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Abstract 

Traditional machine learning requires collecting data from participants for training, which may lead to malicious 
acquisition of privacy in participants’ data. Federated learning provides a method to protect participants’ data privacy 
by transferring the training process from a centralized server to terminal devices. However, the server may still obtain 
participants’ privacy through inference attacks and other methods. In addition, the data provided by participants var-
ies in quality, and the excessive involvement of low-quality data in the training process can render the model unus-
able, which is an important issue in current mainstream federated learning. To address the aforementioned issues, 
this paper proposes a Privacy Preserving Federated Learning Scheme with Partial Low-Quality Data (PPFL-LQDP). It 
can achieve good training results while allowing participants to utilize partial low-quality data, thereby enhancing 
the privacy and security of the federated learning scheme. Specifically, we use a distributed Paillier cryptographic 
mechanism to protect the privacy and security of participants’ data during the Federated training process. Addition-
ally, we construct composite evaluation values for the data held by participants to reduce the involvement of low-
quality data, thereby minimizing the negative impact of such data on the model. Through experiments on the MNIST 
dataset, we demonstrate that this scheme can complete the model training of federated learning with the participa-
tion of partial low-quality data, while effectively protecting the security and privacy of participants’ data. Comparisons 
with related schemes also show that our scheme has good overall performance.

Keywords Federated learning, Privacy protection, Low-quality data, Distributed homomorphic encryption

Introduction
In recent years, machine learning technology has greatly 
benefited from the development of computing processors 
and data acquisition methods, expanding its practical 

applications and improving its effectiveness [1]. Cloud 
computing platforms provide high-performance comput-
ing resources, enabling large-scale data processing and 
model training. The diversity of data also allows machine 
learning to be more accurate and reliable in applications 
such as prediction, classification, and recommenda-
tion systems. For example, the biotechnology company 
Berg [2] utilizes a machine learning platform to analyze 
extensive biological outcome data from patients (includ-
ing lipids, metabolites, enzymes, and protein spectra) to 
emphasize critical distinctions between diseased cells and 
healthy cells and to identify novel cancer mechanisms.

In cases where machine learning involves multiple par-
ticipants, participants are required to upload their data 
to a third-party server, which aims to collect large and 
diverse datasets for training to obtain more reliable mod-
els [3]. Most of these data are sourced from edge devices 

*Correspondence:
Shijie Tang
tangsj@guet.edu.cn
1 School of Mathematics and Computing Science, GuiLin University 
of Electronic Technology, Guilin 541004, China
2 Guangxi Key Laboratory of Cryptography and Information Security, 
School of Computer Science and Information Security, Guilin University 
of Electronic Technology, Guilin 541004, China
3 Cyberspace Security Research Center, Peng Cheng Laboratory, 
Shenzhen 518055, China
4 School of Electronic Engineering and Automation, GuiLin University 
of Electronic Technology, Guilin 541004, China
5 Hangzhou Innovation Institute, Beihang University, Hangzhou 310052, 
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00618-8&domain=pdf


Page 2 of 16Wang et al. Journal of Cloud Computing           (2024) 13:62 

such as smartphones, glucose monitors, GPS devices, and 
the like. However, this data often contains participants’ 
sensitive information, such as medical records and travel 
history [4]. Unauthorized access to this sensitive infor-
mation could result in significant harm. Furthermore, in 
certain specialized industries, data sharing is not permit-
ted [5]. Therefore, protecting the privacy of participants’ 
data while conducting machine learning becomes of par-
amount importance.

Federated Learning [6] is a distributed machine learn-
ing solution proposed by Google in 2016. It aims to pro-
tect data privacy by training models on local devices. The 
goal is to transfer the training process of data to edge 
devices where participants train model parameters (gra-
dients) on their local environments. In each iteration, 
participants only provide local gradient information to 
the server, and the cloud server aggregates the local gra-
dients using aggregation algorithms (e.g.FedAvg) [7] to 
obtain updates for the global model.

While Federated Learning addresses the issue of “data 
silos” and mitigates privacy risks for participants, it 
still involves certain privacy-related concerns. Recent 
research has shown that malicious attackers can poten-
tially infer sensitive participant data by analyzing the 
local gradients and global parameter information 
uploaded by participants [8, 9]. Additionally, due to vary-
ing levels of expertise and the advanced nature of data 
collection devices, the quality of data provided by partici-
pants may vary [10].

For example, in the context of autonomous driving 
[11], different vehicle models collecting road data may 
not guarantee global consistency, resulting in significant 
variations in data quality. Vehicles equipped with bet-
ter perception systems often provide higher-quality data 
compared to those with inferior systems. Furthermore, 
even if a vehicle is equipped with a high-quality per-
ception system, it does not guarantee that the collected 
data is absolutely complete and accurate, as error-prone 
perception systems or data recording processes may 
introduce significant errors. The involvement of a large 
amount of low-quality data in training can directly lead 
to a decrease in the accuracy of the final model or ren-
der it unusable. Therefore, introducing functionality to 
handle low-quality data in privacy-preserving federated 
learning is of practical significance.

Contributions
To the aforementioned issues, this paper proposes a 
privacy-preserving federated learning scheme that 
allows partial low-quality data to participate in training. 
Based on the distributed Paillier cryptosystem [12], our 
approach enables participants to perform offline training 
on their local datasets after receiving the global gradient 

parameters. They then engage in collaborative learning 
by transmitting their local gradient parameters to other 
participants. To prevent member inference attacks, we 
employ distributed Paillier homomorphic encryption to 
protect the transmitted gradient data. The main contri-
butions of this work are as follows:

• We have developed an evaluation algorithm called 
DCEM(Data Composite Evaluation Method) to 
assess the quality of participant data. Based on a 
composite rating of data quality, we control the level 
of participation of data in the global iterations of 
Federated training, aiming to mitigate the negative 
impact of low-quality data on model accuracy;

• By using a single-cloud outsourcing approach, we 
transfer complex computations to a cloud server in 
order to reduce the computational burden on partici-
pants and improve the inclusiveness of the model for 
participants with limited computing capabilities;

• By utilizing the distributed Paillier homomorphic 
encryption mechanism, we have introduced a feder-
ated learning multi-party aggregation scheme that 
allows partial low-quality data to participate in train-
ing. This scheme effectively ensures the privacy and 
security of participants’ private data while being 
user-friendly for participants to join or exit midway. 
Experimental results have shown that this scheme 
exhibits excellent overall performance.

Organization
The rest of this paper is organized as follows. Related work 
section gives a brief overview of related work. Preliminaries 
section describes the prerequisites. System model section 
discusses the system model and security requirements, Our 
proposed scheme and Security analysis sections describe 
the proposed scheme in detail and analyze its security. Sub-
sequently, in Performance analysis section, the expenses 
and accuracy will be introduced through experiments. 
Finally, Conclusion section offers a summary of the entire 
document.

Related work
To address privacy leakage concerns in federated learn-
ing, researchers have proposed various solutions leverag-
ing privacy protection technologies such as differential 
privacy [13], homomorphic encryption [14], and secure 
multi-party computation [15]. Haokun Fang et  al. [16] 
proposed a federated learning scheme based on the Pail-
lier additive homomorphic algorithm. The core idea is 
that all participants encrypt their local gradients that 
need to be uploaded using Paillier homomorphic encryp-
tion. The server aggregates these encrypted gradients 
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iteratively and uses the Federated multi-layer perceptron 
algorithm to reduce communication overhead. However, 
all participants use the same public key, which could 
potentially lead to a model being compromised by mali-
cious participants. Jaehyoung Park et  al. [17] addressed 
this issue by constructing a multi-key homomorphic 
encryption scheme to protect participants’ local gradi-
ents. Since each participant holds different public and 
private keys, it effectively prevents malicious participa-
tion. During the iteration of global gradient updates, 
a joint decryption method is used, allowing the cloud 
server to operate in plaintext, thereby reducing the com-
putational burden on the cloud server during the Fed-
erated training process. However, achieving collusion 
resistance among multiple computation servers required 
for joint decryption is a significant challenge.

However, none of the above-mentioned schemes have 
considered the issue of involving partial low-quality data 
in Federated training. When low-quality data excessively 
participates in the Federated training process described 
in those schemes, it can potentially result in a decrease 
in model accuracy or even render the model unusable. 
According to my knowledge, Lingchen Zhao et al. [18] 
was the first to consider the participation of participants 
holding partial low-quality data in federated learning by 
employing differential privacy. They achieved privacy 
protection by adding noise to perturb the training of 
neural networks and manipulating the target data. How-
ever, recent research has suggested that existing differ-
ential privacy mechanisms may not adequately balance 
privacy and acceptable utility in complex tasks. Yu Han 
et  al. [19] proposed a fair incentive scheme called the 
Federated Learning Incentivizer, which dynamically 
adjusts participants’ contributions based on three crite-
ria to ensure that participants are not treated unfairly 
during training. However, the scheme lacks universal-
ity and fails to consider the impact of incentive strate-
gies on data security. Guowen Xu et  al. [20] proposed 
a method called MethIU, which uses the chi-square 
distribution to describe the reliability of participant 
data in federated learning. They employed garbled 
circuits and homomorphic encryption techniques to 
construct secure protocols for multiplication and divi-
sion operations between two parties. Additionally, they 
improved the efficiency of the multiplication protocol. 
MethIU ensures that participants’ reliable informa-
tion is not leaked, avoiding the occurrence of training 
discrimination during the training process. It enables 
fair and equitable participation of all parties and lev-
erages the reliability of participants to influence their 
involvement in global model iteration, thereby improv-
ing model accuracy. However, the dual-cloud structure 
of MethIU imposes significant costs on demanders, and 

this method is not resilient against collusion attacks 
between cloud servers and between cloud servers and 
participants. In subsequent work, Guowen Xu et al. [21] 
proposed a privacy-preserving single-cloud federated 
learning scheme (EPPFL) using the threshold Paillier 
homomorphic encryption mechanism. They analyzed 
the composition of low-quality data and employed 
SchUU for data evaluation, reducing the involvement of 
low-quality data in the Federated training process and 
addressing the collusion problem among servers. How-
ever, SchUU may discard some low-quality data, which 
can be considered unreasonable.

According to the literature review, existing federated 
learning schemes that support the participation of partial 
low-quality data while preserving privacy still face chal-
lenges regarding data integrity and privacy protection. 
Addressing these issues is crucial for the application of 
federated learning, which has motivated our research in 
this area.

Preliminaries
Federated learning
The data in federated learning can be classified into three 
types: horizontal federated learning, vertical federated 
learning, and Federated transfer learning [22]. This paper 
primarily focuses on horizontal federated learning, where 
participants have diverse features, but their data has little 
to no overlap.

Horizontal federated learning refers to the scenario 
where participants are distributed across different 
regions or organizations. Each participant possesses a 
private dataset, and the features among participants are 
diverse, and characterized by a high quantity and dimen-
sionality. In horizontal federated learning, there may be 
differences in the data among participants, but their fea-
ture spaces have little to no overlap. In contrast, vertical 
federated learning pertains to scenarios where the fea-
ture spaces among participants overlap, but each partici-
pant possesses different sample data. On the other hand, 
Federated transfer learning involves participants with 
overlapping features and samples, but with potentially 
different task objectives. In this paper, we primarily focus 
on investigating and exploring the scenario of horizontal 
federated learning, where participants possess large-scale 
feature data but have minimal overlap in their feature 
spaces.

DNN (Deep Neural Network) serves various machine 
learning scenarios. This paper implements federated 
learning using a fully connected neural network. As 
shown in Fig.  1, DNN typically consists of an input 
layer, an output layer, and several hidden layers, with 
weights ( ω ) used to establish fully connected connec-
tions between neurons. Given a data set (x,  y), where 
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x = {x1, x2, x3} , y = {y1, y2} , DNN can be used as a 
function to describe the relationship between an input 
value and a label. That is f (x,ω) = ŷ , ŷ = {y1, y2} , DNN 
searches for the optimal parameter that best reflects 
the relationship between data and labels and make the 
output value wirelessly close to the real label.

In federated learning, processing a large amount of 
data during training for each iteration can lead to sig-
nificant computational costs. To address this problem, 
the technique of mini-batch stochastic gradient descent 
(SGD) [23] can be employed, which is a common 
approach in previous works. Mini-batch SGD improves 
convergence speed and efficiency by randomly selecting 
a smaller subset of the data for each iteration instead of 
using all the data.

In mini-batch SGD, the data is strategically divided into 
small batches to avoid computation on the entire dataset in 
each iteration. This approach not only reduces computa-
tional burden but also introduces beneficial noise during 
the learning process, helping to avoid getting stuck in local 
optima and improving generalization performance. Specifi-
cally, given a training set D = {(xi, yi); i = 1, 2, ...,K } , we 
first define the loss function Lf (D,ω) = 1

K
K
i=1 Lf (x, y, ),ω  , 

Where Lf
(

(x, y),ω
)

=
∥

∥y− f (x,ω)
∥

∥

2
 , and �·�2 represents 

the 2-norm of a vector.
In j − th iteration, the participants randomly selects 

part Di of the held data, where Di ∈ D . Then participants 
only used the selected data Di to participate in the train-
ing in this round of iteration and uploaded the local gra-
dient information to the cloud server for aggregation. So 
in federated learning, can update the weight as:

Finally, the cloud server will broadcast ωj+1 to each 
participant to iterate the participant data again until our 
preset convergence conditions are met.

Distributed paillier cryptosystem
Our solution utilizes the distributed Paillier cryptosys-
tem to achieve secure aggregation, as depicted in Fig. 2. 
The distributed Paillier cryptosystem offers several 
advantages in practical applications. Firstly, by setting a 
threshold, we can decompose the private key and distrib-
ute partial private keys to the participants. By collecting a 
sufficient number of partially decrypted ciphertexts, we 
can aggregate them to obtain the plaintext information. 
Secondly, the distributed Paillier cryptosystem satisfies 
additive homomorphism, meaning that we can perform 
addition operations on the plaintext by conducting 

(1)ωj+1 ← ωj − α

∑

k∈K gkj
∑

k∈K

∣
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Fig. 1 Total neural network structure diagram

Fig. 2 “SAP” decryption diagram
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multiplication operations on the ciphertext. This prop-
erty allows us to protect data privacy while performing 
secure aggregation. By utilizing the distributed Paillier 
cryptosystem, we ensure secure aggregation while pre-
serving data privacy, enabling efficient computations.

The distributed paillier cryptosystem can be divided 
into four parts: key generation, private key splitting, 
encryption algorithm and decryption algorithm.

Key generation: Let � be the security parameter, p and 
q are two randomly selected large prime numbers of the 
same length, calculate N = pq and � =

lcm(p−1,q−1)
2  . The 

public key is set to Pk = N  and the private key is set to 
Sk = � . where lcm represents the calculation of the least 
common multiple between two numbers.

Private key splitting: Let’s choose δ satisfy both 
δ≡0mod� and δ ≡ 1modN2 . And then we define a pol-
ynomial q(x) = δ +

∑k−1
i=1 aix

i ; where a1, . . . , ak−1 is 
K − 1 random numbers selected in Z∗

�N 2 . α1, ...,αn ∈ Z∗
�N 2 

are n different non-zero elements known by each party. 
Part of the private key is s(i)k = q(αi) , send to participant.

Encryption algorithm: For a given plaintext m we choose 
a random number r ∈ ZN , ciphertext c can be generated as 
c = [m] ; where [m] = g

m
· r

NmodN2
= (1+mN) · rNmodN2.

Decryption algorithm: Partial decryption of cipher-
text c by partial private keys held by the participant;For 
convenience, we use CT (i) to represent partial decryption 

results. Because gcd(�,N 2) = 1 according to the Chi-
nese residual theorem: δ = � · (�−1modN2)mod�N2 , 
CT (i) = [m]q(αi)modN2.

Each user holding part of the private key partially 
decrypts the ciphertext, obtains the partial decryption 
result, and sends the result to the cloud server. After 
receiving the decryption result, the cloud server aggre-
gates the plaintext by the method described in the 
document [24].

System model
System architecture
As shown in Fig. 3, this paper considers a system frame-
work with two entities: participants and cloud server. 
Collaboration between these two entities is essential for 
federated learning. Specifically, before federated training 
started, all participants agreed to use the DNN model for 
training. In each iteration, participants use the received 
global gradients to train their local data to obtain the 
local gradient set, cooperate with the cloud server to cal-
culate the composite evaluation value of the data, and 
then encrypt and upload to the cloud server. The cloud 
server obtains the local gradient data of participants and 
the composite evaluation value of the data, updates the 
global model, and broadcasts it to each participant. This 
process is repeated until the DNN model reaches the 

Fig. 3 System model
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convergence criterion. During this iteration, participants 
collaborate with the cloud server by transmitting their 
local gradients, allowing them to jointly train a global 
model. This federated learning framework enables par-
ticipants to share and merge their model updates while 
protecting data privacy and resisting the intrusion of 
low-quality data over participation in training, aiming to 
improve the overall learning performance.

During this process, the local gradients of partici-
pants are considered private data. To ensure the privacy 
and security of participant data, a secure aggregation 
framework is introduced using the distributed Pail-
lier homomorphic encryption mechanism. Distributed 
homomorphic encryption allows participants to perform 
collaborative computations in a distributed environment, 
effectively protecting the privacy and security of partici-
pant data.

Remark 1

We only consider the architecture with a single cloud 
server, primarily achieving secure aggregation of the trans-
mitted data from participants through cloud server out-
sourcing. Specifically, when the cloud server S receives 
the local gradient sets transmitted by each participant, it 
performs aggregation operations in the cloud, calculating 
the sum of the locally uploaded gradients in an encrypted 
state. This secure framework has been widely used in previ-
ous works. In recent studies on federated learning [25–27], 
solutions with dual-cloud or multi-cloud structures have 
also been proposed. However, such setups require ensur-
ing the absence of collusion among multiple servers, pos-
ing higher demands on practical applications. In our set-
ting, the federated learning process is accomplished solely 
through a single cloud server, performing all the aggrega-
tion and computations, thereby avoiding the aforemen-
tioned issues. Additionally, the use of distributed homo-
morphic encryption allows for tolerance towards a small 
number of malicious participants colluding with the cloud 
server, while also being inclusive of participants’ mid-train-
ing joining and exiting.

Threat model and privacy objectives
In federated learning, we assume that some participants 
and the server act semi-honestly and treat them as poten-
tial adversaries. The threat model is defined as follows:

• Single malicious participant attack: A single mali-
cious participant in federated training may exhibit 
curiosity towards the model parameters uploaded by 
other participants and attempt to infer their private 
information.

• Cloud Server Attack: In the process of global model 
iteration, cloud servers may launch inference attacks 
on participants’ private data by learning and reason-
ing over the local parameter data uploaded by par-
ticipants in federated learning. This can lead to pri-
vacy breaches and the potential for malicious actors 
to infer sensitive information about the participants.

• Some participants conspired with the cloud server 
to attack: When some malicious participants collude 
with the server to launch an attack, they may exploit 
shared model parameters to infer and obtain private 
information of other participants, leading to security 
issues such as privacy leaks among participants.

To achieve federated training without compromising the 
privacy of participants’ data, it is necessary to achieve the 
following privacy protection goals:

• Privacy of participant’s local gradients: Attackers 
may obtain the local gradient data obtained by par-
ticipants during local training using their data and 
use this information to reconstruct the original data, 
leading to privacy breaches (such as medical records, 
location, visited websites, etc.). To protect the pri-
vacy of participant data, we set participants should 
encrypt the local gradient before uploading it to the 
cloud server, in addition to local operations. The 
cloud server only performs aggregation and compu-
tation on the encrypted data, ensuring the privacy of 
the original data.

• Privacy protection of aggregated evaluation values: 
The privacy of the aggregated evaluation values of 
each participant also needs to be ensured. If leaked, 
participants with lower data quality may face dis-
crimination during the training process, thus impact-
ing the fairness of training. Therefore, it is crucial to 
maintain the privacy and confidentiality of the aggre-
gated evaluation values to uphold the fairness and 
integrity of the training process.

Our proposed scheme
This section provides a detailed description of the Pri-
vacy-Preserving Federated Learning with Low-Quality 
Data Participation (PPFL-LQDP) framework that allows 
participation of partially low-quality data while ensuring 
data privacy and security without data deletion. PPFL-
LQDP enables interactions between a single cloud server 
and participants, supporting encryption-based opera-
tions on ciphertexts. The framework ensures the fulfill-
ment of specified privacy requirements while preventing 
the adverse effects of including low-quality data exces-
sively in the Federated training process.
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Firstly, let introduce our developed DCEM framework. 
DCEM is capable of conducting a composite evaluation 
of the contributed data by participants, ensuring a reduc-
tion in low-quality data contributions during Federated 
training. This guarantees that the accuracy and con-
vergence speed of model training will not be negatively 
affected. The framework also incorporates a key “SAP” 
(Secure and Accelerate Partnership) protocol that pro-
motes secure interaction between the cloud server and 
participants, enabling the secure execution of DCEM 
operations.

Finally, we provided a detailed explanation of how the 
PPFL-LQDP utilizes the “SAP” protocol. This included 
an overview of the interaction process between the cloud 
server and participants, encryption of the DCEM opera-
tions performed on the data provided by participants, as 
well as ensuring the privacy and security of the partici-
pants’ local gradient information and the composite eval-
uation values of data quality.

Composite evaluations containing participants with low 
quality data
In practical applications of federated learning, it is chal-
lenging to avoid excessive participation of low-quality 
data due to different data sources and varying partici-
pants’ capabilities. As a result, participants’ datasets may 
contain low-quality data, and a large amount of low-
quality data participating in training, especially compo-
nents that are opposite to our global optimal gradient, 
can lead to negative convergence of the model. Depend-
ing on the type of data, the reasons for low data quality 
can be defined as follows: 1) the gradient vector is in the 
opposite direction to our global optimal gradient, so we 
consider the gradient to be negatively correlated; 2) there 
is significant variability between local gradient data and 
global optimal gradient data. Both factors can lead to 
reduced model accuracy and slower convergence speed. 
To address the impact of low-quality data, it is necessary 
to adjust the level of data participation properly. In other 
words, we need to seek an evaluation method to adjust 
the weight of participant data in the global model.

To address the negative impact of excessive partici-
pation from low-quality data contributors in federated 
learning, the PPFL-LQDP framework implements a com-
posite evaluation mechanism. This mechanism evalu-
ates low-quality data contributors by performing DCEM 
operations and reduces their participation in the Feder-
ated training. Specifically, for each participant with low-
quality data, the DCEM operation adjusts their gradient 
values using unique threshold settings and an orthogonal 
loss-based approach. This adjustment helps mitigate the 
negative impact of low-quality data while improving the 
overall accuracy of the model.

In this paper, we assume that all the data follows an 
independent and identically distributed (IID) distri-
bution. In the Federated training process, we have K 
participants, and each participant performs local mini-
batch gradient descent training. As a result, each par-
ticipant obtains a set of gradients for their respective 
local data. Each participant can get a set of gradients. 
We assume that the local gradient of this participant is 
gk = (g1k , g

2
k , · · · , g

Z
k ) . During Federated training, each 

participant transfers its local gradients to the cloud 
server for global gradient iteration. Building upon the 
system model, three important components of DCEM 
are described in detail.

Component orientation evaluation
The direction of the global gradient indeed determines 
the iteration speed and direction of our model, and each 
local gradient component has a certain influence on the 
global gradient. Based on the previous description, the 
first step is to evaluate the vector direction difference 
between the local gradients and the global optimal gradi-
ent. Prior research has shown that DNN models exhibit a 
stable convergence pattern during each iteration.

Algorithm 1 COEs

Specifically, we first assume that each participant has a 
local gradient g, and for a given global optimal gradient 
g∗ , we evaluate the direction in which each participant 
holds the local gradient of the data by implementing the 
“COEs” algorithm. First define a piecewise function to 
calculate the Angle between g and g∗ , as follows:

Where t is the calculation result of cosine between 
two vectors. According to Eq.  (2), we can calculate the 
directional difference between the local gradient and the 
global ideal gradient of each participant, and then out-
put the y value to complete the component orientation 
evaluation.

The “COEs” component that we have developed 
requires all participants to execute the protocol in an 

(2)y =

{

t2 + 1, t = cos(g , g∗) ≥ 0

−t2 + 1, else
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offline state, with each participant’s local gradient car-
rying the “COEs” evaluation result. The “COEs” evalua-
tion effectively assesses each local gradient, preventing 
excessive participation of low-quality data that may 
degrade model accuracy, without deleting any data. 
Additionally, since all participants’ data is involved in 
the training, the convergence of the model is not nega-
tively affected. In Chapter 7, we demonstrate the supe-
riority of this approach through experiments and show 
that it effectively addresses the challenges posed by 
low-quality data in federated learning.

Component dispersion evaluation
In the previous section, participants obtained the direc-
tion evaluation of all data by executing the “COEs” pro-
tocol. Based on our definition of low-quality data, highly 
dispersed data is also considered low-quality. Previous 
research has shown that the Euclidean distance can be 
used to assess the data quality of participants. Specifi-
cally, the shorter the distance between the local gradient 
and the global optimal gradient, the higher the quality 
of the data can be deemed. We then assign higher rat-
ings to influence the weight of this participant in Feder-
ated training. In this paper, we further analyze the local 
gradient variance by processing the distances through 
mean calculation. This allows for a clearer and more 
accurate reflection of the degree of deviation in partici-
pants’ local gradients, facilitating our evaluation pro-
cess. By incorporating mean analysis into the evaluation 
process, we can effectively measure the data quality of 
participants and introduce appropriate perturbations 
during the training process. Overall, by incorporating 
mean analysis into the evaluation process, we can more 
effectively measure the data quality of participants, ena-
bling better assessment and appropriate perturbation 
during the training process.

Algorithm 2 CDEs

In this paper, we establish a method called “CDEs” for 
low-quality screening and evaluation of training data for 

discreteness, as shown in protocol 2. We only consider 
the scenario of horizontal federated learning, where the 
private data held by the participants are all IID samples. 
Specifically, we set up a total of K participants for train-
ing, and each participant obtains a set of local gradients 
by executing the mini-batch gradient descent method 
locally. In the “CDEs” approach, each participant calcu-
lates the distance between their local gradient and the 
globally optimal gradient, which is then uploaded to the 
cloud for aggregation, resulting in an assessment of the 
participant’s dispersion. The dispersion update for each 
user’s data is as follows:

where “dis” represents the Euclidean distance between 
two vectors, and the specific calculation formula is 
dis(a, b) = (a− b)2.

When participants’ data is involved in DNN training, 
the differences in the data can lead to a certain degree of 
model loss. Algorithm 1 allows us to evaluate the direc-
tion of gradient components during training which helps 
analyze the components with superior direction, ensur-
ing that the local gradients contributed by participants 
are beneficial to the convergence of the model. Next, 
Eq.  (3) is used to measure the dispersion and differenti-
ate the participation weights of participant data in train-
ing the DNN. This ensures the accuracy and convergence 
speed of the model are reasonably maintained.

Remark 2

In previous research [28, 29], using distance to describe 
the quality of data held by participants has achieved 
good results. In our work, we further process the distance 
evaluation by calculating distance weights through the 
ratio of distance to the mean. Specifically, for the data 
under evaluation, we construct the ratio between the 
average distance between the local gradient and the 
optimal gradient of the training data, and the distance 
between the evaluated data and the optimal gradient. A 
larger ratio indicates a closer distance and higher data 
quality, resulting in a higher weight in the training pro-
cess. Conversely, for lower-quality data, we set a thresh-
old to reduce their participation. By calculating the 
distance weights based on the ratio, we can effectively 
differentiate and assign weights to data based on their 
quality. This enables us to include high-quality data 
more prominently in the training process while reducing 
the influence of low-quality data through the threshold 

(3)Dz
k = log

(

∑k=K
k=1 dis

K · dis
+ 1

)
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setting. This approach allows us to better manage the 
participation of participants with varying data qual-
ity and ensure that the overall training process is more 
robust and accurate.

Data evaluation aggregation
Given direction evaluation and dispersion evaluation of 
the training data provided by each participant, the com-
posite evaluation Q of the data can be obtained from 
Eq. (4):

Remark 3

In the two previous sections, we conducted component 
direction quality evaluation and dispersion quality 
evaluation on the given data. We can perform a com-
posite evaluation based on Eq.  (4) to generate a com-
posite evaluation value for the data. It can be observed 
that assigning higher weights to the training data pro-
vided by a participant, whose local gradient is closer 
to the expected global optimal gradient value, is rea-
sonable. According to the state-of-the-art research [30, 
31], in scenarios where participants hold independent 
and identically distributed (IID) samples, similar sam-
ples exhibit high consistency in direction and disper-
sion. However, in federated learning, participants’ data 
differs significantly due to variations in data collec-
tion methods and processing capabilities. In this sce-
nario, it is crucial to control the participation ratio of 
data in training through composite evaluation values to 
mitigate the negative impact of excessive involvement of 
low-quality data on model accuracy.

Aggregated value update
Given the combined evaluation value of Qz

k each group of 
training data, the update of each local gradient compo-
nent is shown as follows:

Remark 4

According to Eq.  (5), in the summary of participating 
data, data with higher comprehensive evaluation value 
will be given higher weight to participate in training, to 

(4)Qz
k = Dz

k · y

(5)gz∗ =

∑k=K
k=1 Qz

kg
z
k

∑k=K
k=1 Qz

k

ensure that the model will not be unavailable due to 
excessive addition of low-quality data. we filter based 
on

where β is a preset threshold that participants collectively 
negotiate [11, 15, 16]. In our setup, low-quality data is 
not directly removed, but rather its participation is influ-
enced through a well-designed structure to ensure the 
confidentiality of the data quality held by each partici-
pant. We allow the inclusion of low-quality data, but with 
a significantly lower weight, ensuring that the majority of 
the training data is of trusted quality. In the experimen-
tal section, the superiority of our approach in terms of 
model accuracy will be fully demonstrated.

Secure aggregation protocol(SAP)
The proposed secure aggregation scheme is achieved 
through the improvement of the Paillier encryption 
mechanism. we assume that each participant in the 
Federated training holds a private dataset, and we aim 
to protect the local gradients of all participants’ data, 
as well as the composite evaluation values, through 
the “SAP” protocol. Specifically, as shown in Fig.  2, 
the privacy data of participants is encrypted and the 
ciphertext is transmitted to the cloud server S. Upon 
receiving the ciphertext data from all participants, 
the cloud server performs multiplication operations 
on the ciphertext using additive homomorphism and 
then publicly reveals the aggregated ciphertext result 
to all participants. Subsequently, participants per-
form partial decryption on the ciphertext c using their 
respective partial private keys and send the partially 
decrypted results to the cloud server S. Finally, the 
cloud S stops receiving decryption data until it col-
lects the partially decrypted results from t participants 
then aggregates all the received partially decrypted 
results to obtain the sum of the local gradients of k 
participants.

The establishment of the PPEL‑LQDP
The PPEL-LQDP established by us is shown in Algo-
rithm  3, which mainly includes two phases, namely 
system setup and encrypted execution of DCEM 
scheme. The steps of PPFL-LQDP are explained in 
detail next.

(

Qz
k − min

i∈[1,X]
Qz
i

)/(

max
j∈[1,X]

Qz
j − min

i∈[1,M]
Ql
i

)

< β
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Algorithm 3 Implementation of PPFL-LQDP

System Setup: We first generate the public key pk and 
partial private key groups (sk1 , sk2 , ..., skK ) based on the 
distributed paillier cryptosystem through a third-party 
authorization center (TA), and distribute partial private 
keys to each participant through a secret channel. To ini-
tiate the DNN model, the cloud server first initializes the 
global weights and the global optimal gradient.

Encrypted DCEM: Participants encrypt their private 
data using a distributed Paillier cryptosystem and then 
send it to the cloud server. The cloud server collaborates 
with the participants to perform the encrypted DCEM 
operations, obtaining the composite evaluation values 
of the data. For simplicity, we use Pk(a) to represent the 
ciphertext of plaintext a. As shown in Algorithm  3, an 
encrypted DCEM consists of five main parts: 1) com-
ponent orientation evaluation. 2) component dispersion 
evaluation. 3) data evaluation aggregation. 4) encrypted 
aggregated Value Update. 5) weight update. The detailed 
techniques for each phase are shown below. 

(1) Component orientation evaluation: In this stage, 
steps 1 and 2 are performed to evaluate the direc-
tion of the data. First, after receiving the global 
weight and optimal gradient initialized by the 
cloud server, each participant k ∈ [1,K ] carries 
out mini-batch gradient descent operations locally 
to obtain the local gradient. Then, each participant 
calculates the vector Angle between the local gra-
dient and the optimal gradient to obtain the direc-
tion evaluation of the data through the “COEs” 
algorithm. This work is done by the participants 
on the local network.

(2) Component dispersion evaluation: To calculate 
the participant’s data dispersion rating value in the 
encrypted state, we performed steps 3-6 through 
the homomorphism of the distributed Paillier 
cryptographic mechanism. where the dis(gzk , g

z
∗) is 

the Euclidean distance between two vectors and 
represents the sum of the distance between the 
local gradient and the global optimal gradient of 
all participants.

(3) Data evaluation aggregation: After the participants 
obtain the evaluation value of direction and disper-
sion, they will conduct the evaluation combination 
through Eq.  (3) (Step 7), and have obtained the 
overall evaluation of the current iteration. Here we 
use the product combination evaluation method, 
which can describe the participant data quality.

(4) Aggregated Value Update: After each partici-
pant obtains the composite evaluation, step 8 
is executed to update the current optimal gradi-
ent. Each participant first computes based on the 
homomorphism of the distributed paillier crypto-
graphic mechanism ∑k=K

k=1 QZ
k g

Z
k

 and ∑k=K

k=1 Q
z

k
 , the 

specific calculation is ∑k=K

k=1 Qz
kg

z
k =

∏k=K

k=1 Epk (Q
z
kg

z
k ) 

and ∑k=K
k=1 Qz

k =

∏k=K
k=1 Epk (Q

z
k ) . Then, the cloud 

server S performs “SAP” in collaboration with the 
participant to obtain the plaintext result of the 
sum of the data. The current most gradient update 
is then performed.

(5) weight update: The cloud server updates the global 
weight through Eq.  (1) (Step 11), and broadcasts 
the global weight ω after iteration to all par-
ticipants. The cloud server S and the participant 
repeat steps 1-11 until our preset convergence 
conditions are met.

Remark 5

In our setup, there are no offline users, but our scheme is 
highly tolerant of participants who are unable to com-
plete the current task due to unexpected events during the 
execution. This is because, in the decryption process, each 
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participant has the privilege to perform partial decryp-
tion. Additionally, the cloud server only needs to collect 
partial decryption results from a minimum of t partici-
pants to obtain the decrypted result. Therefore, partici-
pants who cannot execute the scheme correctly in the cur-
rent iteration are considered invalid for that iteration, but 
it does not affect the overall progress of the model train-
ing. In this paper, we did not consider the impact of offline 
participants on the model accuracy. They are treated as 
if they do not contribute to the current iteration’s train-
ing process. However, it is important to note that in practi-
cal applications, the impact of offline participants on the 
model accuracy may need to be further considered and 
evaluated.

Correctness

Theorem  1 Our PPFL-LQDP can accurately compute 
the dispersion evaluation value of participants’ data in 
ciphertext state.

Proof

�

Remark 6
The discrete evaluation of participant data requires cal-
culation in the encrypted state, and division operations 
pose a certain challenge to the Paillier cryptosystem. By 
constructing a logarithm function, the computation can 
be simplified without altering the distribution of evalua-
tion values.

Security analysis
Based on Chapter 4, the threat model mainly originates 
from internal entities of the system, namely participants 
and cloud servers. Therefore, the goal of PPFL-LQDP 
is to ensure that the local gradients and data composite 
evaluation values of each participant are not leaked to 
other participants and cloud servers. In our constructed 
DCEM, the “COEs” algorithm is executed in the local 
network of participants, so privacy concerns are not 
necessary. Privacy protection is mainly focused on the 

Epk

(

log

(

∑k=K
k=1 dis

k · dis
+ 1

))

= Epk

(

log

(

∑k=K
k=1 dis + k · dis

k · dis

))

= Epk

(

log

(

k=K
∑

k=1

dis + k · dis

))

· Epk (− log(k · dis))

= Epk
(

log mol
)

· Epk (− log(k · dis))

“CDEs” algorithm phase and the gradient value update 
phase.

Due to the secure aggregation scheme “SAP” that we 
use, we can defend against the attack described in System 
model section.

• Single malicious participant attack: A single mali-
cious participant seeks to obtain the privacy of other 
participants through collected information. In our 
“SAP” protocol, no participant knows all the private 
keys. Therefore, even if the malicious participant 
collects the encrypted gradient information sent by 
other participants to the cloud server, they cannot 
obtain the plaintext information.

• Semi-honest cloud server: Participants need to send 
their locally trained gradient information to the cloud 
server in an encrypted form, in order to offload large-
scale computations to a third party. In our setup, the 
cloud server will perform all computations as speci-
fied, but will infer participants’ information based on 
the knowledge acquired. During the interaction pro-
cess of our scheme, the cloud server does not possess 
the private key, which is held by all participants in the 
key group. Decryption requires the collaboration of 
t participants. Therefore, the cloud server can only 
obtain aggregated information and cannot access 
participants’ private data.

• Malicious Participants Collaborating with the Cloud 
Server: In the case of a collusion attack between par-
ticipants and the cloud server, malicious participants 
can provide partial private keys to the cloud server. 
If the cloud server manages to collect partial pri-
vate keys from t or more participants, it can access 
the data of all participants. Therefore, the proposed 
scheme can resist collusion attacks when the num-
ber of malicious participants is less than or equal to 
t − 1 , as distributed decryption requires collecting at 
least t partial decryption results before aggregating 
the final result. Thus, this scheme possesses a certain 
level of resilience against collusion attacks.

Performance analysis
In this section, we conducted training and testing tasks 
based on the MNIST database. This database consists of 
60,000 training samples and 10,000 test samples, which 
are used to evaluate the proposed approach in this paper. 
Specifically, we compared the proposed PPFL-LQDP 
scheme with traditional federated learning methods 
and the ecProbe scheme in this paper. The experimen-
tal settings are as follows: All programs were compiled 
in Python and simulated on a Lenovo desktop computer 
with an Intel(R) Core(TM) i3-12100 3.30GHz proces-
sor and 16.0GB of RAM. The participants used Lenovo 
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310s laptops with an Intel(R) Core(TM) i5-7200U CPU 
@ 2.50GHz 2.70GHz processor for simulation. We set 
the learning rate to 0.01, and the batch size for gradient 
descent to be 128 samples per group.

Functionality
To illustrate the superiority of our PPFL-LQDP in terms 
of functionality, we compare it with three recent meth-
ods for privacy-preserving federated learning: SecProbe 
[18], PPFDL [20], and EPPFL [21]. As shown in Table 1, 
SecProbe, being the first framework in privacy-preserv-
ing federated learning to consider the involvement of 
untrusted participants, successfully defends against col-
lusion attacks between the cloud server and users while 
ensuring the security of private data through differential 
privacy. However, if a single participant goes offline dur-
ing the interaction, the normal operation of the model 
cannot be guaranteed. In PPFDL, improvements were 
made to address the offline issue of participants, but the 
dual-cloud architecture is challenging to ensure collu-
sion-free in practice. As a follow-up to PPFDL, EPPFL 
addresses the dual-cloud issue with a single-cloud archi-
tecture and reduces the secure computation cost of scor-
ing untrusted participants using logarithmic operations. 
However, in this setup, data with significant directional 
bias is classified as irrelevant and does not participate in 
training. Compared to the aforementioned methods, the 
PPFL-LQDP privacy-preserving framework is further 
built upon EPPFL. Similarly, it utilizes the distributed 
Paillier cryptosystem to construct a secure aggregation 
protocol, which addresses the issue of participants join-
ing or going offline while ensuring privacy. Additionally, 
constructing DCEM and utilizing linear relationships, 
enables composite evaluation of the data quality of par-
ticipants, allowing all participants to participate in train-
ing without losing data.

Accuracy
We discuss the accuracy of our PPFL-LQDP in this part. 
To illustrate the superiority of the experimental results, 
we compare with two representative methods, i.e., PFL 
[31] (Primitive Federated Learning) and SecProbe.

Remark 7

PFL is the most primitive model in federated learning, 
which doesn’t require any operations on the data. On the 
other hand, SecProbe is the first privacy-preserving feder-
ated learning model that considers the participation of 
unreliable participants. This comparison demonstrates 
the necessity of handling unreliable participants in fed-
erated learning and highlights the superiority of the pro-
posed solution. Therefore, it is reasonable to make such a 
comparison.

To verify the accuracy of the proposed solution after 
incorporating low-quality data in the training process, we 
randomly selected a portion of the data from the train-
ing set and introduced noise to simulate low-quality 
data. This same setup was applied to both the PFL and 
SecProbe approaches (with a privacy budget of 10 for the 
SecProbe solution). We conducted experiments in our 
Federated training using different proportions of low-
quality data.

As shown in Fig. 4, we set P as the proportion of low-
quality data in the training set data. The accuracy varies 
with P (P=10% , P=15% , P=20% , P=25% , P=30% ), and 
the model gradually levels off with increasing number of 
training iterations. It can be seen that our scheme PPFL-
LQDP is higher in accuracy than PFL and SecProbe, 
and under the same number of iterations, our scheme 
is also relatively accurate. At the same time, when the 
content of low-quality data is high, the accuracy of PFL 
and SecProbe decreases very fast, while our PPFL-LQDP 
scheme has almost no significant difference. Specific 
reasons: 

1) PFL does not consider the addition of low-quality 
data, so it will cause low-quality data to over-partici-
pate in the training, directly affecting the accuracy of 
the model, and even making the model unusable.

2) Differential privacy to protect private data needs to 
be achieved by adding noise, and in order to ensure 
the privacy security of participants, the accuracy will 
cause a certain loss.

Table 1 Functional comparison with other works

Participant privacy 
protection

Prevent users from going offline 
or joining in the middle

All the data participated 
in the training

Threat model Server type

SecProbe � × � Semi honest Single-Server

PPFDL � × � Semi honest Dual-Servers

EPPFL � � × Semi honest Single-Server

PPFL-LQDP � � � Semi honest Single-Server
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However, For the low-quality data, we construct a linear 
relationship, so that the data can participate in the train-
ing level according to the data quality, avoiding the accu-
racy degradation caused by the excessive participation 
of low-quality data in the training process. At the same 
time, all the data will participate in the training, and no 
data loss will be caused. Referring to previous works, our 
scheme uses distributed paillier cryptosystem to protect 
private data.

Computation overhead
In this section, we evaluated the computational overhead 
of the PPFL-LQDP approach. To provide a clear visu-
alization of the experimental results, we compared them 
with the PPML [32] approach. To ensure the fairness of 
the experiment, both methods are tested using the same 
hardware configuration and data set. The experimental 
environment and learning rate are kept consistent.

The PPFL-LQDP algorithm constructed in this arti-
cle utilizes distributed Paillier homomorphic encryp-
tion mechanism for additional operations to protect the 
privacy of participants’ private data. It also performs a 
decryption operation to allow the cloud server to obtain 
intermediate values for calculating a composite evalua-
tion value of participants’ data quality.

Figure 5a depicts the computational overhead of partic-
ipants in the PPFL-LQDP process as the number of local 
gradient calculations increases. From the figure, it can be 
observed that the computational overhead on the partici-
pant side does not increase significantly. In PPFL-LQDP, 
participants only need to perform local computations of 
encrypted gradient sets and participate in partial decryp-
tion, while all the cryptographic operations are handled 
by the server. This setup is quite favorable for the par-
ticipants. Furthermore, based on Fig.  5b, it can be seen 
that the computational cost for participants in Federated 
training does not increase significantly as the number of 
participants in the training increases.

Figure  6 illustrates the comparison of computational 
costs between PPFL-LQDP and PPML in terms of partic-
ipant computational overhead and server computational 
overhead. From the figure, it is evident that as the volume 
of participant data increases, the computational overhead 
of PPML grows more rapidly compared to PPFL-LQDP. 
This is mainly due to the exponential increase in com-
putational costs for PPML with an increasing number of 
users. However, the PPFL-LQDP algorithm can complete 
computations with a time complexity of O(K + Z) . This 
is primarily because the PPFL-LQDP algorithm performs 
composite evaluation value calculations on low-quality 
data on the server. The server only needs to bear the 

Fig. 4 Variations in model accuracy with changing proportions of low-quality data contributed by participants
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collaborative part of the “CDEs” process and the aggre-
gation calculation of the composite evaluation values, 
resulting in a linear growth trend in server-side overhead. 
when the number of participants is large, the cost of our 
scheme on the server side will be better.

Communication overhead
Figure  7a demonstrates the variation in communication 
overhead between participants and the cloud server as 
the number of local gradient calculations increases. the 
majority of the communication workload is handled by 
the server, and the increase in overhead for each partici-
pant is not significant. In Fig. 7b, it can be observed that 
the communication overhead for each participant does 
not significantly change as the number of participants 
increases.

As shown in Fig.  8, the comparison of communica-
tion overhead between PPFL-LQDP and PPML can be 

observed. It is evident that when the number of partici-
pants varies, PPFL-LQDP incurs significantly lower com-
munication overhead compared to PPML. This is because 
PPFL-LQDP only requires each participant to transmit a 
fixed amount of encrypted data to the cloud server, and 
the communication between the server and participants 
remains relatively stable. PPFL-LQDP also exhibits rela-
tively stable overhead, making it participant-friendly. 
Therefore, compared to other approaches, PPFL-LQDP 
demonstrates certain advantages in terms of communica-
tion overhead.

Conclusion
The paper presents a novel privacy-preserving federated 
learning solution, PPFL-LQDP, that addresses the issue of 
excessive participation of low-quality data in Federated 
training. By constructing a composite evaluation value 
for the data, the negative impact of low-quality data on 

Fig. 5 Computation overhead of PPFL-LQDP

Fig. 6 Comparison of computational overhead between PPFL-LQDP and PPML
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Federated training is reduced, while ensuring privacy and 
security of participant data through a secure framework. 
The experimental results demonstrate the capability of 
PPFL-LQDP in handling low-quality data, and the com-
parison with other approaches highlights the superior 
overall performance of our proposed solution.
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