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Abstract 

Virtual and augmented reality digital twins are becoming increasingly prevalent in a number of industries, 
though the production of digital-twin systems applications is still prohibitively expensive for many smaller organisa-
tions. A key step towards reducing the cost of digital twins lies in automating the production of 3D assets, however 
efforts are complicated by the lack of suitable automated methods for determining the visual quality of these assets. 
While visual quality assessment has been an active area of research for a number of years, few publications consider 
this process in the context of asset creation in digital twins. In this work, we introduce an automated decimation pro-
cedure using machine learning to assess the visual impact of decimation, a process commonly used in the production 
of 3D assets which has thus far been underrepresented in the visual assessment literature. Our model combines 108 
geometric and perceptual metrics to determine if a 3D object has been unacceptably distorted during decimation. 
Our model is trained on almost 4, 000 distorted meshes, giving a significantly wider range of applicability than many 
models in the literature. Our results show a precision of over 97% against a set of test models, and performance tests 
show our model is capable of performing assessments within 2 minutes on models of up to 25, 000 polygons. Based 
on these results we believe our model presents both a significant advance in the field of visual quality assessment 
and an important step towards reducing the cost of virtual and augmented reality-based digital-twins.
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Introduction
The adoption of virtual and augmented reality (VR/AR) 
digital-twins is currently growing at a rapid pace, driven 
by advances in hardware and the use of these technolo-
gies in commercial and industrial applications.

VR and AR are immersive digital experiences that 
place the user in a simulated environment. VR allows 
users to experience and interact with a completely vir-
tual world, while AR overlays virtual elements onto the 

user’s real-world surroundings. A digital-twin is a digi-
tal representation of a real-life object or system, created 
by gathering data from sensors and cameras, as well as 
using product design data or physics simulations. Digital-
twins mirror the life-cycle of their physical counterparts 
in real-time and allow for in-depth analysis and testing. 
When combined with VR/AR, digital-twins can be visu-
alised and investigated as interactive 3D virtual objects. 
VR and AR provide intuitive ways to observe and collab-
orate on digital-twins. Users can view digital-twins from 
entirely new perspectives, visualise complex data in 3D 
and test design changes safely. The combination of VR, 
AR, and digital-twins help users gain insights for innova-
tion and make better-informed decisions by bridging the 
gap between the physical and virtual world.
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The global market for VR/AR is expected to rise from 
$28.4b in 2022 to over $87b by 2030 [1], with applica-
tions already prevalent in fields as diverse as medicine 
[2, 3], engineering [4, 5], architecture [6, 7], retail [8], 
entertainment [9] and training [10, 11]. At present, the 
development of these applications is costly and time 
consuming, limiting their use to large organisations 
with the budget to afford them. Research is ongoing in 
many fields with the aim of reducing the time and cost 
of VR/AR-based digital-twin development, opening 
these technologies up for use to wider audiences.

One of the principal costs of VR/AR-based digital-
twin development is the need to produce 3D assets 
which are both visually representative and performant 
enough to be rendered in real time at the high frame 
rates required for VR. In most digital-twins, these 
assets are polygonal meshes. Polygonal meshes offer 
a lightweight representation of arbitrary 3D objects, 
approximating any given shape as a finite collection of 
interconnected 2D polygons and vertices. As the num-
ber of polygons increases, the accuracy of the approxi-
mation improves, however the rendering time of the 
mesh increases accordingly. While render times are 
important in any 3D application, they are especially 
important in VR. Low frame rates caused by long ren-
der times are annoying on a screen, however in VR they 
can lead to motion sickness, ruining the experience, 
[12]. The creation of assets for VR/AR is thus often a 
balance between visual accuracy and rendering perfor-
mance. In many cases, VR assets are produced manu-
ally by skilled digital artists. These artists must manage 
the balance between accuracy and polygon count, and 
often use computer aided design (CAD) drawings as 
a reference on which to base the asset. Rendering the 
CAD drawings themselves requires considerable effort, 
and as such they are often unsuitable for direct VR/AR 
use [4, 13, 14].

In recent years, research and development efforts have 
attempted to automate the production of high quality, 
performant 3D assets [13, 15–18]. A method of particu-
lar interest is that of mesh decimation: Decimation is an 
automated process which takes a mesh and attempts to 
reduce the total number of polygons without affecting 
visual appearance. Decimation can be applied to meshes 
converted directly from CAD to produce assets suitable 
for VR/AR use. The most common decimation method 
is Hoppe’s progressive meshes algorithm [19]. In this 
method, the vertices in a mesh are ordered according to 
a cost function. Vertices are removed one by one starting 
with the cheapest, and the polygons sharing that vertex 
are merged into a single polygon. The algorithm allows 
the user to stop decimation at any point to choose the 
desired quality and polygon count.

While Hoppe’s algorithm is ubiquitous in industry, 
there are two issues with its use in an automated system: 
Firstly, the cost function used must accurately determine 
the impact of removing each vertex on the overall visual 
quality of the mesh. A number of cost functions have 
been proposed, including several based on curvature, 
surface energy, and quadric error metrics [20, 21], how-
ever these are often weakly related to the subjective vis-
ual quality of the mesh. Second, the stopping point of the 
algorithm is usually manually chosen using a target num-
ber of vertices. Recent applications attempt to set the 
stopping point automatically, however these applications 
depend on many user selected variables and often still 
result in unsuitable geometry. For example, the Polygon 
Cruncher (see [22]) commercial software allows the user 
to set the desired similarity of the result to the original 
mesh as either “nearly similar”, “similar” or “very similar”, 
as well as setting other options to control the behaviour 
around corners, borders, etc. While this reduces much 
of the need for manual work, human judgment is still 
required, precluding fully automatic decimation. Fig-
ure 1 shows an example mesh decimated using Polygon 
Cruncher.

While tools like Polygon Cruncher can greatly speed 
up the manual production of VR/AR assets, it is clear 
that full automation requires the computerisation of the 
human visual quality assessment (VQA) process. An 
automated VQA model is required if the system is to 
guarantee that any meshes produced are visually accu-
rate. Automatic visual quality assessment of 3D meshes 
is a highly active area of research. An in-depth review of 
this research is given in Related work.

In this work we have developed a machine learn-
ing algorithm for the visual quality assessment of deci-
mated 3D meshes. Our algorithm differs from most of 
the VQA algorithms presented in the literature, which 
tend to focus on other methods of mesh alteration such 
as smoothing, compression, noise addition, and water-
marking (see [23, 24]). Unlike decimation, these methods 
do not alter the number or connectivity of vertices within 
the mesh. As such, these methods are much simpler to 
model, as the properties of a given vertex can be eas-
ily compared between the reference and test meshes. In 
contrast, assessing decimated meshes must also involve 
identifying which vertices on the test mesh correspond 
to a given vertex on the reference mesh (the mesh cor-
respondence problem, [25]). Though this complicates the 
VQA algorithm, the ubiquitous use of decimation in the 
production of 3D meshes for VR/AR drives the need for 
this research.

Our algorithm compares test meshes of unknown qual-
ity to a reference mesh of the same object and classifies 
how well the test mesh represents the reference mesh. 
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The reference mesh is known to be of sufficient visual 
quality, but contains too many polygons to be rendered 
performantly in VR/AR. The test meshes are produced by 
decimating the reference mesh to varying levels of qual-
ity using Polygon Cruncher. The algorithm classifies each 
test mesh as either “ruined”, “bad”, “good” or “perfect” 
based on training data collected through human assess-
ment. Classification is performed using a random forest 
algorithm to amalgamate the influence of over 100 visual 
quality metrics based on geometric features of both the 
reference and test meshes. Our model is trained on a set 
of 3,996 test meshes of various mechanical objects.

Given its intended use in controlling an automated dec-
imation process, we define the success of our algorithm 
based on precision. In this case, precision is defined as 
the likelihood that a mesh classified as “good” or “perfect” 
has been correctly classified. Our results show a preci-
sion of 91.5%, rising to 97.3% when the model is weighted 
to strongly reject false positives. We choose to focus on 

false positives due to the intended use of the algorithm: 
In a decimation control process, false positives indicate 
that a visually poor mesh has been classified as good, 
resulting in the production of unusable assets. Con-
versely, false negatives imply the rejection of a good mesh 
as poor, leading to the adoption of a different mesh, likely 
with a slightly increased polygon count. The latter error is 
of much less importance than the former in the produc-
tion of usuable 3D assets for VR/AR. Given these con-
siderations, we believe our VQA model represents a key 
step towards the production of automated decimation 
algorithms and processes for the automatic creation of 
high quality assets for VR and AR.

This paper presents our work as follows: Related work 
provides a detailed discussion of the VQA algorithms 
produced to date, and their influence upon our model. 
Model design discusses in detail the design of our algo-
rithm and the visual quality metrics used. Experimen-
tal methodology discusses the implementation of the 

Fig. 1 Results of Polygon Cruncher decimation process on a sample mesh at 3 different qualitative levels of similarity



Page 4 of 21Roullier et al. Journal of Cloud Computing           (2024) 13:51 

model, including details on the training process and col-
lection of associated data. Results discusses the results 
of our model in terms of both visual assessment perfor-
mance and processing time. Finally, Conclusions pre-
sents the conclusions of our work and suggestions for 
further research in this field.

Related work
Visual quality assessment of 3D meshes has been an 
active area of research for over two decades (see [26]) 
with several methods being developed throughout this 
time. In all cases, the principal aim of VQA is to deter-
mine the impact on the visual quality of a 3D mesh 
caused by one or more modification processes, [24]. In 
many cases, VQA methods are applied to predict if a 
given process is likely to lead to unacceptable distortion 
in the appearance of particular mesh, [27]. The likelihood 
of this distortion is seen to depend heavily on both the 
geometry of the mesh and the modification process used. 
As such, many methods are limited to predicting the 
effects of a particular process, or are limited in the range 
of meshes considered. In [28], the influence of a decima-
tion process on 3D model morphology is studied.

VQA methods
Mesh visual quality models can be broadly grouped into 
two classes: image-based methods and model (geom-
etry) based methods, [23]. Image based methods assess 
the quality of 3D models by considering the quality of 
one or more 2D projections of the objects. As such, 
the accuracy of such metrics is dependent on the view-
point of the projection (see [29, 30]). Many image-based 
metrics are based around similar methods used in 2D 
image processing, such as the structural similarity index 
(SSIM) (see [31]) and visible difference predictor (VDP), 
[32]. While such methods were initially popular, later 
authors suggest that image-based methods are not suit-
able for assessing the quality of 3D objects due to the 
influence of other factors such as lighting and viewing 
angle, [33]. As such, most developments in the field of 
VQA in recent years have focused on model-based met-
rics. Image based metrics are thus not considered fur-
ther within this paper.

Model based metrics are based directly on observ-
able geometric features of the mesh itself. Commonly 
used features include simple measurements such as 
mesh volume and surface area, as well more complex 
features such as curvature and dihedral angles [23, 27, 
30, 34–36]. Model-based methods are further classi-
fied as full-reference, part-reference, or no-reference 
(blind) according to the availability of the reference 
mesh. The authors of [37] deal with simplifying meshes 
reconstructed from 3D point clouds of buildings, using 

an edge collapse algorithm constrained by preserved 
structural points and focus on shape preservation 
during simplification. This work uses a model-driven 
approach with hand-crafted constraints and parameters 
then evaluate on individual buildings and a large urban 
scene point cloud. The work in [38] also utilises edge 
collapse, whilst taking advantage of parallel computing 
and hardware often used in machine learning.

Full-reference methods have access to both the test 
mesh and the reference mesh on which it was based. 
Part-reference methods do not have access to the ref-
erence mesh but do have access to some data regard-
ing it. No-reference models only have access to the test 
mesh, [27]. Full and part-reference methods tend to 
work by comparing the values of one or more geomet-
ric parameters between the reference and test meshes. 
In contrast, blind methods often use machine learn-
ing techniques such as convolutional neural networks 
(CNN) (see [33]) or support vector machines (see [29]) 
to assess model quality. In general, full-reference meth-
ods tend to be the most accurate and are therefore 
preferred. Part-reference and no-reference models are 
generally only used when reference data are unavaila-
ble or otherwise unusable, [29]. Given the intended use 
of our model in controlling the decimation of existing 
(reference) meshes, we only focus on the discussion of 
full-reference methods within this paper.

Full‑reference VQA methods
Full-reference VQA models predominantly use met-
rics which allow for a direct comparison between the 
reference and test meshes. One of the earliest such 
metrics was the root mean squared distance (RMS), 
[26], which finds the average distance between points 
on the reference mesh and their equivalent regions on 
the test mesh. Many VQA models also made use of the 
Hausdorff distance, defined as the maximum distance 
between any point on one mesh and the equivalent 
point on another mesh [23, 35, 39–41]. Research later 
showed that such purely geometric measures rarely 
correlate well with human visual perception however 
(see [27, 42]).

Figure 2 shows an example of the drawbacks of purely 
geometric measures, as previously shown by Wang 
et al., [43]. The figure shows an original mesh (left) and 
two meshes subjected to distortion through noise addi-
tion (centre, right). While it appears that the mesh on 
the right is much more heavily distorted than the one 
in the centre, both have the exact same value of RMS 
distance. As such, RMS value alone is not sufficient to 
assess the effect of a distortion on the visual quality of 
a mesh.
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Perceptual quality metrics
In order to address the shortcomings of purely geomet-
ric measures, later work aimed to better account for 
human perception using perceptual metrics [23, 24, 36, 
42, 44, 45]. The (subjective) distortion perceived by a 
human is found to be a combination of the actual geo-
metric (objective) distortion, setting features (e.g. light-
ing, viewing angle), and intricacies of the human visual 
system [27, 46]. Later models therefore attempt to use 
metrics which take some of these factors into account. 
Such metrics commonly include measures of curva-
ture [36, 42, 44, 47, 48], dihedral angle [30, 35], normal 
vectors (see [49]) and surface roughness (see [36, 43]). 
These metrics are seen to have a stronger correlation 
to visual perception than simpler measures such as the 
Hausdorff distance [27, 42].

Particularly influential methods based on perceptual 
metrics include the Dihedral Angle Mesh Error (DAME) 
[30], the Tensor Based Perceptual Distance Measure 
(TPDM) [44], and the (Multiscale) Mesh Structural Dis-
tortion Measures (MSDM/MSDM2) [36, 47]. TPDM, 
MSDM and MSDM2 are based on various definitions 
of curvature. While curvature is a useful proxy for vis-
ual appearance, the piecewise nature of mesh surfaces 
greatly complicates its calculation (see [50, 51]).

Methods based on perceptual metrics tend to operate 
in a three-stage process (see [36, 52]). First, the method 
calculates the value of one or more metrics for every 
point (polygon or vertex, depending on the metric in 
question) on the mesh. Next, these values are summa-
rised over the entire mesh to produce an overall score 
for the object (see [42, 46]). Finally, this score is com-
pared between the reference and test meshes and used 
to elicit a judgment on the overall model quality. While 
early methods used the arithmetic mean of a met-
ric, later works attempt to use alternative strategies to 
approximate key features of the human visual system.

Accounting for the human visual system
It is well known that there is only a weak correlation 
between perceived visual quality and actual geomet-
ric distortion (see [24, 44]). Much of this discrepancy is 
related to two factors: Visual impact and visual saliency. 
Visual impact refers to the noticability of a given distor-
tion. For example, it is observed that humans are likely 
to report a model with few large distortions as more dis-
torted than one with many small distortions, even if the 
total geometric impact is the same, [47]. Visual saliency 
refers to the relative importance of particular mesh fea-
tures on the subjective quality of the distorted mesh (see 
[36, 48]). For example, it has been shown that certain 
forms of distortion are more noticeable when applied 
to previously smooth areas of a mesh than to previously 
rough areas (see [24, 53]).

Visual impact estimation
To better estimate visual impact, a perceptual metric 
must highlight particularly large distortions to a degree 
higher than their geometric value might suggest. Many 
authors achieve this using pooling techniques to summa-
rise distortion metrics, rather than the arithmetic mean. 
Minkowski pooling is a particularly common method to 
account for the impact of larger distortions (see [24, 36, 
43, 46]). As with the arithmetic mean, Minkowski pooling 
takes the contributions of all the distortions on a mesh 
and returns a single value for the overall mesh. Unlike 
the mean however, Minkowski pooling weights this 
value towards over-representation of effects with higher 
visual impacts. The Minkowski pooling XM of variable X 
is found using 1; where M is the Minkowski parameter 
and N is the number of observations. Higher values of 
M imply a higher weighting towards large distortions. In 
many studies, M is chosen arbitrarily, but tends to have 
a value between 2 and 3, [52]. Note that setting M = 1 
reduces Minkowski pooling to the arithmetic mean,

Fig. 2 Three meshes - original (left), lightly distorted (centre) and heavily distorted (right). The two distorted meshes have the same value of RMS 
distance. From [43]
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Minkowski pooling is used to approximate visual 
impact in many full-reference VQA models. While 
Minkowski pooling somewhat accounts for human per-
ceptual behaviour, this method has its drawbacks: Firstly, 
Minkowski pooling treats all distortions as independent, 
when in reality, the effects of multiple distortions over-
lap to influence visual quality perceptions, [52]. Second, 
Minkowski pooling assumes the visual impact of a dis-
tortion is directly related to the extent of geometric dis-
placement with no other compounding factors. Later 
models aim to account for this in several ways: Feng et al. 
[52], use a novel weighting method based on polygon 
surface area. This method is seen to overemphasise the 
impact of roughness however, as rough areas necessarily 
contain smaller polygons than smooth areas. Nouri et al. 
[46], combine Minkowski pooling with a weighting factor 
based on visual saliency. This method results in a limited 
improvement in results, however this is outweighed by a 
significant additional computational complexity. In our 
model we use standard Minkowski pooling to approxi-
mate the visual impact of distortions, as later develop-
ments are not seen to offer significant benefits over this 
method.

Saliency estimation
Visual saliency is a somewhat more complex concept 
than visual impact, relating to how important the human 
visual system considers certain aspects of visual stimuli. 
Visual saliency is a major area of research in both com-
puter vision and neuroscience, [54]. Saliency is occasion-
ally incorporated into mesh VQA models as a weighting 
factor, such that perceptual metrics are weighted more 
heavily in regions that contribute more to visual quality 
[29, 39, 44, 46, 52]). Saliency has been approximated in 
several studies as a function of curvature [36, 44, 48]) or 
surface roughness, [46]. Many authors apply this weight-
ing over multiple scales, as what is considered salient at 
one scale may not be at another, [48]. Despite significant 
research, most saliency-based methods are seen to give 
conflicting results, [52]. While saliency is a key feature 
in many model driven VQA methods, its complexity 
and poor understanding has led to it being considered 
an unnecessary complication in recent data driven VQA 
systems, [34]. As such, our model does not attempt to 
account for visual saliency.

The mesh correspondence problem
A major complication in many full-reference VQA mod-
els is the need to compare certain metrics at equivalent 
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points between the reference and test meshes. For exam-
ple, Roy et al. [49], assess visual quality by considering the 
deviation in the average normal vector for each polygon 
around a vertex before and after distortion is applied. 
Similarly, the MSDM metric [36], uses curvature at 
equivalent points on the mesh to determine quality. The 
complication with these approaches stems from the need 
to identify which point (vertex or face) on the test mesh 
corresponds to a given point on the reference mesh. This 
issue is generally referred to as the mesh correspondence 
problem.

In many studies, the mesh correspondence problem is 
negated entirely by avoiding distortion processes which 
alter the connectivity of the mesh. Smoothing, noise 
addition, compression and watermarking all distort 
meshes by moving vertices without changing their num-
ber or connectivity. As such, finding the correspondence 
between the reference and test vertices is trivial, as they 
will be at the same index in both meshes. Many VQA 
models are therefore limited to use only these methods 
of distortion [29, 30, 34–36, 42–44, 46, 52, 53]. In earlier 
work, smoothing and noise addition were considered suf-
ficient methods to represent a wider range of distortions, 
[36]. Later assessments however suggest that only con-
sidering models in which the vertex count and connectiv-
ity remain unchanged is a serious drawback of previous 
VQA models (see [24, 47]). Given that our work focuses 
on mesh decimation, a method which by its nature 
destroys the connectivity of a mesh, we must consider 
the correspondence problem in our model. The relative 
lack of previous models which consider correspondence 
is problematic however, as it precludes the compari-
son of our work with many of the metrics presented by 
previous authors. Solving the correspondence problem 
involves determining, for every vertex on the reference 
mesh, which vertex on the test mesh is the closest to it 
in 3D space. For any given pair of meshes this is a well-
defined problem with a unique solution, however the 
calculation of this solution is computationally expensive. 
Solving the correspondence problem through brute force 
requires assessing the Euclidean distance between every 
pair (r, t) of reference and test vertices. The complexity of 
this problem is therefore seen to be O(RT ) where R and 
T are the vertex counts of the reference and test meshes, 
respectively [25].

Many authors have proposed schemes for solving the 
correspondence problem in less time than is required by 
brute force methods. Several authors attempt to speed 
up the calculation by approximating correspondence 
rather than solving it exactly [25, 51, 55, 56]. Given the 
non-uniform distribution of vertices within arbitrary 3D 
shapes however, this does not guarantee a sufficiently 
accurate solution for the visual quality assessment of 
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decimated meshes. Other methods attempt to use more 
efficient spatial search paradigms to speed up the exact 
solution. Roy et al. [49], use a method of bounding grids 
to reduce the number of test vertices searched for a given 
reference vertex. Many later works use octrees (3-dimen-
sional space partitioning trees) to speed up the search 
[20, 44, 47, 57]. Octrees partition arbitrary 3D shapes 
by recursively subdividing them into eight octants, and 
are commonly used in a number of algorithms related 
to 3D graphics processing. Such methods are gener-
ally preferred in most modern VQA models due to their 
increased speed and simple implementation.

VQA with machine learning
In recent years, an increased focus has been given to the 
use of machine learning in visual quality assessment. 
Unlike earlier approaches which attempt to link visual 
quality to a single perceptual metric, machine learning 
methods allow assessments to be based on multiple met-
rics. Lavoue et al. [42], present a method in which eight 
separate metrics are combined using linear regression 
to produce a single quality score which is then trained 
against human judgments. The authors suggest that mul-
tiple metrics in combination give a much more accurate 
prediction of quality than any single metric. The number 
of variables contained in the model is further expanded 
by using a number of statistical measures of these vari-
ables, including the mean, standard deviation, skewness 
and kurtosis.

Later machine learning based models use a similar 
approach to Lavoue, with encouraging results (see [34, 
35]). The model presented by Yildiz et al. [34], is of par-
ticular interest. This model aims to predict distortion 
caused by smoothing and noise addition using a combi-
nation of 28 features, found as the mean, standard devia-
tion, skewness and kurtosis of six particular curvature 
measures plus a local roughness measure. In addition, the 
authors considered metrics relating to visual saliency and 
mesh dihedral angles, but these were removed from the 
final model due to a lack of contribution to the results. 
The authors use a linear optimisation process to combine 
these features into a prediction of visual quality trained 
against crowdsourced human assessments. Training was 
performed against a set of eleven low polygon meshes of 
various objects subjected to distortions through noise 
addition and smoothing. Their results show better per-
formance than any single metric method, and this accu-
racy is shown to be independent of the mesh under test.

VQA and digital twins
The Metaverse is a virtual world that maps and interacts 
with the real world, [58]. The quality of content, device 
and interaction in the metaverse all have an important 

impact on the Quality of Experience (QoE). In this con-
text, VQA is a direct measure of a users’ QoE in Digital 
Twin (DT) environments. The work in [59] identifies the 
latest developments in DT technologies and AI, associ-
ated with current challenges in creating a system that 
can truly bring reality and virtual closer together. A QoE 
model of DT systems was introduced for transmission 
in a large scale immersed haptic virtual reality over the 
Internet and objectively infers important DT QoE physi-
ological aspects, such as fatigue (see [60]). The authors of 
[61] present a novel workflow for combining voxel rep-
resentations and coloured point clouds, to create digital 
twins of physical objects with 0.1 mm precision. A con-
cept DT framework for prefabricated construction was 
developed in [62] which also considers automated VQA, 
The authors of [63] introduce using Digital-Twins inte-
grated with VR to enhance digital learning for driving an 
industrial mobile robot. Experiments validated that the 
Virtual Reality environment helped improve digital learn-
ing. In [64], the authors address the problem of subjective 
visual quality assessment protocols, but do not consider 
using machine learning to automate the process.

Influence on model design
The model presented within this paper is influenced by 
the work of Yildiz et al. [34]. In particular we attempt to 
extend Yildiz’ method towards the visual assessment of 
meshes produced through decimation. As with this work, 
our model uses a machine learning approach to com-
bine the influence of several geometric and perceptual 
metrics into a single result. Where Yildiz et al. consider 
28 metrics, our model considers 108 variables based on 
geometric properties of both the original and distorted 
meshes. As with Yildiz et al., we utilize the mean, stand-
ard deviation, skewness and kurtosis of certain properties 
to better classify the mesh. We use Minkowski pooling to 
incorporate visual impact into our method, however we 
have chosen not to consider visual saliency as observa-
tions from both Yildiz et al. and others suggest its inclu-
sion does not add sufficient performance (see [34, 52]). 
Unlike Yildiz et al., we incorporate solution of the corre-
spondence problem into our model. This is necessary for 
the application of the model towards decimation rather 
than smoothing and noise addition as presented in the 
previous work. Finally, we train our model using a similar 
crowdsourcing approach, applying our model to 3,  996 
unique meshes (108 decimations of 37 objects) compared 
to Yildiz’ 168 meshes produced from 11 objects).

As mentioned earlier, our model differs from much of 
the literature in three important ways: First, while pre-
vious authors have applied machine learning to visual 
quality analysis, our model considers substantially more 
variables than any previously known work. Second, our 
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model is trained on a total of 3, 996 meshes. This is con-
siderably more than that seen in many approaches in the 
literature, which tend to use between 4 and 10 meshes 
[30, 35, 36, 44, 46, 47, 52, 53, 65].

Finally, our model focuses on decimation, a method 
which is greatly underrepresented in the literature in 
favour of constant connectivity methods. We choose to 
analyse decimation based on its importance to the com-
mercial production of VR assets, however the lack of pre-
vious studies hinders the direct comparison between our 
model and previous efforts. We hope that our publication 
of a methodology specifically aimed at mesh decima-
tion will encourage further research in this area, driving 
developments towards further automation of this com-
mercially important process.

Model design
Our model presents a full-reference, machine learning 
approach to mesh visual quality assessment based on a 
combination of geometric and perceptual measures. The 
metrics used in our assessment are split into two catego-
ries: 1) Shape metrics, which depend only on either the 
reference or test mesh, and 2) similarity metrics, which 
represent a difference between the two meshes.

Shape metrics are found by extracting the relevant data 
from the mesh. Some similarity metrics are found sim-
ply by taking the ratio of a shape metric between the two 
meshes, while others require the solution of the corre-
spondence problem before they are calculated. For every 
pair of meshes, a total of 108 variables (18 shape metrics, 
9 shape ratios and 81 similarity metrics) are calculated. 
These variables are then fed into a random forest classi-
fier to assess if the test mesh is visually representative of 
the reference mesh. This random forest model is trained 
based on recorded human visual quality judgments on 
over 21,  000 test meshes. Figure  3 gives an overview of 
the assessment process. The remainder of this section 
breaks up the operation of the visual quality assessment 
model in terms of the steps shown in Fig. 3.

Shape metrics
Shape metrics are those metrics which can be derived 
from a single mesh. Table 1 defines these variables, while 
the remainder of this subsection gives details on the jus-
tification and calculation of each variable. Each of the 9 
variables in Table  1, is collected for both the reference 
and test meshes, giving a total of 18 shape metrics.

Many of the variables in Table 1 give rough approxima-
tions of the overall shape of the mesh. These are useful as 
they allow an assessment of visual quality which is inde-
pendent of the shape of the object under test. Metrics 

which indicate only the scale of the model (e.g. volumes) 
are not used, so that the model is scale independent.

The major and minor squareness metrics are cal-
culated from the dimensions of the non-axis-aligned 
bounding box surrounding the mesh. The box is found 
using Moore’s brute force approximation, [66]. The 
squareness variables give a simple metric to approxi-
mate the overall shape of an object without including 

Fig. 3 Schematic of full Visual Quality Assessment process

Table 1 Shape variables in the Visual Quality Model

Symbol Variable Eq.

S1 major squareness 2

S2 minor squareness 3

φ sphericity 4

ρ bounding box density 5

E shape efficiency 6

Askew skewness in polygon area

Akurt kurtosis in polygon area

Acov COV in polygon area

α connectivity 7
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the object’s scale. These variables are found according 
to (2) and (3), where L1 , L2 and L3 are the primary, sec-
ondary and tertiary lengths of the bounding box.

and

Sphericity is a further metric for approximating the 
object shape. Sphericity is found as the inverse ratio of an 
object’s surface area to that of a sphere of equal volume. 
Sphericity is calculated using (4), where VM and AM are 
the mesh volume and surface area respectively. Mesh vol-
ume is found using the method of Zhang and Chen [67], 
while mesh surface area is the sum of polygon areas,

Bounding box density refers to the ratio between the 
volume of the mesh and that of its bounding box, as 
found by (5). Shape efficiency is found as the surface area 
to volume ratio of the mesh divided by that of the bound-
ing box, as given by (6), where VB and AB are the bound-
ing box volume and surface area respectively,

and

The skewness, kurtosis, and coefficient of variation 
(COV) of polygon area are simply derived from the full 
set of polygon areas within the mesh. These variables are 
used as they present simple metrics for the complexity of 
the mesh. While the coefficient of variation depends on 
the mean and standard deviation of polygon area, these 
values are not reported themselves as they encode the 
scale of the object. Connectivity is found using (7), where 
p and v represent the number of polygons and vertices 
within the mesh. This has a value of approximately 2 for 
any manifold 3D mesh, with the exact value giving an 
indication of the complexity of the mesh,

Note that despite their use in calculating α , the poly-
gon and vertex counts are not used as shape metrics. This 

(2)S1 =
L1

L2
,

(3)S2 =
L1

L3
.

(4)φ =
3
√
π(6VM)

2
3

AM
.

(5)ρ =
VM

L1L2L3
,

(6)E =
AMVB

ABVM
.

(7)E =
p

v
.

reduces the influence of polygon count on assessment 
results. As mentioned earlier, mesh visual quality tends 
to degrade as polygon count is reduced. Despite this, it is 
possible that a low polygon mesh may have a better visual 
quality than a high polygon mesh. As such, it is impor-
tant that the model is not unfairly biased towards reject-
ing parts with fewer polygons.

Shape ratios
Shape ratio metrics are found simply as ratios of shape 
metrics between the reference and test meshes. Table  2 
lists these metrics

All the metrics listed in Table  2 are found simply by 
dividing the value of the relevant measurement for the 
test mesh by that given for the reference mesh. Many of 
these metrics give a simple indication of the global extent 
of distortion between the meshes. For example, the sur-
face area ratio of a completely undistorted test mesh 
would be exactly 1. The further from 1, the greater the 
distortion from the reference mesh to the test mesh.

Note that volume and surface area ratios are used as 
shape ratios despite their absolute values not being used 
as shape metrics as they encode object scale. Note also 
that squareness is not used in a shape ratio due to its 
approximate nature.

Similarity metrics
Similarity metrics are those variables which directly 
compare the appearance of the two meshes. Table  3 

Table 2 Shape ratio metrics

Symbol Variable

RV volume ratio

RA surface area ratio

Rφ sphericity ratio

Rρ bounding box density ratio

RE efficiency ratio

Rα connectivity ratio

Rskew polygon area skewness ratio

Rkurt polygon area kurtosis ratio

RCOV polygon area COV ratio

Table 3 Similarity metrics

Symbol Variable Eq.

D matching distance 8

n normal deviation

θ dihedral angle change
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lists the similarity metrics used in the model. Note that 
all of these metrics depend on the solution for mesh 
correspondence, which is discussed further in Estab-
lishing correspondence.

Matching distance is the Euclidean distance between 
a reference vertex and its corresponding test vertex, 
normalised with respect to the characteristic length of 
the reference mesh. The characteristic length is given 
as the radius of a sphere of equal volume to the mesh. 
This normalisation is performed in order to remove the 

influence of model scale from the results of the analy-
sis. Equation 8 gives the definition of matching distance 
Di for a given reference vertex i and corresponding test 
vertex i′,

The normal deviation metric is based on Roy’s 
method (see [49]) and compares the vertex normal 
direction of each reference vertex to that of the cor-
responding test vertex. The vertex normal vector is 
found as the average normal vector for all the polygons 
sharing that vertex. The deviation between the vectors 
is found as their scalar product, in degrees. Figure  4 
illustrates the matching distance and normal deviation 
metrics on a single vertex. In the diagram, the reference 
mesh is given as a solid line, with the test mesh given as 
a dashed line.

The dihedral angle change is the unsigned difference 
between the average dihedral angle of a reference ver-
tex and that of the corresponding test vertex. Figure 5 
shows the definition of mesh dihedral angle for ver-
tex vi . The average dihedral angle of a vertex is found 
using Algorithm 1, where V is the full list of vertices in 
a mesh.

(8)Di =
√

(xi − xi′)2 + (yi − yi′)2 + (zi − zi′)2

3

√

3VMi
4π

.

Fig. 4 Illustration of matching distance and normal angle deviation

Fig. 5 Definition of mesh vertex dihedral angle
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Algorithm 1 Calculating Dihedral Angle

Each of the three metrics in Table  3 is measured for 
every vertex on the reference mesh, with the results 
stored in three 1× N  arrays. Minkowski pooling is then 
performed by raising each measurement to the power 
M, where M takes values of 1.0, 1.5, 2.0, 2.5 and 3.0, giv-
ing 15 1× N  arrays. Next, the mean, standard deviation, 
skewness, kurtosis and coefficient of variation are meas-
ured for every exponent of every metric, giving 75 met-
ric values. Finally, the minimum and maximum value of 
the original (M = 1.0) metrics are also recorded, giving a 
final total of 81 similarity metrics.

Minkowski pooling was applied to these metrics at 
multiple levels (i.e.withmultiplevaluesofM) in an attempt 
to produce a set of measures with varying dependence 
on the scale of distortions. It is hoped that doing so will 
allow the VQA model to better consider meshes subject 
to a set of distortions of varying intensity. Similarly, we 
use the mean, standard deviation, skewness, kurtosis and 
coefficient of variation in order to further extend the var-
iables considered, as suggested by Lavoue et al. [42].

Establishing correspondence
As mentioned in The mesh correspondence problem, 
many metrics for mesh visual quality assessment rely on 
a correspondence between the vertices of the reference 
and test meshes. In our work, we use a k − d tree imple-
mentation to determine correspondence. The tree is built 
using the method of Maneewongvatana and Mount [68] 
as implemented in the SciPy analysis package, using a leaf 
size of 10 nodes. The tree is built from the vertices of the 
test mesh, and the algorithm then loops through the refer-
ence mesh to determine the nearest point in the tree to 
each reference vertex. This method returns a 2× N  array, 
where N is the number of vertices in the reference mesh. 
For each reference vertex, the array stores both the index 
of and distance to the corresponding test vertex. A k − d 
tree implementation was chosen as the results of initial 
tests showed this method to perform up to 50 times faster 
than a bounding grid method on representative meshes.

Visual quality assessment
The 108 objective metrics derived in Shape metrics 
through Similarity metrics sections are related to the 
subjective visual quality of the test mesh using a ran-
dom forest classifier. The metrics recorded for a given 
pair of meshes are passed to the classifier as a 108-ele-
ment array. No additional pre-processing is required, as 
all the metrics are already normalised real numbers. The 
classifier operates on this array and returns the predicted 
visual quality class for the mesh. We have chosen to use a 
random forest classifier in this work for several reasons: 
Firstly, unlike artificial neural networks, random forests 
are highly explainable models. This allows both authors 
and end users to interrogate the results and internal 
workings of the model, leading to a better understand-
ing of the visual quality assessment process. Discussion 
around this interrogation is given in Influence of metrics, 
and this information is being used to drive further devel-
opments in 3D model processing.

Second, as they are based on decision trees, random 
forests are somewhat able to account for the interde-
pendence between variables. For example, it may be seen 
that the relationship between surface area ratio and visual 
quality is much stronger for shapes with lower values of 
sphericity. Models based on decision trees allow for such 
effects by gating the surface area ratio relationship behind 
a sphericity threshold. Finally, the probabilistic nature of 
random forests helps to reduce the chance of over-fitting 
the model to the training data. This is important in the 
training of a visual quality model that is intended to work 
across a range of different mesh geometries

Experimental methodology
In this section we set out how we collected and verified 
data used to train the VQA model, how the model is 
trained and implemented.

Model Implementation
The model defined in Model design was implemented in 
Python 3. The SciKit-Learn package was used to build 
the random forest classifier. The Blender open-source 
3D modelling tool was used to simplify the extraction of 
shape metrics from 3D meshes. The model was developed 
and tested on a laptop computer with a 1.8GHz Intel i7 
CPU and 16GB of RAM running Windows 10.

Training data set
The model was trained against a set of 37 different objects. 
The objects were chosen to give a representative sample 
of mechanical parts including gears, screws, pistons etc. 
These parts were chosen to aid the development of an auto-
mated system for converting mechanical CAD models into 
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visually representative 3D meshes, as detailed in Introduc-
tion. Figure 6 shows the parts that were used,

The authors attempted to find a set of publicly available 
data for use in training the model, however no appropri-
ate set was found. Most public data sets either contained 
too few meshes to guarantee sufficient training data, or 
primarily contained models that were too visually simple 
to show significant distortion. Furthermore, most of the 
available data sets deal with other forms of mesh degra-
dation, such as watermarking, rather than decimation. 
As explained in Introduction, decimation is a necessary 
step in the processing of CAD models to meshes, such 
that models showing alternative forms of deformation are 
unsuitable for this work.

Training data collection
The training data for the objects shown in Fig. 6 were col-
lected using the following process: First, for every object, a 
high polygon “reference mesh” was produced. Next, each 
reference mesh was decimated using the Polygon Cruncher 
commercial software package [22]. Every possible com-
bination of Polygon Cruncher’s input parameters (corre-
sponding to each visual quality objective metric) was tested, 
resulting in 108 “test meshes” for each object (3,  996 test 
meshes in total). Finally, each test mesh was manually com-
pared with its corresponding reference mesh for visual qual-
ity. The manual comparison of test and reference meshes 
was performed by a number of volunteers using a custom 
made tool. The tool showed the user the reference and test 
meshes side by side and asked the user to judge how well the 
test mesh represented the reference mesh. The tool allowed 
the user to rotate and scale both meshes simultaneously in 
order to fully compare the objects. Both the reference and 
test meshes were lit and rendered in exactly the same fash-
ion in order to avoid the influence of external factors on 
the user’s judgment of mesh quality. Test meshes could be 
judged as belonging to one of four categories:

• Ruined - Either the test mesh is not recognisable as 
the same object as in the reference mesh, or the test 
mesh contains a flaw which would hinder the object’s 
intended function.

• Bad - The test mesh is recognizable but contains sig-
nificant visual deformations compared to the refer-
ence mesh.

• Good - The test mesh is an adequate representation 
of the reference mesh, with only minor differences.

• Perfect - The reference and test meshes are indistin-
guishable.

Figure  7 shows example test and reference meshes for 
each of the four quality categories.

Every combination of reference and test mesh was 
duplicated 5 times to reduce human error (and combat 
against conflicting opinions on quality. Human volun-
teers may have conflicting opinions of the same mesh 
quality. The same volunteer may also change their opin-
ion over time. Duplicating test meshes multiple times 
during construction of the training dataset alleviates 
this potential limitation.), giving a total of 19, 980 assess-
ments. An additional 1, 120 meshes known to be perfect 
representations were also added to the test set to verify 
user performance. A total of 21,  100 meshes were thus 
assessed. The test meshes were finally split into 1,  055 
sets of 20, with each set containing at least one known 
“perfect” mesh. The user did not know which mesh 
this was within a set. Whilst the authors concede there 
are limitations to using a customised training dataset, 
we mitigate this by implementing a machine learning 
approach that is robust to overfitting. These assessments 
were performed by 23 volunteers at Bloc Digital and the 
University of Derby.

Training data verification
The visual quality assessments collected were validated 
to reduce the likelihood of erroneous assessments pollut-
ing the training data. Given their subjective nature visual 
quality assessments must be made by human beings, 
however the tedious nature of the work can lead to bore-
dom, distractions, and erroneous results. The use of 5 
repeats of each test mesh somewhat alleviates this risk 
by allowing the data to be averaged, reducing the impact 
of one-off errors. Such an addition does not reduce 
errors caused by systematic or intentional mislabelling of 
meshes however.

In order to verify the accuracy of the human visual 
quality assessments, three further tests were performed: 
First, as mentioned in Training data collection, at least 
one mesh in every set of 20 was known to be a perfect 
representation of the test mesh. For each set, the human 
score for this model was interrogated. Any set which 
scored anything other than perfect for this mesh was dis-
carded, and the whole set was later reassessed. Reassess-
ment was required in 79 sets out of 1, 055.

Second, the results for each volunteer were collated, 
the scores converted to integer values (ruined = 1, bad = 
2, good = 3, perfect = 4) and their mean and standard 
deviation calculated. All users gave a mean score between 
2.4 and 3.3, with a standard deviation between 0.74 and 
1.05. These scores were well within the expected range 
for the data and agreed with the results of sets assessed 
by the authors.

Finally, each set of 20 meshes was inspected to ensure 
that all sets had a sufficient range of scores. Out of 1, 055 
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Fig. 6 Mechanical parts used in training the visual quality model. Each model was represented by 108 test meshes, giving 3, 996 meshes in total
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sets of 20, 1,  053 sets had a range of at least 2, which 
was considered acceptable. Two sets had a range of 1, 
although on reassessment by the authors, these results 
were deemed appropriate and allowed to stand. No sets 
had a range of 0.

These tests were considered appropriate to deter-
mine that all visual quality assessments had been under-
taken correctly. Any differences in results are therefore 
expected to be caused by human error and differences in 
opinion over the subjective quality of the meshes.

Fig. 7 Examples of meshes belonging to each of the four assessment categories
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Training data processing
Once verified, the visual quality data collected by the 
volunteers underwent a small amount of pre-processing 
before being used to train the machine learning model: 
First, the data from all 1, 055 test sets were collated into 
a single table of 21, 100 observations. Second, the 1, 120 
meshes known to be perfect were removed from the data 
set to leave 19,  980 observations. Third, the arithmetic 
mean score over five repeats was taken for each pair of 
reference/test meshes to give an average score for each 
mesh. Finally, the score data (the target variable) was 
merged with the metrics defined in Model design (the 
predictor variables) to produce the final data set. This 
data set contained 3, 996 observations, with 108 predic-
tor variables and a target variable for each observation.

Model training procedure
The training of the random forest model was performed 
according to Algorithm 2. Repeating the training process 
30 times (lines 2 through 7) helps to reduce chances of 
over-fitting to a specific dataset by ensuring hyperpa-
rameters are chosen based on average results. Testing 
the approved model with a coarser train/test split (lines 
14 through 21) further reduces the chance of overfitting 
by training the model against a smaller data set. Each 
iteration of the training process takes approximately five 
minutes, excluding the time taken to manually assess and 
adjust the hyperparameters.

Algorithm 2 Random Forest Training Methodology

Two separate training processes were undertaken dur-
ing this research, with two distinct goals: The first pro-
cess aimed simply to produce a model with the highest 

accuracy. In this case, accuracy is defined as the fraction 
of test meshes which were correctly classified. Accuracy A 
is defined in (9), where Ni,j refers to the number of obser-
vations of meshes with predicted quality i and observed 
quality j. The subscripts R, B, G and P refer to the “ruined”, 
“bad”, “good” and “perfect” classes.

In the second process, the model was biased to mini-
mise the number of ruined/bad meshes reported as good/
perfect. This method was inspired by the intended use of 
the model in controlling an automated mesh decimation 
process. In this case, the reporting of ruined/bad meshes 
as good/perfect is undesirable, resulting in the produc-
tion of meshes of poor quality. Conversely, the reporting 
of good/perfect meshes as bad/ruined simply results in a 
mesh being rejected in favour of another mesh (likely with 
a higher polygon count). We define the metric of general-
ised precision GP in (10) to measure the performance of 
the model towards this aim,

and

Results
In this section, we present the results obtained from our 
experimentation. This includes an analysis on the accu-
racy of our VQA model, the influence of several metrics 
and the efficiency of our approach.

Visual assessment results
The training process given in Algorithm 2 was performed 
to select an appropriate set of model hyperparameters. 
Figure  8 shows the results obtained using overall accu-
racy as the target. Results are given as the mean and 
standard deviation of model count after 30 trials for data 
with an 80 : 20 training/test split.

As shown in Fig. 8, the final model gives a reasonable 
prediction of the overall class into which each model 
was scored. The overall accuracy is found as 78.8± 3.9% . 
Note that in all 800 tests however, the predicted class is 
always within 1 step of the actual class. The generalised 
precision of this model is found as 91.5± 1.5% . Given 
the intended use of the model to control an automated 
decimation process, these results are promising. As men-
tioned in Model training procedure, this use case led to 
a training process aimed to improve general precision 
rather than overall accuracy. The results of this model are 
shown in Fig. 9.

(9)A =
NR,R + NB,B + NG,G + NP,P

∑

i,j Ni,j
,

(10)GP =
NG,G + NG,P + NP,G + NP,P

∑

i=G,P Ni,j
.
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As shown in Fig.  9, the retrained model substantially 
reduces the number of ruined/bad models reported 
as good/perfect, at the expense of reducing the overall 
accuracy of the model. This behaviour was achieved by 
weighting ruined/bad observations in the training pro-
cess at a rate of 50  : 1 compared to good/perfect obser-
vations, causing the model to reduce the likelihood of 
predicting the good/perfect class for a given data point. 
With the 50 : 1 weighting, we achieve an overall accuracy 
of 68.5± 5.3% , and a generalised precision of 97.3± 1.3% . 
Despite the drop in accuracy, the increased precision is 
considered to be highly advantageous for the intended 

use of the model. Additional gains in precision may be 
obtained by further increasing the weighting ratio, how-
ever the reduction in accuracy this causes makes this 
approach unsuitable. As such, the authors suggest that a 
50 : 1 weighting is appropriate for the intended use of this 
model.

As shown in Figs.  8 and 9, our model performs well 
on a random sample of meshes from the training set. In 
order to further evaluate model performance, we have 
also tested the classifier against a number of unseen 
meshes. Figure  10 shows the meshes used for this test. 
These meshes were chosen to give representative samples 
of mechanical parts like those in the training set (spark 
plug, crankshaft) as well as an example non-mechanical 
part (head). 108 test meshes were produced for each of 
these models and their visual quality manually inspected 
using the process detailed in Training data collection. 
The model was then used to predict the quality of each 
test mesh without any of these meshes being included in 
the training data set. The results of these verification tests 
are given in Table 4.

As seen in Table  4, the accuracy of the visual qual-
ity assessment process varies considerably for unseen 
models. While the spark plug results are of similar 
accuracy to the test data, accuracy is notably reduced 
for the crankshaft and head meshes. The higher accu-
racy of the spark plug is to be expected given the 

Fig. 8 Model results for 800 test meshes, with the model trained 
to maximise accuracy

Fig. 9 Model results for 800 test meshes, with the model trained 
to maximise generalised precision Fig. 10 Meshes used to verify VQA model performance
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similarity of this object to those used in training. Simi-
larly, the low accuracy of the head is to be expected 
given its lack of similarity to these models. The results 
for the crankshaft are concerning however, given the 
relative similarity of this mesh to the training data. 
This lack of accuracy suggests that our model may be 
over-fitting the training data. We intend to tackle this 
issue by considerably increasing the size of the train-
ing data set, however this approach is hindered by the 
time-consuming nature of the training data collection 
process and the lack of available data sets of this type. 
Unlike accuracy, the precision of the process against 
the unseen meshes is seen to be high, especially for 
the weighted model. Given the intended end use of 
the process, this is promising. It is of note that this 
increased precision is mainly driven by an increase in 
the number of good/perfect meshes predicted as bad/
ruined. In particular, the head model predicted all 108 
test meshes as bad/ruined, whereas 67 of these meshes 
were reported as good/perfect by human judges. This 
imbalance could be redressed through reducing the 
weighting factor of the model, however this was not 
performed as high precision is seen as important for 
the model’s intended use in controlling an automated 
decimation process.

The results given above show promise for the use of 
machine learning in visual quality assessment. While the 
overall accuracy of the model is questionable for some 
meshes, the precision is more than adequate for the mod-
el’s use in controlling decimation processes. Improve-
ments to model accuracy primarily depend on the need 
for a greater quantity of training data. Further sugges-
tions for model improvements are given in Conclusions.

Influence of metrics
As mentioned in Model design, the VQA model uses 108 
measured variables to predict mesh quality. Every deci-
sion tree in the random forest uses a random subset of 
these variables and is trained on a random subset of the 
training data. The variable used at each decision node 

within a tree is chosen to give the greatest possible sep-
aration of results between the four assessment classes. 
Each tree therefore contains a different set of variables, 
with each variable having a different level of influence 
on the model. The distribution of variables is further 
affected by whether the model is trained for accuracy or 
precision.

Tables  5 and 6 list the overall influence of the top 20 
variables in the balanced and weighted models respec-
tively. Influence is given as the percentage of all decisions 
in the model which are based on this variable, and is 
averaged across 30 trials.

Both Tables 5 and 6 show that model results are based 
on many variables, with no single metric dominating the 
prediction. In the balanced and weighted models, the top 
20 variables respectively account for 48.5% and 56.6% of 
the total prediction. This distribution of influences clearly 
shows the benefit of using multiple metrics for visual 
quality assessment, as well as the power of machine 
learning to meaningfully combine these metrics.

The top metrics used by both models are a mixture 
of shape ratios, similarity metrics and shape metrics 
of the test mesh, showing that all three types of met-
ric contribute greatly to the overall assessment of vis-
ual quality. Furthermore, the balanced and weighted 
models respectively depend on 12 and 8 metrics based 
on correspondence. As such, this shows the impor-
tance of solving the correspondence problem in visual 
quality assessment.

Table 4 Results of verification against unseen meshes. ∗ General 
precision for the weighted head test is undefined, as the model 
predicted that all 108 test meshes were of bad quality

Mesh Balanced Model Weighted Model

A(%) GP(%) A(%) GP(%)

Spark plug 81.5 82.5 80.6 100.0

Crankshaft 45.4 100.0 38.9 100.0

Head 36.1 95.8 18.5 N/A∗

Table 5 Influence of metrics in the balanced VQA model

Metric Influence (%)

Surface area ratio 7.48± 0.45

Normal deviation, 1.0, mean 4.45± 0.40

Matching distance, 1.0, mean 4.33± 0.41

Normal deviation, 1.5, mean 3.05± 0.40

Matching distance, 1.5, mean 2.88± 0.35

Matching distance, 2.0, mean 2.41± 0.25

Polygon area COV ratio 2.04± 0.21

Convexity ratio 2.03± 0.10

Matching distance, 2.5, mean 2.00± 0.20

Test mesh bounding box density 1.97± 0.10

Sphericity ratio 1.92± 0.19

Shape efficiency ratio 1.86± 0.09

Normal deviation, 1.0, minimum 1.85± 0.17

Normal deviation, 2.0, mean 1.73± 0.25

Matching distance, 3.0, mean 1.49± 0.15

Dihedral angle change, 1.0, COV 1.42± 0.21

Normal deviation, 2.5, mean 1.41± 0.06

Polygon area skewness ratio 1.36± 0.16
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The differences in metric usage between the two mod-
els is minor, however it is of note that the balanced model 
depends more heavily on similarity metrics, while the 
weighted model contains more shape metrics for the test 
mesh. It is therefore suggested that similarity metrics, 
which depend on observable differences between the 

reference and test mesh, are better predictors of how well 
the test mesh approximates the reference mesh. Shape 
metrics, which depend only on the test mesh, appear 
to be better predictors of mesh quality regardless of the 
method in which the mesh was produced.

Processing time
In addition to the accuracy of visual quality assessment, 
we also consider the performance of our model in terms 
of the run-time required to analyse a given mesh. As 
shown in Fig.  11, run-time is strongly dependent upon 
the number of polygons in the reference mesh. The vari-
ance in run-time seen at a given reference polygon count 
is believed to be driven mainly by the polygon count of 
the test mesh.

As seen in Fig. 11, the model can return results for ref-
erence meshes of up to approximately 25,  000 polygons 
in around 2 minutes or less. This is a reasonable run-time 
given the complexity of the calculation, but this could be 
improved. As shown, run-time appears to have a quad-
ratic relationship with reference polygon count. In some 
cases, the conversion of CAD models to VR may involve 
the assessment of reference meshes with considerably 
higher polygon counts than those shown. As such, a 
quadratically increasing run-time could prove problem-
atic given the intended end use of this process.

There are several methods through which model per-
formance could be improved. Firstly, note that many 
of the metrics derived are based around a single refer-
ence vertex. This independence on other vertices can be 
exploited through parallelisation of the process. Splitting 

Table 6 Influence of metrics in the weighted VQA model

Metric Influence (%)

Normal deviation, 1.0, mean 7.01± 1.11

Surface area ratio 5.47± 1.02

Normal deviation, 1.5, mean 5.14± 0.70

Convexity ratio 4.89± 0.72

Sphericity ratio 4.57± 0.93

Shape efficiency ratio 4.29± 0.54

Volume ratio 4.02± 0.63

Normal deviation, 1.0, minimum 2.76± 0.61

Normal deviation, 1.5, kurtosis 1.96± 0.67

Connectivity ratio 1.88± 0.30

Dihedral angle change, 1.0, mean 1.79± 0.47

Normal deviation, 2.0, mean 1.70± 0.48

Polygon area COV ratio 1.67± 0.30

Test mesh connectivity 1.57± 0.23

Normal deviation, 2.0, kurtosis 1.41± 0.46

Test mesh convexity 1.34± 0.16

Test mesh bounding box density 1.34± 0.16

Normal deviation, 1.0, kurtosis 1.32± 0.45

Test mesh polygon area COV 1.25± 0.18

Test mesh minor squareness 1.20± 0.20

Fig. 11 Relationship between total run-time and reference mesh polygon count. The graph represents the mean and range of run-times for each 
reference mesh
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reference mesh data across multiple CPU or GPU cores 
could greatly decrease run-time. Second, as shown in 
Fig. 12, shape data extraction is the primary component 
of run-time at high polygon counts. More efficient cod-
ing of the algorithms used in this step would therefore 
be expected to further decrease run-time. In particular, 
this step depends heavily on the use of the Blender 3D 
modelling software to extract data. Developing a system 
to extract this data without the need to load a heavy 3D 
modelling package would likely decrease run-times sig-
nificantly. Work is currently ongoing to both parallelise 
key aspects of the algorithm and reduce the dependence 
on Blender.

Conclusions
This paper introduces a new full-reference machine 
learning model for the visual quality assessment of 
decimated 3D meshes in digital-twins. Over one hun-
dred shape factors and perceptual similarity metrics are 
extracted from a pair of meshes (reference and test) and 
combined using a random forest classifier to determine 
how well the test mesh visually represents the refer-
ence mesh. The results of this assessment are intended 
to be used to control automated decimation processes, 
producing visually accurate low polygon meshes from 
CAD data for use in AR and VR applications.

Our focus on the assessment of decimated meshes 
differs from much of the existing VQA literature. 
Decimation is an important process in many commer-
cial 3D modelling applications, however it is greatly 
under-represented in the literature. By its nature, deci-
mation alters the connectivity of a mesh, complicat-
ing VQA processes. The majority of VQA literature 
instead focuses on methods such as watermarking or 
compression, in which the connectivity of the mesh is 
unchanged by the distortion process. The development 
of a method capable of handling this issue thus provides 

a means by which any two meshes can be compared 
regardless of the distortion processes involved. As such, 
our method can be applied to a much greater number 
of cases than many existing methods.

A particular challenge in developing our method also 
stems from the lack of literature in this area: As well 
as few published papers, there are very little publicly 
available training data for use in developing assessment 
models. In our paper, we use data collected from sev-
eral volunteers using a specially designed application. 
Our model is trained on nearly a set of nearly 4, 000 test 
meshes based on 37 different mechanical objects. While 
the total number of meshes is considerably greater than 
most models in the literature, the relatively small num-
ber of objects reduces the applicability of the model to 
many shapes, and may lead to over-fitting. The results of 
our tests show that our model can classify visual qual-
ity to a good degree of accuracy. On models similar to 
those in the training set, the model is seen to have a 
precision of over 97% when weighted to prioritise the 
rejection of poor quality models. Considerably reduced 
accuracy is seen for models different from those in the 
training set however, suggesting that the model may be 
over-fitting. As mentioned above, we believe this over-
fitting to be primarily due to a lack of available training 
data. As such, and given the application of decima-
tion in a number of commercial processes, the authors 
suggest that the publication of representative train-
ing data sets should be a key priority for the research 
community.

Despite the above issue, we believe our model is pre-
cise enough to classify the results of decimation pro-
cesses. Performance results show that complex meshes 
can be analysed in approximately two minutes or less 
on a standalone PC, with the potential for much faster 
operation to be achieved through parallelisation. This 
combination of accuracy and speed suggests that our 
method is more than capable of controlling automated 
mesh decimation processes. As such, we are intending to 
integrate our model within our developing CAD to VR 
processor. This integration will be discussed in a later 
publication.

As well as integrating the VQA model with mesh 
conversion methods, further research will also consider 
increasing the speed of our VQA model through paral-
lelisation on both CPU and GPU architectures. In addi-
tion, training of the model on a wider range of objects 
will be performed to increase accuracy and reduce 
over-fitting. We believe that with these additions, our 
model can provide a fast and powerful method for vis-
ual quality assessment on decimated meshes and will 
perform a key role in future automated mesh process-
ing systems.Fig. 12 Contribution of individual process stages to total run-time
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