques. Computational com-
plexity, scalability, and cost–benefit analysis have been 
optimized for the proposed model. Additional analysis 
has been conducted to measure the adaptability and 
performance of the algorithms in more extensive and 
complex WSN deployments.

Ensemble federated learning
Ensemble approach for anomaly detection
Anomaly detection using the ensemble approach involves 
training multiple base models on the WSN dataset to 
identify anomalous instances collectively. Each model 
is trained using a different subset of the dataset or with 
variations in feature selection and hyperparameters. 
These are parameters of a machine learning model that 
are set prior to the training process and are not learned 

from the data. Examples include learning rates, regular-
ization factors, or tree depths in decision trees. Hyper-
parameters are tuned or optimized to enhance a model’s 
performance. The main idea behind ensemble methods is 
to improve overall performance by combining the predic-
tions of diverse models, resulting in better accuracy and 
robustness. Ensemble methods offer significant advan-
tages in the context of WSNs, where data can exhibit 
complex and non-linear patterns. For example, RF, a pop-
ular ensemble technique, constructs multiple decision 
trees, and the final prediction is determined by aggregat-
ing the predictions of individual trees. Another ensemble 
method, Gradient Boosting Machines, builds weak learn-
ers sequentially, with each learner focusing on the mis-
takes of its predecessor, leading to a more accurate final 
prediction.

The novelty of this ensemble-based anomaly detection 
algorithm lies in its ability to combine multiple machine 
learning models to collectively identify anomalies. It 
improves upon conventional methods by incorporat-
ing a variety of models, adapting to changes in data, and 
handling complicated patterns. To achieve maximum 
accuracy, the algorithm aggregates predictions through 
majority or weighted voting. Additionally, the algorithm 
is adaptable and dynamic, making it well-suited for the 
challenges presented by WSNs. The selection of base 
models, the ensemble configuration, and the dynamic 
adjustments make this approach innovative and effective 
in identifying anomalies in the context of WSNs. Unlike 
conventional models, this algorithm captures complex 
patterns and adapts to evolving data, reducing false posi-
tives and negatives.

By leveraging ensemble methods, the anomaly detec-
tion algorithm captures a broader range of normal 
data patterns and better adapts to the dynamic nature 
of WSN data. Consequently, it becomes more effec-
tive at identifying subtle anomalies that may appear 
in diverse forms, reducing the risk of false positives 
and false negatives, thereby enhancing the overall 
anomaly detection performance. Ensemble methods 
for anomaly detection use various ML models as build-
ing blocks. The following models are combined in the 
ensemble to improve the performance: DT, RF, SVM, 
k-NN, and artificial neural networks (ANN). The 
choice of these base models is made based on the data-
set and anomaly patterns.
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Algorithm 1. Ensemble method for anomaly detection

To begin the algorithm, the training dataset needs 
preparation. This dataset has feature vectors X paired 
with labels Y, that determine whether an instance is nor-
mal or anomalous. A container, E, is created to store the 
various ML models that will make up the ensemble. The 
number of base models, M, is determined, and a loop is 
run for M iterations to create several base models. Dur-
ing each iteration, a subset of the training dataset, Xm, 
is chosen randomly with replacement to create a boot-
strapped dataset. The mth model in the ensemble, hm(X), is 
then trained on the bootstrapped dataset Xm.

Once all the base models have been trained, each 
model, hm(X), is used to make predictions on the entire 
dataset, X. The ensemble prediction, fE(x), is calculated 
based on the aggregated predictions from individual 
models. If majority voting is used, fE(x) is the mode of pre-
dictions from the base models indicating the most com-
mon classification among the models, for instance, x. If 
weighted voting is used, each model is assigned a weight, 
Wm, based on its performance. The ensemble predic-
tion, fE(x), is a weighted sum of predictions from the base 
models. The performance of the ensemble in detecting 
anomalies is evaluated using standard metrics. Based on 

the evaluation results, hyperparameters are adjusted, and 
the ensemble may be retrained to optimize performance. 
The final ensemble, E, consisting of multiple base ML 
models, is now ready for anomaly detection on new and 
unseen data instances in the WSN. EFL is integrated into 
the WSN environment, achieving a collaborative, decen-
tralized, and privacy-preserving approach to anomaly 
detection, making it more robust, energy-efficient, and 
adaptable to dynamic environments. This approach also 
minimizes the need for data transmission and central 
processing, which is beneficial for resource-constrained 
sensor nodes.

Mathematical modeling
Enhancements have been made to further improve 
anomaly detection using cloud-based model aggre-
gation, dynamic model weights, transfer learning, 
cloud-enhanced hyperparameter tuning, distributed 
anomaly reporting, federated learning integration, adap-
tive weighted voting, cloud-driven model evolution, 
edge-cloud collaborative learning, and real-time model 
synchronization. These improvements ensure accuracy, 
efficiency, and continuous model evolution while con-
serving energy in resource-constrained nodes.
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Cloud-Enabled Model Aggregation is used based on 
updates from different sensor nodes. Instead of aggregat-
ing locally on each node, the cloud can centralize model 
aggregation, ensuring consistency and efficiency.

Here, θc is the global model parameters, θn repre-
sents the model parameters from each sensor node, and 
N is the total number of sensor nodes. Dynamic Model 
Weights technique is implemented to dynamically adjust 
model weights based on their performance over time. 
This can help the ensemble prioritize well-performing 
models and adapt to changing data distributions.

where Wm(t) is the weight of model m at time t, α is a 
learning rate, and Pm(t) is the performance metric of 
model m at time t. Transfer learning and cloud pretrain-
ing help pre-train models on a larger dataset in the cloud.

where θp are the pre-trained model parameters, L rep-
resents the loss function, θ are the model parameters, 
and Dp is the larger pretraining dataset. Cloud-enhanced 
hyperparameter tuning is performed to optimize hyper-
parameters using cloud resources.

where θo is the optimal hyperparameters, L represents 
the loss function, D is the WSN dataset, λ is a regulari-
zation term, and R(θ) is the regularization term. Distrib-
uted anomaly reporting enables reporting anomalies to 
the cloud for central analysis.

where ARc represents the aggregated anomaly reports 
sent to the cloud, and ARn is the individual anomaly 
reports from each sensor node. Federated Learning is 
integrated with cloud-based model aggregation.

where θg represents the global model parameters, θl are 
the local model parameters from each sensor node, and 
N is the total number of sensor nodes. Adaptive weighted 

(1)θc =
∑ θn

N

(2)Wm(t+1) = Wm(t) × (1+ α × Pm(t))

(3)θp = argmin(θ)L(θ ,Dp)

(4)θo = argmin(θ)L(θ ,D)+ � × R(θ)

(5)ARc = ARn

(6)θg =
∑ θl

N

voting is used to dynamically adjust model weights dur-
ing weighted voting.

where Wm(t) is the weight of model m at time t, α is a 
learning rate, and δPm(t) is the change in performance of 
model m at time t. Cloud-driven feedback loop is used 
for model evolution.

where θu represents the updated model parameters, θi 
are the initial model parameters, α is a learning rate, and 
δp is the change in performance based on cloud feedback. 
Edge-cloud collaborative learning enables collaborative 
learning between edge nodes and cloud.

where θe are the model parameters from edge nodes, and 
θc are the model parameters from the cloud. Real-time 
synchronization of model updates is performed.

where θp are the previous model parameters, and δθ is 
the change in model parameters based on new data.

Integration of federated learning into the WSN 
environment
The WSN environment has integrated Federated Learning 
to facilitate collaborative and decentralized model training 
while ensuring data privacy. The traditional ML approach 
involves collecting and aggregating data from all sensor 
nodes in a central server for model training. However, this 
is not practical in WSNs due to limited bandwidth and 
concerns about data privacy and security. In the FL-based 
anomaly detection algorithm, each sensor node trains its 
own local ML model using locally stored data. The central 
server initializes the training process and sends the initial 
model parameters to each node. The nodes then carry out 
model training on their unique data patterns and char-
acteristics in a distributed manner. Only model updates, 
not raw data, are exchanged with the central server. The 
central server securely aggregates the model updates from 
each sensor node using techniques such as secure multi-
party computation or differential privacy. By aggregating 
the updates, a global model is created, capturing the col-
lective intelligence of the WSN without compromising 
individual nodes’ data privacy.

(7)Wm(t+1) = Wm(t) × (1+ α × δPm(t) )

(8)θu = θi + α × δp

(9)θu = θe + θc

(10)θu = θp + δθ
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Algorithm 2. Federated learning for distributed WSNs with cloud integration

This system utilizes FL to detect anomalies in dis-
tributed WSNs that integrate with the cloud. It enables 
model training to be done collaboratively across multi-
ple sensor nodes without the sharing of raw data. The 
cloud server plays a central role in aggregating the local 
model updates from individual nodes to create a global 
model for anomaly detection. The global ML model, 
known as θg, is initialized on the cloud server. Each 
sensor node, i, initializes a local model, θi, with the 
same architecture as the global model. The local data-
sets Xi and labels Yi remain on the sensor nodes to pre-
serve data privacy.During each communication round, 
the sensor nodes update their local models using the 
current global model and their respective local data-
sets. The updated models, θi(t), are then sent to the 
cloud server for aggregation. The cloud server aggre-
gates the model updates from all nodes to create an 
updated global model, θg(t). This global model reflects 

the collective knowledge of all sensor nodes while pre-
serving data privacy. This process of model updates 
and aggregation is repeated for a predefined number of 
communication rounds, T, to refine the global model 
further. After T communication rounds, the final global 
model, θg, is obtained and sent back to all nodes. This 
global model captures the collective learning from all 
sensor nodes and is now ready for anomaly detection 
on new and unseen data instances in the WSN.

The FL based AD model is illustrated in Fig. 2. In this 
model, the number of participants (such as industries or 
devices) is denoted as N, and it depends on the specific 
requirements of the use case. Each participant is assumed 
to be connected with K smart IoT devices and has its own 
local storage dataset Di, where i = 1, 2, 3, …, N, which is 
collected through these K smart devices. Smart devices 
generally generate a large amount of data which is used 
to train the ML model, but it is susceptible to privacy and 
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other major issues. To address these concerns, ML based 
AD models can train the data locally in a federated set-
ting without compromising the privacy of the patients. 
Prior to commencing the training in a federated setting, 
each participant must sign an agreement to establish its 
legitimacy.

The integration of cloud computing in the FL approach 
enables efficient model aggregation and ensures that 
resource-constrained sensor nodes can collectively con-
tribute to the anomaly detection process. The decen-
tralized nature of FL and cloud integration facilitates 
privacy-preserving collaborative learning in large-scale 
WSN deployments. The global model’s continuous 
improvement through iterative updates enhances the 
anomaly detection performance, making it more adaptive 
and accurate in dynamic WSN environments Federated 
Learning enables collaborative and distributed model 
training, making it suitable for large-scale WSNs where 
centralized data aggregation is not feasible. It allows 
sensor nodes to participate in model training without 
compromising data privacy, providing an efficient and 
privacy-preserving approach for anomaly detection in 
distributed WSN environments.

Training process and model aggregation mechanism
During the Federated Learning process for anomaly 
detection in WSNs, training unfolds in multiple rounds 
or epochs. In each round, denoted by t, the central server 
disseminates the current global model’s parameters, θ(t)g  
to all sensor nodes. These parameters serve as the start-
ing point for local model training on individual nodes, 

leveraging their unique datasets. The training process 
involves computing gradients based on local data and 
optimizing the model’s parameters. Mathematically, this 
can be represented as:

where θ(t)l  represents the local model parameters at 
round t, L is the loss function, Di is the local dataset of 
node i, and N is the total number of nodes. After local 
model training, the sensor nodes transmit their model 
updates back to the central server. Model updates typi-
cally encompass gradient information or parameter 
adjustments computed during the local training phase. 
Critically, the raw data remains encrypted on the nodes, 
ensuring privacy and security during transmission.

Upon receiving the model updates, the central server 
employs a suitable aggregation mechanism, such as 
weighted averaging or median selection, to amalgamate 
the contributions from different nodes. Mathematically, 
the aggregation can be expressed as:

where θ(t+1)
g  ​ represents the updated global model 

parameters for the next round, and Agg(⋅) denotes the 
aggregation function. This process of iterative model dis-
tribution, local training, and model aggregation occurs 
over multiple rounds. With each iteration, the global 
model progressively improves its performance and adapts 
to the dynamic characteristics of the WSN environment. 

(11)θ
(t)
l = argmin(θ)

N
∑

i=1

L(θ ,Di)

(12)θ(t+1)
g = Agg(θ

(t)
l )

Fig. 2  Anomaly detection using federated learning



Page 11 of 21Gayathri and Surendran ﻿Journal of Cloud Computing           (2024) 13:49 	

The iterative progression can be represented mathemati-
cally as:

This iterative Federated Learning process empowers 
the anomaly detection algorithm to achieve collaborative 
and decentralized model training. It effectively identifies 
anomalies across the entire WSN, safeguarding data pri-
vacy and security while fostering continual improvement 
in detection accuracy and adaptability.

Integration with cloud computing
Cloud computing has proven to be a valuable tool for 
research, providing benefits such as increased storage 
space, scalable computation resources, and centralized 
data processing capabilities. During the research, several 
methods were utilized to incorporate cloud computing, 
including cloud-based data storage where data from sen-
sor nodes was periodically offloaded and stored in the 
cloud. This allowed for easier management and retrieval 
of data for analysis. Cloud-based model training was 
also utilized, offloading computationally intensive and 
resource-consuming tasks to the cloud. Model aggrega-
tion was performed in the cloud, where updates from 
different sensor nodes were combined to create a global 
model that was then redistributed back to the nodes for 
local anomaly detection. Cloud computing allowed for 
scalability and elasticity based on demand, ensuring that 
the online anomaly detection system was efficient and 
responsive during peak and off-peak periods. Real-time 
data analytics, data fusion, and correlation were also car-
ried out in the cloud, enabling the identification of pat-
terns and anomalies across multiple locations. Finally, 
secure cloud communication protocols and encryption 
techniques were used to protect sensitive sensor data 
from unauthorized access and cyber-attacks.

Online anomaly detection with energy‑efficient techniques
The Online Anomaly Detection algorithm detects 
anomalies in real-time streaming data from wire-
less sensor nodes. It continuously analyzes incom-
ing data, making it ideal for time-critical applications 
in resource-constrained environments. The algorithm 
normalizes and scales sensor readings, selects and 
trains a model, detects anomalies, incorporates adap-
tive model updates, and optimizes memory and compu-
tational efficiency. This process ensures that all features 
or variables in a dataset have a similar scale or range. 
Common normalization techniques include Min–Max 
scaling (scaling features to a range between 0 and 1) or 
Z-score normalization (scaling features to have a mean 

(13)θ(t+1)
g = Agg

(

θ
(t)
l

)

, θ(t+2)
g = Agg

(

θ
(t+1)

l

)

, ...

of 0 and a standard deviation of 1). The algorithm can 
be described with the following mathematical expres-
sions and steps:

•	 Normalize sensor readings using: xnorm =
x−µ
σ

 ​
, where xnorm ​ is the normalized value, x is the raw 
sensor reading, μ is the mean, and σ is the standard 
deviation.

•	 Select a suitable model for anomaly detection, such 
as a SVM and train the model using the labeled 
dataset SVMmodel = TrainSVM(Xnorm,Y ) , where 
Xnorm is the normalized feature vectors and Y is the 
corresponding labels.

•	 Predict anomalies using: 
A = Predict(Xnorm, SVMmodel) where A represents 
the anomaly predictions.

•	 Update the model based on new labeled data: 
SVMmodel ′ = U(SVMmodel ,Xnorm,Y ′) where 
SVMmodel ′ ​ is the updated model, Xnorm ​ is new nor-
malized data, and Y ′ is the corresponding new labels.

•	 Optimize memory and computational resources by 
storing a limited history of data to conserve mem-
ory Xhistory​ = [x1​, x2​,…,xn​].

•	 Using incremental updates for model training: 
SVMmodel ′ = IU(SVMmodel ,Xnorm,Y ′)

To increase energy efficiency in WSN, duty cycling 
technique is used, which involves switching the sensor 
node between active and sleep modes periodically. Dur-
ing sleep periods, non-essential components such as the 
radio and processor are disabled to conserve energy. This 
technique can be represented mathematically as

where Etotal is the total energy consumption, Eactive is 
the energy consumption during active mode, tactive is 
the active time, Esleep is the energy consumption during 
sleep mode, and tsleep is the sleep time. The low-power 
hardware design involves using power-efficient sensors, 
microcontrollers, and transceivers that consume less 
energy during operation. This can be expressed as

where Esavings is the energy savings, Eoriginal is the energy 
consumption with original hardware, and Elow-power is the 
energy consumption with low-power hardware. Finally, 
data aggregation and compression technique is used to 
reduce the amount of data transmitted over the network, 
leading to reduced energy consumption. Aggregating 
similar data from multiple nodes into a single packet and 
compressing the data before transmission can minimize 

(14)Etotal = (Eactive × tactive)+
(

Esleep × tsleep
)

(15)Esavings = Eoriginal − Elowpower
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the energy expended on communication. This technique 
can be represented as

where Ereduction is the energy reduction, Eoriginal is the 
energy consumption with original data transmission, and 
Ecompressed is the energy consumption with data aggrega-
tion and compression.

By incorporating these techniques, energy efficiency is 
enhanced on resource-constrained sensor nodes in WSN.
The Online Anomaly Detection algorithm is a highly reli-
able and efficient method for detecting any irregularities 
in data streaming from wireless sensor nodes. Its adaptive 
model updates, memory, and computational efficiency 
enable it to work effectively even in resource-limited envi-
ronments. The algorithm employs various techniques like 
duty cycling, low-power hardware design, data aggrega-
tion, and edge computing to improve energy efficiency on 
sensor nodes. Thus, it is an excellent choice for deploying 

(16)Ereduction = Eoriginal − Ecompressed

in large-scale WSNs. By integrating edge computing, the 
algorithm can perform local processing, real-time analy-
sis, and collaborative decision-making, which enhances 
the network’s capabilities for anomaly detection, perfor-
mance, and robustness. The algorithm provides a new and 
innovative approach to detect anomalies that offer sev-
eral benefits over traditional methods. Unlike traditional 
methods that rely on static models, the algorithm updates 
its models in real-time, making it easier to detect anom-
alies and reduces the need for retraining models. It uses 
minimal memory and computational power and is ideal 
for resource-constrained sensor nodes. The algorithm is 
capable of detecting anomalies in real-time, which is criti-
cal in scenarios where timely detection is essential. It uses 
techniques like duty cycling and data aggregation to save 
energy on resource-constrained sensor nodes, prolonging 
the network’s lifespan and reducing power consumption. 
The algorithm addresses the limitations of traditional 
methods by combining real-time processing, adaptive 
model updates, and resource efficiency.

Algorithm 3. Online anomaly detection algorithm
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The anomaly detection algorithm starts by learning 
the normal behavior of the system using historical data. 
It sets a threshold value to flag any incoming data as an 
anomaly. The algorithm normalizes and scales the data 
for fair comparison, and if an anomaly score exceeds 
the threshold, an alarm is raised. The algorithm updates 
the model periodically to adapt to changing system 
behavior. This enables real-time monitoring and detec-
tion of anomalies in streaming data.

Unified cloud‑enabled anomaly detection framework
The unified Cloud-Enabled Anomaly Detection Frame-
work represented in Fig.  3 integrates EFL, OAD-EE, 
cloud-based data storage, and processing, allowing 
sensor nodes to collect data and algorithms to process 
it locally and collaboratively in the cloud. This frame-
work leads to improved accuracy, energy efficiency, and 
real-time anomaly detection capabilities in wireless 
sensor networks. It takes advantage of the strengths of 
both algorithms and leverages cloud resources for effi-
cient model training, aggregation, and energy-efficient 
anomaly detection. The first algorithm introduces an 
ensemble approach, using a combination of diverse 
machine learning models, weighted averaging, and 
stacking techniques to effectively capture various pat-
terns in sensor data. The second algorithm introduces 
a FL approach that enables collaborative model training 
across multiple nodes without transmitting raw data 
to a centralized location, ensuring data privacy and 
reducing communication overhead in WSNs. The third 
algorithm presents an OAD algorithm designed for 
real-time anomaly detection in WSNs, which incorpo-
rates techniques like data cleaning, normalization, and 
outlier detection to ensure effective anomaly detection 
even in scenarios with rare anomalies.

Real-time data is collected by sensor nodes from the 
environment and then transmitted to the cloud for 
further processing. The Ensemble Federated Learn-
ing (EFL) algorithm involves multiple sensor nodes 

forming a federation, where local models are trained on 
each node while preserving data privacy. The cloud col-
laboratively aggregates model updates to create a global 
model, and ensemble methods are used to enhance 
the model’s accuracy by combining predictions from 
diverse base models. The Online Anomaly Detection 
with Energy-Efficient Techniques (OAD-EE) algorithm 
processes data from sensor nodes in real-time, using 
energy-efficient techniques to optimize energy con-
sumption on resource-constrained nodes and detect 
anomalies using the trained model. Cloud-based model 
aggregation facilitates the aggregation of model updates 
from EFL and OAD-EE, while cloud resources store 
historical data and models and provide computational 
power for complex model training and aggregation.

D represents the dataset, while M represents a set of 
machine learning models. The set M includes DT, RF, 
SVM, k-NN, and ANN. Each individual machine learn-
ing model in M is represented as Mi, where ’i’ is a sub-
script that ranges from 1 to the total number of models. 
The weights assigned to each model Mi for combining 
their predictions are represented by Wi. The Ensemble 
Federated Learning component of the system is repre-
sented by EFL(D, M). The Online Anomaly Detection 
with Energy-Efficient Techniques component of the 
system is represented by OAD_EE(D, M). The combina-
tion of both components is represented by C(D, M).

Experimental Results
The dataset used in this research comprises real-world 
sensor data collected from a WSN deployed in an 
industrial environment called the WSN-IndFeat [27]. It 
includes diverse features, labeled anomalies, and real-
time streaming data, making it a practical resource 

(17)C(D,M) = EFL(D,M)+ OAD_EE(D,M)

(18)EFL(D,M) =
∑|M|

i=1
Wi ·Mi(D)

Fig. 3  The architecture of the unified framework
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for developing robust detection solutions tailored to 
industrial scenarios. The WSN consists of a network of 
interconnected sensor nodes, each equipped with vari-
ous sensors to measure environmental parameters such 
as temperature, humidity, pressure, voltage level, and 
motion. The dataset contains a time series of sensor read-
ings captured at regular intervals from these nodes. The 

dataset is collected over an extended period, ensuring a 
diverse range of normal and abnormal instances. Anoma-
lies in the dataset may include environmental events like 
sudden temperature spikes, abnormal motion patterns, 
or unusual changes in pressure readings. The dataset’s 
diversity allows the anomaly detection algorithms to 
learn both normal and abnormal data patterns effectively.

Fig. 4  Convergence of the ML algorithms

Fig. 5  Detection Accuracy Comparison
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Fig. 6  Precision Comparison

Fig. 7  Sensitivity Comparison
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Fig. 8  Specificity Comparison

Fig. 9  False Alarm Rate Comparison
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The data is prepared for analysis through a series of 
steps, including data cleaning to address missing or dam-
aged data points, normalization to ensure consistency in 
sensor readings, feature selection to identify important 
features for anomaly detection, segmentation to facilitate 
online detection, and outlier detection to handle extreme 
or noisy data instances. Segmentation involves dividing a 
dataset or data stream into smaller segments or subsets. 
In the context of anomaly detection, segmentation might 
involve dividing the data stream into smaller chunks to 
analyze and detect anomalies more effectively within 
each segment. The dataset is divided into training and 
testing sets to evaluate the performance of the anomaly 
detection model. In addition, techniques such as over-
sampling or undersampling have been used to balance 
the dataset for effective anomaly detection in real-world 
scenarios where anomalies are rare compared to normal 
instances.

In order to combine the machine learning models, ran-
dom search technique is used. Preprocessing the data, 

including handling missing values, encoding categori-
cal features, and scaling/normalizing numeric features, 
is performed. The dataset is split into training (70%) and 
testing (30%) sets for model evaluation. Multiple machine 
learning models, including DT, RF, SVM, k-NN, and 
ANN, have been selected for combination. Hyperparam-
eters for each individual model have been tuned using 
random search to find the best set of hyperparameters 
within specified ranges. After tuning individual models, 
their predictions have been combined using stacking, a 
weighted averaging method. These are ensemble learn-
ing techniques used to combine predictions from multi-
ple models. Weighted averaging assigns different weights 
to the predictions of individual models before combin-
ing them, while stacking involves training a meta-learner 
that learns how to combine the predictions of the base 
models.

The weights for each model have been defined to 
determine the importance of their prediction in the final 
ensemble, ensuring their sum is equal to 1. The weights 

Table 1  Comparison of parameters

Technique Accuracy Precision Recall Specificity F1 Score AUC​

EFL 0.95 0.96 0.94 0.97 0.79 0.79

OAD-EE 0.87 0.92 0.93 0.93 0.72 0.63

Baseline-AD 0.79 0.85 0.90 0.92 0.69 0.72

Unified framework 0.96 0.97 0.95 0.97 0.86 0.78

Fig. 10  Energy consumption comparison
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are assigned as follows: DT (0.1), RF (0.2), SVM (0.2), 
k-NN (0.2), and ANN (0.3). With the defined weights, 
the chosen ensemble method has been applied to com-
bine the predictions of individual models. For weighted 
averaging, a weighted average of the predictions has 
been calculated. For stacking, a meta-learner has been 
trained on top of the predictions from individual mod-
els. The performance of the combined model has been 
evaluated using appropriate evaluation metrics, such as 

accuracy, F1 score, and AUC. Cross-validation has been 
used to obtain a more reliable estimate of the model’s 
performance. The convergence of the algorithms is ana-
lyzed for 100 iterations, as shown in Fig.  4. This refers 
to the point where iterative algorithms reach stability 
or stop changing significantly with further iterations. 
Analyzing the convergence involves observing how the 
performance or behavior of algorithms changes over a 
specific number of iterations or epochs.

Fig. 11  Communication overhead comparison

Fig. 12  Confusion Matrix of the unified framework
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The experimental results of the proposed EFL, OAD-
EE, and a benchmark Baseline-AD are presented below. 
Figure  5 compares the detection accuracy achieved 
by each algorithm for 10 sample nodes. Higher accu-
racy indicates better anomaly detection performance. 
It is observed that EFL offers better detection accuracy 
among others. Figure 6 provides the comparison of preci-
sion. A higher precision represents that the algorithm has 
fewer false alarms, indicating that the detected anomalies 
are more likely to be true anomalies. A higher precision 
value suggests that the algorithm’s detections are reliable 
and trustworthy.

Figure 7 provides the comparison of sensitivity (recall). 
A higher sensitivity means that the algorithm is effective 
at capturing a larger proportion of actual anomalies. It 
indicates the algorithm’s ability to detect true anomalies 
among all the anomalies present. Figure 8 compares the 
sensitivity. A higher specificity means that the algorithm 
is better at correctly identifying normal instances as nor-
mal. This is important to avoid unnecessary alerts for 
normal operations.

Figure  9 provides the comparison of false alarm rate. 
The false alarm rate is crucial in assessing the accuracy 
of anomaly detection systems in WSNs. It measures the 
frequency of false alarms or false positives generated by 
the system. A lower false alarm rate suggests higher reli-
ability and accuracy. Striking a balance between detecting 
real anomalies and minimizing false alarms is essential. 
A high false alarm rate can lead to disruptions, waste of 

resources and loss of trust in the system. In wireless sen-
sor networks, controlling the false alarm rate is vital to 
ensure efficient resource utilization and effective anom-
aly detection. It is observed that the EFL model outper-
forms the other models in this parameter.

Table 1 provides the comparison of various parameters 
involved in the performance analysis of the proposed 
model. The Unified framework beats individual tech-
niques in detecting anomalies. It has higher accuracy, 
precision, recall, and F1 Score. Despite slightly lower 
AUC, the unified framework offers best performance.

Figure  10 provides the comparison of energy con-
sumption in percentage for all the models. Lower energy 
consumption indicates more energy-efficient anomaly 
detection. The analysis is performed for seven hours at 
a single node. It is observed that the OAD-EE technique 
optimizes energy by approximately 25% when compared 
to the baseline approach. The unified framework opti-
mizes maximum energy. Figure 11 provides a comparison 
of the communication overhead of the algorithms. Lower 
communication overhead indicates reduced data trans-
mission in WSN. It is observed that the unified frame-
work offers the least communication overhead.

Figure 12 provides the confusion matrix of the unified 
framework for anomaly detection. The anomaly detection 
results are evaluated using incident labels. All true posi-
tive and true negative ratios are increased while all false 
alarms are decreased. Tables 2 and 3 provides the com-
parison the EFL and OAD-EE with state-of-the-art fed-
erated learning and anomaly detection models as tested 
with a common dataset used for this research.

Table  4 provides a comparison of the computational 
complexity of the three algorithms. Further, the scal-
ability analysis, cloud resource utilization, and cost–ben-
efit analysis are performed for the proposed model. It 
is observed that the unified framework offers improved 
performance in all these analyses.

Implementing and fine-tuning ensemble learning, as 
well as combining various machine learning models, 
can be complex and computationally intensive. This can 
be especially challenging in resource-constrained envi-
ronments like WSNs. Additionally, the effectiveness of 
the proposed ensemble approach and machine learning 

Table 2  Comparison of EFL with state-of-the-art federated 
learning models

Model Model 
Acccuracy

Communication 
Overhead

Privacy 
Preservation

Training 
Convergence

Federated 
Learning 
with Secure 
Agg [16]

91% 1.2 MB High 34 epochs

Federated 
Averaging 
(FedAvg) [32]

88% 1.5 MB Low 28 epochs

EFL 95% 1.0 MB High 9 epochs

Table 3  Comparison of OAD-EE with state-of-the-art anomaly detection models

Model Detection Accuracy Energy Efficiency Scalability Latency (ms)

OAD-EE 87% High High 9

Isolation Forest [33] 82% Medium Medium 18

One-Class SVM [34] 78% Low Low 14

Recurrent Neural Networkd (RNN) 
[35]

87% Low Medium 13
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models may heavily depend on hyperparameter tuning, 
which might require expertise and significant computa-
tional resources. While cloud integration can improve 
scalability and efficiency, it may also raise concerns 
about data privacy and security. Therefore, it’s essential 
to ensure secure data transmission and processing in 
the cloud. The performance of the proposed techniques 
might vary across different WSN environments. There-
fore, it’s important to validate the models’ adaptability 
to diverse scenarios and their generalization beyond 
the dataset used for evaluation. Deploying complex 
algorithms and cloud-integrated systems might pose 
challenges in practical implementation, maintenance, 
and real-time adaptability in industrial settings.

Conclusion and Future Scope
There is a need for optimized anomaly detection in 
WSNs. To achieve this, new and improved techniques 
are explored that prioritize accuracy, energy efficiency, 
and scalability. By optimizing resource efficiency, energy 
consumption can be reduced, and communication over-
head can be minimized. The results of experiments show 
that integrating EFL and Online Anomaly Detection 
with Energy-Efficient Techniques with cloud computing 
outperforms traditional anomaly detection methods in 
terms of accuracy, false positive rate, energy consump-
tion, and communication overhead. This approach lever-
ages the power of cloud computing to improve scalability, 
resource utilization, and real-time response in detect-
ing anomalies in WSNs. The unified framework offers 
96% accuracy, 97% precision, 95% recall, 97% specific-
ity, 0.86 F1 score and 0.78 AUC. These findings demon-
strate that using machine learning and federated learning 
techniques in conjunction with cloud computing can 
significantly improve anomaly detection performance 
while considering resource constraints in WSN environ-
ments. The inclusion of cloud computing in this research 
enhances the system’s overall efficiency. It enables seam-
less model training, aggregation, and real-time data 
analytics. The cloud’s scalability and elastic resources 
empower the system to handle larger WSNs and adapt to 
changing workloads effectively. Additionally, cloud-based 

data storage ensures seamless long-term data retention 
and easy retrieval, facilitating comprehensive analysis 
and insights. The impressive accuracy and energy effi-
ciency of EFL makes it a compelling and viable approach 
for real-world anomaly detection in WSNs. This research 
lays the foundation for future investigations to explore 
the adaptability and performance of these algorithms in 
more extensive and complex WSN deployments. Fur-
thermore, optimizing cloud integration and security 
measures can safeguard sensitive sensor data and ensure 
privacy during cloud-based data processing.
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