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Abstract 

Optimizing resource allocation and routing to satisfy service needs is paramount in large-scale networks. Software-
defined networking (SDN) is a new network paradigm that decouples forwarding and control, enabling dynamic 
management and configuration through programming, which provides the possibility for deploying intelligent 
control algorithms (such as deep reinforcement learning algorithms) to solve network routing optimization prob-
lems in the network. Although these intelligent-based network routing optimization schemes can capture network 
state characteristics, they are prone to falling into local optima, resulting in poor convergence performance. In order 
to address this issue, this paper proposes an African Vulture Routing Optimization (AVRO) algorithm for achieving 
SDN routing optimization. AVRO is based on the African Vulture Optimization Algorithm (AVOA), a population-based 
metaheuristic intelligent optimization algorithm with global optimization ability and fast convergence speed advan-
tages. First, we improve the population initialization method of the AVOA algorithm according to the characteristics 
of the network routing problem to enhance the algorithm’s perception capability towards network topology. Sub-
sequently, we add an optimization phase to strengthen the development of the AVOA algorithm and achieve stable 
convergence effects. Finally, we model the network environment, define the network optimization objective, and per-
form comparative experiments with the baseline algorithms. The experimental results demonstrate that the routing 
algorithm has better network awareness, with a performance improvement of 16.9% compared to deep reinforce-
ment learning algorithms and 71.8% compared to traditional routing schemes.

Introduction
With the growth of network scale, allocating network 
resources has become increasingly essential. Due to the 
tight coupling between the control plane and data plane 
in a traditional network architecture, routing algorithms 
cannot collect the state information of the network from 

a global perspective and plan forwarding paths accord-
ingly. This may result in low network utilization and 
severe congestion in large-scale environments. Software-
defined networking (SDN) [1] introduces a new approach 
that utilizes a programmable control plane to determine 
how different data flows are forwarded. The network’s 
control logic is then transmitted from delivering devices 
such as routers and switches to software controllers, 
thereby decoupling the data plane from the control plane 
and simplifying network management [2]. As shown 
in Fig.  1, the control plane and data plane components 
connect through southbound application programming 
interfaces (APIs), such as OpenFlow [3]. In contrast, net-
work policies or applications (such as routers, load bal-
ancers, and firewalls) can be implemented on the control 
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or management planes and interact with the controller 
through northbound APIs (such as RESTful API [4]).

In SDN, traditional routing algorithms, such as open 
shortest path first (OSPF) [5], cannot quickly adapt to 
dynamic traffic characteristics [6]. This limitation hin-
ders the effective allocation of network resources and 
gradually becomes a bottleneck. To overcome this bot-
tleneck, scholars have proposed using deep learning 
(DL) to solve routing problems [7, 8]. Existing DL meth-
ods such as graph neural network (GNN) [9] and long 
short-term memory (LSTM) [10] have achieved specific 
results in extracting network features and predicting 
network states. Training DL algorithm models does not 
require complex assumptions and modelling of network 
environments and can obtain optimized routing deci-
sions through precise inference based on input data. This 
makes data-driven DL routing methods better adapted 
to different network application scenarios and routing 
optimization goals than traditional routing methods [11]. 
However, existing deep learning-based intelligent routing 
algorithms cannot guarantee their security and robust-
ness in complex and changing network environments 
and require high deployment costs. In addition, due to 
the offline training nature of deep learning, there exists a 
reality gap that cannot display the same exceptional per-
formance achieved during training in practice.

Using reinforcement learning [12] algorithms to make 
routing decisions is a recent research hotspot. Q-learning 
[13] is a classic form of reinforcement learning that stores 

state-action representations in Q-tables [6, 14]. However, 
as networks become more complex, the corresponding 
state-action space increases, and Q-tables may become 
very large. The algorithm requires a long learning time 
and can lead to high memory usage. Deep reinforce-
ment learning (DRL) [15] uses deep neural networks to 
approximate state-action tables to overcome the scalabil-
ity issues of Q-tables. Recent research has applied DRL 
methods to complex problems in the field of communica-
tion networks [16–19]. However, DRL-based intelligent 
routing algorithms lack vigorous scalability and sufficient 
robustness. They focus more on the convergence and 
accuracy of the algorithm, and training and deployment 
solutions in practical scenarios need to be improved.

In general, due to the current limitations of routing 
devices’ computing power, deploying DL and DRL-based 
routing algorithms in large-scale networks necessitates 
further enhancement in terms of algorithm robustness 
and generalization. In contrast, optimizing SDN routing 
with heuristic algorithms may be more practical. Heuris-
tic algorithms are problem-oriented algorithms that may 
not guarantee convergence to nearly optimal solutions 
but can obtain competitive solutions within a reasonable 
time frame. As an extension of heuristics, metaheuristics 
provide a problem-independent algorithm framework 
that can iteratively improve the solution quality of a given 
fitness function to find nearly optimal solutions [20]. The 
development of metaheuristic algorithms has made new 
progress in solving optimization problems. The African 
vulture optimization algorithm (AVOA) [21] is a bioin-
spired metaheuristic algorithm with global search ability 
and fast convergence speed. Inspired by this algorithm, 
this paper proposes an African vulture routing optimiza-
tion (AVRO) algorithm for network routing optimization, 
which has stable convergence performance and strong 
global optimization capability. To achieve the network 
optimization goal of load balancing, we add link central-
ity measurement to population initialization to enhance 
AVRO’s topological awareness. At the same time, we 
set additional optimization stages for the algorithm to 
approximate the leader vulture, thus strengthening the 
algorithm’s development and improving convergence sta-
bility. The main contributions of this paper are as follows:

(1) A mathematical model is constructed for the net-
work link load balancing problem, and optimization 
objectives are developed for the SDN routing algorithm.
(2) A routing optimization scheme, AVRO, is 
designed based on a metaheuristic algorithm. AVRO 
adds link betweenness measurement in population 
initialization to enhance the topological awareness 
of the algorithm. Additionally, it adds an optimiza-
tion stage based on development and exploration to 

Fig. 1 SDN Architecture diagram
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strengthen the algorithm’s performance and improve 
the model’s convergence stability.
(3) The AVRO model is compared with traditional rout-
ing algorithms, deep learning-based routing algorithms, 
and classic reinforcement learning-based routing algo-
rithms in three different network topologies and two 
different traffic intensities under simulation environ-
ments, demonstrating the superior load-balancing per-
formance of the algorithm proposed in this paper.

The remainder of this paper is structured as follows: 
Sect.  " Related work" presents related work on SDN rout-
ing problems; Sect. " Mathematical modelling for network 
optimization" describes the network model and optimi-
zation objectives; Sect.  "  Design of routing optimization 
algorithm based on AVRO" introduces the workflow of the 
routing algorithm based on AVRO; Sect.  "  Experimental 
evaluation" verifies the algorithm’s performance through 
simulation experiments; and finally, Sect.  "  Conclusion" 
presents the conclusion and future directions of work.

Related work
The SDN paradigm has been widely applied to various 
communication network problems, such as distributed 
routing [8], mobile edge computing [16], data center net-
works [17], optical networks [19], named data networking 
[22], and vehicular ad hoc network routing [23]. Routing is 
a core activity in SDN, as it routes data from source nodes 
to destination nodes, significantly affecting network perfor-
mance, such as energy consumption, latency, and packet 
transmission rate. To maximize network utility, research-
ers have proposed many routing optimization algorithms. 
Existing research on routing optimization methods 
includes traditional routing methods, deep learning-based 
routing algorithms, reinforcement learning-based routing 
algorithms, heuristic-based routing algorithms, and dedi-
cated algorithms designed for dynamic routing scenarios.

The traditional routing algorithm is the OSPF proto-
col [5], which only selects the shortest path for forward-
ing routes. However, in real network environments, the 
available bandwidth of paths dynamically changes over 
time, making it difficult for traditional routing algorithms 
to accurately perceive the current network status and 
take appropriate actions accordingly. When the service 
demand bandwidth reaches the bottleneck of a link, it 
not only dramatically reduces user experience but also 
may cause severe network congestion, leading to a sig-
nificant waste of network resources [11].

In recent years, the development of artificial intelligence 
(AI) technology based on deep learning has progressed rap-
idly, and many studies have used AI models to solve routing 
optimization problems. The general deep learning-based 

routing solution takes network topology and network sta-
tus information as input, and the model makes appropri-
ate routing decisions based on the input information [11]. 
Existing intelligent routing solutions based on deep learn-
ing models mainly generate routing paths in a hop-by-hop 
manner. Shin et  al. [8] designed a distributed intelligent 
routing algorithm based on GNN to utilize topology infor-
mation further. By deploying the GNN parameter update 
function on each router and using GNN to extract network 
structure and state information, the iterative process of 
GNN topology modelling can be completed in a distrib-
uted manner, with good scalability and distributed routing 
decision-making. Compared with traditional routing meth-
ods, it has lower information exchange costs and faster 
routing convergence speed when the network environment 
changes. However, generating routing paths hop-by-hop is 
prone to causing loops, and deploying the above solution 
requires routers to have powerful model computing capa-
bilities. It may also require modifications to existing routing 
protocols. Therefore, deploying the above solution under 
an existing computer network architecture would incur 
high costs and affect network scalability.

Deep learning methods can also assist in making rout-
ing decisions and improve the efficiency of routing algo-
rithms. The authors in [24] combined GNN and LSTM 
models using a deep learning model based on graph neural 
networks to establish relationships between network sta-
tus, network topology, traffic matrices, and routing path 
models, and used the established model to assist heuris-
tic algorithms in calculating routing strategies. Chen et al. 
[25] used the LSTM algorithm to predict network traffic on 
the SDN application plane. Using deep learning models to 
assist traditional routing algorithms effectively improves 
the performance of traditional routing optimization algo-
rithms. However, the process of replacing traditional rout-
ing algorithms with deep learning-based route generation 
algorithms remains a protracted endeavor. Firstly, DL loss 
functions typically exhibit non-convexity, posing chal-
lenges in pursuing globally optimal solutions. Secondly, DL 
must grapple with gradient vanishing or explosion issues, 
often rendering gradient-based optimization methods inef-
fectual. Finally, the practical deployment of DL models 
encounters impediments due to scale and inference speed 
constraints [18]. These constraints underscore the chal-
lenges confronted during real-world implementation.

Reinforcement learning is another popular direction for 
intelligent routing algorithms. The authors in [6] proposed 
the RSIR algorithm, which uses Q-learning to make deci-
sions on the next hop node, optimizing network load bal-
ancing, latency, and packet loss accordingly. The authors 
in [14] directly represented Q-Learning states and paths 
in the action space for implementing multipath routing 
with guaranteed flow. These Q-learning-based methods 
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use a Q-table for learning and decision-making, but their 
perception capabilities could be improved, leading to poor 
performance. Deep reinforcement learning is a combina-
tion of deep learning and reinforcement learning, which 
replaces the Q-table with a deep neural network, allowing 
the agent to observe the state of the environment and learn 
its characteristics through deep learning perception pro-
cessing, and then train its decision-making skills through 
reinforcement learning [16]. Fu et  al. [17] proposed a 
DQN-based routing policy for creating different routing 
methods for mouse and elephant flows in data center net-
works to optimize throughput, latency, and packet loss. 
The authors in [18] implemented a new architecture that 
combines multiagent reinforcement learning (MARL) and 
GNN to minimize network congestion. The authors in 
[19] proposed a DRL intelligent routing algorithm based 
on ensemble learning and information propagation neural 
networks to maximize the utilization of optical transport 
networks. These DRL-based intelligent routing algorithms 
can achieve good performance after some training itera-
tions. However, due to the computational complexity of 
DRL algorithms, their deployment on hardware devices is 
limited, and more mature solutions are needed for these 
algorithms to be practically applicable.

In intelligent routing algorithms, metaheuristic algo-
rithms can be an alternative to DRL, as their perfor-
mance is comparable to machine learning-based routing 
algorithms. The authors in [26] proposed a knowledge-
based enhanced ant colony system algorithm to utilize 
the knowledge obtained from SDN controllers for placing 
virtual network functions (VNFs) while simultaneously 
allocating primary and redundant paths for flows to man-
age services. In [20], the authors proposed a multicrite-
ria heuristic (MCH) for solving online VNF placement 
and routing problems, using genetic algorithms to learn 
hyperparameters for the online MCH model to minimize 
total power consumption in NFV infrastructure. The 
authors in [27] proposed a fault tolerance metaheuristic-
based scheme (FTMBS) for controller placement prob-
lems in wireless software-defined networks. The authors 
in [28] proposed a novel clustering algorithm, inspired by 
the natural flying soaring technique of the albatross bird, 
that efficiently selects network cluster heads to solve the 
controller placement problem, intending to achieve net-
work reliability and enhance the network lifetime. How-
ever, these algorithms only consider globally optimal 
solutions provided by the algorithms without taking into 
account the network’s volatility and complexity, neglect-
ing the instability of algorithm training and convergence.

In the context of dynamic routing algorithms, the 
authors in [29] introduced the Ant Colony Optimiza-
tion Algorithm for Dynamic Routing in Software Defined 
Networking (ACOSDN). This algorithm effectively 

handles dynamic network fluctuations, reduces conges-
tion, enhances throughput, and mitigates latency and 
packet loss concurrently. However, the ant colony algo-
rithm’s convergence rate is sluggish and tends to converge 
to local optima, potentially leading to network perfor-
mance degradation. In [30], the authors proposed a route 
path selection approach based on link quality estimation 
and critical switch awareness. This method elevates data 
throughput and packet delivery rates by introducing mul-
tiple constraint parameters, including link latency, link 
transmission rate, and critical switch switching frequency 
scores. Nevertheless, it augments the criteria for rout-
ing calculations without adopting a global optimization 
perspective, which may impose limitations on network 
performance. In contrast, our work focuses on globally 
optimizing network routing within a backbone network 
scenario characterized by minimal topology changes and 
excludes considerations for routing in dynamic topologies.

Table  1 summarizes pertinent literature on intelli-
gent routing algorithms, focusing on their key points, 
approaches, objectives, algorithms, and limitations. It 
underscores the imperative for research in the follow-
ing manner: there is a need for a model capable of rapid 
convergence, independent of hardware constraints, and 
capable of perceiving a network’s global perspective to 
optimize routing in response to network fluctuations, 
thus enhancing network performance. In this regard, 
this paper proposes the African vulture routing opti-
mization algorithm for SDN routing optimization. This 
paper improves the convergence speed and robustness of 
metaheuristic algorithms, making them better suited to 
adapt to changes in the SDN network state.

Mathematical modelling for network optimization
We describe a network using G, as shown in Eq.  (1), 
where V represents the set of forwarding nodes in the 
data forwarding layer, and E represents the set of all links 
e, as shown in Eq. (2), where m is the number of links.

We use ci to represent the rated bandwidth of each link 
ei and define C as the sequence of network link-rated 
bandwidths, as shown in Eq. (3), where |C| = |E| = m.

We use tτi  to describe the flow passing through edge ei at 
time τ , which is routed by the SDN controller, and define 
T τ as the sequence of network traffic, as shown in Eq. (4).

(1)G = (V ,E)

(2)E = [e1, e2, . . . , em]

(3)C = [c1, c2, . . . , cm]

(4)T τ = tτ1 , t
τ
2 , . . . , t

τ
m
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We utilize uτi  to describe the usage of edge ei at time τ , 
as calculated by Eq. (5). U τ refers to the collection of utili-
zation rates for links at time τ , as shown in Eq. (6).

Our focus is primarily on optimizing network routing 
from a load-balancing perspective. Load-balancing is a 
vital optimization objective in intelligent network opti-
mization. We achieve load-balancing by considering the 
full range of link utilization U τ , defined as Gτ at time τ 
and calculated by Eq.  (7). The optimization objective is 
defined as Eq. (8), with Eq. (9) representing the restraint 
condition for achieving the optimization objective, which 
aims to minimize the full range of link utilization. By 
reducing the difference of link utilization among each 
link, the network traffic can be evenly distributed among 
the links, avoiding the concentration of network traffic 
on a single link, and thus achieving load balancing.

We make routing decisions using the OSPF algorithm 
based on link weights, which calculates the shortest path 
for a node pair’s traffic demand using link weights. The 
optimal path changes as its usage increases due to conges-
tion. Therefore, the network’s load status affects the opti-
mal path selection. Assigning link weights based on the 
current network load condition is an essential issue in the 
OSPF routing algorithm.

This paper gives weights to each link based on the AVRO 
algorithm. For population-based metaheuristic optimiza-
tion algorithms, the population represents the solutions to 
the problem, and fitness corresponds to the optimization 
objective of the problem. The AVRO algorithm maximizes 
the population fitness by moving the population positions 
in an acceptable computational time and space to obtain a 
better feasible solution. Expressly, multiple populations of 
vultures represent alternative solutions, and in each itera-
tion, the vulture population moves towards better fitness. 
We compute the fitness of each vulture population and 
choose the one with the highest fitness as the solution for 
that iteration. Based on the objective optimization Eq. (8), 
this study describes the AVRO population using Eq.  (10) 
and calculates population fitness using Eq. (11), where Pτ 

(5)uτi =
tτi
ci

(6)U τ =
[

uτ1,u
τ
2, . . . ,u

τ
m

]

(7)Gτ = max
(

U τ
)

−min
(

U τ
)

(8)min
(

Gτ
)

(9)subjecttoGτ ∈ [0, 1]

in Eq. (10) represents the collection of link weights, and pτi  
describes the weight of link i at time τ.

In Eq.  (11), the variables α1 , α2 , and α3 are adjustable 
parameters used to fine-tune the range of fitness and the 
weighting of optimization objectives. The part of the tun-
ing experiment exhibits numerical values, which possess 
no intrinsic significance and may be adjusted based on 
the range of values pertinent to one’s particular objec-
tives. In the equation, the full range of link utilization Gτ 
is negatively correlated with population fitness, meaning 
that a smaller link utilization spread results in a higher 
network load balancing coefficient.

Design of routing optimization algorithm based 
on AVRO
The AVRO algorithm devised five steps to mimic the 
lifestyle of African vultures, as shown in Fig. 2. First, ini-
tialize the vulture population, then perform T-step itera-
tion, calculate the fitness of the vulture population, and 
select the best vulture for the next stage. First, calculate 
whether the vulture is satiated for each population vul-
ture. In the early training stage, if the vulture is stuffed, 
it will enter the exploration stage; otherwise, it will enter 
the development stage. In the later stage of training, it 
will directly enter the optimization stage.

AVRO algorithm
Table 2 defines the primary mathematical symbols asso-
ciated with the AVRO algorithm.

(1) The first stage: Identifying the finest vulture 
among the population

 In the AVOA algorithm, the initial population 
is formed by randomly generating solutions within 
the search range, as shown in Eq. (12), where r1 is a 
random variable that takes values between 0 and 1.

 Instead of randomly generating the population, 
Eq.  (13) is utilized to initialize the vulture popula-
tion in this paper. Here, parameter δ1 can take any 
value to adjust the range of b , representing the edge 
betweenness, i.e., the proportion of shortest paths 
passing through a given edge in the network.

(10)Pτ =
[

pτ1 , p
τ
2 , . . . , p

τ
m

]

(11)Fitness = α1 − log
((

Gτ + α2
)α3

)

(12)P(i) = r1 ∗ (ub− lb)+ lb
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 The central idea of the OSPF algorithm in com-
puter networks is to utilize the shortest paths within 
the network. The higher the edge betweenness cen-
trality, the more shortest paths pass through that 
edge, leading to a higher utilization rate and poten-
tial congestion. Thus, increasing the initial weight of 
links with high betweenness centrality can reduce 
the number of shortest paths passing through such 
edges, thereby avoiding situations where traffic con-
gregates on only a few edges. Similar to the concept 

(13)P(i) = r1 ∗ (ub− lb)+ lb+ δ1 ∗ b
of course learning [31], during population initiali-
zation, the AVRO algorithm is explicitly informed 
about the information it needs to explore to guide the 
algorithm toward better solution spaces and improve 
its performance.

 After the formation of the initial population, the fit-
ness of all solutions is calculated. The best solution Best1 
and second-best solution Best2 in each iteration are can-
didates for leader vulture R(i) , as shown in Eq. (14).

(14)R(i) =

{

Best1, p1 = L1
Best2, p2 = L2

Fig. 2 The general workflow of AVRO algorithm

Table 2 The principal mathematical symbols associated with the AVRO algorithm

symbol definition formula

α1 , α2,α3 Adjustable parameters with no intrinsic significance (11)

rn Random real numbers that follows a uniform distribution from 0 to 1, n is a positive integer from 1 to 8 -

i The i-th iteration -

T Maximum Number Of Iterations -

b The proportion of shortest paths passing through a given edge in the network (13)

δ1 Adjustable parameters to adjust the range of b (13)

R(i) Leader vulture (the two vultures with the highest fitness) in iteration i (14)

Best1 The best solution (14)

Best2 The second-best solution (14)

F The satiety rate of vultures (17)

P(i) The vector position of the vulture in the i-th iteration -

D(i) Exploration distance of vultures in the i-th iteration (20)

d(i) The distance between vultures and leader vultures (24)

ub The upper bound of algorithm search interval -

lb The lower bound of algorithm search interval -

δ2 Adjustable parameters to adjust the range of F in the optimization stage (36)
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 In (14), L1 and L2 are custom parameters, which 
represent the probability of selecting the leader vul-
ture. pi is calculated using the roulette wheel selec-
tion method [32], as shown in Eq. (15).

(2) The second stage: Identification of the satiety rate 
for the vultures
 The vultures must feed to gain the energy neces-
sary for survival. Satiated vultures are able to venture 
further in search of sustenance, while their famished 
counterparts lacking the requisite energy are forced 
to seek food in proximity to high-energy vultures and 
become more aggressive in the process. Equation (17) 
models this process by using F to represent the satiety 
of the vultures and balancing algorithmic development 
with exploration. In Eq.  (17), t is defined by Eq.  (16), 
and this kind of simulation behavior has been used 
before [21]. When |F| is greater than 1, the vultures 
search for food in different areas, and AVRO enters the 
exploration stage. If |F| is less than 1, AVRO enters the 
development stage, and the vultures search for food 
near their current location. During training, develop-
ment and exploration alternate, with the early stages 
emphasizing exploration and the later stages emphasiz-
ing development to promote algorithm convergence.

 Within Eqs.  (16) and (17), i denotes the current 
iteration, and T represents the total iterations. r2 is a 
random number between 0 and 1. z is a random num-
ber between -1 and 1, where values below 0 indicate 
hunger in the vulture, while values above 0 signify 
satiation, with satiation declining over time. h repre-
sents a random number between -2 and 2.
(3) The third stage: Exploration
 When |F|≥ 1, the vulture enters an exploration 
phase and randomly searches the environment. As 
shown in Eq. (18), P(i + 1) represents the location of 
the vulture in iteration i + 1. If the generated random 
number rG1 is greater than or equal to parameter G1, 
then Eq. (19) is executed. Otherwise, Eq. (21) is used.

(15)pi =
Li

∑n
i=1 Li

(16)

t = h×

(

sinγ
(

π

2
×

i

T

)

+ cos

(

π

2
×

i

T

)

− 1

)

(17)F = (2× r2 + 1)× z ×

(

1−
i

T

)

+ t

(18)P(i + 1) =

{

Eq(19), ifG1 ≥ rG1

Eq(21), ifG1 < rG1

 According to Eq. (19), the vulture forages around 
the leader vulture R(i), with D(i) defined by Eq.  (20) 
representing the exploration distance of the vulture. X 
is the distance randomly moved by the vulture, adding 
randomness to the exploration phase. It is obtained 
using the formula X = 2 × r, where r represents a ran-
dom number between 0 and 1.

 In Eq.  (21), ub and lb indicate the upper and 
lower bounds of the algorithm search interval, repre-
senting the positions of the population. r3 and r4 are 
random numbers between 0 and 1. The use of r4 adds 
randomness to the distribution of solutions within the 
search interval, increasing the diversity of the algo-
rithm’s exploration.
(4) The fourth stage: Development
 If |F| is less than 1, AVRO enters the develop-
ment phase, which is aimed at improving the conver-
gence efficiency of AVRO. There are also two stages 
within the development phase, each utilizing two dif-
ferent strategies determined by parameters G2 and 
G3, both predefined in the [0,1] range.
 Development (Stage One): When |F| falls within 
the range [0.5,1), AVRO enters the first stage of its 
development phase. In this stage, a random number 
between 0 and 1, denoted as rG2 , is generated. If rG2 
is greater than or equal to parameter G2, then a food 
competition process is executed; otherwise, a rotating 
flight process is performed, as outlined in Eq. (22).

 Food Competition: When |F|≥ 0.5, it indicates 
that the vultures have relatively abundant energy. 
Vultures with sufficient energy are reluctant to 
share food with others, while weaker vultures gather 
around healthier ones to search for food. When 
many vultures converge on a single food source, pop-
ulation conflict may arise. Equations  (23) and (24) 
are utilized to model this process. Random variable 
r5, which takes values between 0 and 1, is introduced 
to increase the randomness of the process. Equa-
tion (24) is used to obtain the distance d(t) between a 
vulture and the leader vulture.

(19)P(i + 1) = R(i)− D(i)× F

(20)D(i) = |X × R(i)− P(i)|

(21)
P(i + 1) = R(i)− F + r3 × ((ub− lb)× r4 + lb)

(22)P(i + 1) =

{

Eq(23), ifG2 ≥ rG2

Eq(27), ifG2 < rG2

(23)P(i + 1) = D(i)× (F + r5)− d(t)
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 Rotating Flight: The vulture’s rotating flight 
behavior is simulated using a spiral model. The vul-
ture’s position is updated using Eq. (27), while S1 and 
S2 are obtained using Eqs. (25) and (26). Random vari-
ables r6 and r7 take values between 0 and 1.

 Development (Stage Two): If |F|< 0.5, AVRO 
enters the second stage of its development phase, dur-
ing which intense fighting breaks out among vultures 
due to their convergence. First, a random number 
between 0 and 1, denoted as rG3 , is generated. If rG3 is 
greater than or equal to parameter G3, then the vul-
ture converges towards the leader vulture. Otherwise, 
an aggressive food competition process is carried out, 
as outlined in Eq. (28).

 Vulture Convergence: Vultures converge towards 
the leader vulture, using Eqs. (29) and (30) to calculate 
the convergence position. Here, Best1(i) represents the 
optimal solution in the i-th iteration, while Best2(i) 
represents the second-best solution. Subsequently, all 
vultures are gathered using Eq. (31), initiating compe-
tition for food.

 Food Competition: When |F|< 0.5, the leader vul-
ture becomes hungry and weak, lacking sufficient 
energy to compete with other vultures for food. Other 
stronger vultures become aggressive in their search for 
food. Equation  (32) is utilized to model this behavior. 
LF(x) simulates the vulture’s flight process, utilizing a 

(24)d(t) = R(i)− P(i)

(25)S1 = R(i)×

(

r6 × P(i)

2π

)

× cos(P(i))

(26)S2 = R(i)×

(

r7 × P(i)

2π

)

× sin(P(i))

(27)P(i + 1) = R(i)− (S1 + S2)

(28)P(i + 1) =

{

Eq(31), ifG3 ≥ rG3

Eq(32), ifG3 < rG3

(29)A1 = Best1(i)−
Best1(i)× P(i)

Best1(i)− P(i)2
× F

(30)A2 = Best2(i)−
Best2(i)× P(i)

Best2(i)− P(i)2
× F

(31)P(i + 1) =
A1 + A2

2

Levy Flight (LF) model [33], as shown in Eq. (33), where 
σ is a part of the definition of the LF model, x represents 
the problem dimension and β is a fixed parameter that 
takes a value of 1.5. Random variables u and v are drawn 
from a normal distribution, as shown in Eq. (34).

(5) The Fifth stage: Optimization
 In the original algorithm, when |F| is greater 
than 1, vultures search for food in different areas, 
and AVRO enters an exploration phase. On the 
other hand, if |F| is less than 1, AVRO enters a 
development stage where vultures search for food 
near the optimal solution. Eq. (17) is utilized to 
compute F. The convergence process and final con-
vergence performance vary depending on the maxi-
mum number of iterations. As the maximum num-
ber of iterations changes, F also changes during the 
training process, and its reduction rate slows down, 
resulting in slower convergence. This approach 
aims to explore the maximum fitness during the 
training process but does not directly yield stable 
convergence during the training phase.

When deploying heuristic algorithms in computer net-
works, models with stable outputs are desirable. Hence, 
an optimization phase is added to the AVRO algorithm. 
During this phase, the AVRO algorithm still executes the 
second development phase, and an improved formula for 
computing F is obtained as shown in Eq. (35). r8 is a ran-
dom number between 0 and 1. The optimization phase is 
initiated after a certain number of iterations ttrain.

Equation (36) determines the range of F in the optimiza-
tion stage, where clip(F ,−δ2, δ2)) = max(min(F , δ2),−δ2) 
represents limiting F to [ −δ2, δ2 ]. δ2 is a parameter that 
can be adjusted. The optimization phase does not affect 
the exploration and development processes of the vul-
tures. Instead, it reduces the activity range of the vultures 
to minimize fluctuations in algorithm performance, lead-
ing to stable convergence effects.

(32)P(i + 1) = R(i)−
∣

∣d(t)
∣

∣× F × LF(x)

(33)

LF(x) = 0.01×
u× σ
∣

∣y
∣

∣

1
2

, σ =

{

Ŵ(1+ β)× sin(πβ/2)

Ŵ[(1+ β)/2]× β × 2(β−1)/2

}1/β

(34)u ∼ N
(

0, σ 2
)

, v ∼ N (0, 1)

(35)

F = (2× r8 + 1)× z ×

(

1−
i

ttrain

)

+ t, ift < ttrain

(36)F = clip(F ,−δ2, δ2), ift ≥ ttrain
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The workflow of the routing optimization algorithm based 
on AVRO
Algorithm 1 outlines the workflow of the AVRO algorithm. 
The algorithm takes as input the population size N, the maxi-
mum number of iterations, and the number of iterations 
used for training, and outputs the positions of the population, 
which in this paper are link weights. First, the population is 
initialized (line 1), followed by training iterations. Through-
out the training process, it is imperative to procure the initial 
state of the network (line 3). Subsequently, the fitness of each 
member within the vulture population is computed (line 4), 

and potential leader vultures are selected (line 5). For each 
vulture population, a leader vulture is randomly selected 
from the potential candidates (line 7), and the F parameter 
is updated using the formula (lines 8–9). If |F|≥ 1, the explo-
ration phase is entered; otherwise, the development phase 
is entered. During the exploration phase, the population is 
updated based on Eq.  (18) (lines 11–12). The development 
phase is divided into two stages, where Eqs. (22) and (28) are 
used to update the population (lines 14–19). Finally, discern 
the optimal resolution amidst the vulture community and 
implement it towards routing (line 20–22).

The AVRO algorithm needs to solve a routing problem in each iteration T, and each population needs to be evaluated 
separately. Therefore, the time complexity of AVRO is O(POP), where POP represents the size of populations. The space 
required by the AVRO algorithm is mainly used to store the problem’s solution. Thus, the spatial complexity of AVRO is 
O(POP * dim), where dim represents the dimension of the solution and the number of links in this paper.

Algorithm 1 AVRO algorithm for routing optimization 
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Experimental evaluation
Experimental environment settings
The experimentation and evaluation in this paper were 
conducted using a simulation environment that emulates 
data plane network interactions in SDN. Our experi-
ments were carried out on an AMD Ryzen 7 2700 CPU, 
Nvidia GTX1080 graphics card, and 64 GB RAM. Three 
real network topologies, GBN, GEANT2, and NSFNET 
[19], each possessing distinct graph characteristics and 
containing links with 10  GB of bandwidth, were con-
sidered for model training and evaluation. The network 
topology structure is depicted in Fig. 3. The connectivity 
between nodes in the GBN and GEANT topologies var-
ies significantly, with some nodes connected to only two 
nodes and others related to several nodes. We can call 
the nodes with many connections as central nodes, which 
may have a higher link betweenness because they may 
have more shortest paths. In contrast, the GEANT topol-
ogy has more nodes and a more complex network struc-
ture, making routing optimization more difficult. The 
NSFNET topology has a more evenly distributed network 
with node degrees ranging from 2–4.

In this paper, two dynamic traffic intensities (Traffic-1 
and Traffic-2) were implemented in the three network 
topologies to verify the model’s generalization perfor-
mance in different network scenarios. Traffic-1 was 
generated using the gravity model, while Traffic-2 was 
generated using the uniform model. Each traffic intensity 
corresponds to 200 demand matrices. During the train-
ing process, a total of 7000 episodes were run, with one 
traffic demand matrix being switched for each episode. 
The traffic matrices are square matrices of rank equal to 
the number of network nodes, with each element of the 

matrix representing the traffic demand to be allocated by 
a particular node in a given time slot.

Parameter settings
This paper selects an appropriate parameter value for 
the AVRO agent through experimentation. In the experi-
ment, we choose the GBN network topology and Traf-
fic-1 traffic intensity as the experimental environment, 
and record the fitness during training to plot a curve. For 
the convenience of observation, the curve aggregated 100 
fitness values at each iteration, displaying an estimate of 
the central tendency, as shown in Fig. 4.

Figure  4(a) displays the training results of the AVRO 
algorithm with different population sizes. The algorithm’s 
performance exhibits significant differences under differ-
ent population sizes. When the population size is 2, the 
AVRO algorithm cannot explore a better solution space, 
while at 5, the population’s fitness fluctuates greatly, 
reaching optimal performance at 20. The population size 
represents the number of optional solutions, and as the 
population size increases, the algorithm’s search abil-
ity increases but also contains more uncertainty, leading 
to more significant performance fluctuations. However, 
because increasing the population size affects the speed 
of algorithm decision-making, this paper chooses 10 for 
training.

Figure  4(b) shows the parameter δ2 tuning results of 
the optimization stage, where this parameter’s value is 
set to 0.0001. The smaller the value of δ2 , the more sta-
ble the convergence of the algorithm. The final conver-
gence fitness value of the model has no relationship with 
this parameter. In theory, this value affects the conver-
gence performance by limiting the value of F during the 

Fig. 3 Experimental network topologies: a GBN; b GEANT2; c NSFNET
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optimization stage. It only affects the convergence stabil-
ity during the optimization stage but does not affect the 
training before the optimization stage. The difference 
in fitness value during the optimization stage is mainly 
caused by the randomness of the algorithm during the 
training process.

Figure  4(c) displays the training results when the γ 
parameter in Eq.  (16) takes different values, with γ = 2 
achieving the best performance. The figure reveals the 
nonlinear relationship between parameter γ and the 
algorithm’s fitness. Within a certain moderate range of 
parameter γ, the algorithm can achieve higher fitness. 
Setting γ too high may decrease algorithm performance. 
This is because γ affects the baseline of satiety F, and as γ 
increases, the value of t3 decreases, which has less impact 
on F.

Figure  4(d) shows the parameter tuning results of G1 
(Eq.  (18)), where the algorithm’s convergence is almost 
identical under different parameters. This is because G1 
determines the exploration method of the population, 

which means that the two exploration methods perform 
similarly.

Figure 4(e) shows the parameter tuning results of G2 
(Eq.  (22)). As G2 increases, the fitness of the model’s 
convergence exhibits a trend of first increasing and 
then decreasing, with G2 = 0.3 achieving relatively opti-
mal performance. G2 balances food competition and 
rotational flight in the first stage of development, as 
G2 decreases, the probability of entering the hovering 
flight stage decreases, while the probability of enter-
ing food competition increases. This suggests that food 
competition causes the relatively hungry vultures to 
cluster around the satiated ones, which can enhance 
the development performance of the algorithm.

Figure 4(f ) displays the parameter tuning results of G3 
(Eq.  (28)).In the figure, the algorithms with parameter 
settings ranging from 0.3 to 0.6 exhibit similar perfor-
mance, but the algorithm with a parameter setting of 
0.7 has poor convergence performance. This suggests 
that a large value of G3 can lead to the algorithm falling 

Fig. 4 Experimental results of adjusting parameters: a POP; b δ_2; c γ; d G_1; e G_2; f G_3
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into an early convergence trap. G3 balances food com-
petition and vulture clustering in the second stage of 
development. Increasing G3 leads to vultures always 
moving around the leader vulture, unable to obtain 
enough energy to explore the solution space, thus pos-
ing a risk of early maturity.

Table 3 presents the values obtained for several signifi-
cant parameters and adjusted parameters of AVRO.

Performance evaluation
To evaluate the algorithmic performance of AVRO, this 
study compares it with AVOA [21], DDPG [34], GTO 
[35], RSIR [6], and OSPF [5] under the same optimization 
objective. We collect the fitness in the evaluation and plot 
it as a curve. The curve aggregates 100 fitness values for 
each value of iteration and displays the estimated central 
trend and the 95% confidence interval of the estimate.

• DDPG is a classical deep reinforcement learning 
algorithm whose state space includes link traffic, 
link utilization, link ingress/egress demands, and the 
agent’s action in the previous time slot. The action 
space is set as the weight of all links in the network, 
and the reward is consistent with the fitness design of 

this study. The DDPG algorithm outputs link weights 
based on the state. Then it calculates the routing 
strategy using the link weights, consistent with the 
AVRO algorithm.

• GTO, also known as Gorilla Troops Optimizer, is a 
metaheuristic algorithm that mathematizes the col-
lective social habits of gorillas. This algorithm shares 
the same optimization objective as the one in this 
paper, and it also outputs link weights.

• RSIR is designed based on the Q-learning algorithm 
of reinforcement learning. It is a hop-based routing 
algorithm whose state space is designed as nodes 
in the network, and the action space is designed as 
optional next hops. The reward setting in this paper 
is related to the remaining bandwidth of links, packet 
loss rate, and delay, and is adjusted by three hyper-
parameters accordingly. When compared with our 
model, the reward setting is focused on the remain-
ing bandwidth of links. When traffic reaches a certain 
node, RSIR continues to determine the next node for 
routing the traffic, thereby allocating network traffic.

• OSPF is a classic routing algorithm that calculates 
the shortest path between node pairs using the Dijk-
stra algorithm. Traffic will be routed directly through 
the path with the least number of hops. It should 
be noted that among these algorithms, OSPF is not 
implemented based on SDN controllers, while other 
algorithms are implemented within the SDN archi-
tecture.

Fitness evaluation
For ease of observation, Table 4 shows the fitness values 
of each algorithm after converging, averaged over the last 
1000 iterations. "-1" and "-2" in the table represent the 
traffic intensities for Traffic-1 and Traffic-2, respectively.

The fitness comparison of each algorithm under Traf-
fic-1 traffic intensity is shown in Fig. 5. In the GBN net-
work, although the initial performance of the improved 
AVRO algorithm is not as high as that of the AVOA 
algorithm, after ten iterations, the fitness of the AVRO 

Table 3 Related parameters and values of AVRO

Parameter Value

POP 10

δ1 2

δ2 0.0001

γ 2

G1 0.4

G2 0.3

G3 0.4

ub 1

lb 2

α1 5

α2 0.1

α3 19

Table 4 The fitness of each algorithm in each network scenario

GBN-1 GBN-2 GEANT-1 GEANT-2 NSFNet-1 NSFNet-2

AVRO(ours) 19.10 17.32 16.38 12.61 19.57 19.29

AVOA [21] 16.74 17.09 15.63 12.28 17.79 19.06

DDPG [34] 17.77 14.72 12.80 11.36 16.40 16.16

GTO [35] 17.58 14.45 9.91 10.18 17.59 15.72

RSIR [6] 16.26 14.61 10.45 12.19 16.50 10.86

OSPF [5] 11.93 7.57 6.46 9.56 16.27 14.11
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algorithm surpasses that of the AVOA algorithm and 
can reach convergence before the optimization stage. 
This indicates that the improved population initialization 
algorithm does not directly enhance the performance of 
the AVRO algorithm but makes it easier for the algorithm 
to learn valuable knowledge and accelerate convergence. 
In the GEANT2 and NSFNET networks, the initialization 
performance of the AVRO algorithm is superior to that 
of the AVOA algorithm because population initialization 
explicitly affects the solution space. The AVOA algorithm 
almost does not converge under Traffic-1 traffic intensity 
because formula (17) calculates F, which is related to the 
current and maximum iteration numbers. As the number 
of iterations increases, the trend of F becomes closer to 
F = 0, as shown in Fig.  6. However, due to the prelimi-
nary development stage, the algorithm prematurely con-
verges. The AVRO algorithm is very close to F = 0 after 
the optimization stage, and the algorithm’s fitness slightly 

improves in a narrow range. This is because the AVRO 
algorithm stops exploring and reduces its development 
scope, moving towards the vulture in a more refined 
solution space.

During the training phase, the DDPG algorithm exhib-
its significant instability and relatively poor convergence 
performance. This is because continuous action greatly 
expands the exploration space of the task, making learn-
ing more difficult. The AVRO algorithm does not need to 
consider tasks’ actions and space as the DRL algorithm, 
so it is more difficult to get trapped in local optima and 
has better global optimization ability. Additionally, the 
Q-network’s learning is faced with the challenge of over-
estimation, which directly propagates its fitting error to 
the policy network through gradient descent, resulting 
in poor stability and performance of the DDPG algo-
rithm. The GTO algorithm performs better than DDPG 
in fitness for GBN and NSFNET but worse than DDGP 

Fig. 5 Fitness evaluation of algorithms under Traffic-1 traffic intensity: a GBN; b GEANT2; c NSFNET

Fig. 6 Performance of F: a AVOA algorithm; b AVRO algorithm
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in GEANT2. Its initial performance is relatively good, but 
its search capability is poor. The global search capabil-
ity of the GTO algorithm during the exploration stage is 
limited, which is inferior to that of the AVRO algorithm. 
The performance of the RSIR and OSPF algorithms 
remains relatively fixed due to the experimental environ-
ment setup, as they are successively trained on 200 traf-
fic matrices. While RSIR can make better decisions based 
on network information, its learning capacity is limited, 
and it performs worse than DDPG trained to converge in 
most network conditions. Under the same fitness met-
ric, the OSPF algorithm performs worse than the oth-
ers. Unlike AVRO’s dynamic routing strategy, its routing 
decision is fixed, and it cannot dynamically adjust routing 
strategies according to network conditions, resulting in 
potential congestion.

The fitness comparison of each algorithm under Traf-
fic-2 traffic intensity is shown in Fig. 7. In the GBN and 
NSFNET networks, the AVRO algorithm converges faster 
than the AVOA algorithm. AVRO’s optimization in the 
GEANT2 and NSFNET networks is relatively less pro-
nounced than that under Traffic-1, with more significant 

performance fluctuations. However, AVRO’s fitness expe-
riences a slight range improvement during the optimiza-
tion stage before stabilizing and outperforms the AVOA 
algorithm. The DDPG algorithm’s convergence speed is 
consistent with that of the AVOA algorithm, but its fit-
ness is lower. The GTO algorithm performs slightly worse 
than the DDPG algorithm, with some fluctuations in fit-
ness trends. The performance of the RSIR algorithm in 
GEANT2 is particularly noteworthy due to the network’s 
pronounced centrality, which surpasses that of the other 
two topologies. By leveraging the guidance of residual 
bandwidth, RSIR can effectively avoid routing through 
these highly central edges when making decisions. The 
OSPF algorithm outperforms the RSIR algorithm in the 
NSFNET topology. This can be attributed to the evenly 
distributed nodes within the range of 2–4 and the rela-
tively uniform distribution of Traffic-2. In this sce-
nario, the RSIR algorithm is challenging to learn helpful 
knowledge.

This paper uses minimizing the maximum link utiliza-
tion as an optimization objective, as shown in Eq. (8). We 
hope the maximum link utilization is as tiny as possible 

Fig. 7 Fitness evaluation of algorithms under Traffic-2 traffic intensity: a GBN; b GEANT2; c NSFNET

Table 5 The maximum link utilization of each algorithm in each network scenario

GBN-1 GBN-2 GEANT-1 GEANT-2 NSFNet-1 NSFNet-2

AVRO(ours) 39.2% 43.6% 45.2% 58.1% 38.0% 39.3%

AVOA [21] 45.2% 43.5% 47.7% 59.4% 42.9% 39.2%

DDPG [34] 41.5% 50.5% 56.7% 62.4% 47.0% 45.8%

GTO [35] 42.6% 51.9% 68.2% 66.8% 43.3% 48.4%

RSIR [6] 48.0% 51.7% 66.8% 60.9% 46.5% 66.9%

OSPF [5] 60.6% 78.2% 83.1% 69.4% 47.3% 53.8%
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to achieve the load balancing goal. This can also avoid 
network congestion. Similarly, Table 5 shows each algo-
rithm’s maximum link utilization values after conver-
gence, averaged over the last 1000 iterations.

Figure  8 shows the maximum link utilization of each 
algorithm under Traffic-1. The AVRO algorithm exhib-
its a decreasing trend in maximum link utilization under 
Traffic-1, ultimately converging to a lower position rela-
tive to other algorithms. AVRO and AVOA have small 
confidence intervals, indicating more stable algorithmic 

performance. Compared to other algorithms, the AVRO 
algorithm can find relatively optimal solutions in less 
time. The AVRO algorithm can minimize the maximum 
link utilization under the optimization objective of this 
paper, achieving load balancing. Furthermore, using the 
full range of link utilization as an optimization objective 
avoids situations where some links in the network remain 
idle for long periods, reducing network resource waste.

Figure  9 shows the maximum link utilization of each 
algorithm under Traffic-2. Under the NSFNET topology, 

Fig. 8 Evaluation of maximum link utilization of algorithms under Traffic-1 traffic intensity: a GBN; b GEANT2; c NSFNET

Fig. 9 Evaluation of maximum link utilization of algorithms under Traffic-2 traffic intensity: a GBN; b GEANT2; c NSFNET
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the AVRO algorithm’s maximum link utilization is slightly 
higher than that of the AVOA algorithm because of the 
objective optimization setting, which biases the AVRO 
algorithm towards balanced link utilization. Regarding 
other algorithms, the DDPG algorithm exhibits significant 
instability during the training stage but has a small range 
of confidence intervals after convergence. The GTO algo-
rithm performs relatively poorly in training. Although the 
RSIR algorithm’s fixed decision-making can perform well, 
it cannot surpass other models. The OSPF algorithm’s 
maximum link utilization is relatively high, indicating poor 
load-balancing capability. The AVRO algorithm outper-
forms these baseline algorithms through global optimiza-
tion and fast convergence.

Conclusion
SDN decouples the network’s data and control planes, 
making network management more straightforward 
and creating opportunities for deploying intelligent 
algorithms in networks. However, existing heuristic 
algorithms perform poorly, while popular reinforce-
ment learning-based routing algorithms suffer from 
slow convergence and lack of scalability, making their 
deployment in real-world scenarios nearly impossible. 
In this study, we propose the AVRO algorithm to opti-
mize SDN routing problems. First, we model the opti-
mization objective of load balancing in the network and 
propose an improved population initialization algo-
rithm that leverages explicit information on network 
environment characteristics to accelerate algorithm 
convergence. Additionally, we introduce an exploration 
stage to enhance the development of the algorithm and 
further improve its performance. Finally, we conduct 
simulation experiments with three network topologies 
and two traffic intensities, comparing our proposed 
model against OSPF, RSIR, DDPG, and the original 
AVOA algorithm. The results show that our model has 
the highest fitness and the smallest network metric 
value of maximum link utilization rate. Therefore, our 
model has superior load-balancing performance.

In the future, we plan to implement our framework 
in a more realistic network simulator, such as Mininet, 
using real controllers, such as Floodlight, and simulat-
ing bursty situations with high traffic and link break-
age to test the effectiveness and practicality of the 
algorithm. Meanwhile, we will also consider applying 
heuristic algorithms to deep learning algorithms to 
combine both advantages.
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