
Chen et al. Journal of Cloud Computing (2024) 13:41
https://doi.org/10.1186/s13677-024-00603-1

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Dynamic routing optimization
in software-defined networking based
on a metaheuristic algorithm
Junyan Chen1,2, Wei Xiao1, Hongmei Zhang2*, Jiacheng Zuo3 and Xinmei Li1

Abstract

Optimizing resource allocation and routing to satisfy service needs is paramount in large-scale networks. Software-
defined networking (SDN) is a new network paradigm that decouples forwarding and control, enabling dynamic
management and configuration through programming, which provides the possibility for deploying intelligent
control algorithms (such as deep reinforcement learning algorithms) to solve network routing optimization prob-
lems in the network. Although these intelligent-based network routing optimization schemes can capture network
state characteristics, they are prone to falling into local optima, resulting in poor convergence performance. In order
to address this issue, this paper proposes an African Vulture Routing Optimization (AVRO) algorithm for achieving
SDN routing optimization. AVRO is based on the African Vulture Optimization Algorithm (AVOA), a population-based
metaheuristic intelligent optimization algorithm with global optimization ability and fast convergence speed advan-
tages. First, we improve the population initialization method of the AVOA algorithm according to the characteristics
of the network routing problem to enhance the algorithm’s perception capability towards network topology. Sub-
sequently, we add an optimization phase to strengthen the development of the AVOA algorithm and achieve stable
convergence effects. Finally, we model the network environment, define the network optimization objective, and per-
form comparative experiments with the baseline algorithms. The experimental results demonstrate that the routing
algorithm has better network awareness, with a performance improvement of 16.9% compared to deep reinforce-
ment learning algorithms and 71.8% compared to traditional routing schemes.

Introduction
With the growth of network scale, allocating network
resources has become increasingly essential. Due to the
tight coupling between the control plane and data plane
in a traditional network architecture, routing algorithms
cannot collect the state information of the network from

a global perspective and plan forwarding paths accord-
ingly. This may result in low network utilization and
severe congestion in large-scale environments. Software-
defined networking (SDN) [1] introduces a new approach
that utilizes a programmable control plane to determine
how different data flows are forwarded. The network’s
control logic is then transmitted from delivering devices
such as routers and switches to software controllers,
thereby decoupling the data plane from the control plane
and simplifying network management [2]. As shown
in Fig. 1, the control plane and data plane components
connect through southbound application programming
interfaces (APIs), such as OpenFlow [3]. In contrast, net-
work policies or applications (such as routers, load bal-
ancers, and firewalls) can be implemented on the control

*Correspondence:
Hongmei Zhang
hmzhang@guet.edu.cn
1 School of Computer Science and Information Security, Guilin University
of Electronic Technology, Guilin 541004, China
2 School of Information and Communication, Guilin University
of Electronic Technology, Guilin 541004, China
3 School of Computer Science and Technology, Soochow University,
Suzhou 215031, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00603-1&domain=pdf

Page 2 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

or management planes and interact with the controller
through northbound APIs (such as RESTful API [4]).

In SDN, traditional routing algorithms, such as open
shortest path first (OSPF) [5], cannot quickly adapt to
dynamic traffic characteristics [6]. This limitation hin-
ders the effective allocation of network resources and
gradually becomes a bottleneck. To overcome this bot-
tleneck, scholars have proposed using deep learning
(DL) to solve routing problems [7, 8]. Existing DL meth-
ods such as graph neural network (GNN) [9] and long
short-term memory (LSTM) [10] have achieved specific
results in extracting network features and predicting
network states. Training DL algorithm models does not
require complex assumptions and modelling of network
environments and can obtain optimized routing deci-
sions through precise inference based on input data. This
makes data-driven DL routing methods better adapted
to different network application scenarios and routing
optimization goals than traditional routing methods [11].
However, existing deep learning-based intelligent routing
algorithms cannot guarantee their security and robust-
ness in complex and changing network environments
and require high deployment costs. In addition, due to
the offline training nature of deep learning, there exists a
reality gap that cannot display the same exceptional per-
formance achieved during training in practice.

Using reinforcement learning [12] algorithms to make
routing decisions is a recent research hotspot. Q-learning
[13] is a classic form of reinforcement learning that stores

state-action representations in Q-tables [6, 14]. However,
as networks become more complex, the corresponding
state-action space increases, and Q-tables may become
very large. The algorithm requires a long learning time
and can lead to high memory usage. Deep reinforce-
ment learning (DRL) [15] uses deep neural networks to
approximate state-action tables to overcome the scalabil-
ity issues of Q-tables. Recent research has applied DRL
methods to complex problems in the field of communica-
tion networks [16–19]. However, DRL-based intelligent
routing algorithms lack vigorous scalability and sufficient
robustness. They focus more on the convergence and
accuracy of the algorithm, and training and deployment
solutions in practical scenarios need to be improved.

In general, due to the current limitations of routing
devices’ computing power, deploying DL and DRL-based
routing algorithms in large-scale networks necessitates
further enhancement in terms of algorithm robustness
and generalization. In contrast, optimizing SDN routing
with heuristic algorithms may be more practical. Heuris-
tic algorithms are problem-oriented algorithms that may
not guarantee convergence to nearly optimal solutions
but can obtain competitive solutions within a reasonable
time frame. As an extension of heuristics, metaheuristics
provide a problem-independent algorithm framework
that can iteratively improve the solution quality of a given
fitness function to find nearly optimal solutions [20]. The
development of metaheuristic algorithms has made new
progress in solving optimization problems. The African
vulture optimization algorithm (AVOA) [21] is a bioin-
spired metaheuristic algorithm with global search ability
and fast convergence speed. Inspired by this algorithm,
this paper proposes an African vulture routing optimiza-
tion (AVRO) algorithm for network routing optimization,
which has stable convergence performance and strong
global optimization capability. To achieve the network
optimization goal of load balancing, we add link central-
ity measurement to population initialization to enhance
AVRO’s topological awareness. At the same time, we
set additional optimization stages for the algorithm to
approximate the leader vulture, thus strengthening the
algorithm’s development and improving convergence sta-
bility. The main contributions of this paper are as follows:

(1) A mathematical model is constructed for the net-
work link load balancing problem, and optimization
objectives are developed for the SDN routing algorithm.
(2) A routing optimization scheme, AVRO, is
designed based on a metaheuristic algorithm. AVRO
adds link betweenness measurement in population
initialization to enhance the topological awareness
of the algorithm. Additionally, it adds an optimiza-
tion stage based on development and exploration to

Fig. 1 SDN Architecture diagram

Page 3 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

strengthen the algorithm’s performance and improve
the model’s convergence stability.
(3) The AVRO model is compared with traditional rout-
ing algorithms, deep learning-based routing algorithms,
and classic reinforcement learning-based routing algo-
rithms in three different network topologies and two
different traffic intensities under simulation environ-
ments, demonstrating the superior load-balancing per-
formance of the algorithm proposed in this paper.

The remainder of this paper is structured as follows:
Sect. " Related work" presents related work on SDN rout-
ing problems; Sect. " Mathematical modelling for network
optimization" describes the network model and optimi-
zation objectives; Sect. " Design of routing optimization
algorithm based on AVRO" introduces the workflow of the
routing algorithm based on AVRO; Sect. " Experimental
evaluation" verifies the algorithm’s performance through
simulation experiments; and finally, Sect. " Conclusion"
presents the conclusion and future directions of work.

Related work
The SDN paradigm has been widely applied to various
communication network problems, such as distributed
routing [8], mobile edge computing [16], data center net-
works [17], optical networks [19], named data networking
[22], and vehicular ad hoc network routing [23]. Routing is
a core activity in SDN, as it routes data from source nodes
to destination nodes, significantly affecting network perfor-
mance, such as energy consumption, latency, and packet
transmission rate. To maximize network utility, research-
ers have proposed many routing optimization algorithms.
Existing research on routing optimization methods
includes traditional routing methods, deep learning-based
routing algorithms, reinforcement learning-based routing
algorithms, heuristic-based routing algorithms, and dedi-
cated algorithms designed for dynamic routing scenarios.

The traditional routing algorithm is the OSPF proto-
col [5], which only selects the shortest path for forward-
ing routes. However, in real network environments, the
available bandwidth of paths dynamically changes over
time, making it difficult for traditional routing algorithms
to accurately perceive the current network status and
take appropriate actions accordingly. When the service
demand bandwidth reaches the bottleneck of a link, it
not only dramatically reduces user experience but also
may cause severe network congestion, leading to a sig-
nificant waste of network resources [11].

In recent years, the development of artificial intelligence
(AI) technology based on deep learning has progressed rap-
idly, and many studies have used AI models to solve routing
optimization problems. The general deep learning-based

routing solution takes network topology and network sta-
tus information as input, and the model makes appropri-
ate routing decisions based on the input information [11].
Existing intelligent routing solutions based on deep learn-
ing models mainly generate routing paths in a hop-by-hop
manner. Shin et al. [8] designed a distributed intelligent
routing algorithm based on GNN to utilize topology infor-
mation further. By deploying the GNN parameter update
function on each router and using GNN to extract network
structure and state information, the iterative process of
GNN topology modelling can be completed in a distrib-
uted manner, with good scalability and distributed routing
decision-making. Compared with traditional routing meth-
ods, it has lower information exchange costs and faster
routing convergence speed when the network environment
changes. However, generating routing paths hop-by-hop is
prone to causing loops, and deploying the above solution
requires routers to have powerful model computing capa-
bilities. It may also require modifications to existing routing
protocols. Therefore, deploying the above solution under
an existing computer network architecture would incur
high costs and affect network scalability.

Deep learning methods can also assist in making rout-
ing decisions and improve the efficiency of routing algo-
rithms. The authors in [24] combined GNN and LSTM
models using a deep learning model based on graph neural
networks to establish relationships between network sta-
tus, network topology, traffic matrices, and routing path
models, and used the established model to assist heuris-
tic algorithms in calculating routing strategies. Chen et al.
[25] used the LSTM algorithm to predict network traffic on
the SDN application plane. Using deep learning models to
assist traditional routing algorithms effectively improves
the performance of traditional routing optimization algo-
rithms. However, the process of replacing traditional rout-
ing algorithms with deep learning-based route generation
algorithms remains a protracted endeavor. Firstly, DL loss
functions typically exhibit non-convexity, posing chal-
lenges in pursuing globally optimal solutions. Secondly, DL
must grapple with gradient vanishing or explosion issues,
often rendering gradient-based optimization methods inef-
fectual. Finally, the practical deployment of DL models
encounters impediments due to scale and inference speed
constraints [18]. These constraints underscore the chal-
lenges confronted during real-world implementation.

Reinforcement learning is another popular direction for
intelligent routing algorithms. The authors in [6] proposed
the RSIR algorithm, which uses Q-learning to make deci-
sions on the next hop node, optimizing network load bal-
ancing, latency, and packet loss accordingly. The authors
in [14] directly represented Q-Learning states and paths
in the action space for implementing multipath routing
with guaranteed flow. These Q-learning-based methods

Page 4 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

use a Q-table for learning and decision-making, but their
perception capabilities could be improved, leading to poor
performance. Deep reinforcement learning is a combina-
tion of deep learning and reinforcement learning, which
replaces the Q-table with a deep neural network, allowing
the agent to observe the state of the environment and learn
its characteristics through deep learning perception pro-
cessing, and then train its decision-making skills through
reinforcement learning [16]. Fu et al. [17] proposed a
DQN-based routing policy for creating different routing
methods for mouse and elephant flows in data center net-
works to optimize throughput, latency, and packet loss.
The authors in [18] implemented a new architecture that
combines multiagent reinforcement learning (MARL) and
GNN to minimize network congestion. The authors in
[19] proposed a DRL intelligent routing algorithm based
on ensemble learning and information propagation neural
networks to maximize the utilization of optical transport
networks. These DRL-based intelligent routing algorithms
can achieve good performance after some training itera-
tions. However, due to the computational complexity of
DRL algorithms, their deployment on hardware devices is
limited, and more mature solutions are needed for these
algorithms to be practically applicable.

In intelligent routing algorithms, metaheuristic algo-
rithms can be an alternative to DRL, as their perfor-
mance is comparable to machine learning-based routing
algorithms. The authors in [26] proposed a knowledge-
based enhanced ant colony system algorithm to utilize
the knowledge obtained from SDN controllers for placing
virtual network functions (VNFs) while simultaneously
allocating primary and redundant paths for flows to man-
age services. In [20], the authors proposed a multicrite-
ria heuristic (MCH) for solving online VNF placement
and routing problems, using genetic algorithms to learn
hyperparameters for the online MCH model to minimize
total power consumption in NFV infrastructure. The
authors in [27] proposed a fault tolerance metaheuristic-
based scheme (FTMBS) for controller placement prob-
lems in wireless software-defined networks. The authors
in [28] proposed a novel clustering algorithm, inspired by
the natural flying soaring technique of the albatross bird,
that efficiently selects network cluster heads to solve the
controller placement problem, intending to achieve net-
work reliability and enhance the network lifetime. How-
ever, these algorithms only consider globally optimal
solutions provided by the algorithms without taking into
account the network’s volatility and complexity, neglect-
ing the instability of algorithm training and convergence.

In the context of dynamic routing algorithms, the
authors in [29] introduced the Ant Colony Optimiza-
tion Algorithm for Dynamic Routing in Software Defined
Networking (ACOSDN). This algorithm effectively

handles dynamic network fluctuations, reduces conges-
tion, enhances throughput, and mitigates latency and
packet loss concurrently. However, the ant colony algo-
rithm’s convergence rate is sluggish and tends to converge
to local optima, potentially leading to network perfor-
mance degradation. In [30], the authors proposed a route
path selection approach based on link quality estimation
and critical switch awareness. This method elevates data
throughput and packet delivery rates by introducing mul-
tiple constraint parameters, including link latency, link
transmission rate, and critical switch switching frequency
scores. Nevertheless, it augments the criteria for rout-
ing calculations without adopting a global optimization
perspective, which may impose limitations on network
performance. In contrast, our work focuses on globally
optimizing network routing within a backbone network
scenario characterized by minimal topology changes and
excludes considerations for routing in dynamic topologies.

Table 1 summarizes pertinent literature on intelli-
gent routing algorithms, focusing on their key points,
approaches, objectives, algorithms, and limitations. It
underscores the imperative for research in the follow-
ing manner: there is a need for a model capable of rapid
convergence, independent of hardware constraints, and
capable of perceiving a network’s global perspective to
optimize routing in response to network fluctuations,
thus enhancing network performance. In this regard,
this paper proposes the African vulture routing opti-
mization algorithm for SDN routing optimization. This
paper improves the convergence speed and robustness of
metaheuristic algorithms, making them better suited to
adapt to changes in the SDN network state.

Mathematical modelling for network optimization
We describe a network using G, as shown in Eq. (1),
where V represents the set of forwarding nodes in the
data forwarding layer, and E represents the set of all links
e, as shown in Eq. (2), where m is the number of links.

We use ci to represent the rated bandwidth of each link
ei and define C as the sequence of network link-rated
bandwidths, as shown in Eq. (3), where |C| = |E| = m.

We use tτi to describe the flow passing through edge ei at
time τ , which is routed by the SDN controller, and define
T τ as the sequence of network traffic, as shown in Eq. (4).

(1)G = (V ,E)

(2)E = [e1, e2, . . . , em]

(3)C = [c1, c2, . . . , cm]

(4)T τ = tτ1 , t
τ
2 , . . . , t

τ
m

Page 5 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

Ta
bl

e
1

Re
la

te
d

w
or

k

Li
te

ra
tu

re
Sc

he
m

es
A

im
A

lg
or

ith
m

Li
m

ita
tio

ns

Sh
in

 [8
]

D
is

tr
ib

ut
ed

 In
te

lli
ge

nt
 R

ou
tin

g
U

til
iz

e
to

po
lo

gy
 in

fo
rm

at
io

n
eff

ec
tiv

el
y

to
 im

pr
ov

e
ro

ut
in

g
de

ci
si

on
s

G
N

N
-b

as
ed

 a
lg

or
ith

m
Pr

on
e

to
 c

au
si

ng
 lo

op
s,

re
qu

ire
s

po
w

er
fu

l
m

od
el

 c
om

pu
tin

g
ca

pa
bi

lit
ie

s,
an

d
m

ay
 n

ee
d

m
od

ifi
ca

tio
ns

 to
 ro

ut
in

g
pr

ot
oc

ol
s

Ri
sc

hk
e

[1
4]

Re
in

fo
rc

em
en

t L
ea

rn
in

g
Ro

ut
in

g
O

pt
im

iz
e

ne
tw

or
k

lo
ad

 b
al

an
ci

ng
, l

at
en

cy
,

an
d

pa
ck

et
 lo

ss
RS

IR
 a

lg
or

ith
m

 u
si

ng
 Q

-le
ar

ni
ng

Li
m

ite
d

pe
rc

ep
tio

n
ca

pa
bi

lit
ie

s
an

d
po

te
nt

ia
l

pe
rf

or
m

an
ce

 is
su

es

W
an

g
[1

6]
D

ee
p

Re
in

fo
rc

em
en

t L
ea

rn
in

g
O

pt
im

iz
e

th
ro

ug
hp

ut
, l

at
en

cy
, a

nd
 p

ac
ke

t l
os

s
fo

r m
ou

se
 a

nd
 e

le
ph

an
t fl

ow
s

in
 d

at
a

ce
nt

er

ne
tw

or
ks

D
Q

N
-b

as
ed

 ro
ut

in
g

po
lic

y
us

in
g

de
ep

 n
eu

ra
l

ne
tw

or
ks

 a
nd

 re
in

fo
rc

em
en

t l
ea

rn
in

g
Co

m
pu

ta
tio

na
l c

om
pl

ex
ity

 li
m

its
 h

ar
dw

ar
e

de
pl

oy
m

en
t

Be
rn

ár
de

z
[1

8]
M

ul
tia

ge
nt

 R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

M
in

im
iz

e
ne

tw
or

k
co

ng
es

tio
n

Co
m

bi
na

tio
n

of
 M

A
RL

 a
nd

 G
N

N
Co

m
pu

ta
tio

na
l c

om
pl

ex
ity

 m
ay

 li
m

it
ha

rd
w

ar
e

de
pl

oy
m

en
t

C
he

n
[1

9]
En

se
m

bl
e

Le
ar

ni
ng

 D
RL

M
ax

im
iz

e
th

e
ut

ili
za

tio
n

of
 o

pt
ic

al
 tr

an
sp

or
t

ne
tw

or
ks

D
RL

 in
te

lli
ge

nt
 ro

ut
in

g
al

go
rit

hm
 b

as
ed

on

 e
ns

em
bl

e
le

ar
ni

ng
 a

nd
 in

fo
rm

at
io

n
pr

op
a-

ga
tio

n
ne

ur
al

 n
et

w
or

ks

Co
m

pu
ta

tio
na

l c
om

pl
ex

ity
 m

ay
 li

m
it

ha
rd

w
ar

e
de

pl
oy

m
en

t

Ru
se

k
[2

4]
D

ee
p

Le
ar

ni
ng

-A
ss

is
te

d
Ro

ut
in

g
Es

ta
bl

is
h

re
la

tio
ns

hi
ps

 b
et

w
ee

n
ne

tw
or

k
st

at
us

, t
op

ol
og

y,
 tr

affi
c

m
at

ric
es

, a
nd

 ro
ut

in
g

pa
th

 m
od

el
s

G
N

N
 a

nd
 L

ST
M

 m
od

el
s

co
m

bi
ne

d
w

ith
 h

eu
ris

-
tic

 a
lg

or
ith

m
s

Pr
oc

es
s

of
 re

pl
ac

in
g

tr
ad

iti
on

al
 ro

ut
in

g
al

go
rit

hm
s

w
ith

 d
ee

p
le

ar
ni

ng
-b

as
ed

 o
ne

s
is

 c
ha

lle
ng

in
g

du
e

to
 n

on
-c

on
ve

x
lo

ss
 fu

nc
tio

ns
,

gr
ad

ie
nt

 is
su

es
, a

nd
 p

ra
ct

ic
al

 d
ep

lo
ym

en
t

co
ns

tr
ai

nt
s

Fa
rs

hi
n

[2
6]

Kn
ow

le
dg

e-
Ba

se
d

M
et

ah
eu

ris
tic

s
U

til
iz

e
kn

ow
le

dg
e

fro
m

 S
D

N
 c

on
tr

ol
le

rs

fo
r V

N
F

pl
ac

em
en

t a
nd

 ro
ut

in
g

En
ha

nc
ed

 a
nt

 c
ol

on
y

sy
st

em
 a

lg
or

ith
m

w

ith
 k

no
w

le
dg

e
in

te
gr

at
io

n
N

eg
le

ct
s

ne
tw

or
k

vo
la

til
ity

 a
nd

 c
om

pl
ex

ity
,

in
st

ab
ili

ty
 in

 a
lg

or
ith

m
 tr

ai
ni

ng
 a

nd
 c

on
ve

r-
ge

nc
e

Sa
m

ar
ji

[2
7]

Fa
ul

t t
ol

er
an

ce
 m

et
ah

eu
ris

tic
M

ax
im

iz
e

th
e

ne
tw

or
k

co
nn

ec
tiv

ity
, m

ax
im

iz
e

th
e

lo
ad

 b
al

an
ce

 a
m

on
g

co
nt

ro
lle

rs
, m

in
im

iz
e

th
e

w
or

st
-c

as
e

la
te

nc
y,

 a
nd

 m
ax

im
iz

e
th

e
ne

t-
w

or
k

lif
et

im
e

G
en

et
ic

 a
lg

or
ith

m
 a

nd
 g

re
ed

y
ra

nd
om

iz
ed

ad

ap
tiv

e
se

ar
ch

 p
ro

bl
em

 a
lg

or
ith

m
Th

e
im

pa
ct

 o
f l

oa
d

di
st

rib
ut

io
n

of
 fa

ul
ty

 c
on

tr
ol

-
le

r o
n

th
e

ne
tw

or
k

pe
rf

or
m

an
c

is
 n

ot
 a

na
ly

ze
d

Sa
m

ar
ji

[2
8]

En
er

gy
 s

oa
rin

g-
ba

se
d

ro
ut

in
g

Se
le

ct
s

th
e

ne
tw

or
k

cl
us

te
r h

ea
ds

 fo
r s

ol
vi

ng

th
e

co
nt

ro
lle

r p
la

ce
m

en
t p

ro
bl

em
En

er
gy

so
ar

in
g

ro
ut

in
g

al
go

rit
hm

 a
do

pt
ed

fro

m
 th

e
al

ba
tr

os
s

bi
rd

W
ith

ou
t f

ac
to

rin
g

in
 th

e
ne

tw
or

k’
s

in
st

ab
ili

ty

an
d

in
tr

ic
ac

ie
s

Ra
ou

f [
29

]
A

nt
 C

ol
on

y
O

pt
im

iz
at

io
n

H
an

dl
e

dy
na

m
ic

 n
et

w
or

k
flu

ct
ua

tio
ns

an

d
re

du
ce

 c
on

ge
st

io
n,

 la
te

nc
y,

 a
nd

 p
ac

ke
t

lo
ss

A
CO

SD
N

 a
lg

or
ith

m
 u

si
ng

 A
nt

 C
ol

on
y

O
pt

im
i-

za
tio

n
Sl

ug
gi

sh
 c

on
ve

rg
en

ce
 a

nd
 p

ot
en

tia
l c

on
ve

r-
ge

nc
e

to
 lo

ca
l o

pt
im

a

Is
ya

ku
 [3

0]
Ro

ut
e

Pa
th

 S
el

ec
tio

n
O

pt
im

iz
at

io
n

El
ev

at
e

da
ta

 th
ro

ug
hp

ut
 a

nd
 p

ac
ke

t d
el

iv
er

y
ra

te
s

w
ith

 li
nk

 q
ua

lit
y

es
tim

at
io

n
an

d
co

n-
st

ra
in

t p
ar

am
et

er
s

Ro
ut

e
pa

th
 s

el
ec

tio
n

op
tim

iz
at

io
n

ap
pr

oa
ch

ba

se
d

on
 li

nk
 q

ua
lit

y
es

tim
at

io
n

an
d

sw
itc

h
aw

ar
en

es
s

D
oe

sn
’t

ad
op

t a
 g

lo
ba

l o
pt

im
iz

at
io

n
pe

rs
pe

c-
tiv

e,
 m

ay
 li

m
it

ne
tw

or
k

pe
rf

or
m

an
ce

Page 6 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

We utilize uτi to describe the usage of edge ei at time τ ,
as calculated by Eq. (5). U τ refers to the collection of utili-
zation rates for links at time τ , as shown in Eq. (6).

Our focus is primarily on optimizing network routing
from a load-balancing perspective. Load-balancing is a
vital optimization objective in intelligent network opti-
mization. We achieve load-balancing by considering the
full range of link utilization U τ , defined as Gτ at time τ
and calculated by Eq. (7). The optimization objective is
defined as Eq. (8), with Eq. (9) representing the restraint
condition for achieving the optimization objective, which
aims to minimize the full range of link utilization. By
reducing the difference of link utilization among each
link, the network traffic can be evenly distributed among
the links, avoiding the concentration of network traffic
on a single link, and thus achieving load balancing.

We make routing decisions using the OSPF algorithm
based on link weights, which calculates the shortest path
for a node pair’s traffic demand using link weights. The
optimal path changes as its usage increases due to conges-
tion. Therefore, the network’s load status affects the opti-
mal path selection. Assigning link weights based on the
current network load condition is an essential issue in the
OSPF routing algorithm.

This paper gives weights to each link based on the AVRO
algorithm. For population-based metaheuristic optimiza-
tion algorithms, the population represents the solutions to
the problem, and fitness corresponds to the optimization
objective of the problem. The AVRO algorithm maximizes
the population fitness by moving the population positions
in an acceptable computational time and space to obtain a
better feasible solution. Expressly, multiple populations of
vultures represent alternative solutions, and in each itera-
tion, the vulture population moves towards better fitness.
We compute the fitness of each vulture population and
choose the one with the highest fitness as the solution for
that iteration. Based on the objective optimization Eq. (8),
this study describes the AVRO population using Eq. (10)
and calculates population fitness using Eq. (11), where Pτ

(5)uτi =
tτi
ci

(6)U τ =
[

uτ1,u
τ
2, . . . ,u

τ
m

]

(7)Gτ = max
(

U τ
)

−min
(

U τ
)

(8)min
(

Gτ
)

(9)subjecttoGτ ∈ [0, 1]

in Eq. (10) represents the collection of link weights, and pτi
describes the weight of link i at time τ.

In Eq. (11), the variables α1 , α2 , and α3 are adjustable
parameters used to fine-tune the range of fitness and the
weighting of optimization objectives. The part of the tun-
ing experiment exhibits numerical values, which possess
no intrinsic significance and may be adjusted based on
the range of values pertinent to one’s particular objec-
tives. In the equation, the full range of link utilization Gτ
is negatively correlated with population fitness, meaning
that a smaller link utilization spread results in a higher
network load balancing coefficient.

Design of routing optimization algorithm based
on AVRO
The AVRO algorithm devised five steps to mimic the
lifestyle of African vultures, as shown in Fig. 2. First, ini-
tialize the vulture population, then perform T-step itera-
tion, calculate the fitness of the vulture population, and
select the best vulture for the next stage. First, calculate
whether the vulture is satiated for each population vul-
ture. In the early training stage, if the vulture is stuffed,
it will enter the exploration stage; otherwise, it will enter
the development stage. In the later stage of training, it
will directly enter the optimization stage.

AVRO algorithm
Table 2 defines the primary mathematical symbols asso-
ciated with the AVRO algorithm.

(1) The first stage: Identifying the finest vulture
among the population

 In the AVOA algorithm, the initial population
is formed by randomly generating solutions within
the search range, as shown in Eq. (12), where r1 is a
random variable that takes values between 0 and 1.

 Instead of randomly generating the population,
Eq. (13) is utilized to initialize the vulture popula-
tion in this paper. Here, parameter δ1 can take any
value to adjust the range of b , representing the edge
betweenness, i.e., the proportion of shortest paths
passing through a given edge in the network.

(10)Pτ =
[

pτ1 , p
τ
2 , . . . , p

τ
m

]

(11)Fitness = α1 − log
((

Gτ + α2
)α3

)

(12)P(i) = r1 ∗ (ub− lb)+ lb

Page 7 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

 The central idea of the OSPF algorithm in com-
puter networks is to utilize the shortest paths within
the network. The higher the edge betweenness cen-
trality, the more shortest paths pass through that
edge, leading to a higher utilization rate and poten-
tial congestion. Thus, increasing the initial weight of
links with high betweenness centrality can reduce
the number of shortest paths passing through such
edges, thereby avoiding situations where traffic con-
gregates on only a few edges. Similar to the concept

(13)P(i) = r1 ∗ (ub− lb)+ lb+ δ1 ∗ b
of course learning [31], during population initiali-
zation, the AVRO algorithm is explicitly informed
about the information it needs to explore to guide the
algorithm toward better solution spaces and improve
its performance.

 After the formation of the initial population, the fit-
ness of all solutions is calculated. The best solution Best1
and second-best solution Best2 in each iteration are can-
didates for leader vulture R(i) , as shown in Eq. (14).

(14)R(i) =

{

Best1, p1 = L1
Best2, p2 = L2

Fig. 2 The general workflow of AVRO algorithm

Table 2 The principal mathematical symbols associated with the AVRO algorithm

symbol definition formula

α1 , α2,α3 Adjustable parameters with no intrinsic significance (11)

rn Random real numbers that follows a uniform distribution from 0 to 1, n is a positive integer from 1 to 8 -

i The i-th iteration -

T Maximum Number Of Iterations -

b The proportion of shortest paths passing through a given edge in the network (13)

δ1 Adjustable parameters to adjust the range of b (13)

R(i) Leader vulture (the two vultures with the highest fitness) in iteration i (14)

Best1 The best solution (14)

Best2 The second-best solution (14)

F The satiety rate of vultures (17)

P(i) The vector position of the vulture in the i-th iteration -

D(i) Exploration distance of vultures in the i-th iteration (20)

d(i) The distance between vultures and leader vultures (24)

ub The upper bound of algorithm search interval -

lb The lower bound of algorithm search interval -

δ2 Adjustable parameters to adjust the range of F in the optimization stage (36)

Page 8 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

 In (14), L1 and L2 are custom parameters, which
represent the probability of selecting the leader vul-
ture. pi is calculated using the roulette wheel selec-
tion method [32], as shown in Eq. (15).

(2) The second stage: Identification of the satiety rate
for the vultures
 The vultures must feed to gain the energy neces-
sary for survival. Satiated vultures are able to venture
further in search of sustenance, while their famished
counterparts lacking the requisite energy are forced
to seek food in proximity to high-energy vultures and
become more aggressive in the process. Equation (17)
models this process by using F to represent the satiety
of the vultures and balancing algorithmic development
with exploration. In Eq. (17), t is defined by Eq. (16),
and this kind of simulation behavior has been used
before [21]. When |F| is greater than 1, the vultures
search for food in different areas, and AVRO enters the
exploration stage. If |F| is less than 1, AVRO enters the
development stage, and the vultures search for food
near their current location. During training, develop-
ment and exploration alternate, with the early stages
emphasizing exploration and the later stages emphasiz-
ing development to promote algorithm convergence.

 Within Eqs. (16) and (17), i denotes the current
iteration, and T represents the total iterations. r2 is a
random number between 0 and 1. z is a random num-
ber between -1 and 1, where values below 0 indicate
hunger in the vulture, while values above 0 signify
satiation, with satiation declining over time. h repre-
sents a random number between -2 and 2.
(3) The third stage: Exploration
 When |F|≥ 1, the vulture enters an exploration
phase and randomly searches the environment. As
shown in Eq. (18), P(i + 1) represents the location of
the vulture in iteration i + 1. If the generated random
number rG1 is greater than or equal to parameter G1,
then Eq. (19) is executed. Otherwise, Eq. (21) is used.

(15)pi =
Li

∑n
i=1 Li

(16)

t = h×

(

sinγ
(

π

2
×

i

T

)

+ cos

(

π

2
×

i

T

)

− 1

)

(17)F = (2× r2 + 1)× z ×

(

1−
i

T

)

+ t

(18)P(i + 1) =

{

Eq(19), ifG1 ≥ rG1

Eq(21), ifG1 < rG1

 According to Eq. (19), the vulture forages around
the leader vulture R(i), with D(i) defined by Eq. (20)
representing the exploration distance of the vulture. X
is the distance randomly moved by the vulture, adding
randomness to the exploration phase. It is obtained
using the formula X = 2 × r, where r represents a ran-
dom number between 0 and 1.

 In Eq. (21), ub and lb indicate the upper and
lower bounds of the algorithm search interval, repre-
senting the positions of the population. r3 and r4 are
random numbers between 0 and 1. The use of r4 adds
randomness to the distribution of solutions within the
search interval, increasing the diversity of the algo-
rithm’s exploration.
(4) The fourth stage: Development
 If |F| is less than 1, AVRO enters the develop-
ment phase, which is aimed at improving the conver-
gence efficiency of AVRO. There are also two stages
within the development phase, each utilizing two dif-
ferent strategies determined by parameters G2 and
G3, both predefined in the [0,1] range.
 Development (Stage One): When |F| falls within
the range [0.5,1), AVRO enters the first stage of its
development phase. In this stage, a random number
between 0 and 1, denoted as rG2 , is generated. If rG2
is greater than or equal to parameter G2, then a food
competition process is executed; otherwise, a rotating
flight process is performed, as outlined in Eq. (22).

 Food Competition: When |F|≥ 0.5, it indicates
that the vultures have relatively abundant energy.
Vultures with sufficient energy are reluctant to
share food with others, while weaker vultures gather
around healthier ones to search for food. When
many vultures converge on a single food source, pop-
ulation conflict may arise. Equations (23) and (24)
are utilized to model this process. Random variable
r5, which takes values between 0 and 1, is introduced
to increase the randomness of the process. Equa-
tion (24) is used to obtain the distance d(t) between a
vulture and the leader vulture.

(19)P(i + 1) = R(i)− D(i)× F

(20)D(i) = |X × R(i)− P(i)|

(21)
P(i + 1) = R(i)− F + r3 × ((ub− lb)× r4 + lb)

(22)P(i + 1) =

{

Eq(23), ifG2 ≥ rG2

Eq(27), ifG2 < rG2

(23)P(i + 1) = D(i)× (F + r5)− d(t)

Page 9 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

 Rotating Flight: The vulture’s rotating flight
behavior is simulated using a spiral model. The vul-
ture’s position is updated using Eq. (27), while S1 and
S2 are obtained using Eqs. (25) and (26). Random vari-
ables r6 and r7 take values between 0 and 1.

 Development (Stage Two): If |F|< 0.5, AVRO
enters the second stage of its development phase, dur-
ing which intense fighting breaks out among vultures
due to their convergence. First, a random number
between 0 and 1, denoted as rG3 , is generated. If rG3 is
greater than or equal to parameter G3, then the vul-
ture converges towards the leader vulture. Otherwise,
an aggressive food competition process is carried out,
as outlined in Eq. (28).

 Vulture Convergence: Vultures converge towards
the leader vulture, using Eqs. (29) and (30) to calculate
the convergence position. Here, Best1(i) represents the
optimal solution in the i-th iteration, while Best2(i)
represents the second-best solution. Subsequently, all
vultures are gathered using Eq. (31), initiating compe-
tition for food.

 Food Competition: When |F|< 0.5, the leader vul-
ture becomes hungry and weak, lacking sufficient
energy to compete with other vultures for food. Other
stronger vultures become aggressive in their search for
food. Equation (32) is utilized to model this behavior.
LF(x) simulates the vulture’s flight process, utilizing a

(24)d(t) = R(i)− P(i)

(25)S1 = R(i)×

(

r6 × P(i)

2π

)

× cos(P(i))

(26)S2 = R(i)×

(

r7 × P(i)

2π

)

× sin(P(i))

(27)P(i + 1) = R(i)− (S1 + S2)

(28)P(i + 1) =

{

Eq(31), ifG3 ≥ rG3

Eq(32), ifG3 < rG3

(29)A1 = Best1(i)−
Best1(i)× P(i)

Best1(i)− P(i)2
× F

(30)A2 = Best2(i)−
Best2(i)× P(i)

Best2(i)− P(i)2
× F

(31)P(i + 1) =
A1 + A2

2

Levy Flight (LF) model [33], as shown in Eq. (33), where
σ is a part of the definition of the LF model, x represents
the problem dimension and β is a fixed parameter that
takes a value of 1.5. Random variables u and v are drawn
from a normal distribution, as shown in Eq. (34).

(5) The Fifth stage: Optimization
 In the original algorithm, when |F| is greater
than 1, vultures search for food in different areas,
and AVRO enters an exploration phase. On the
other hand, if |F| is less than 1, AVRO enters a
development stage where vultures search for food
near the optimal solution. Eq. (17) is utilized to
compute F. The convergence process and final con-
vergence performance vary depending on the maxi-
mum number of iterations. As the maximum num-
ber of iterations changes, F also changes during the
training process, and its reduction rate slows down,
resulting in slower convergence. This approach
aims to explore the maximum fitness during the
training process but does not directly yield stable
convergence during the training phase.

When deploying heuristic algorithms in computer net-
works, models with stable outputs are desirable. Hence,
an optimization phase is added to the AVRO algorithm.
During this phase, the AVRO algorithm still executes the
second development phase, and an improved formula for
computing F is obtained as shown in Eq. (35). r8 is a ran-
dom number between 0 and 1. The optimization phase is
initiated after a certain number of iterations ttrain.

Equation (36) determines the range of F in the optimiza-
tion stage, where clip(F ,−δ2, δ2)) = max(min(F , δ2),−δ2)
represents limiting F to [−δ2, δ2]. δ2 is a parameter that
can be adjusted. The optimization phase does not affect
the exploration and development processes of the vul-
tures. Instead, it reduces the activity range of the vultures
to minimize fluctuations in algorithm performance, lead-
ing to stable convergence effects.

(32)P(i + 1) = R(i)−
∣

∣d(t)
∣

∣× F × LF(x)

(33)

LF(x) = 0.01×
u× σ
∣

∣y
∣

∣

1
2

, σ =

{

Ŵ(1+ β)× sin(πβ/2)

Ŵ[(1+ β)/2]× β × 2(β−1)/2

}1/β

(34)u ∼ N
(

0, σ 2
)

, v ∼ N (0, 1)

(35)

F = (2× r8 + 1)× z ×

(

1−
i

ttrain

)

+ t, ift < ttrain

(36)F = clip(F ,−δ2, δ2), ift ≥ ttrain

Page 10 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

The workflow of the routing optimization algorithm based
on AVRO
Algorithm 1 outlines the workflow of the AVRO algorithm.
The algorithm takes as input the population size N, the maxi-
mum number of iterations, and the number of iterations
used for training, and outputs the positions of the population,
which in this paper are link weights. First, the population is
initialized (line 1), followed by training iterations. Through-
out the training process, it is imperative to procure the initial
state of the network (line 3). Subsequently, the fitness of each
member within the vulture population is computed (line 4),

and potential leader vultures are selected (line 5). For each
vulture population, a leader vulture is randomly selected
from the potential candidates (line 7), and the F parameter
is updated using the formula (lines 8–9). If |F|≥ 1, the explo-
ration phase is entered; otherwise, the development phase
is entered. During the exploration phase, the population is
updated based on Eq. (18) (lines 11–12). The development
phase is divided into two stages, where Eqs. (22) and (28) are
used to update the population (lines 14–19). Finally, discern
the optimal resolution amidst the vulture community and
implement it towards routing (line 20–22).

The AVRO algorithm needs to solve a routing problem in each iteration T, and each population needs to be evaluated
separately. Therefore, the time complexity of AVRO is O(POP), where POP represents the size of populations. The space
required by the AVRO algorithm is mainly used to store the problem’s solution. Thus, the spatial complexity of AVRO is
O(POP * dim), where dim represents the dimension of the solution and the number of links in this paper.

Algorithm 1 AVRO algorithm for routing optimization

Page 11 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

Experimental evaluation
Experimental environment settings
The experimentation and evaluation in this paper were
conducted using a simulation environment that emulates
data plane network interactions in SDN. Our experi-
ments were carried out on an AMD Ryzen 7 2700 CPU,
Nvidia GTX1080 graphics card, and 64 GB RAM. Three
real network topologies, GBN, GEANT2, and NSFNET
[19], each possessing distinct graph characteristics and
containing links with 10 GB of bandwidth, were con-
sidered for model training and evaluation. The network
topology structure is depicted in Fig. 3. The connectivity
between nodes in the GBN and GEANT topologies var-
ies significantly, with some nodes connected to only two
nodes and others related to several nodes. We can call
the nodes with many connections as central nodes, which
may have a higher link betweenness because they may
have more shortest paths. In contrast, the GEANT topol-
ogy has more nodes and a more complex network struc-
ture, making routing optimization more difficult. The
NSFNET topology has a more evenly distributed network
with node degrees ranging from 2–4.

In this paper, two dynamic traffic intensities (Traffic-1
and Traffic-2) were implemented in the three network
topologies to verify the model’s generalization perfor-
mance in different network scenarios. Traffic-1 was
generated using the gravity model, while Traffic-2 was
generated using the uniform model. Each traffic intensity
corresponds to 200 demand matrices. During the train-
ing process, a total of 7000 episodes were run, with one
traffic demand matrix being switched for each episode.
The traffic matrices are square matrices of rank equal to
the number of network nodes, with each element of the

matrix representing the traffic demand to be allocated by
a particular node in a given time slot.

Parameter settings
This paper selects an appropriate parameter value for
the AVRO agent through experimentation. In the experi-
ment, we choose the GBN network topology and Traf-
fic-1 traffic intensity as the experimental environment,
and record the fitness during training to plot a curve. For
the convenience of observation, the curve aggregated 100
fitness values at each iteration, displaying an estimate of
the central tendency, as shown in Fig. 4.

Figure 4(a) displays the training results of the AVRO
algorithm with different population sizes. The algorithm’s
performance exhibits significant differences under differ-
ent population sizes. When the population size is 2, the
AVRO algorithm cannot explore a better solution space,
while at 5, the population’s fitness fluctuates greatly,
reaching optimal performance at 20. The population size
represents the number of optional solutions, and as the
population size increases, the algorithm’s search abil-
ity increases but also contains more uncertainty, leading
to more significant performance fluctuations. However,
because increasing the population size affects the speed
of algorithm decision-making, this paper chooses 10 for
training.

Figure 4(b) shows the parameter δ2 tuning results of
the optimization stage, where this parameter’s value is
set to 0.0001. The smaller the value of δ2 , the more sta-
ble the convergence of the algorithm. The final conver-
gence fitness value of the model has no relationship with
this parameter. In theory, this value affects the conver-
gence performance by limiting the value of F during the

Fig. 3 Experimental network topologies: a GBN; b GEANT2; c NSFNET

Page 12 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

optimization stage. It only affects the convergence stabil-
ity during the optimization stage but does not affect the
training before the optimization stage. The difference
in fitness value during the optimization stage is mainly
caused by the randomness of the algorithm during the
training process.

Figure 4(c) displays the training results when the γ
parameter in Eq. (16) takes different values, with γ = 2
achieving the best performance. The figure reveals the
nonlinear relationship between parameter γ and the
algorithm’s fitness. Within a certain moderate range of
parameter γ, the algorithm can achieve higher fitness.
Setting γ too high may decrease algorithm performance.
This is because γ affects the baseline of satiety F, and as γ
increases, the value of t3 decreases, which has less impact
on F.

Figure 4(d) shows the parameter tuning results of G1
(Eq. (18)), where the algorithm’s convergence is almost
identical under different parameters. This is because G1
determines the exploration method of the population,

which means that the two exploration methods perform
similarly.

Figure 4(e) shows the parameter tuning results of G2
(Eq. (22)). As G2 increases, the fitness of the model’s
convergence exhibits a trend of first increasing and
then decreasing, with G2 = 0.3 achieving relatively opti-
mal performance. G2 balances food competition and
rotational flight in the first stage of development, as
G2 decreases, the probability of entering the hovering
flight stage decreases, while the probability of enter-
ing food competition increases. This suggests that food
competition causes the relatively hungry vultures to
cluster around the satiated ones, which can enhance
the development performance of the algorithm.

Figure 4(f) displays the parameter tuning results of G3
(Eq. (28)).In the figure, the algorithms with parameter
settings ranging from 0.3 to 0.6 exhibit similar perfor-
mance, but the algorithm with a parameter setting of
0.7 has poor convergence performance. This suggests
that a large value of G3 can lead to the algorithm falling

Fig. 4 Experimental results of adjusting parameters: a POP; b δ_2; c γ; d G_1; e G_2; f G_3

Page 13 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

into an early convergence trap. G3 balances food com-
petition and vulture clustering in the second stage of
development. Increasing G3 leads to vultures always
moving around the leader vulture, unable to obtain
enough energy to explore the solution space, thus pos-
ing a risk of early maturity.

Table 3 presents the values obtained for several signifi-
cant parameters and adjusted parameters of AVRO.

Performance evaluation
To evaluate the algorithmic performance of AVRO, this
study compares it with AVOA [21], DDPG [34], GTO
[35], RSIR [6], and OSPF [5] under the same optimization
objective. We collect the fitness in the evaluation and plot
it as a curve. The curve aggregates 100 fitness values for
each value of iteration and displays the estimated central
trend and the 95% confidence interval of the estimate.

• DDPG is a classical deep reinforcement learning
algorithm whose state space includes link traffic,
link utilization, link ingress/egress demands, and the
agent’s action in the previous time slot. The action
space is set as the weight of all links in the network,
and the reward is consistent with the fitness design of

this study. The DDPG algorithm outputs link weights
based on the state. Then it calculates the routing
strategy using the link weights, consistent with the
AVRO algorithm.

• GTO, also known as Gorilla Troops Optimizer, is a
metaheuristic algorithm that mathematizes the col-
lective social habits of gorillas. This algorithm shares
the same optimization objective as the one in this
paper, and it also outputs link weights.

• RSIR is designed based on the Q-learning algorithm
of reinforcement learning. It is a hop-based routing
algorithm whose state space is designed as nodes
in the network, and the action space is designed as
optional next hops. The reward setting in this paper
is related to the remaining bandwidth of links, packet
loss rate, and delay, and is adjusted by three hyper-
parameters accordingly. When compared with our
model, the reward setting is focused on the remain-
ing bandwidth of links. When traffic reaches a certain
node, RSIR continues to determine the next node for
routing the traffic, thereby allocating network traffic.

• OSPF is a classic routing algorithm that calculates
the shortest path between node pairs using the Dijk-
stra algorithm. Traffic will be routed directly through
the path with the least number of hops. It should
be noted that among these algorithms, OSPF is not
implemented based on SDN controllers, while other
algorithms are implemented within the SDN archi-
tecture.

Fitness evaluation
For ease of observation, Table 4 shows the fitness values
of each algorithm after converging, averaged over the last
1000 iterations. "-1" and "-2" in the table represent the
traffic intensities for Traffic-1 and Traffic-2, respectively.

The fitness comparison of each algorithm under Traf-
fic-1 traffic intensity is shown in Fig. 5. In the GBN net-
work, although the initial performance of the improved
AVRO algorithm is not as high as that of the AVOA
algorithm, after ten iterations, the fitness of the AVRO

Table 3 Related parameters and values of AVRO

Parameter Value

POP 10

δ1 2

δ2 0.0001

γ 2

G1 0.4

G2 0.3

G3 0.4

ub 1

lb 2

α1 5

α2 0.1

α3 19

Table 4 The fitness of each algorithm in each network scenario

GBN-1 GBN-2 GEANT-1 GEANT-2 NSFNet-1 NSFNet-2

AVRO(ours) 19.10 17.32 16.38 12.61 19.57 19.29

AVOA [21] 16.74 17.09 15.63 12.28 17.79 19.06

DDPG [34] 17.77 14.72 12.80 11.36 16.40 16.16

GTO [35] 17.58 14.45 9.91 10.18 17.59 15.72

RSIR [6] 16.26 14.61 10.45 12.19 16.50 10.86

OSPF [5] 11.93 7.57 6.46 9.56 16.27 14.11

Page 14 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

algorithm surpasses that of the AVOA algorithm and
can reach convergence before the optimization stage.
This indicates that the improved population initialization
algorithm does not directly enhance the performance of
the AVRO algorithm but makes it easier for the algorithm
to learn valuable knowledge and accelerate convergence.
In the GEANT2 and NSFNET networks, the initialization
performance of the AVRO algorithm is superior to that
of the AVOA algorithm because population initialization
explicitly affects the solution space. The AVOA algorithm
almost does not converge under Traffic-1 traffic intensity
because formula (17) calculates F, which is related to the
current and maximum iteration numbers. As the number
of iterations increases, the trend of F becomes closer to
F = 0, as shown in Fig. 6. However, due to the prelimi-
nary development stage, the algorithm prematurely con-
verges. The AVRO algorithm is very close to F = 0 after
the optimization stage, and the algorithm’s fitness slightly

improves in a narrow range. This is because the AVRO
algorithm stops exploring and reduces its development
scope, moving towards the vulture in a more refined
solution space.

During the training phase, the DDPG algorithm exhib-
its significant instability and relatively poor convergence
performance. This is because continuous action greatly
expands the exploration space of the task, making learn-
ing more difficult. The AVRO algorithm does not need to
consider tasks’ actions and space as the DRL algorithm,
so it is more difficult to get trapped in local optima and
has better global optimization ability. Additionally, the
Q-network’s learning is faced with the challenge of over-
estimation, which directly propagates its fitting error to
the policy network through gradient descent, resulting
in poor stability and performance of the DDPG algo-
rithm. The GTO algorithm performs better than DDPG
in fitness for GBN and NSFNET but worse than DDGP

Fig. 5 Fitness evaluation of algorithms under Traffic-1 traffic intensity: a GBN; b GEANT2; c NSFNET

Fig. 6 Performance of F: a AVOA algorithm; b AVRO algorithm

Page 15 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

in GEANT2. Its initial performance is relatively good, but
its search capability is poor. The global search capabil-
ity of the GTO algorithm during the exploration stage is
limited, which is inferior to that of the AVRO algorithm.
The performance of the RSIR and OSPF algorithms
remains relatively fixed due to the experimental environ-
ment setup, as they are successively trained on 200 traf-
fic matrices. While RSIR can make better decisions based
on network information, its learning capacity is limited,
and it performs worse than DDPG trained to converge in
most network conditions. Under the same fitness met-
ric, the OSPF algorithm performs worse than the oth-
ers. Unlike AVRO’s dynamic routing strategy, its routing
decision is fixed, and it cannot dynamically adjust routing
strategies according to network conditions, resulting in
potential congestion.

The fitness comparison of each algorithm under Traf-
fic-2 traffic intensity is shown in Fig. 7. In the GBN and
NSFNET networks, the AVRO algorithm converges faster
than the AVOA algorithm. AVRO’s optimization in the
GEANT2 and NSFNET networks is relatively less pro-
nounced than that under Traffic-1, with more significant

performance fluctuations. However, AVRO’s fitness expe-
riences a slight range improvement during the optimiza-
tion stage before stabilizing and outperforms the AVOA
algorithm. The DDPG algorithm’s convergence speed is
consistent with that of the AVOA algorithm, but its fit-
ness is lower. The GTO algorithm performs slightly worse
than the DDPG algorithm, with some fluctuations in fit-
ness trends. The performance of the RSIR algorithm in
GEANT2 is particularly noteworthy due to the network’s
pronounced centrality, which surpasses that of the other
two topologies. By leveraging the guidance of residual
bandwidth, RSIR can effectively avoid routing through
these highly central edges when making decisions. The
OSPF algorithm outperforms the RSIR algorithm in the
NSFNET topology. This can be attributed to the evenly
distributed nodes within the range of 2–4 and the rela-
tively uniform distribution of Traffic-2. In this sce-
nario, the RSIR algorithm is challenging to learn helpful
knowledge.

This paper uses minimizing the maximum link utiliza-
tion as an optimization objective, as shown in Eq. (8). We
hope the maximum link utilization is as tiny as possible

Fig. 7 Fitness evaluation of algorithms under Traffic-2 traffic intensity: a GBN; b GEANT2; c NSFNET

Table 5 The maximum link utilization of each algorithm in each network scenario

GBN-1 GBN-2 GEANT-1 GEANT-2 NSFNet-1 NSFNet-2

AVRO(ours) 39.2% 43.6% 45.2% 58.1% 38.0% 39.3%

AVOA [21] 45.2% 43.5% 47.7% 59.4% 42.9% 39.2%

DDPG [34] 41.5% 50.5% 56.7% 62.4% 47.0% 45.8%

GTO [35] 42.6% 51.9% 68.2% 66.8% 43.3% 48.4%

RSIR [6] 48.0% 51.7% 66.8% 60.9% 46.5% 66.9%

OSPF [5] 60.6% 78.2% 83.1% 69.4% 47.3% 53.8%

Page 16 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

to achieve the load balancing goal. This can also avoid
network congestion. Similarly, Table 5 shows each algo-
rithm’s maximum link utilization values after conver-
gence, averaged over the last 1000 iterations.

Figure 8 shows the maximum link utilization of each
algorithm under Traffic-1. The AVRO algorithm exhib-
its a decreasing trend in maximum link utilization under
Traffic-1, ultimately converging to a lower position rela-
tive to other algorithms. AVRO and AVOA have small
confidence intervals, indicating more stable algorithmic

performance. Compared to other algorithms, the AVRO
algorithm can find relatively optimal solutions in less
time. The AVRO algorithm can minimize the maximum
link utilization under the optimization objective of this
paper, achieving load balancing. Furthermore, using the
full range of link utilization as an optimization objective
avoids situations where some links in the network remain
idle for long periods, reducing network resource waste.

Figure 9 shows the maximum link utilization of each
algorithm under Traffic-2. Under the NSFNET topology,

Fig. 8 Evaluation of maximum link utilization of algorithms under Traffic-1 traffic intensity: a GBN; b GEANT2; c NSFNET

Fig. 9 Evaluation of maximum link utilization of algorithms under Traffic-2 traffic intensity: a GBN; b GEANT2; c NSFNET

Page 17 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

the AVRO algorithm’s maximum link utilization is slightly
higher than that of the AVOA algorithm because of the
objective optimization setting, which biases the AVRO
algorithm towards balanced link utilization. Regarding
other algorithms, the DDPG algorithm exhibits significant
instability during the training stage but has a small range
of confidence intervals after convergence. The GTO algo-
rithm performs relatively poorly in training. Although the
RSIR algorithm’s fixed decision-making can perform well,
it cannot surpass other models. The OSPF algorithm’s
maximum link utilization is relatively high, indicating poor
load-balancing capability. The AVRO algorithm outper-
forms these baseline algorithms through global optimiza-
tion and fast convergence.

Conclusion
SDN decouples the network’s data and control planes,
making network management more straightforward
and creating opportunities for deploying intelligent
algorithms in networks. However, existing heuristic
algorithms perform poorly, while popular reinforce-
ment learning-based routing algorithms suffer from
slow convergence and lack of scalability, making their
deployment in real-world scenarios nearly impossible.
In this study, we propose the AVRO algorithm to opti-
mize SDN routing problems. First, we model the opti-
mization objective of load balancing in the network and
propose an improved population initialization algo-
rithm that leverages explicit information on network
environment characteristics to accelerate algorithm
convergence. Additionally, we introduce an exploration
stage to enhance the development of the algorithm and
further improve its performance. Finally, we conduct
simulation experiments with three network topologies
and two traffic intensities, comparing our proposed
model against OSPF, RSIR, DDPG, and the original
AVOA algorithm. The results show that our model has
the highest fitness and the smallest network metric
value of maximum link utilization rate. Therefore, our
model has superior load-balancing performance.

In the future, we plan to implement our framework
in a more realistic network simulator, such as Mininet,
using real controllers, such as Floodlight, and simulat-
ing bursty situations with high traffic and link break-
age to test the effectiveness and practicality of the
algorithm. Meanwhile, we will also consider applying
heuristic algorithms to deep learning algorithms to
combine both advantages.

Authors’ contributions
Conceptualization: Junyan Chen and Hongmei Zhang; Methodology: Junyan
Chen, Hongmei Zhang and Wei Xiao; Software: Wei Xiao, Jiacheng Zuo
and Junyan Chen; Validation: Junyan Chen and Wei Xiao; Formal analysis:

Junyan Chen and Hongmei Zhang; Investigation: Junyan Chen and Wei Xiao;
Resources: Xinmei Li; Data curation: Xinmei Li; Writing—original draft prepara-
tion: Junyan Chen, Wei Xiao and Jiacheng Zuo; Writing—review and editing:
Junyan Chen, Hongmei Zhang and Wei Xiao; Visualization: Wei Xiao and
Jiacheng Zuo; Supervision: Hongmei Zhang; Project administration: Hongmei
Zhang; Funding acquisition: Hongmei Zhang and Junyan Chen. All authors
have read and agreed to the published version of the manuscript.

Funding
This work is supported by the National Natural Science Foundation of China
(grant numbers 61861013), the major program of Guangxi Natural Science
Foundation (grant numbers 2020GXNSFDA238001), and the Middle-aged and
Young Teachers’ Basic Ability Promotion Project of Guangxi (grant numbers
2020KY05033).

Availability of data and materials
The authors confirm that the data supporting the findings of this study are
available within the article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors confirm that neither the article nor any parts of its content are cur-
rently under consideration or published in another journal. The authors agree
to publication in the journal.

Competing interests
The authors declare no competing interests.

Received: 11 July 2023 Accepted: 28 January 2024

References
 1. Ali J, Rutvij H, Mohannad A, Byeong-hee R (2023) ESCALB: An effective

slave controller allocation-based load balancing scheme for multi-
domain SDN-enabled-IoT networks. Journal of King Saud University-
Computer and Information Sciences 35(6):101566

 2. Chen J, Huang X, Wang Y, Zhang H, Liao C, Xie X, Li x, Xiao W (2023) AST-
PPO: A proximal policy optimization algorithm based on the attention
mechanism and spatio–temporal correlation for routing optimization in
software-defined networking. Peer-to-Peer Networking and Applications
16:2039–2057

 3. Miguel-Alonso J (2023) A research review of OpenFlow for datacenter
networking. IEEE Access 11:770–786

 4. Cummaudo A, Vasa R, Grundy J, Abdelrazek M (2022) Requirements of
API documentation: a case study into computer vision services. IEEE Trans
Software Eng 48(6):2010–2027

 5. Ali K, Zafrullah M, Hussain M, Ahmad A (2017) Performance analysis of
OSPF and hybrid networks. International Symposium on Wireless Systems
and Networks (ISWSN 2017) 2017:1–4.

 6. Casas-Velasco D, Rendon O, Fonseca, (2021) Intelligent routing based on
reinforcement learning for software-defined networking. IEEE Trans Netw
Serv Manage 18(1):870–881

 7. Zhuang Z, Wang J, Qi Q, Sun H (2018) Graph-aware deep learning based
intelligent routing strategy. Proceedings of the 2018 IEEE 43rd Confer-
ence on Local Computer Networks (LCN 2018) 2018:441–444.

 8. Shin D, Kim J (2021) Deep reinforcement learning-based network routing
technology for data recovery in exa-scale cloud distributed clustering
systems. Appl Sci 11(18):8727–8819

 9. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu P (2021) A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks
and Learning Systems 32(1):4–24

 10. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks:
LSTM cells and network architectures. Neural Computer 31(7):1235–1270

Page 18 of 18Chen et al. Journal of Cloud Computing (2024) 13:41

 11. Yang S, Tan C, Madsen D, Xiang H, Li Y, Khan I, Choi B (2022) Comparative
analysis of routing schemes based on machine learning. Mob Inf Syst
2022:4560072

 12. Sutton R, Barto A (2018) Reinforcement learning: An introduction. MIT
Press, Cambride

 13. Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning
with double Q-learning. AAAI Conference on Artificial Intelligence
2016:2094–2100

 14. Rischke J, Sossalla P, Salah H, Fitzek F, Reisslein M (2020) QR-SDN: Towards
reinforcement learning states, actions, and rewards for direct flow routing
in software-defined networks. IEEE Access 8:174773–174791

 15. Luong N, Hoang D, Gong S, Niyato D, Kim D (2019) Applications of deep
reinforcement learning in communications and networking: a survey.
IEEE Communications Surveys and Tutorials 21(4):3133–3174

 16. Wang J, Zhao L, Liu J, Kato N (2021) Smart resource allocation for mobile
edge computing: a deep reinforcement learning approach. IEEE Transac-
tions on Emerging and Topics Computing 9(3):1529–1541

 17. Fu Q, Sun E, Meng K, Li M, Zhang Y (2020) Deep Q-learning for
routing schemes in SDN-based data center networks. IEEE Access
8:103491–103499

 18. Bernárdez G, Suárez-Varela J, López A, Wu B, Cabellos-Aparicio A (2021)
Is machine learning ready for traffic engineering optimization? IEEE 29th
International Conference on Network Protocols (ICNP 2021) 2021:1–11.

 19. Chen J, Xiao W, Li X, Zheng Y, Huang X, Huang D, Wang M (2022) A rout-
ing optimization method for software-defined optical transport networks
based on ensembles and reinforcement learning. Sensors 22:8139

 20. Seyed R, Shahram J, Peyman B (2022) A power-efficient and perfor-
mance-aware online virtual network function placement in SDN/NFV-
enabled networks. Comput Netw 205:108753

 21. Benyamin A, Farhad S, Seyedali M (2021) African vultures optimization
algorithm: a new nature-inspired metaheuristic algorithm for global
optimization problems. Comput Ind Eng 158:107408

 22. Ali J, Adnan M, Gadekallu T, Jhaveri R, Roh B (2022) A QoS-aware software
defined mobility architecture for named data networking. IEEE Globecom
Workshops (GC Wkshps) 2022:444–449

 23. Zhao L, Bi Z, Lin M, Hawbani A, Shi J, Guan Y (2021) An intelligent fuzzy-
based routing scheme for software-defined vehicular networks. Comput
Netw 187:107837

 24. Rusek K, Varela J, Almasan P, Barlet-Ros P, Cabellos-Aparicio A (2020)
RouteNet: leveraging graph neural networks for network modeling and
optimization in SDN. IEEE J Sel Areas Commun 38(10):2260–2270

 25. Chen J, Wang Y, Huang X, Xie X, Zhang H, Lu X (2022) ALBLP: adaptive
load-balancing architecture based on link-state prediction in software-
defined networking. Wirel Commun Mob Comput 2022:8354150

 26. Farshin A, Sharifian S (2019) A modified knowledge-based ant colony
algorithm for virtual machine placement and simultaneous routing
of NFV in distributed cloud architecture. Journal of Supercomputing
75:5520–5550

 27. Samarji N, Salamah M (2021) A fault tolerance metaheuristic-based
scheme for controller placement problem in wireless software-defined
networks. Int J Commun Syst 34(4):e4624

 28. Samarji N, Salamah M (2022) ESRA: Energy soaring-based routing algo-
rithm for IoT applications in software-defined wireless sensor networks.
Egyptian Informatics Journal 23(2):215–224

 29. Raouf O, Askr H (2019) ACOSDN-Ant colony optimization algorithm for
dynamic routing in software defined networking. The 14th Interna-
tional Conference on Computer Engineering and Systems (ICCES),
IEEE:141–148.

 30. Isyaku B, Bakar KA, Mohd Zahid MS, Alkhammash EH, Saeed F, Ghaleb FA
(2021) Route path selection optimization scheme based on link quality
estimation and critical switch awareness for software-defined networks.
Appl Sci 11(19):9100

 31. Wang X, Chen Y, Zhu W (2022) A survey on curriculum learning. IEEE Trans
Pattern Anal Mach Intell 44(9):4555–4576

 32. Pandey A, Kulhari A, Shukla D (2022) Enhancing sentiment analysis using
Roulette wheel selection based cuckoo search clustering method. J
Ambient Intell Humaniz Comput 13(1):629–657

 33. Houssein EH, Saad MR, Hashim FA, Shaban H, Hassaballah M (2020) Levy
flight distribution: a new metaheuristic algorithm for solving engineering
optimization problems. Eng Appl Artif Intell 94:103731

 34. Chen J, Wang Y, Ou J, Fan C, Lu X, Liao C, Huang X, Zhang H (2022)
ALBRL: automatic load-balancing architecture based on reinforcement
learning in software-defined networking. Wirel Commun Mob Comput
2022:3866143

 35. Benyamin A, Farhad S, Seyedali M (2021) Artificial gorilla troops optimizer:
a new nature-inspired metaheuristic algorithm for global optimization
problems. Int J Intell Syst 36(10):5887–5958

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Dynamic routing optimization in software-defined networking based on a metaheuristic algorithm
	Abstract
	Introduction
	Related work
	Mathematical modelling for network optimization
	Design of routing optimization algorithm based on AVRO
	AVRO algorithm
	The workflow of the routing optimization algorithm based on AVRO

	Experimental evaluation
	Experimental environment settings
	Parameter settings
	Performance evaluation
	Fitness evaluation

	Conclusion
	References

