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Abstract 

Given the prohibited operating zones, losses, and valve point effects in power systems, energy optimization analysis 
in such systems includes numerous non-convex and non-smooth parameters, such as economic dispatch problems. 
In addition, in this paper, to include all possible scenarios in economic dispatch problems, multi-fuel generators, 
and transmission losses are considered. However, these features make economic dispatch problems more complex 
from a non-convexity standpoint. In order to solve economic dispatch problems as an important consideration 
in power systems, this paper presents a modified robust, and effective optimization algorithm. Here, some modifica-
tions are carried out to tackle such a sophisticated problem and find the best solution, considering multiple fuels, 
valve point effect, large-scale systems, prohibited operating zones, and transmission losses. Moreover, a few compli-
cated power systems including 6, 13, and 40 generators which are fed by one type of fuel, 10 generators with multi-
ple fuels, and two large-scale cases comprised of 80 and 120 generators are analyzed by the proposed optimization 
algorithm. The effectiveness of the proposed method, in terms of accuracy, robustness, and convergence speed 
is evaluated, as well. Furthermore, this paper explores the integration of cloud storage and internet of things (IoT) 
to augment the adaptability of monitoring capabilities of the proposed method in handling non-convex energy 
resource management and allocation problems across various generator quantities and constraints. The results show 
the capability of the proposed algorithm for solving non-convex energy resource management and allocation prob-
lems irrespective of the number of generators and constraints. Based on the obtained results, the proposed method 
provides good results for both small and large systems. The proposed method, for example, always yields the best 
results for the system of 6 power plants with and without losses, which are $15,276.894 and $15,443.7967. Moreover, 
the improvements made in the proposed method have allowed the economic dispatch problem regarding multi-fuel 
power plants to be solved not only with optimal results ($623.83) but also in less than 35 iterations. Lastly, the differ-
ence between the best-obtained results ($121,412) and the worst-obtained results ($121,316.1992) for the system 
of 40 power plants is only about $4 which is quite acceptable.
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Introduction
Over the past decade, energy resource management and 
allocation have become key challenges for modern socie-
ties [1, 2]. The Economic Dispatch (ED) problem is one of 
the most crucial optimization issues in the operation and 
energy resource management and allocation of power 
systems. In this problem, considering the demanded load 
and transmission network losses, the output of each gen-
erator is determined to minimize fuel costs. Additionally, 
the output of each unit must satisfy power generation 
constraints [3]. This means that all information regarding 
the demanded load and each generator is gathered in one 
place and analyzed centrally. This aligns perfectly with 
the concept of cloud storage. Furthermore, to address the 
need for efficient information exchange, our approach 
involves a bidirectional flow of information. The cloud-
based central system sends and receives all relevant data, 
while each unit receives and transmits information. This 
exchange is designed to be fast, secure, and intelligent, 
incorporating principles of IoT networks, which plays a 
significant role in our proposed methodology (see Fig. 1).

The mathematical methods, such as the lambda itera-
tion method [5], gradient method [6], Newton method 
[7], linear programming [8], quadratic programming [9], 
and Lagrangian multiplier method [10], can be used to 
solve the economic dispatch problems with smooth and 
monotonic cost function [11]. In [12], dynamic economic 
dispatch problems have been solved by Lagrangian 
relaxation, while the Lagrangian multipliers have been 
updated through the quasi-newton process. The math-
ematical methods can find the best global solution in 
less number of iterations and hence converge faster [13]. 
However, in practical scenarios, the fuel cost function 

curves are non-convex and discontinue induced by valve 
point effect, losses, the impact of multiple fuels, and pro-
hibited operating zones [14], which can hinder the appli-
cability of these methods. To model the, a sinusoidal 
term is added to the traditional quadratic cost function of 
the economic dispatch problems [15], which brings about 
additional complexity. Moreover, as the number of deci-
sion variables increases, the mathematical complexity 
increases, and the problem becomes less tractable.

In order to address these issues, some meta-heuristics 
methods, such as fuzzy adaptive particle swarm optimi-
zation [16], hybrid genetic algorithm [17], and improved 
fast evolutionary programming [18] have been utilized. 
The non-smooth economic dispatch problems have been 
solved utilizing the fuzzy adaptive particle swarm opti-
mization method in [16], while the Nelder-Mead pro-
cess, like a local search algorithm, searches around the 
achieved solution in each iteration, which brings about 
more robustness [16]. In [17] the genetic algorithm, as 
the main optimization method, is used to tackle the 
economic dispatch problem with a non-smooth cost 
function. Sequential quadratic programming tunes 
the genetic algorithm in each trial run while the maxi-
mum entropy principle approximates the cost func-
tion to improve the process [17]. Authors in [18] have 
used improved fast evolutionary programming to solve 
the non-convex economic dispatch problem. Although 
these algorithms found the optimum solution, they need 
parameter tuning during the optimization process, which 
hinders their applicability of them. In addition, none of 
these algorithms considers the effect of multi-fuel gener-
ators and prohibited operating zones in solving the eco-
nomic dispatch problem.

Fig. 1  Cloud-IoT infrastructure of energy resource allocation
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Several works have either considered the prohibited 
operating zones or multi-fuel generators separately. 
The multi Tabu search algorithm equipped with salient 
mechanisms, genetic algorithm, and evolutionary strat-
egy optimization algorithms proposed in [19–21] have 
solved the economic dispatch problem by considering 
only prohibited operating zones constraint. However, 
multiple fuel assumption, which makes the economic dis-
patch problems even more complex, is not considered in 
their framework. The optimal solution to the economic 
dispatch problem in the presence of valve point effects 
and multi-fuel generators is achieved by an improved 
genetic algorithm-multiplier updating method [22]. In 
fact, this method finds the optimal solution while it han-
dles the equality and inequality constraint. However, 
the prohibited operating zones constraint, which is an 
important limiting factor in real-world scenarios, is not 
considered. In fact, generating power in these prohibited 
intervals may damage the generators. Therefore, a power-
ful and holistic method of solving non-convex and non-
smooth economic dispatch problems with sophisticated 
constraints of having various combinations of gener-
ated power, considering the valve point effects, prohib-
ited operating zones, and transmission loss is yet to be 
investigated.

Gap analysis
As it is obvious, providing a robust framework that can 
be utilized to solve complex economic dispatch problems 
in small- and large-scale systems is vital. Moreover, this 
framework should be easy implementing with an accept-
able convergence speed. Hence, in this paper we seek 
to cover these challenges in solving economic dispatch 
problems.

One of the new methods of finding the global solution 
to such problems is to use the JAYA algorithm [23]. In 
this algorithm, the particle must move toward the best 
solution and avoid the worst one, in each iteration, to 
find the optimal solution. However, the JAYA algorithm 
is still not capable of providing the optimal solution in 
certain cases, which are shown in the results section of 
the presented paper, in detail. In fact, there are real-world 
scenarios where JAYA needs to be modified to provide 
the optimal solution.

In this paper, a newly modified optimization algorithm 
called modified JAYA is proposed to solve non-convex 
and non-smooth economic dispatch problems in small, 
medium, and large-scale systems where prohibited zones, 
losses, the impact of multiple fuels, and valve point effect 
are considered. Moreover, all possible moving states to 
get away/move towards the worst/best solution are con-
sidered. In addition, by adaptively selecting the popula-
tion size through a mutation operator, the convergence 

rate and the effectiveness of the algorithm are improved. 
Furthermore, a new and proper process satisfies the exact 
demanded load, as the most important goal in energy 
resource management and allocation.

Research questions

•	 Is the proposed method effective in extracting the 
optimal solutions in small- and large-scale systems?

•	 Is the convergence speed suitable for finding optimal 
results in the proposed method?

•	 Is the proposed method effective in fulfilling the 
equal constraint, which is the provision of the 
demanded electrical power?

•	 How effective is the proposed method in the ED 
problem with multi-fuel power plants?

The rest of this paper is organized as follows. Sec-
tion  2 illustrates the modeling of non-convex economic 
dispatch problems. Moreover, the role of multi-fuel gen-
erators and network losses is discussed. The proposed 
algorithm formulation is presented in Sect. 3. Section 4 
presents the application of the modified JAYA algorithm 
in economic dispatch problems. Section 5 describes the 
test systems and simulation results. Finally, Sect. 6 draws 
conclusions.

Non‑convex economic dispatch problem 
formulation
In order to better describe the advantages of the modi-
fied JAYA algorithm (MJAYA) algorithm, economic dis-
patch (ED) problems with convex and non-convex fitness 
functions are initially presented in subsections 2.1 and 
2.2, respectively. In addition, the ED problem constraints, 
including power balance constraint, prohibited operating 
zones (POZs) Constraint, and output power constraint 
are introduced in subsection 2.3.

The ED problem with convex fitness function
The ED problems aim to minimize the total energy cost 
while all constraints are satisfied. Using a second-degree 
polynomial equation, the ED problem, aiming to mini-
mize the cost of the generated power, is formulated by 
[24],

where vector X is the decision variables. As stated 
before, ED problems with multi-fuel generators are also 

(1)
MinH(X) =

Ng

i=1

Fi(pgi)

Fi(pgi) = αi × P2
gi + bi × Pgi + ci

X = [Pg1, Pg2, Pg3, ..., PgNg ],



Page 4 of 14Bai et al. Journal of Cloud Computing           (2024) 13:59 

investigated in this paper. As a result, such ED problems 
are represented by Eq. (2).

where, {ai1, ..., aiz}, {bi1, ..., biz}, {ci1, ....ciz} being the cost 
coefficients of ith generator with a fuel type of 1, 2, ...., z.

The ED problem with non‑convex fitness function
When valves are opened to increase electrical power, it 
introduces mechanical losses which in turn brings about 
non-convexity and non-smoothness to the ED model. 
In order to take the network losses as well as POZs into 
account, we include them as constraints in the optimiza-
tion problem. In addition, the valve point effect (VPE) 
effect is modeled by adding a sinusoidal term to the cost 
function [25]. The developed ED problem with the VPE 
effect is formulated in (3). Figure  2 represents the non-
convex cost function with four VPEs.

(2)

Min H(X) =

Ng
�

i= 1

Fi(Pgi)
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�

Pgi
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ai1 × P2
gi + bi1 × Pgi + ci1 fuel type 1

ai2 × P2
gi + bi2 × Pgi + ci2 fuel type 2

.

.

.

aiz × P2
gi + biz × Pgi + ciz fuel type z

(3)
Min H(X) =

Ng
∑

i= 1

Fi(Pgi)

Fi(pgi) = ai × P2
gi + bi × Pgi + ci + | ei × sin(fi × (Pgi min − Pgi)) |

X = [Pg1, Pg2, Pg3, ... , PgNg ]

Constraints
Power balance constraint
Supplying demanded load is one of the most important 
goals in energy resource management and allocation [26] 
and ED problems. In literature, this constraint is called 
the power balance constraint and is expressed as

where PD denotes the total demanded load. Moreover, 
PL is the total transmission network losses and can be 
approximated by

Prohibited operating zones constraint
In practical situations, all units should not generate out-
put power during POZ intervals. In fact, generating 
power in POZs may damage generators. The cost func-
tion with two POZs is shown in Fig. 3.

To apply this constraint, the output power between 
POZ intervals is fixed to the near boundary of the POZ 

(4)
Ng
∑

i=1

Pgi = PD + PL

(5)PL =

Ng
∑

i=1

Ng
∑

j=1

Pgi Bij Pgj +

Ng
∑

i=1

B0i Pgi + B00

Fig. 2  The effect of VPEs on ED curve [4] Fig. 3  The cost function with two POZs [4]
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interval. The detailed expression of the POZ constraint is 
given by

Output power constraint
The output power of each generator is bounded to cer-
tain values as in (7).

Modified JAYA algorithm
In order to effectively introduce the MJAYA algorithm 
and showcase its advantages, we first provide a brief 
overview of the conventional JAYA algorithm.

Original JAYA Algorithm
JAYA is a Sanskrit word meaning victorious [23]. In 
JAYA, as a new and simple algorithm, the particles move 
towards the best solution and retreat from the worst one 
in each iteration, until the optimal solution is eventually 
achieved [22, 26]. The main advantages of this algorithm 
are simple implementation, low computational complex-
ity, and the ability to work without control parameters 
[23]. This algorithm changes the position of candidate 
solutions by

where Xs,t,best and Xs,t,worst are the best and worst solu-
tions of H(X) in the kth iteration, respectively.

Modified JAYA algorithm
As mentioned previously, power balance constraints, 
increasing the dimension of power network decision var-
iables, and other critical complications, hinder the JAYA 
algorithm in performance and quality. Therefore, in order 
to circumvent the aforementioned drawbacks, three 
changes need to be applied to the conventional JAYA 
algorithm. The proposed modifications are presented in 
the following subsections.
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(7)Pgi min ≤ Pgi ≤ Pgi max

(8)
X
new

s,t,k
= Xs,t,k + r1,s,t (Xs,t,best − |Xs,t,k | )

− r2,s,t (Xs,t,worst − |Xs,t,k | )

Increment of the algorithm ability
Unlike the JAYA algorithm, the proposed algorithm 
checks all possible moving states for ith solution 

(

Xnew
i,k

)

 
according to (9),

In addition, an augmented matrix is produced as follows

Consequently, the cost vector of the achieved solution in 
the kth iteration is calculated.

Then, the corresponding X̃new
i,k  to the least cost is chosen as 

the ith solution. The corresponding pseudo-code for MJAYA 
algorithm is provided in Algorithm 1, lines 3, 14 and 15.

Increment of convergence speed
One of the important factors determining the convergence 
speed of algorithms is the number of swarm populations. 
An algorithm may not find the optimum solution if a very 
small population size is chosen. In addition, increasing the 
size of the population prolongs the execution time. In fact, 
there is a tradeoff between the accuracy of the optimal 
solution and the speed of the convergence. Therefore, it is 
recommended to select the population size, adaptively. We 
can start with small swarm sizes, due to the inherent diver-
sity of the population in the initial stage. After a few itera-
tions, the resemblance among the swarms will increases 
and we can add new swarms at any iteration. This can guar-
antee that the algorithm never remains in local minima. To 
increase the effectiveness and reduce the execution time 
of the MJAYA algorithm, the population size can be deter-
mined using (12). The corresponding pseudo-code is pro-
vided in Algorithm 1 lines 17 and 18.
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X
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X
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X
new

3,i,k
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(12)
�N = Nmax − Nmin

N = round(
�N × iteration number

Max iteration
+ Nmin)
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In Eq.  12, the lowest and highest population sizes are 
Nmin and Nmax , respectively. In addition, N  represents the 
size of the population that is adopted in each iteration.

Increment of algorithm effectiveness
The mutation operator is another important strategy 
to skip local minima. The mutation operator changes 
the position of the candidate solutions and almost 
boosts the population search in the whole space of the 
problem. Like population size, it is better to apply less 
mutation in the beginning and more at the end of the 
optimization procedure to achieve better performance 
and higher convergence speed. Therefore, three mutated 
solutions for the ith solution are provided in (13).

where b1  = b2  = b3  = b4  = b5 are random constants 
and unequal to bi . Additionally, X represents the decision 
variable, here the generation output. rand is also denot-
ing a random amount. The cost functions of the mutated 
and the ith solutions are evaluated and the one with the 
lowest value is substituted for the ith solution according 
to the pseudo-code in Algorithm 1, lines 4–15,

 Algorithm 1. The pseudo-code of the MJAYA algorithm

Application of the MJAYA algorithm in solving 
economic dispatch problem
In this section, the application of the proposed method 
to solve the ED problem, an important problem in energy 
optimization, is described in detailed steps.

(13)

X1
mutated = Xb1 + rand × (Xb2 − Xb3)

X2
mutated = X1

mutated + rand × (Xbest − Xworst)

X3
mutated = Xb4 + rand × (Xbest − Xb5).

Step 1: Define input parameters

The generator data, fuel cost coefficients, POZs inter-
vals of each unit, the amount of demanded load, and loss 
coefficients are defined.

Step 2: Initialize the population

A random population is initialized using (14) and (15).

where Pgi denotes the ith candidate solution vector for 
the generated power. Additionally, for each generator, 
Pgimin and Pgimax represent the minimum and maximum 
boundaries of generation.

Step 3: Satisfy the power balance constraint

In order to satisfy the active power and load balance 
requirements, the power balance constraint must be met 
[27]. In Fig.  4, a flowchart is portrayed where this con-
straint is satisfied eventually.

Step 4: Evaluate the fitness function

We integrate the constraints into the cost function 
using the method of Lagrangian multipliers. Therefore, 
using Lagrangian duality, the dual problem of the original 
optimization problem (2) can be given by.

where, �i and µj are Lagrangian multipliers. In addition, 
hi(X) and gj(X) are equality and inequality constraints, 
respectively. Note that, in (16), there are m equality and 
p inequality constraints integrated into the cost function.

In ED problems, the generated power can be controlled 
manually through a variable. Hence, if the suggested 
solution by MJAYA is not between the minimum/maxi-
mum values, the output power is set to the minimum/
maximum boundary. In addition, considering the fact 
that the equality constraint has already been satisfied 
through step 3, the cost function is obtained as

(14)
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
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


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.
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pgNswarm,1 . . . pgNswarm,Ng
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




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=
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








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Pg1
Pg2
.

.

.

PgNg















.

(15)
Pgi = Pgimin + rand(1, n) × (Pgimax − Pgimin),

(16)MinL(X , �,u) = F(X)+

m
∑

i=1

�i × hi(X)+

p
∑

j=1

µj × gj(X)

(17)Min L(X , �,u) = F(X).
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Step 5: Obtain the worst and best solutions

In this step, the solution with minimum/maximum 
cost is selected as the best/worst solution.

Step 6: Apply the MJAYA to the particles according 
to the pseudo-code represented in Algorithm 1
Step 7: Satisfy the Equality constraint as in Step 3
Step8: Evaluate the fitness function for new solutions
Step 9: Update the best and worst solutions

In each iteration, the best-obtained solution is con-
sidered the global optimal solution.

Step 10: iteration = iteration + 1.

If the convergence condition or maximum iteration is 
reached, then the process is terminated; otherwise, the 
algorithm returns to step 6.

Step 11: Print the best cost for the best power output 
for each generator

Simulation results
In this section, we study the effectiveness of the MJAYA 
algorithm by evaluating the energy optimization problem 
in the ED problem, for five different cases. For a quick 

reference, these cases are given in Table  1. Moreover, a 
PC with the following specification is utilized.

RAM: 8 GB, CPU: 2.6 GHz.

Case I: 6 generators with and without loss
This system contains six generators without a valve point 
effect. The demanded load is 1263 MW and the loss coef-
ficients of this system are presented in (18). In addition, the 
POZs information is presented in Table  2. The obtained 
optimum solutions by MJAYA, JAYA, TLBO, PSO, GA, DE, 
and TS algorithms for the system with and without losses 
are presented and compared in Tables 3 and 4, respectively.

Fig. 4  The flowchart of equality constraint satisfaction

Table 1  Simulation case studies

Case No Simulation/System setup

1 6 generators with and without loss

2 10 generators, which are fed by multiple types 
of fuels. VPE is included, as well

3 13 generators with 1800 MW and 2520 MW load 
demands, in two states

4 40 generators with 10500 MW load demand

5 large scale systems with 80 and 120 power-gener-
ating units in two states



Page 8 of 14Bai et al. Journal of Cloud Computing           (2024) 13:59 

As mentioned previously, the most important goal 
in ED problems is supplying demanded load while the 
power network loss is considered. The exact value of 
losses must be calculated by solving power flow equa-
tions. However, in ED problems, this is estimated by 
(5). It is obvious that the generated power variation 
changes the net loss. Hence, it is important to find a 
proper output in the way that the power balance con-
straint is met while the cost function is minimized. As 
it can be seen in Table 3, the MJAYA algorithm outper-
forms the conventional JAYA and the other methods. 
The reason is mainly due to the modifications applied 

(18)

Bij =





















0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002

0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001

0.0007 0.0009 0.0031 0.0000 −0.0010 −0.0006

−0.0001 0.0001 0.0000 0.0024 −0.0006 −0.0008

−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002

−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.015





















Bio = 0.001× [−0.3908− 0.12970.70470.05910.2161− 0.6635]

Boo = 0.056

to the JAYA algorithm. In fact, the proposed MJAYA 
algorithm performs better, in not getting stuck in local 
minima, compared to JAYA.

Moreover, Table  4 represents a comparison between 
MJAYA, JAYA, GA, TS, and DE algorithms in 6 genera-
tors system considering losses. It has been shown that 
the performance of MJAYA is better than the other algo-
rithms. It should be noted that computational time to 
extract results for JAYA algorithm is 1.35  s, while it is 
0.96 s for the proposed modified JAYA algorithm.

Case II: 10 multi‑fuel generators with 2700 MW load 
demand
The ED problem with multi-fuel generators is analyzed in 
the proposed method. In this case, the cost coefficients 
of generators are changed due to the utilization of differ-
ent sorts of fuels such as coal, natural gas, and oil. It is 
necessary to select the appropriate fuel type to have an 
economically efficient cost.

The current system contains 10 generators and the 
demanded load is 2700 MW. The first generator is fed by 
two types of fuels while the others are fed by three types 
of fuels [22]. Table 5 provides the results of the MJAYA 
and JAYA algorithms in this case and the results are com-
pared to the proposed methods in [22], as well.

It can be seen in Table 5 that JAYA and MJAYA’s results 
are reasonable. However, MJAYA yields the optimal 
solution which depicts the effectiveness and advantages 
of MJAYA modifications. In addition, the convergence 
curves for both methods are shown in Fig. 5 to illustrate 
the enhancement of MJAYA compared to JAYA. As we 
can see, MJAYA converges faster and smoother com-
pared to the conventional JAYA.

Table 2  POZs for case I

Generators Zone I Zone II

1 [210–240] [350–380]

2 [90–110] [140–160]

3 [150–170] [210–240]

4 [80–90] [110–120]

5 [90–110] [140–150]

6 [75–85] [100–105]

Table 3  The obtained optimum results for 6 generators without 
loss

Method Best ($) Worst ($) Mean ($)

MJAYA​ 15,276.894 15,276.894 15,276.894
JAYA​ 15,288.8565 15,288.8565 15,288.8565

TLBO 15,292.755 15,292.755 15,292.755

PSO 15,292.755 15,292.755 15,292.755

Table 4  Optimum results for 6 generators considering losses

Method Best ($) Worst ($) Mean ($)

MJAYA​ 15,443.7967 15,443.7967 15,443.7967
JAYA​ 15,454.6673 15,454.6673 15,454.6673

GA [28] 15,469 15,524 15,469

TS [19] 15,454.89 15,498.05 15,472.56

DE [28] 15,449.766 15.449.874 15,449.77

Table 5  The comparison of MJAYA and other methods result in 
case II

Power 
generation 
(MW)

MJAYA​ JAYA​ CGA_MU 
[22]

IGA_MU 
[22]

Fuel type

P1 218.59 220.52 222.01 219.12 2

P2 211.66 209.18 211.63 211.16 1

P3 280.65 280.73 283.94 280.65 1

P4 239.50 239.48 237.80 238.47 3

P5 279.93 279.94 280.44 276.41 1

P6 239.63 239.23 236.03 240.46 3

P7 287.72 288.00 292.04 287.73 1

P8 239.63 240.84 241.97 240.76 3

P9 426.77 426.19 424.20 429.33 3

P10 275.86 275.84 269.90 275.85 1

Cost ($/h) 623.83 624.07 624.71 654.57
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Furthermore, MJAYA obtains the optimum cost func-
tion by about 40 iterations; while JAYA achieves a sub-
optimal solution in higher iteration (i.e., 120 iterations). 
Therefore, the proposed modifications in MJAYA are 
effective to increase the speed and accuracy of the algo-
rithm. It should be noted that computational time to 
extract results for JAYA algorithm is 3.85  s, while it is 
2.74 s for the proposed modified JAYA algorithm.

Case III: 13 generators with 1800 MW and 2520 MW load 
demands
There are thirteen generators in this case, while VPE is 
taken into account. The generators data for this system 
is given in [29]. This system has many local minima and 
some of the algorithms are stuck in one of these points 
[16 17, 18, 30]. To examine the performance of the pro-
posed method, it is applied to this system with two dif-
ferent demanded load amounts, namely 1800  MW and 
2520 MW. Moreover, Tables 6 and 7 present a compari-
son of MJAYA’s results and some well-known methods, 
respectively.

It has been shown in Tables 6 and 7 that the worst cost 
obtained by the proposed algorithm is lower than the 
best solution obtained by the other algorithms. In addi-
tion, the obtained worst, mean and best costs by MJAYA 
are close to each other. In other words, the variance of 
the costs is low, meaning that the proposed algorithm 
is proper enough to be utilized in energy optimization. 
It should be noted that computational time to extract 
results for the MJAYA algorithm are 3.56 and 2.49  s, 
respectively.

Case IV: 40 generators with 10500 MW load demand
This system contains 40 generators considering VPEs. 
The total demanded load is 10,500 MW and the data for 
this system is given in [18]. This system includes more 
elements of creating non-convexity in the problem, 
meaning that there are more local minima compared to 
the previous case studies. This case is of great importance 
and very close to practical energy resource management 
and allocation scenarios. MJAYA algorithm is applied to 
this case to compute the optimum solution. Results are 
shown and compared to the well-known algorithms sug-
gested by [16, 17], in Table 8.

Fig. 5  The convergence curve of JAYA and MJAYA for case III

Table 6  Results for case III with 1800 MW load demand

Method Best ($) Worst ($) Mean ($)

MJAYA​ 17,963.85 17,963.88 17,963.86
PSO [16] 18,030.72 18,205.92 18,401.35

CEF [31] 18,048.21 18,190.23 18,404.04

EP-SQP [17] 17,991.03 18,106.93 -

Table 7  Results for case III with 2520 MW load demand

Method Best ($) Worst ($) Mean ($)

MJAYA​ 24,169.50 24,169.50 24,169.50
PSO [22] 24,262.73 24,271.92 24,277.81

GA-SA [17] 24,275.71 - -

UHGA [17] 24,172.25 - -

ESO [21] 24,179.59 - -
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As shown in Table 8, the best value obtained by MJAYA 
is better than the obtained values by other methods, 
meaning that MJAYA outperforms the other algorithms 
in such cases. Furthermore, Fig. 6 shows the convergence 
curve of JAYA and MJAYA algorithms for 10 independ-
ent runs. It should be noted that computational time to 
extract results for JAYA algorithm is 52 s, while it is 46.9 s 
for the proposed modified JAYA algorithm.

Robustness is another important feature that an algo-
rithm must possess. In fact, an algorithm is robust if 
the best-obtained solutions in each trial run are close to 
each other. As shown in Fig. 6, the best costs achieved by 
MJAYA in trial runs are almost the same, meaning that 
the MJAYA algorithm is robust enough to handle com-
plex energy optimization problems.

In order to check the effectiveness of the MJAYA algo-
rithm in considering the output power constraint in the 
ED problem, Case IV is selected. Figure 7 shows the out-
put power, minimum, and maximum generation limit of 
each unit in this case.

Case V: 80 and 120 generation units
Most of the existing algorithms for solving ED prob-
lems in large dimension problems are either unable to 
achieve the optimum solution or do not converge to the 
optimal solution with a reasonable number of iterations. 
To this end, the performance of the MJAYA algorithm 
in larger systems containing 80 and 120 generators is 
tested. The data of the generators and demanded load 
are double and triple the data of the 40 generators sys-
tem (Case IV), respectively. The obtained results by 
MJAYA methods are shown in Table  9. It is seen that 

Table 8  The results for 40 generators with 10,500  MW load 
demand

Method Best ($) Mean ($) Worst ($)

MJAYA​ 121,412.535 121,414.66 121,417.1992
JAYA​ 121,841.481 121,928.839 122,054.950

PSO [17] 123,930.45 124,154.49 -

MPSO [17] 122,252.27 - -

UHGA [17] 121,424.48 121,602.81 -

DE [16] 121,416.29 121,422.72 121,431.47

HDE [16] 121,698.51 122,304.3 -

Fig. 6  The convergence characteristics of MJAYA and JAYA 
algorithms for 10 independent runs in case IV

Fig. 7  The output power of each unit obtained from the MJAYA algorithm in case III
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the proposed MJAYA algorithm does not suffer from 
enlarging the dimension.

The MJAYA algorithm benefits from three modifica-
tions which are mentioned in section III. In order to 
demonstrate the effect of each modification, Table  10 
provides a comparison between them in the case when 
the number of generators is 80. In the first state, JAYA 
is implemented without any modification (JAYA1). The 
second stage is the first modification which is applied to 
JAYA (JAYA2). The mutation operator is implemented in 
the third state (JAYA3) while all modifications are applied 
to JAYA (MJAYA) in the last state.

As presented in Table 10, each of the obtained solutions 
in each state is reasonable. However, MJAYA’s result is bet-
ter than other states. The convergence characteristics of 
each state and also MJAYA for case V are shown in Fig. 8.

It is evident from Fig. 8 that by utilizing all modifica-
tions the optimal solution can be achieved in fewer 
iterations.

Discussion
According to the introduction section, solving com-
plex optimization problems is a fundamental challenge 
for the JAYA algorithm. As a result, various papers seek 
to improve the performance and efficiency of the JAYA 
algorithm. The majority of papers recommend combin-
ing this algorithm with other optimization methods, or 
processes [32–35] that increase local search capability. 
In general, combining two methods causes complexity 
and often requires parameter setting. Despite obtaining 
the optimal results, this solution typically slows conver-
gence, increases complexity, and increases calculation 
time. Thus, in this paper, we aim to improve the algo-
rithm capability, convergence speed, and efficiency of the 
JAYA algorithm through some simple but straightfor-
ward modification process (see Sect. 3). In the proposed 
modification, no control parameters are required for the 
improvement, and the solution is faster than the com-
bined algorithms [6–20]. It is also important to note that 
these modifications can be used for any other optimiza-
tion algorithm and increase its efficiency. This is why the 
proposed method is new, and the results also prove it.

Future trend
The modified optimization algorithm proposed in this 
paper can be applied in a wide range of applications requir-
ing high-performance computational intelligence tech-
niques. The applications cover a wide range of real-world 
uses, including healthcare systems, industrial platforms, and 
smart cities. With this optimizer, it is possible to implement 
applications through IoT, edge/fog, and cloud architectures 
[36–45]. The proposed algorithm can be also used in other 
areas of computational sciences such as remote sensing sys-
tems and control systems, where there is an advanced prob-
lem of weight optimization [46–49].

Table 9  The optimal solution for 80 & 120 generation units

No. of units Best ($) Mean ($) Worst ($)

40 units 121,412 121,414 121,417

80 units 242,805.5709 242,807.65 242,811.2388

120 units 364,207.2382 364,215.28 364,223.3237

Table 10  The comparison of MJAYA’s result and three 
modifications considered in the MJAYA algorithm

Method JAYA 1 JAYA 2 JAYA 3 MJAYA​

80 unit 249,578.9053 
($)

247,172.7983 
($)

244,878.953 
($)

242,805.5709 
($)

Fig. 8  The Convergence Characteristics for Different Modifications for Case V



Page 12 of 14Bai et al. Journal of Cloud Computing           (2024) 13:59 

Conclusion
The ED problem is one of the important problems in 
the energy optimization area which tries to supply the 
net demanded load with minimum fuel cost. In this 
paper, we considered some complicated and practical 
constraints such as VPEs, POZs, and multi-fuel gener-
ators. These constraints make ED problems more com-
plex from a non-convexity and non-smoothness point 
of view. Hence, a new modified JAYA algorithm was 
introduced in this paper to handle such a complicated 
problem. Roughly speaking, the effectiveness and abil-
ity of MJAYA were increased by considering all mov-
ing possible states and adding a mutation operator. In 
addition, the convergence speed of the proposed algo-
rithm was enhanced by adaptively utilizing population 
size. The MJAYA’s results were compared with some 
well-known meta-heuristic algorithms in ED prob-
lems. The simulation results showed that the proposed 
MJAYA algorithm has a better performance in terms 
of accuracy and robustness of convergence as well as 
the capability of finding the optimal solution. The per-
formance and effectiveness of this method were also 
demonstrated in different case studies of ED problems. 
It was shown that the proposed algorithm can be used 
to solve any constrained and unconstrained energy 
optimization problems.

Numerical results showed that the proposed algo-
rithm has advantages such as simplicity, robustness, 
ability to work without control parameters, and capa-
bility in dealing with constraints irrespective of their 
difficulties.

Nomenclature
Indices
E Swarm index
i,j Generating unit indices
k Iteration index
l Prohibited operating zone index
s Decision variables index
t Candidate solution index

Constants
ai, bi, ci, ei, fi Cost coefficients of ith generator
Bij Loss coefficient associated with the production of   ith 
and jth generators
B0j Loss coefficient associated with the production of ith 
generator
B00 Loss coefficient parameter (MW)
Li  Number of prohibited operating zones for ith 
generator 
Ng Number of power plants

N Swarm size
Pgi min The lowest output power of ith generator (MW)
Pgi max The highest output power of ith generator (MW)
Pgi,l

Low, Pgi,l
Up Lower and upper bounds of the lth POZ for 

ith generator
Rand(1,n)  Uniformly distributed random vector of size 
1by n (1×n)
r
1,s,t,

r
2,s,t Uniformly distributed random numbers

Variables
F(pg) Generating unit cost function
H(X) Objective function
Pgi The output ofithunit(MW)
Pge,i The output ofithunit forethswarm (MW)
Xs,t,k  Value of thevariable for the  candidate during 
theiteration

Acronyms
EDE conomic dispatch
VPE Valve point effect
POZ Prohibited operating zones
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