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Abstract 

Traditional delivery route planning faces challenges in reducing logistics costs and improving customer satisfac-
tion with growing customer demand and complex road traffic, especially in uncertain supply chain environment. To 
address these challenges, we introduce an innovative two-phase delivery route planning method integrating edge 
intelligence technology. The novelty of our approach lies in utilizing edge computing devices to monitor real-time 
changes in road conditions and dynamically adjust delivery routes, thereby providing an effective solution for effi-
cient and flexible logistics. Initially, we construct a mixed-integer programming model that minimizes the total cost 
under constraints such as customer destinations and time windows. Subsequently, in the cloud-edge collaborative 
mode, edge computing devices are utilized to collect real-time road conditions and transmit it to the cloud server. 
The cloud server comprehensively considers customer demand and road condition changes and employs adaptive 
genetic algorithms and A-star algorithms to adjust the delivery routes dynamically. Finally, comprehensive experi-
ments are conducted to validate the effectiveness of our method. The results demonstrate that our approach can 
promptly respond to changes in customer demands and road conditions and flexibly plan the optimal delivery routes, 
thereby significantly reducing overall costs and enhancing customer satisfaction.

Keywords Uncertain supply chain, Cloud-edge collaboration, Changes in demand and road condition, Route 
planning, Hybrid meta-heuristic algorithm

Introduction
In uncertain supply chain environment, the logistics 
industry is evolving rapidly and facing numerous chal-
lenges, in which the most critical is the precise and 
efficient planning of delivery routes [1]. As customer 
demands become more diverse and urban traffic environ-
ments increasingly complex, this challenge has become 
more pronounced. Logistics route planning has to flex-
ibly respond to changes in delivery locations and times 
caused by factors such as plan alterations or temporary 
demands [2], while also considering unpredictable factors 
like traffic congestion and route disruptions [3]. These 
dynamic factors add extra uncertainty to the selection 
and optimization of delivery routes, significantly impact-
ing the improvement of logistics efficiency and customer 
satisfaction. In recent years, edge intelligence technology, 
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combined with cloud computing and the Internet of 
Things (IoT), has been applied by scholars to new intel-
ligent logistics models to optimize the logistics deliv-
ery process [4–6]. This not only enhances the precision 
and efficiency of logistics route planning and reduces 
costs, but also significantly improves customer satisfac-
tion. Furthermore, this technology plays a crucial role in 
reducing energy consumption and carbon emissions dur-
ing transportation, contributing to the development of an 
environmentally friendly logistics system and effectively 
alleviating urban traffic congestion.

Edge intelligence refers to the rapid processing and 
analysis of data at the network edge, aimed at reducing 
latency and enhancing efficiency [7]. This technology 
demonstrates immense potential in delivery route plan-
ning. It is capable of real-time processing of complex traf-
fic and delivery data to optimize decision-making and 
significantly improve delivery efficiency [8]. Compared 
to traditional logistics route planning [9, 10], edge intel-
ligence offers a flexible and efficient route planning solu-
tion that can quickly respond to environmental changes, 
such as traffic fluctuations. The rise of this technology is 
attributed to its ability to reduce central processor delays 
when handling large volumes of data and effectively uti-
lize the growing amount of data generated by the Internet 
of Things (IoT) devices. Figure 1 provides a simple exam-
ple of an edge intelligence empowered delivery route 
planning that considers two types of changes in uncer-
tainty, i.e., customer demand changes and road condition 

changes. Delivery vehicles start their routes at 8 AM and 
sequentially complete delivery tasks along the planned 
route. After the vehicle completes the first delivery task 
for customer 1 at destination A, the edge computing 
device detects a change in the road conditions leading to 
the next delivery destination. To avoid delays for subse-
quent customers, the cloud server is required to adjust 
the route temporarily. As the vehicle approaches cus-
tomer 2 at destination B, the route needs to be adjusted 
again due to the delivery destination being changed from 
C to D by customer 3 through the terminal device.

Edge intelligence empowers delivery route plan-
ning, utilizing IoT devices at the edge for data collec-
tion and analysis, facilitating intelligent interaction 
between vehicles, cloud servers, and edge computing 
devices. In this study, we propose a novel approach that 
employs edge computing devices to monitor real-time 
changes in road conditions, allowing for timely adjust-
ments in delivery routes. Unlike previous studies that 
focused on static road conditions or probabilistic plan-
ning in uncertain environments [11, 12], our method 
concentrates on using real-time changes in road con-
ditions to dynamically plan delivery routes, thus more 
effectively handling the constantly changing road con-
ditions. In addition, we focus on changing customer 
demands, including changes in customer time win-
dows and destinations. Customers set their demands 
through terminal devices, including delivery destina-
tions and time windows. Subsequently, the cloud server 

Fig. 1 Illustration of edge intelligence empowered delivery route planning for handling changes in uncertain supply chain environment
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and edge computing devices coordinate to develop the 
optimal delivery routes. Edge computing devices are 
responsible for monitoring real-time road conditions, 
calculating whether changes have affected the original 
route, and sending this information back to the cloud 
server for route adjustments [13, 14]. This study aims 
to develop an efficient and flexible delivery route plan-
ning method adapted to uncertain environments by 
integrating edge intelligence techniques so as to reduce 
delivery costs and improve customer satisfaction. Com-
pared to previous probabilistic planning methods in 
uncertain environments, our method increases the 
timeliness and accuracy of delivery routes while signifi-
cantly reducing uncertainty and efficiency losses in the 
delivery process  by instantly  capturing and analyzing 
road condition changes.

We explore the delivery route planning empowered 
by edge intelligence in uncertain supply chain environ-
ment. This study aims to develop an innovative delivery 
route planning method to address the changes in road 
conditions and customer demands within an uncer-
tain supply chain environment, thereby enhancing the 
efficiency of logistics delivery and customer satisfac-
tion. The contributions of this paper are summarized as 
follows:

1) We develop a mixed-integer programming model 
that minimizes the total delivery cost while meeting 
customer demands, including soft constraints of des-
tination and time windows, as well as limitations on 
vehicle capacity and endurance.

2) We propose a two-stage route planning method to 
address these changes. In the first stage, an initial 
solution is generated based on the initial customer 
demands, aiming to minimize the total journey while 
satisfying customer demands. In the second stage, we 
dynamically adjust the route through the cloud-edge 
collaboration mode, which utilizes edge computing 
devices to collect real-time road conditions, calculate 
to determine whether the changes have affected the 
original route, and send the results back to the cloud 
server. The cloud server receives demand changes 
from customers and road condition changes from 
edge computing devices, runs the adaptive genetic 
algorithm and adaptive A-star algorithm to guide 
vehicle route adjustment.

3) We validate the effectiveness of our proposed method 
through experiments and demonstrate their effi-
ciency and practicality in addressing route planning 
problems involving changes in customer demands 
and road conditions through planning and analysis of 
actual cases.

Overall, our work effectively addresses the challenges 
of changing road conditions and customer demands in 
an uncertain supply chain environment. The proposed 
optimization model and route planning method pro-
vide practical solutions for enhancing logistics delivery 
efficiency and customer satisfaction.

 The remainder of this paper is organized as fol-
lows:  Related works section reviews previous related 
research. Problem description section provides a 
detailed description of the research problem and the 
corresponding mathematical model. Proposed method 
section introduces our method for solving the problem. 
Simulation experiment section presents a case study 
and experimental results. Finally, in Conclusion sec-
tion, we discuss the conclusions and future research 
directions.

Related works
In recent years, route planning in the field of supply 
chains has received significant attention, and we have 
reviewed a series of related literature and conducted an 
in-depth study of this topic.

Route planning in traditional supply chain environment
The traditional supply chain is a linear process for 
moving products from suppliers to consumers aiming 
to minimize costs [15]. To achieve this, various solu-
tions have been proposed for different scenarios. For 
instance, Liu et  al. [16] used a hybrid heuristic algo-
rithm to develop cost and time-optimized route plan-
ning solutions for the e-commerce industry with time 
and vehicle capacity constraints, demonstrating atten-
tion to practical business demands. Archetti et al. [17] 
and Shelbourne et  al. [18] focused on vehicle route 
problems with release dates and deadline constraints. 
The former minimized completion time using MILP 
model with an iterative local search method, while 
the latter optimized total costs using a path-relinking 
algorithm.

Additionally, some scholars have focused on consider-
ing customer service time in route planning research. For 
example, Bae et  al. [19] examined multi-location vehi-
cle routing problems with time windows, distinguish-
ing between vehicles for product delivery and those for 
installation services, and solved this problem using heu-
ristic and genetic algorithms. Han et al. [20] studied opti-
mization strategies for door-to-door delivery systems 
under soft time window conditions, aiming to reduce 
total distance and delivery personnel work time using a 
MILP model and heuristic algorithms. While these stud-
ies provide solutions for logistics route planning, their 
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practical application may be limited when facing dynamic 
changes in customer demands and road conditions.

Route planning in uncertain supply chain environment
Demand-side uncertainty factors are commonly related 
to customer demand and are modeled using probabil-
istic distribution parameters. For example, Zhang et  al. 
[21] addressed the uncertainty of customer demand in 
the fresh supply chain distribution problem using prob-
ability distributions. They developed a probabilistic pro-
gramming model and an improved genetic algorithm 
to minimize delivery costs while ensuring freshness. 
Liu et  al. [12] introduced uncertainty in demand in the 
context of electric vehicle delivery and developed a two-
stage adaptive robust model to accommodate changes in 
demand. Furthermore, Özarık et  al. [2] considered the 
uncertainty of customer demand from a temporal per-
spective, optimizing delivery routes using a probabilistic 
planning model and the ALNS algorithm to address the 
uncertainty of customer appearance times. These stud-
ies highlight the importance of managing demand-side 
uncertainty in supply chain delivery routes.

In research on supply-side uncertainty, transportation 
and service times are the primary focus. Goli et al. [22] 
addressed the uncertainty of transportation times in the 
organ transplant supply chain by constructing a pos-
sibility programming model and optimizing total costs 
through simulation. Liu et  al. [11] described the uncer-
tainty of customer service times using probability distri-
butions and minimized assembly times in urban delivery 
problems using a stochastic programming model and a 
hybrid heuristic algorithm. Despite these contributions to 
addressing transportation and service time uncertainties, 
there has been less research on the impact of changing 
road conditions on transportation times. In this context, 
Liu et al. [23] introduced real-time traffic conditions and 
developed a mixed-integer programming model to mini-
mize the total travel time in the supply chain, using a 
hybrid algorithm that combines ant colony systems and 
virtual traffic modeling (ACS-VTM) to explore optimal 
vehicle routes.

Additionally, several studies have focused on address-
ing uncertainties from both supply and demand sides 
simultaneously. For instance, Yan et al. [24] used budget 
uncertainty theory to handle fuzzy random demands and 
travel times, proposing a vehicle route planning method 
based on particle swarm optimization to minimize total 
costs and maximize customer satisfaction. Goel et  al. 
[1] focused on random demand and service times, solv-
ing the time-window-constrained vehicle route planning 
problem with an improved ant colony system, aiming 
to balance total transportation costs and customer sat-
isfaction. Further, Samani et  al. [25] developed a fuzzy 

programming model for blood supply chain network 
planning, considering supply chain disruption risks and 
uncertainties in input data such as blood supply and 
demand, facility costs, and transportation costs. While 
these studies have made progress in handling uncertain-
ties, they still lack a comprehensive consideration of the 
overall impact of changes in customer demand and road 
conditions on the supply chain. Zhang et  al. [26] paid 
more attention to the uncertainties in travel and service 
times caused by traffic congestion and customer delays, 
providing new methods to handle these uncertain param-
eters, yet they did not fully explore response mechanisms 
to customer demand changes.

Application of cloud computing and edge computing 
in route planning
In the field of route planning, the application of cloud 
computing technology is flourishing, with numerous 
scholars successively proposing a series of innovative 
methods and systems. The application of cloud comput-
ing has been widely discussed and researched, particu-
larly in intelligent city logistics. For instance, Nowicka 
et  al. [4] conducted an in-depth analysis of the role of 
cloud computing in intelligent city logistics, especially 
emphasizing its potential in adapting to the dynami-
cally changing transportation environment and effec-
tively managing urban traffic. Meanwhile, Chen et  al. 
[27] utilized cloud computing technology to acquire 
real-time traffic conditions and optimized the routes of 
cold chain logistics vehicles using parallel genetic algo-
rithms, analyzing delivery times and costs. Yu et al. [28] 
also explored an online planning algorithm for cold chain 
logistics shipping routes in a cloud computing environ-
ment to enhance delivery efficiency.

Additionally, the role of edge computing in optimizing 
logistics delivery routes is becoming increasingly promi-
nent. Li et  al. [29] proposed a dynamic vehicle delivery 
route optimization method that combines cloud com-
puting, edge computing, and terminal device collabora-
tion, effectively resolving issues of irrational routes and 
neglecting real-time road conditions in logistics deliv-
ery. Yao et  al. [8] developed a real-time cache-assisted 
route planning system based on mobile edge computing 
(CARPS-MEC) that significantly reduces communication 
and computation time by caching frequently used routes, 
thereby significantly shortening response times. Xue 
et al. [30] introduced a cooperative route planning system 
for multi-connected vehicles supported by edge comput-
ing, which effectively reduces traffic congestion through 
cross-domain load balancing. Furthermore, Wang et  al. 
[14] investigated the optimization design of intelli-
gent logistics systems and supply chain management, 
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enhancing the accuracy of logistics system positioning 
and the efficiency of supply chain management using 
edge computing and IoT technology.

Overall, cloud computing and edge computing not 
only significantly improves computational efficiency and 
response speed in route planning but also enhances the 
capability to handle large-scale data and complex real-
time road conditions. It demonstrates great potential and 
practical value in managing uncertainties in road condi-
tion changes.

Problem description
Description and assumptions
We study the problem of optimizing the routes of deliv-
ery vehicles based on customer demands and real-time 
road conditions, in order to mitigate the impact of cus-
tomer demand and traffic condition changes on delivery, 
and to reduce total cost. Therefore, the research ques-

tion of this paper can be described as follows: During the 
delivery process, how to handle the uncertainties caused 
by changes in customer demands (such as destinations 
and time windows) and changes in road conditions (such 
as sudden accidents, traffic congestion) along the route, 
to ensure that customer demands are met to the greatest 
extent while minimizing the total cost.

The dynamic delivery route planning problem studied 
in this paper focuses on changes in customer demands 
and road conditions during the delivery process, for 
which the assumptions are as follows.

Assumption 1: The delivery center must complete all 
the customers’ delivery tasks. Multiple vehicles are 
deployed for preliminary optimization to formulate a 
delivery plan, ensuring that the vehicles complete the 
delivery tasks on time.
Assumption 2: Road condition changes are collected 
and sent to the cloud server by edge computing 
devices, while demand changes are sent to the cloud 
server by the customers through terminal devices. 
The cloud server receives these changes and runs the 
algorithms to adjust the route until all tasks are com-
pleted.
Assumption 3: Each vehicle is responsible for deliv-
ering to multiple customer demand points, with 
the total load not exceeding the vehicle’s maximum 

capacity and arrival time not exceeding the custom-
ers’ time window.

Mathematical model
We introduce a mathematical model for dynamic delivery 
route planning in the problem. The main notations are 
shown in Table 1.

1) Transportation cost

The transportation cost, denoted as TC, is repre-
sented as the sum of the initial route cost and the incre-
mental or decremental route cost due to customer 
demand changes and the incremental or decremental 
route cost due to road condition changes. The energy 
consumption required for transportation is the primary 
source of this cost, and its formula is shown in Eq. (1).

c1 represents the transportation cost per unit dis-
tance. xijk is a binary variable representing the delivery 
routes, where all xijk with the same k constitute a con-
tiguous route, i.e., the driving route of vehicle k. x+ijk and 
x−ijk represent route adjustments due to customer 
demand changes, while x++

ijk  and x−−
ijk  represent adjust-

ments due to road condition changes.

2) Time window penalty cost

Each customer has specific requirements for deliv-
ery time, and delivering goods within the stipulated 
time window [ei, li] can significantly save costs. The high 
demand for vehicles and other resources in logistics 
may lead to goods arriving early or late, thereby incur-
ring costs for early waiting and late penalties. Consid-
ering practical situations, this paper adopts a soft time 
window constraint approach. Deliveries outside the 
time window incur additional penalty costs, denoted as 
PC, as shown in Eq. (2).

c2 represents the penalty cost per unit of time, wik is 
the waiting time of vehicle k at demand point of cus-
tomer i, and tik is the time of arrival of vehicle k at 
demand point of customer i.

(1)TC = c1

K

k=1

M

i=0

M

j=0

dijxijk +

K

k=1

M

i=0

M

j=0

dij(x
+
ijk − x−ijk)+

K

k=1

M

i=0

M

j=0

dij(x
++
ijk − x−−

ijk )

(2)PC = c2

K
∑

k=1

M
∑

i=0

(wik +max[0, (tik − li)])
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3) Vehicle cost

The cost of completing all customers’ delivery task is 
positively correlated with the number of vehicles sched-
uled for delivery. Therefore, it is crucial to reduce the 
number of vehicles needed for delivery tasks. VC repre-
sents the total cost of the vehicles required to complete 
the tasks, as detailed in Eq.  (3), where c3 denotes the 
cost per vehicle.

4) Edge service time cost

Once delivery starts, vehicles periodically request 
tasks from the server, which processes and evaluates 

(3)VC = c3

K
∑

k=1

M
∑

j=0

x0jk

these tasks according to customer demands and road 
conditions to determine the optimal route. In the edge 
computing context, adapting to changes in customer 
demands and road conditions involves a process akin to 
computation task offloading as described in [31]. This 
process encompasses the computation task’s transmis-
sion, offloading to the edge server, route replanning by 
the server, and sending the new route to the vehicle. The 
total time for this is modeled as follows.

Fv
q (t) and Gv′

v  are binary variables, where Fv
q (t) is 0 if vehi-

cle v is in range of edge device q, and 1 if not; Gv′

v  is 0 if 
a task transmits from v to v’, and 1 otherwise. θv,v′ counts 
vehicles rerouted from v to v’. �V 2V  and �V 2I are the Vehi-
cle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) 
data transmission rates, respectively. ωv and ω′ represent 
the data sizes of vehicle v’s task and the results post-exe-
cution, respectively. p is each resource unit’s processing 
capacity; uv , the edge server’s unit count; lv , the task length.

(4)
fv(t) =

Q
∑

q=1

V
∑

v′=1

Fv
q (t)·G

v′

v (t)·(1−F
q
v (t))·

ωv

�V 2V
·(θv,v′+1)+

Q
∑

q=1

F
q
v (t)·

ωv

�V 2I
+

Q
∑

q=1

F
q
v (t)·

lv

uv · p
+

ωv′

�V 2I

Table 1 Notations

Notations Descriptions

i, j, n i, j is customer id, i, j = 0,1, 2, . . . ,M , M is the number of customers, 0 is the delivery center; n is the traffic node.

k Delivery vehicle number (k = 1,2, . . . , K) , K is the number of vehicles.

ei , li Earliest and latest time for customer i.

xijk Binary variable on whether vehicle k moves from i to j. Xijk is the set ofxijk

x+ijk , x
−
ijk x+ijk is the route added to xijk after a demand change; x−ijk is the route reduced from xijk after a demand change.

x++
ijk , x−−

ijk x++
ijk  is the route added to x+ijk after a change in road conditions; x−−

ijk  is the route reduced from x−ijk 

after a change in road conditions.

dij Distance between i and j.

Dk Endurance of vehicle k.

tik , tjk Arrival time of vehicle k at i and j.

tijk Time required for vehicle k to travel from i to j.

bik Departure time of vehicle k from i, bik ≥ 0.

wi Weight of goods for customer i.

Wk Capacity of vehicle k.

vmijk Speed of vehicle k at time m of the travel from i to j.

dmijk Distance travelled by vehicle k from i to j at time slot m.

rmij Road conditions of the section from i to j at time slot m.

o Time slot, o = 1,2, . . .O , O is the number of time slot.

πo Time interval πo = [ζo , ξo] , ζo and ξo are the left and right time boundary ofπo .

V Number of vehicles on the current road segment.

Q Number of edge computing devices (ECD).

�V2V Data transmission rate based on V2V technology.

�V2I Data transmission rate based on V2I technology.

ωv Data amount of vehicle v computing task transferred to the edge server.
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The entire delivery process is divided into O time peri-
ods, each represented as [ζo, ξo] . At the start of each time 
period ζo , vehicles initiate task requests to the server. Con-
sidering the cost of using edge computing services, we set 
the cost per unit of time as c4 . Therefore, the total cost of 
using edge services during the entire vehicle delivery pro-
cess is calculated as EC, with the calculation formula pro-
vided in Eq. (5).

The total cost to complete all delivery tasks, by dynami-
cally adjusting delivery routes in response to changes 
in customer demands and road conditions, can be 
expressed as:

The constraints related to customer demands (destina-
tion, time window), the capacity and endurance of the 
vehicles are as follows.

Equations  (7)-(9) collectively emphasize the impor-
tance of customer coverage in the routing process. Spe-
cifically, Eq. (7) ensures that the planned route, based on 
the original demand, encompasses all customers without 
omissions. Equation  (8) states that the adjusted route 
must meet the demands of all customers, even if demand 
changes before the delivering state. Equation (9) further 
asserts that any modifications to the route, prompted by 
changes in road conditions, should not result in any cus-
tomer being left out. Equation  (10) requires the cumu-
lative load of a vehicle not to  exceed the vehicle’s load 
capacity. Equation (11) requires the total distance of the 

(5)EC = c4

O
∑

o=1

fv(ζo)

(6)Cost = TC + PC + VC + EC

(7)
K
∑

k=1

N
∑

i=0,i �=j

xijk = 1 ∀j ∈ N

(8)
K
∑

k=1

N
∑

i=0,i �=j

xijk + x+ijk − x−ijk = 1 ∀j ∈ N

(9)
K
∑

k=1

N
∑

i=0,i �=j

xijk + x+ijk − x−ijk + x++
ijk − x−−

ijk = 1 ∀j ∈ N

(10)
N
∑

i=0

N
∑

j=0

wixijk � Wk ∀k ∈ K

(11)
N
∑

i=0

N
∑

j=0

dijxijk � Dk ∀k ∈ K

vehicle routes not to exceed its endurance, a constraint 
that ensures the vehicle can complete its deliveries with-
out running out of power.

Proposed method
We propose a two-stage delivery route planning method 
for handling changes in uncertain supply chain environ-
ment, as shown in Fig.  2. In the first stage, the supply 
chain system plans the initial delivery route after receiv-
ing the initial customer demands, as detailed in Algo-
rithm  1. This route has a minimum total vehicle travel 
distance while satisfying the constraints of customer 
destination and time window demand, as well as vehicle 
endurance and load constraints. In the second stage, if 
the customer demand changes in the undelivered state, 
the remaining routes are optimized based on the changed 
customer demand to minimize the impact of the change 
on the subsequent delivery tasks, as detailed in Algo-
rithm  2. If the road conditions on the remaining routes 
change (e.g., traffic congestion), a new and faster route is 
selected based on the changed road conditions to avoid 
delivery delays, as detailed in Algorithm 3.

Route planning for the initial customer demands 
in the first stage
As the initial route planning does not necessitate an exact 
optimal solution, our approach employs a genetic algo-
rithm based on [32]. This algorithm is enhanced by an 
adaptive encoding scheme to generate the initial popu-
lation so that the genetic algorithm can adaptively solve 
our optimization model, which is detailed in Algorithm 1.

Algorithm 1 Route planning for initial customer demands

The input parameters include customer demands, such 
as destination and time window, and vehicle restrictions, 
such as capacity and endurance. The output parameters 
are the optimal routes Xijk . First, a chromosome is encoded 
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and then the population is initialized by that chromosome 
(lines 1–2). The encoding scheme is as follows: the initial 
chromosome is encoded as {1, 2, …, U, U + 1, U + 2, …, 
U + K-1}, where U is the number of customers and K is the 
number of available vehicles. {1,2, …, U} represents the cus-
tomer ID, {U + 1, U + 2, …, U + K-1} represents separation 
flags to distinguish the customer IDs responsible for dif-
ferent vehicles. Second, the normalized genetic operators 
are executed until reaching the maximum iterations (lines 
3–8). Population initialization, selection crossover and 
mutation operations are detailed in the work of Zhang et al. 
[21]. Finally, the optimal chromosome is decoded into an 
optimal route Xijk (line 9).

Route planning for handling changes in the second stage
In order to mitigate the impact of uncertainties in both cus-
tomer demand and delivery delays on costs and customer 
satisfaction, the second stage handles two types of changes 
in uncertain supply chain environments, i.e., customer 
demand changes and road condition changes.

Handling customer demand changes
The supply chain system only accepts changes in demand 
from customers who have not yet been delivered. If the 
customer demand changes, the algorithm adjusts the 

remaining route based on the current route to meet the 
changed demand. The adjustment method is detailed in 
Algorithm 2.

Algorithm 2 Route planning for handling customer demand changes

The input parameters include the changed customer 
demand list and vehicle routes. The demand change list 
stores the customer ID, changed destination, and time 
window demand. The delivery route stores the current 
vehicle routes in Xijk . The output parameters are the new 
routes adjusted to the changed demands, also stored in 
Xijk . First, the changed customer demands are stored in a 

Fig. 2 Two-stage route planning method for handling customer demand changes and road condition changes
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list and the algorithm loops through the list until it is 
empty (line 1). Second, the route r, where the demands 
have changed, is identified  and the demands on it are 
subsequently updated (lines 2–4). Third, if a demand 
changes, Algorithm  1 is used to adjust the route for all 
undelivered customer demands, obtaining added roads 
X+
ijk and deleted road X−

ijk from the route (lines 5–7). 
Finally, the new route Xijk is updated through X+

ijk and 
X−
ijk (line 8).

Handling road condition changes
Most studies that consider the state of the road net-
work assume that the traffic state is known and lacks a 
response mechanism to road condition changes due to 
unexpected conditions (e.g., traffic accidents) in practical 
situations [33, 34]. In order to minimize delivery delays 
caused by road condition changes (e.g., road congestion), 
we need to avoid congested roads and choose a road that 
can reach the next customer in the shortest possible time. 
The A-star algorithm has numerous applications in find-
ing the shortest reachable route between two points [35] 
and can adapt well to unexpected situations. Therefore, 
we implement a delivery route planning algorithm that 
adaptively handles road condition changes based on the 
A-star, as detailed in Algorithm 3.

Algorithm 3 Route planning for handling road condition changes

The input parameters include the start node ni , target 
node nj , and route Xijk . The output parameter is the 
adjusted route for the road condition changes. The start 
node ni is assigned to the current node nc ; if nc is not the 
target node nj , it enters the loop (lines 1–2). nn is the next 

node of the nc in the route Xijk , if the road condition 
changes in the road from nc to nn , calculate the time tnnk 
to reach the next customer through this road (lines 3–5). 
When road travel time leads to delivery delays for the 
next customer, the A-star algorithm picks the least time-
consuming roads from available alternatives. This process 
involves identifying a new next node nnewn  , added road 
X++
ijk  , and removed road X−−

ijk  (lines 6–10). The loop then 
updates the current node nc , and finally, the route Xijk is 
updated with X++

ijk  and X−−
ijk  . The formulas for estimating 

road travel time are detailed in Eqs. (12) and (13).

In these equations, fijk(nn) is a heuristic function  of 
travel time for vehicle k on node nn from customer i to 
j.gijk(nn) is the actual travel time of vehicle k from cus-
tomer i to node nn. hijk(nn) is an estimate of the travel 
time of vehicle k from node nn to customer j.nc is the pre-
vious node of nn. tncnnk is the travel time of vehicle k from 
node nc to nn.

In time-varying road networks, the travel speed of a 
vehicle departing from node nc to nn at a specific time t 
will be affected by the  prevailing road conditions rncnn . 
The road conditions may change from node nc to nn, 
which complicates the calculation of the  vehicle travel 
time. We refer to the speed step function of Ichoua et al. 
[36] and divide the whole delivery process into O time 
intervals, denoted as πo = [ζo, ξo](o = 1, 2, . . . ,O) . The 
travel speed is assumed to be constant for each interval 
to make it easy to calculate without loss of generality, and 
the travel time from nc to nn is calculated as follows.

Step 1: o ← 1, d ← dncnn, t ← bnck, tncnnk
(

bnck
)

← 0.
Step 2: If ζo ≤ t ≤ ξo, go to step 3; otherwise, repeat 
o = o+ 1 until ζo ≤ t ≤ ξo , then go to step 3.
Step 3: If 

(

t + d
voncnn

)

> ξo, then go to step 4; other-

wise, tncnnk
(

bnck
)

← tncnnk
(

bnck
)

+ d
voncnn

 , tnnk ← tnck

+Tncnnk

(

tnck

)

  . Then,  tncnnk
(

bnck
)

 and tnnk are output as 
the travel time from node nc to nn and the arrival time 
at node nn.
Step 4: tncnnk

(

bnck
)

← tncnnk
(

bnck
)

+ (ζo+1 − t),  
d ← d − voncnn × (ζo+1 − t),  t ← ζo+1 , o ← o+ 1 , 
and go back to step 3.

Simulation experiment
Parameter setting
We consider a 400 square kilometer urban area covered 
by the supply chain system, as shown in Fig. 3. Blue cir-
cles represent traffic nodes, and the numbers on the right 

(12)fijk(nn) = gijk(nn)+ hijk(nn)

(13)gijk(nn) = gijk(nc)+ tncnnk
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side represent node IDs. The green stars represent the 
destinations of customer demands, and the customer IDs 
are in the right parentheses. The blue square in the center 
represents the delivery center. There are 100 traffic nodes 
in the case, and each node can be connected to other 
nodes. Road condition changes in specific subregions 
can impact traffic efficiency. Each subregion has a Road-
side Unit (RSU) for monitoring local road conditions and 
real-time communication with nearby delivery vehicles. 
Consequently, data transmission rates for Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) tech-
nologies are set at �V 2V  = 1 Gb/s and �V 2I = 600 Mb/s, 
respectively, ensuring efficient and accurate information 
transfer.

Based on practical situation, the supply chain system 
operates vehicles from 8:00 to 18:00, receiving customer 
demand change requests during these hours. The system 
comprises 10 vehicles, each with a 200 kg load capacity 
( Wk ) and a 100 km range ( Dk ). The start-up cost for each 
vehicle is 100 yuan per trip. The supply chain system has 
received 50 initial customer demands before the vehicles 
start their tasks, and the demands is shown in Table 2.

In an uncertain supply chain environment, customers 
may change their demands for their own reasons. To simu-
late such changes, we set up details for customer’s changed 
demand regarding the modified time, new destination, new 
time window, and new service time, as detailed in Table 3.

In practice, the road conditions change unpredictably on 
each road section. In order to simulate such changes, we 
set some critical parameters involving the occurrence time, 
duration, road and congestion level, as detailed in Table 4.

Experimental results and efficiency analysis
Route planning results for handling customer demand 
and road condition changes
According to the proposed model and algorithm, a total 
of four vehicles are required to complete all the delivery 
tasks and satisfy customer demands. The metrics affect-
ing the cost include distance travelled, waiting time, and 
start-up cost (constant values, not in the table). Metrics 
affecting customer satisfaction include violation of cus-
tomer’s destination and time window demand, which we 
uniformly denote by violated customers. Additionally, the 
travel distance and load are constrained by the endurance 
and load capacity, respectively.

Changes in customer demands and road conditions 
may lead to inefficiencies and delivery delays in the deliv-
ery routes, thus violating customer demand and reducing 
customer satisfaction. In order to handle such changes, 
the proposed method replans the delivery routes to 
cover the new demands and reselects a new delivery road 
according to the road network conditions to minimize 
delivery delays. The adjusted routes and their evaluation 
metrics for handling changes in customer demand and 
road conditions are detailed in Table  5, where the bold 
numbers in the routes represent detoured traffic nodes.

Comparison results with baseline method
To verify the superiority of the method proposed in this 
paper, we established two baseline methods for compari-
son: the Adaptive Large Neighborhood Search (ALNS) 
[2] joint algorithm and the Modified Ant Colony System 
(MACS) [1].

Fig. 3 Location of traffic nodes and destinations of customer demands in the urban area
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Figure  4 illustrates a comparative analysis of ALNS, 
MACS, and our method for a rate of customer demand 
changes from 5 to 25% under a fixed 10% rate of road 
condition changes. Two performance measures are the 
total delivery cost and the number of customers with 
demand violations (an important indicator of customer 
satisfaction).

Figure 4a plots cost (RMB) as a function of the rate of 
customer demand changes. ALNS (black squares) main-
tains a relatively consistent higher curve, suggesting that 
it is a stable method but more costly. MACS (red circles) 
shows a significantly fluctuating cost curve that reaches 
its lowest cost at a 10% rate of customer demand changes, 
with a lower overall cost than ALNS. This suggests that 

Table 2 Information of the customer initial demands

Customer id Location Weights /kg Time windows Service 
time /min

Customer id Location Weights /kg Time windows Service 
time /
min

1 49 3 15:30 ~ 18:00 20 26 24 10 15:20 ~ 17:20 20

2 50 23 16:30 ~ 18:00 20 27 14 12 14:20 ~ 16:20 20

3 4 6 12:00 ~ 14:00 20 28 34 26 11:40 ~ 13:40 20

4 20 16 12:30 ~ 14:30 20 29 52 12 13:00 ~ 15:00 20

5 30 10 10:10 ~ 12:10 20 30 22 22 09:30 ~ 11:30 20

6 2 18 15:50 ~ 18:00 20 31 59 3 15:50 ~ 17:50 20

7 67 9 10:40 ~ 12:40 20 32 19 11 08:10 ~ 10:10 20

8 80 20 08:00 ~ 09:00 20 33 64 7 14:40 ~ 16:40 20

9 86 22 16:00 ~ 18:00 20 34 43 3 08:00 ~ 09:50 20

10 88 32 10:50 ~ 12:50 20 35 12 20 10:20 ~ 12:20 20

11 28 13 08:50 ~ 10:50 20 36 54 18 13:00 ~ 15:00 20

12 94 3 10:00 ~ 12:00 20 37 21 15 16:00 ~ 18:00 20

13 62 7 08:00 ~ 09:00 20 38 15 3 08:00 ~ 08:40 20

14 33 29 08:00 ~ 09:10 20 39 11 26 16:00 ~ 18:00 20

15 26 4 16:20 ~ 18:00 20 40 42 19 16:00 ~ 18:00 20

16 39 25 16:30 ~ 18:00 20 41 74 12 12:20 ~ 14:20 20

17 23 16 13:10 ~ 15:10 20 42 57 15 11:20 ~ 13:20 20

18 46 29 09:40 ~ 11:40 20 43 36 12 11:40 ~ 13:40 20

19 87 3 08:40 ~ 10:40 20 44 45 3 09:50 ~ 11:50 20

20 84 13 10:30 ~ 12:30 20 45 40 12 12:30 ~ 14:30 20

21 48 3 16:40 ~ 18:00 20 46 89 7 12:30 ~ 14:30 20

22 66 44 10:30 ~ 12:30 20 47 79 5 16:30 ~ 18:00 20

23 70 23 11:20 ~ 13:20 20 48 85 3 16:20 ~ 18:00 20

24 76 29 08:00 ~ 10:00 20 49 38 10 14:30 ~ 16:30 20

25 37 4 14:20 ~ 16:20 20 50 8 3 10:40 ~ 12:40 20

Table 3 Information of customers’ changed demands

Customer id Modified time New location New time windows New 
service 
time/min

39 8:00 78 15:00 ~ 17:00 20

3 8:10 31 8:30 ~ 10:00 20

15 8:30 55 10:00 ~ 12:00 20

48 9:30 9 12:00 ~ 14:00 20

16 10:00 63 14:00 ~ 16:00 20

2 11:30 16 15:00 ~ 17:00 20

22 12:00 29 15:30 ~ 17:30 20
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MACS can handle customer demand changes against 
their impact on costs but is less stable. Our method (blue 
triangles) has an overall cost almost equal to MACS, but 
the curve is less volatile and has a downward trend. This 
shows that our method can handle demand changes well 
to reduce their impact on total costs and be more stable.

Figure 4b plots the number of customers with demand 
violations as a function of the rate of customer demand 
changes. ALNS shows a higher curve, with the number 
of violating demand customers exceeding 9, indicating 
that the method is weakly coping with customer demand 
changes. MACS has an average number of customers 

with demand violations of 4 and fluctuates, indicating 
that the method can handle some customer demand 
changes but is less stable. Our method shows the lowest 
curves, the number of customers with demand violations 
is below 2, and the curves fluctuate less, indicating that 
our method is strong enough to handle customer demand 
changes and is superior to the other two methods.

In summary, Fig. 4 shows the cost efficiency and cus-
tomer satisfaction of the three methods in handling 
customer demand changes. ALNS has higher costs and 
lower customer satisfaction and performs the worst in 
handling customer demand changes. MACS is more 
cost-effective in handling customer demand changes 
than ALNS but is less stable, and customer satisfaction is 
better than ALNS but still not good enough. Our method 
is more cost-effective and stable than the other two, has 
significantly higher customer satisfaction, and handles 
demand changes well.

Figure 5 illustrates the performance of the three meth-
ods for a fixed customer demand change rate of 15% and 
a road condition change rate from 5 to 25%. The evalua-
tion metrics are the total delivery cost and the number of 
customers with demand violations.

Table 4 Information of unpredictable road condition in the 
delivery routes

Occurrence 
time

Duration/
min

Start 
junction

End 
junction

Congestion 
level

9:20 20 43 19 3

11:00 30 45 67 3

15:30 30 37 24 3

12:20 20 88 8 1.5

13:30 60 57 89 3

Table 5 Results of delivery route planning for handling changes in customer demand and road condition

Vehicle Delivery route Travel 
distance/
km

Travel load/kg Wait time/min Violated 
customers

1 [0,15(38),87(19),43(34),50,19(32),46(18),84(20),94(12),36(43),12(35),63(16),23(17),6
4(33),29(22),59(31),49(1),48(21),0]

80.66 198 54 0

2 [0,80(8),33(14),28(11),31(3),45(44),38,67(7),30(5),54(36),14(27),37(25),73,24(26),21
(37),9(48),2(6),0]

93.29 170 42 1

3 [0,62(13),76(24),70(23),88(10),79,8(50),57(42),8,89(46),38(49),16(2),42(40),79(47),0] 79.74 173 139 0

4 [0,22(30),55(15),34(28),74(41),40(45),52(29),20(4),78(39),86(9),0] 96.20 152 145 1

Fig. 4 Impact of changes in customer demand
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Figure 5a plots the cost (RMB) as a function of the rate 
of road condition changes. ALNS (black squares) shows 
that the cost curve rises as the rate of road condition 
changes increase and then stays high, suggesting that 
the method can only withstand a small amount of the 
changes. MACS (red circle) shows a gently declining cost 
curve, which indicates that it is resistant to disruptions in 
costs caused by road condition changes. In contrast, our 
method (blue triangles) shows that costs start to decline 
significantly when the rate of road condition changes 
increases to 10%, and after 15% the costs are lower than 
the other two methods, demonstrating the potential cost-
effectiveness for handling road condition changes.

Figure 5b plots the number of customers with demand 
violations as a function of the rate of road condition 
changes. ALNS shows a rising trend in the curve of 
the number of customers with demand violations, all 
of which are above 9, reflecting that ALNS faces a seri-
ous challenge in maintaining customer service quality 
as road conditions deteriorate. MACS shows a gradual 
increase in the number of customers with demand viola-
tions whose average is about 5, suggesting that customer 
service quality continues to decline as road conditions 
deteriorate. In contrast, our method shows consist-
ently excellent performance across all the road condition 
change rates with the lowest number of customers with 
demand violations, highlighting its robustness in ensur-
ing customer satisfaction.

Together, Fig. 5 shows that while all three methods are 
sensitive to road condition changes, our method is the 
most stable, providing low costs and excellent customer 
service in the face of the changes. ALNS is costly and 
has more customers with demand violations when road 
conditions change. MACS is cost-effective but results in 

more customers with demand violations when road con-
ditions change more. However, our method is the most 
balanced, offering both cost-effectiveness and a low num-
ber of customers with demand violations, suggesting that 
it has the potential to be a superior method in dynamic 
road condition scenarios.

Impact of traveling speed and vehicle capacity on delivery 
efficiency
This study assumes that vehicles travel at three differ-
ent speeds, and several sets of repeated experiments are 
conducted to analyze the impact of speed on the results. 
Data analysis reveals that the average travel speed for 
urban delivery vehicles is approximately 30 km/h. Based 
on this finding, the vehicle travel speed was adjusted by 
± 20% to evaluate the effects of speed variations on the 
delivery performance. Results are averages of multiple 
replicate experiments, as detailed in Table 6.

Table 6 indicates that variations in travel speed result in 
different total delivery costs and affect the number of cus-
tomers with demand violations. When the travel speed 
is increased by 20%, there is 13.4% rise in total delivery 
costs, while the number of customers with demand vio-
lations decreases by 6.7%. Conversely, 20% decrease in 
travel speed leads to 5.6% reduction in total costs but 
an 18.6% increase in customers with demand violations. 
These outcomes align with expectations: higher speeds 
are more likely to meet customer demands, but the total 
cost increases. On the other hand, lower speeds can 
reduce total costs but potentially lead to an increase in 
customers with demand violations.

The vehicle capacity is set at a baseline of 200  kg per 
vehicle. In order to analyze the impact of vehicle capac-
ity on delivery efficiency, several sets of repetitive 

Fig. 5 Impact of road condition changes in the delivery routes
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experiments were conducted with a variation of ± 25% 
in vehicle capacity while other conditions remained con-
stant. The results are averages of data from multiple rep-
licated experiments, as detailed in Table 7.

Table  7 shows the impact of vehicle capacity on the 
total delivery cost and the number of customers with 
demand violations. Increasing vehicle capacity by 25% 
reduces total costs by 1.3% and increases the demand 
violations by 43.8%. In contrast, 25% reduction in 
capacity increases total costs by 23.3% and reduces 
demand violations by 18.8%. Notably, lower capac-
ity necessitates more vehicles, significantly elevating 
costs. These results suggest that higher vehicle capac-
ity reduces total costs but increases the number of 
demand violations, while lower vehicle capacity has the 
opposite effect.

Conclusion
We explore the delivery route planning problem in 
uncertain supply chain environment, considering 
changes in customer demand and road conditions. We 
propose a two-stage delivery route planning method 
and design an adaptive genetic algorithm for handling 
the customer demand changes and an adaptive A-star 
algorithm for handling the road condition changes. The 
efficiency and effectiveness of the proposed methods 
are verified through comparative experiments. Specifi-
cally, our method is more cost-effective, more stable, 
and more responsive to customer demands than tradi-
tional route planning methods and can handle customer 
demand changes well. Moreover, our method is the 
most stable to keep a lower total cost and lower num-
ber of customers with demand violations in complex 
road conditions, showing great potential for applica-
tion in dynamic road condition scenarios. In addition, 
we investigate the impact of the speed and capacity of 

vehicles on the total cost and the demand violations. 
The results show that increasing vehicle speed can 
reduce the number of customers with demand viola-
tions but increase the total cost. In conclusion, our 
method enables flexible delivery route planning to han-
dle customer demand and road conditions changes, 
effectively reducing total cost and improving customer 
satisfaction. Future research will integrate predictive 
modeling for these changes in uncertain supply chain 
environment to improve the efficiency of solving such 
route planning problems.
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Table 6 Impact of different vehicle speeds on delivery efficiency

Vehicle speed Total violated customers Vehicle number Total travel distance Wait time/min Total cost

36 km/h 3 4 376 595.2 1371.2

30 km/h 3.2 4 365.8 443.4 1209.2

24 km/h 3.8 4 396.8 344.2 1141.0

Table 7 Impact of different vehicle capacities on delivery efficiency

Vehicle capacity Total violated 
customers

Vehicle number Total travel distance Wait time/min Total cost

250 kg 4.6 4 396.6 397.2 1193.8

200 kg 3.2 4 365.8 443.4 1209.2

150 kg 2.6 5 388.2 602.8 1491.0
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