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Abstract 

The rapid development of the Internet technology along with the emergence of intelligent applications has put 
forward higher requirements for task offloading. In Cloud-Edge-End (CEE) environments, offloading computing tasks 
of terminal devices to edge and cloud servers can effectively reduce system delay and alleviate network conges-
tion. Designing a reliable task offloading strategy in CEE environments to meet users’ requirements is a challenging 
issue. To design an effective offloading strategy, a Service Reliability Analysis and Elite-Artificial Bee Colony Offloading 
model (SRA-E-ABCO) is presented for cloud-edge-end environments. Specifically, a Service Reliability Analysis (SRA) 
method is proposed to assist in predicting the offloading necessity of terminal tasks and analyzing the attributes 
of terminal devices and edge nodes. An Elite Artificial Bee Colony Offloading (E-ABCO) method is also proposed, 
which optimizes the offloading strategy by combining elite populations with improved fitness formulas, position 
update formulas, and population initialization methods. Simulation results on real datasets validate the efficient 
performance of the proposed scheme that not only reduces task offloading delay but also optimize system overhead 
in comparison to baseline schemes.
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Introduction
With the rapid advancement of Internet technology, 
there has been a significant increase in the number of 
User Equipments such as smartphones, tablets, and port-
able devices. According to a report published by Cisco 
[1], it is predicted that the number of User Equipments 
connected to the network has reached 13.1 billion by the 
end of 2023. Although the performance of User Equip-
ments in computing power, battery life, and memory 
capacity has been improving continuously, it cannot 
meet the computational demands of latency-sensitive 
and computing intensive applications. As a result, there 
arises a necessity to offload computing tasks from User 

Equipments to the cloud center or edge servers located 
nearby to minimize system delay.

Cloud-edge-end (CEE) converged computing is a prom-
inent computing paradigm resulting from the advance-
ment of big data [2]. It encompasses various computing 
forms to create a unified architecture that incorporates 
end devices, edge nodes, and the cloud computing center. 
This architecture efficiently handles computationally 
demanding and time-sensitive tasks by offloading them 
from low-capacity and energy-constrained end devices to 
the edge of the network. To minimize latency and energy 
consumption on end devices, computation offloading 
strategies are employed in the cloud-edge-end scenario. 
Currently, researchers primarily focus on addressing the 
mismatch between application demands and end device 
capabilities in CEE environments. The core concept 
involves deploying edge servers in the neighborhood to 
terminal devices and offloading users’ tasks to these serv-
ers, which possess computational and storage resources 
for processing. However, in the CEE scenario, the lack of 
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an effective task offloading strategy not only hinders the 
benefits of CEE collaboration but also compromises ser-
vice reliability. Therefore, it is crucial to investigate task 
offloading methods that prioritize service reliability in 
CEE scenarios, with the key aspect being the formulation 
of effective offloading strategies.

However, there are still some problems in traditional 
task offloading methods. First, these methods lack reli-
able predictions for determining whether tasks need to 
be offloaded from the terminal device. Second, they fail 
to consider the correlation between edge nodes, resulting 
in low offloading reliability. Finally, existing methods do 
not thoroughly analyze the relationship between histori-
cal processing records of nodes and task types, leading 
to inefficient offloading strategies. For instance, tradi-
tional heuristic algorithms only consider node processing 
capacity and load, disregarding important indicators such 
as energy consumption and reliability. These problems 
will lead to inefficient offloading results.

To address these issues, this paper proposes an effi-
cient and low-latency task offloading strategy. This strat-
egy combines the analysis of offloading reliability and 
the optimization of bee colony algorithms to minimize 
energy consumption and reduce system delay. The main 
contributions of this paper are as follows:

1. A service reliability analysis (SRA) method for cloud 
edge-end environments is proposed, which first pre-
dicts whether an end task is offloaded or not by the 
attributes of the end device using the Logistic Regres-
sion model (LR) and then uses the historical process-
ing data of each edge node, combined with the task 
attributes to construct a correlation matching matrix. 
By analyzing the matrix, a set of offloading decision 
vectors is obtained to provide relevant parameters 
for subsequent terminal task offloading decisions.

2. An offloading decision formulation method (Elite-
Artificial Bee Colony Offloading, E-ABCO) is pro-
posed, which continuously optimizes the offloading 
decision scheme by improving the fitness formula 
and the position update formula and improves the 
offloading efficiency and success of the terminal task 
offloading by means of cross-honey search.

3. A series of comparison experiments are con ducted 
on public datasets in Kaggle,1 comparing the offload-
ing schemes formulated by the proposed algorithm 
with those of local offloading, all offloading, greedy 
algorithm-based offloading, deep neural network 
model-based offloading, and directional bee colony 

algorithm offloading, and verifying the validity of the 
model proposed in this paper.

Related work
Task offloading
Gao et  al. [3] proposed a cloud-edge cooperative archi-
tecture based on Lyapunov optimization theory, which 
reduces the problem to a constrained optimization prob-
lem by establishing a dynamic queueing model of cloud 
computing servers and edge computing servers and 
combining the system power function to form a drift 
plus penalty function framework. Li et  al. [4] proposed 
a multi-objective strategy based on Biogeographic Opti-
mization (BBO) algorithm and constructs a time-energy 
model and a cost model for task offloading, based on 
which the BBO algorithm is introduced into task offload-
ing for MEC to solve the multi-objective optimization 
problem. Zhang et  al. [5] proposed a multi-user, multi-
computing task offloading scheme based on mobile cloud 
computing and mobile edge computing that minimizes 
energy consumption and latency through differential 
evolutionary algorithms and provides optimal computa-
tional task offloading decisions. Liu et al. [6] proposed a 
DVR-minimizing computational offloading scheme with 
task migration and merging with the goal of minimiz-
ing the system deadline rate (DVR), constructs an overall 
directed acyclic graph (DAG) for all current dependent 
tasks, develops a migration-enabled multi-prioritized 
task ranking algorithm that creatively introduces multi-
ple task prioritization metrics and determines the opti-
mal order in which tasks should be executed, and, finally, 
develops a learning algorithm based on the Deep Deter-
ministic Policy Gradient (DDPG) for finding the optimal 
offloading strategy. Ai et al. [7] designed a smart collabo-
rative framework scheme, establishes a theoretical model 
including a Hierarchical Spatial–Temporal Monitoring 
(HSTM) module and a fine-grained resource scheduling 
(FRS) module, applies a hybrid deep learning algorithm 
to the monitoring module from the Spatial–Temporal 
dimension, and in addition, adopts a hybrid game and 
improves the queuing theory to improve the offloading 
efficiency of the FRS module. Li et al. [8] utilized mobile 
edge computing and deep learning to decompose a con-
volutional neural network-based encoder-decoder model 
and deploy the encoder on the edge server to extract 
features of the task and derive user tolerance limits at 
the edge server by using a linear regression model in 
order to further improve the quality of user experience. 
Liu et al. [9] calculated the optimal task allocation ratio 
by a mathematical analysis method with the objective 
of minimizing the processing delay, and then uses the 
Lagrangian Dyadic (LD) method to obtain the optimal 
task offloading and resource allocation policy. Lv et  al. 

1 Kaggle’s official website: https:// www. kaggle. com/ datas ets/ sachi n26240/ 
vehic ularf ogcom puting
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[10] studied the mobile edge computing task offload-
ing problem under dependency and service caching 
constraints and proposed a table-based task offloading 
algorithm to optimize the maximum completion time 
and energy consumption by predicting the impact of off-
loading decisions. Ko et al. [11] proposed a belief-based 
task offloading algorithm (BTOA), in which the vehicle 
selects the target edge cloud and subchannels based on 
its beliefs and observes its current resource and channel 
conditions, and based on the observed information, the 
vehicle ultimately determines the most appropriate edge 
cloud and subchannels. Gao et al. [12] proposed a hier-
archical computational partitioning strategy for DNNs, 
which divides the tasks of each MD into subtasks, Sec-
ond, we develop a latency prediction model for DNNs to 
characterize the computational latency of the MDs and 
each subtask on the server. Third, we design a slot model 
and a dynamic pricing strategy for the server to efficiently 
schedule the offloaded subtasks. Fourth, we jointly opti-
mize the design of task partitioning and offloading to 
minimize the cost of each MD in terms of computa-
tion latency, energy consumption, and price paid to the 
server. Yilin et  al. [13] carried out in-depth research on 
the research progress of computational offloading in 
mobile edge computing, summarizes and generalizes two 
types of traditional task methods and intelligent methods 
based on online learning, and analyzes and compares the 
traditional computational offloading based on heuristic 
algorithms from the minimization of latency time, mini-
mization of energy consumption, and trade-off between 
time and energy consumption with three different opti-
mization objectives.

Li et  al. [14] proposed a new multi-objective strategy 
based on the biogeography-based optimization (BBO) 
algorithm. In this strategy, a time-energy consumption 
model and a cost model are constructed for task offload-
ing firstly. Based on these models, the BBO algorithm 
is introduced into task offloading for MEC to solve the 
problem of multi-objective optimization. Gao et al. [15] 
proposed a cloud-edge collaboration architecture, then 
by establishing the dynamic queue model of cloud com-
puting server and edge computing server, and combin-
ing with the system power function to form a drift plus 
penalty function framework, the problem is reduced to a 
constrained optimization problem.

Service reliability
Tang et  al. [16] proposed a heuristic greedy reliability 
and cost-aware job scheduling (RCJS) algorithm, which 
mainly addresses the problem of high service cost due 
to multiple replications caused by reliability enhance-
ment techniques. Li et  al. [17] investigated the problem 
of providing reliable VNF service provisioning in Mobile 

Edge Cloud (MEC) networks, proposes a new VNF ser-
vice reliability problem and develops an effective online 
algorithm through primary and backup VNF instance 
placement and primitive pairwise updating techniques, 
and experimentally demonstrates the algorithm’s prom-
ising nature. Li et  al. [18] investigated the problem of 
providing reliable VNF services in mobile edge comput-
ing environments by providing primary and backup VNF 
instances to satisfy the reliability requirements of the 
users, and two efficient online scheduling algorithms are 
developed for the problem under two different backup 
scenarios, onsite (local) and offsite (remote), by using 
both primal and dual update techniques. Zhang et  al. 
[19] proposed a new logistic function based Service Reli-
ability Probability (SRP) estimation model which does 
not specify the distribution of resource requirements, 
investigates the Average SRP Maximization Problem 
(ASRPMP) in VM-based Edge Computing Servers (ECSs) 
by jointly optimizing the Service Quality Ratios (SQRs) 
and computational resource allocations, and proposes an 
Alternative Optimization Algorithm (AOA) transformed 
into a Resource Allocation Problem (RAP) and a Service 
Quality Control Problem (SQCP) by decomposing the 
problem. Yu et al. [20] proposed a new Hierarchical Intel-
ligent Memory Fault Prediction (HiMFP) framework that 
predicts UCEs at multiple levels of a memory system and 
correlates it with memory recovery techniques that uti-
lize CE addresses at multiple levels of memory (especially 
at the bit level) and constructs machine learning models 
based on spatial and temporal CE information. Luo et al. 
[21] introduced a fail-safe software design for a layered 
protection and validation perspective based on root 
cause analysis of more than 800 cloud reliability prob-
lems using an example of a hyperscale platform software, 
Intel Media Driver. Hu et al. [22] obtained the closed net-
work reliability as a polynomial expression of link relia-
bility using the Hop-State Algorithm (HSA) based on the 
Markov model. Jia et al. [23] formulated the service func-
tion chain scheduling problem in 5G networks support-
ing Network Functions Virtualization (NFV) as mixed 
integer nonlinear programming with the objective of 
maximizing the number of requests that satisfy the delay 
and reliability constraints, proposes an efficient algo-
rithm to determine the redundancy of the VNFs while 
minimizing the reducing the delay, and using state-of-
the-art reinforcement learning techniques to learn SFC 
scheduling policies to improve the success rate of service 
function chain requests.

Optimization algorithms
Fu et al. [24] proposed a genetic hybrid algorithm based 
on particle bee colony optimization, which divides the 
particle population of each generation, and uses the 
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swallowing mechanism and cross mutation of the genetic 
algorithm to change the position of the particles in the 
subpopulation, so as to expand the search range of the 
solution space; and then merges the subpopulations, 
which ensures the diversity of the particles in the popula-
tions, and reduces the probability of the algorithm fall-
ing into the local optimal solution; finally, the feedback 
mechanism will feedback the flight experience and the 
accompanying flight experience of the particles to the 
next generation particle population, so as to ensure that 
the particle population can always move towards the 
optimal solution. Finally, using the feedback mechanism, 
the flight experience of the particles themselves and the 
accompanying flight experience are fed back to the next 
generation of particle populations, to ensure that the par-
ticle populations can always move forward in the direc-
tion of the optimal solution. Rizvi et  al. [25] proposed 
an algorithm named MFGA (Modified Fuzzy Adaptive 
Genetic Algorithm) to minimize makespan and improve 
resource utilization under deadline and budget con-
straints, and a fuzzy logic controller is designed to con-
trol the crossover rate and the mutation rate to prevent 
the MFGA from getting stuck in local optima. Senthil 
et al. [26] proposed a task allocation algorithm based on 
Cat Swarm Optimization and BAT algorithm. The BAT 
algorithm helps the CSO algorithm to get rid of the pre-
convergence problem. Gai et al. [27] proposed a heuris-
tic elastic PSO algorithm, which adopts the A* algorithm 
to provide global guidance for path planning of large-
scale grids. The elastic PSO algorithm utilizes contrac-
tion operations to determine the globally optimal paths 
formed by locally optimal nodes, so that the particles can 
converge quickly, and the particle diversity is ensured by 
the rebound operation in the iterative process.

To sum up, existing research on task offloading pays 
more attention to whether tasks can be decomposed 
into subtasks and how many tasks should be offloaded. 
Considering the performance limitations of the termi-
nal devices, how to offload their tasks to an appropriate 
server with abundant resources is a challenging problem. 
Especially, how to predict the offloading necessity of ter-
minal tasks in advance and how to formulate an effective 
offload strategy according to the attributes of terminal 
devices and edge nodes are also challenging issues. This 
is exactly the research work of this paper.

System model
This section describes the general task offloading archi-
tecture for CEE collaboration. As shown in Fig.  1, the 
CEE system architecture includes the cloud center layer 
on top, the edge server layer in the middle, and the end 
layer at the bottom.

(1) Cloud center layer: The cloud center layer com-
prises a cloud computing center consisting of 
centralized cloud servers located at a significant 
distance from the local equipment. These cloud 
servers possess abundant computing resources and 
offer rapid task response times. However, due to 
the distance factor, there exists a certain round-trip 
transmission delay for the transmission of comput-
ing results.

(2) Edge Layer: The Edge Layer is an edge cluster con-
sisting of dispersed fixed-point edge servers close 
to the local equipment; edge server computing 
power and resources are weaker than cloud servers, 
but the advantage in transmission delay is obvious. 
There is an overlap in the communication coverage 
of edge servers within the coverage area of a single 
base station; one edge server is set up next to each 
base station, the number of which is all n. The set of 
edge servers Edge = {E1,E2, . . . ,En}.

(3) End layer: The end layer consists of many local ter-
minal devices, which run computationally intensive 
applications or delay-sensitive applications and are 
limited in computational and storage resources due 
to the constraints of hardware, computing power, 
energy consumption, and other factors. The same 
end device may be within the communication range 
of different mobile edge servers. The set of end 
devices UE = {U1,U2, . . . ,Um}

Under the CEE collaborative computation offloading 
system architecture, the local terminal device can choose 
to keep the computation task running at the local device, 
offload it to the edge server in the edge layer for execu-
tion, and offload it to the central cloud for execution.

We assume that a server can process several differ-
ent types of tasks simultaneously. The main scenario in 
this paper has multiple edge nodes, a cloud center, and 
a macro base station, while terminal devices are over-
laid around the macro base station, and users can offload 
tasks by uploading them to the macro base station. The 
macro station can receive multiple task requests at the 
same time because the macro station is a transit station, 
which facilitates users to offload their tasks to edge nodes 
and the cloud center.

Problem formulation
The system has a total of M terminal devices, each of which 
initiates a service request, and all tasks can be offloaded and 
scheduled. Each request T is described by three parameters 
(L,C,D), L denotes the amount of data (in bits) required to 
process the terminal task, C denotes the number of CPU 
cycles required to process each unit of data for that termi-
nal task, and D denotes the maximum tolerable delay for 
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that task. Each node is described by the two parameters 
(

f ser ,mser
)

 , f ser denotes the processing power of the node 
and mser denotes the remaining memory of the node.

In this paper, we focus on the case where the terminal 
devices have limited computational resources and each ter-
minal task cannot be further divided, each terminal device 
is equipped with only one antenna and can only transmit 
one terminal task at a time; all users share the system trans-
mission bandwidth equally; therefore, the rate at which the 
terminal device transmits the task T to the edge node is 
denoted as:

where the total transmission bandwidth is W and p 
denotes the transmission power of the end-device off-
loading task T to the edge server. gji  is the channel gain of 
the end-device and the edge server. N0 is the noise power 
spectral density. Each task can choose to be executed 

Taski = (Li,Ci,Di)

Edgei = f seri ,mser
i

(1)ri,j =
W
n log2

(

1+
pg

j
i

W
n N0

)

locally or offloaded to the edge server or the cloud center 
for execution, therefore, we introduce an offloading deci-
sion variable V=

{

vi,j
}

 to represent the task offloading 
situation. Set the number of cloud center and n edge 
servers to {0,1, …, n}:

If vi,j is 1 and j is 0, it is offloaded to the cloud center. If vi,j 
is 1 and j is not 0, it is offloaded to an edge server.

All edge devices are randomly and uniformly distributed 
next to the base station, and the distance obeys a uniform 
distribution L ∼ Unif ([lmin, lmax]) , the total frequency of 
the edge server is Fi , the frequency assigned to the edge 
device Ui is f seri  , and the local CPU frequency of the user 
Ui is f useri  , and the CPU frequency of the cloud center is 
fcloud.

End Devices Ui Tasks initiated Ti at the execution time at 
the edge server is expressed as tedgei,j :

(2)vi,j =

{

1 Perform task offloading
0 Task local execution

(3)t
edge
i,j =

Ci
f seri

Fig. 1 System model
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The local execution time of task Ti is expressed as tlocali :

The cloud execution time of task Ti is expressed as tcloudi,0 :

The transfer time of the task Ti offloaded to the edge 
server is expressed as ttrani,j :

The transfer time of the task Ti offloaded to the edge 
server is expressed as ttrani,0 :

The transmission energy consumption of task Ti 
offloaded to the edge server is expressed as etrani,j :

The transmission energy consumption of task Ti 
offloaded to the cloud center is expressed as etrani,0 :

The local execution energy consumption of task Ti is 
represented as elocali :

Of which ci is the terminal device Ui ’s effective capaci-
tance factor, which depends on the chip architecture of 
the CPU.

The edge execution energy consumption of task Ti is 
expressed as eedgei,j :

The cloud execution energy consumption of task Ti is 
expressed as ecloudi,0 :

Then the total delay consumption of the whole offload-
ing model system can be expressed as the sum of the delay 
of the task performing local computation and the delay of 
the task performing offloading, i.e., it is expressed as T:

(4)tlocali =
Ci
f useri

(5)tcloudi,0 =
Ci

fcloud

(6)ttrani,j =
Li
ri,j

(7)ttrani,0 =
Li
ri,0

(8)etrani,j = ttrani,j p

(9)etrani,0 = ttrani,0 p

(10)elocali = cif
user
i

2Ci

(11)e
edge
i,j = kif

ser
i

2Ci

(12)ecloudi,0 = kcloudf
ser
i

2Ci

(13)
T = max

{

(1− xi,j
)

tlocali + xi,j

(

ttrani,j + t
edge
i,j

)

+xi,0

(

ttrani,0 + tcloudi,0

)

}

Similarly, the total system energy consumption is 
expressed as E:

The mathematical model described in this paper is a 
constrained joint optimization problem to optimize the 
offloading decision, offloading scheduling under the 
condition of limited server resources. Therefore, the 
optimization objective equation of the model can be 
expressed as:

α, β is calculated by entropy weighting method based 
on the historical processing data of the edge nodes, and 
α + β = 1

The objective function Eq.  (15) represents a linear 
combination of system latency and energy consump-
tion. Constraint (16) states that the computational pro-
cessing power of the end device should not exceed the 
frequency of the edge server. Constraint (17) specifies 
that a task can only be offloaded to a single edge server. 
Constraint (18) indicates that the total latency of an 
endpoint task should not exceed its maximum tolera-
ble latency, and if it exceeds, it should be offloaded to a 
cloud center for processing. Constraint (19) states that 
the amount of data of a pending task on a node should 
not exceed the remaining memory of that node. Prob-
lem (15) can be solved by finding the optimal offload-
ing decision. However, the offloading decision vector 
V represents a feasible set of binary variables, and the 
objective function represents a non-convex problem. In 
this paper, we propose a joint solution to the offload-
ing decision problem on terminal devices by combining 
service reliability analysis method and an improved bee 
colony optimization method.

(14)
E =

m
∑

i=1

(1− xi,j)e
local
i,j + xi,j

(

e
edge
i,j + etrani,j

)

+xi,0

(

ecloudi,0 + etrani,0

)

(15)minW = αT + βE

s.t.

(16)f seri,j ≤ Fi

(17)vi,j ∈ {0, 1}

(18)Ti ≤ Di

(19)FQueuei ≤ mser
i
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Algorithm implementation
In this section, we first propose the system model of a 
Service Reliability Analysis and Elite-Artificial Bee Col-
ony Offloading. Then, we describe SRA and E-ABCO in 
detail.

SRA‑E‑ABCO model
The bee colony algorithm is utilized as an optimization 
method to determine the best offloading solution for 
tasks by constructing an optimization model (shown 
in Fig.  2) that meet user needs and system reliability 
requirements. The model comprises two significant 
components: (a) Service Reliability Analysis (SRA): This 
component takes the service request of the end device 
as input and generates a set of offloading decision vec-
tors, known as the elite population, as output. It predicts 
whether the end task should be offloaded or not through 
the LR model. Subsequently, it calculates the correlation 
degree between the edge nodes and the matching degree 
of the end device with the edge node. This calculation 
employs the service processing records stored in the 
edge nodes to derive a set of offloading vectors for the 
elite population. (b) Elite-Artificial Bee Colony Offload-
ing (E-ABCO): This component takes the elite popula-
tion obtained from the service reliability analysis method 
as part of the input and yields the optimal offloading 

decision vectors as output. The population is initialized 
using inverse learning and tent mapping techniques. Fur-
thermore, the location update formula is enhanced by the 
elite population, and the adaptation formula incorporates 
delay and energy consumption considerations to ensure 
load balancing among nodes. Ultimately, this process 
yields a set of optimal offloading decision vectors.

Service Reliability Analysis (SRA)
As shown in Fig.  2a, this method first employs the 
LR model in machine learning to model and predict 
whether a task on the corresponding end device should 
be offloaded or not. Subsequently, it obtains a set of reli-
able offloading decision vectors by conducting reliability 
analysis on the surrounding edge servers available for off-
loading. The LR model and the service reliability analysis 
are detailed below.

The logistic regression model is essentially a modified 
maximum likelihood estimation model with a binomial 
categorical dependent variable. When offloading tasks 
from a terminal device for classification purposes, it 
is common to use the decision of whether to offload or 
not as the dependent variable (0 indicates not to offload, 
while 1 indicates to offload). The attributes of the termi-
nal device, such as CPU utilization, memory utilization, 
remaining power, and network bandwidth, serve as the 
independent variables, represented as x = (x1, x2, x3, x4).

Fig. 2 SRA-E-ABCO Model
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The training dataset in this paper is based on the Kag-
gle real dataset of cloud-fog computing from the official 
website. The dataset is binary classified (offloaded and 
not offloaded) by unsupervised learning to provide the 
training dataset for the LR model. Finally, we get the 
training dataset as x = (x1, x2, x3, x4, x5) , where x1 is the 
CPU utilization, x2 is the memory utilization, x3 is the 
remaining power, x4 is the network bandwidth, and x5 is 
a label indicating whether the task needs to be offloaded 
to the cloud for processing. The value is 0 or 1, where 
0 means that the task is computed locally on the end 
device, and 1 means that the task needs to be offloaded.

When making task offloading decisions, in addition 
to considering service reliability, we also need to con-
sider the resource utilization of the terminal device. 
For this reason, we can predict whether the task should 
be offloaded to the cloud for processing by analyzing 
attributes such as CPU utilization, memory utilization, 
remaining power, and network bandwidth of the end 
device. The following section describes how to make pre-
dictions using the LR model. LR, or Logistic Regression, 
is a probability-based classification algorithm that can be 
employed for predicting binary classification problems. 
In this paper, we aim to predict whether a task should be 
offloaded to the cloud for processing or not using the LR 
model. The prediction formula for the LR model is pro-
vided below:

where θ is a model parameter, x is a sample feature vec-
tor, and g(z) is a sigmoid function with the expression:

When performing model training, we need to define 
the loss function. In the LR model, the commonly used 
loss function is the logarithmic loss function with the 
expression:

where m is the number of samples, y is the sample label, 
and hθ (x) is the model prediction value.

For model training, we need to use the gradient descent 
algorithm to minimize the loss function. The update for-
mula for the gradient descent algorithm is:

where α is the learning rate, which controls the step size 
of each parameter update.

(20)hθ (x) = g
(

θTx
)

(21)g(z) = 1
1+e−z

z = θ0 + θ1x1 + θ2x2+θ3x3 + θθx4

(22)J (θ) = − 1
m

m
∑

i=1

[

y(i)log
(

hθ
(

x(i)
))

+
(

1− y(i)
)

log
(

1− hθ
(

x(i)
))

]

(23)θj := θj − αm
m
∑

i=1

(

hθ
(

x(i)
)

− y(i)
)

x(i)

In this paper, we can consider attributes such as CPU 
utilization, memory utilization, remaining power, and net-
work bandwidth of the terminal device as the input features 
of the LR model. The output label of the LR model would 
indicate whether the terminal task should be offloaded to 
the cloud for processing. By training and predicting with 
the LR model, we can determine whether the terminal task 
should be offloaded, thereby making the decision on termi-
nal task offloading more rational.

Based on the results predicted by the LR model, the 
terminal tasks earmarked for offloading are analyzed for 
service reliability as follows: The definition of service reli-
ability analysis involves scrutinizing services processed by 
the edge nodes with regard to delay. It assesses the match-
ing degree of existing service requests and similar ser-
vice requests corresponding to the edge nodes, ultimately 
determining service reliability by analyzing the matching 
degree of the edge nodes. This section primarily focuses 
on utilizing historical processing data cached by the edge 
nodes through a series of matrix variations and analyses. 
The goal is to obtain a set of offloading vectors for subse-
quent use as elite populations.

In this paper, we make use of the existing user task data-
set to initialize ten sets of service request records that have 
been processed at each edge node in the following approxi-
mate format: (1, type, maxtime, truetime), where truetime 
is the actual processing time at the edge node, and we add 
a data attribute to perform better service reliability analysis 
completion:

It is used to indicate the degree of completion (user sat-
isfaction) of the service, so we end up with the following 
actual data:

(1, type, maxtime, truetime, completion)

It is assumed that each end-user device has had a service 
request data record at each edge node.

Firstly, calculate the connectivity correlation between 
edge nodes. The user satisfaction matrix of service process-
ing results Cm×n is constructed by completion, as shown in 
Table 1. where m is the number of terminal devices and n is 
the number of edge nodes.

The service similarity between the historical data of the 
edge nodes is calculated using Eq. (24).

where k i and k j are the i th edge node and the j th edge 
node, respectively, i.e., the column vectors consisting of 
the data in column i and column j of Table 1.

completion =
maxtime − truetime

maxtime

(24)Sim = cosθ =
k i×k j

|k i|×|k j|
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Calculate the correlation between edge nodes. Firstly, 
using the service types of the edge nodes in the dataset, 
the matrix of service types corresponding to the edge 
nodes is obtained. And the confidence level of the fre-
quent binomial set is obtained by calculating conf. Then 
the confidence of the frequent binomial set is obtained 
using the Apriori algorithm and its related principle 
(Eq. 25) to find the correlation between edge nodes and 
form the correlation matrix associationn×n.

Finally, the edge node matching degree is calculated, 
i.e., the similarity and correlation between edge nodes are 
weighted and fused as shown in Eq. 26, where the weight 
coefficients are determined using the sigmoid function is 
determined as shown in Eq. 27.

Where α is the weighting factor that Iu denotes the 
number of times a service request issued by a user is pro-
cessed at the edge node i and j number of times it is pro-
cessed. Calculate the edge node matching degree matrix 
Mn×n , as shown in Table 2.

Then when the end device issues a new service request, 
the task type is analyzed and filtered with all the resource 
types of the edge node, the edge node with the cor-
responding task type is selected, the service reliabil-
ity of the corresponding task is calculated Ri =

∑n
1 Mik

n  ,  

(25)association
(

i, j
)

=
2con f (i, j) ∗ con f(j, i)
conf(i, j)+ con f(j, i)

(26)
M
(

i, j
)

= α
(

i, j
)

× Sim
(

i, j
)

+
(

1− α
(

i, j
))

∗ association
(

i, j
)

(27)α
(

i, j
)

= 2×
(

1− 1
1+e−|Iu|

)

and set the offload vector  a = (a1, a2, . . . , ak) , the 
ai = maxRi =

∑n
1 Mik

n  , through the above service reliability  
analysis ,  a set of off loading vectors is obtained 
a0 = (a1, a2, . . . , ak) , which will be used as the elite 
population of the bee colony algorithm.

At the same time, delay limits are set so that the maxi-
mum tolerable delay cannot be exceeded, the edge server 
resource limit cannot be exceeded, and the minimum 
reliability is offloaded to the cloud center for processing.

Elite Artificial Bee Colony Offloading (E‑ABCO)
The optimization process for the terminal task offloading 
strategy based on the bee colony algorithm is as follows: 
we start by initializing each honey source and assigning 
a hired bee to each source. The hired bee searches for 
new honey sources using a specific search method. Then, 
based on the adaptability of the honey sources, we cal-
culate the probability that the honey source found by the 
hired bee will be followed by a subsequent bee. The sub-
sequent bee then searches for new honey sources using 
its own search method. As shown in Fig. 2b, this iterative 
process continues until the maximum number of itera-
tions is reached.

The honey source update formula of the basic artificial 
bee colony algorithm involves randomly searching for a 
new honey source around the target honey source, lead-
ing to slow convergence due to the overly blind search. In 
this paper, we borrow the variation operator from the dif-
ferential evolutionary algorithm and use the neighboring 
nectar sources as a guide when searching for new nectar 
sources. The improved nectar update formula searches 
more purposefully and has stronger local search ability. 
At the same time, the honey source fitness formula in 
this paper is improved. The fitness formula of the basic 
artificial bee colony algorithm sometimes does not truly 
reflect the goodness of honey sources, which seriously 
affects the optimization accuracy of the algorithm.

The improved fitness equation is as follows:

In the fitness formula, the reliability of the service 
mainly depends on the number of current service 
resources remaining in the assigned edge node Q, the 
number of services in the waiting queue W, and the 
latency of processing the task T and the energy con-
sumption required to perform that service E. Where α 
and β represent the weights of latency and energy con-
sumption, respectively (calculated using the entropy 
weighting method described above), with the closer to 
1 indicating the greater importance placed on them. 
The more the number of remaining services, the less 
the number of services waiting for the resource, the 

(28)fi =
αTi+βEi
1+Qi−Wi

Table 1 User-edge server satisfaction matrix

Terminal equipment Edge node

e1 e2 … en

u1 C11 C12 … C1n

u2 C21 C22 … C2n

⁝ ⁝ ⁝ ⁝ ⁝
um Cm1 Cm2 … Cmn

Table 2 Edge node matching matrix

Edge node e1 e2 … en

e1 M11 M12 … M1n

e2 M21 M22 … M2n

⁝ ⁝ ⁝ ⁝ ⁝
en Mn1 Mn2 … Mnn
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less the energy consumption of executing the service, 
and the less the delay of executing the service i.e., 
the higher the reliability of the service, the more the 
reliability formula improves the fitness formula, thus 
optimizing the efficiency of the search for an excellent 
honey source.

Assuming that there aren edge nodes, then at each 
edge node is equal to one nectar source, i.e., there are 
n number of offloading decision vectors generated. 
Xi = (x1, x2, . . . , xm) where xi = j denotes the terminal 
deviceui offloaded to the firstj edge node for process-
ing. In order to enable the artificial bee colony algo-
rithm to be applied to the task offloading problem 
in the CEE scenario, the following mapping relation-
ship needs to be established to represent the offload-
ing decision by the location of the nectar source, and 
transform the process of searching for the offloading 
decision into the process of searching for the nectar 
source by the artificial bee colony algorithm by using 
the Tent mapping to generate the initial population, 
which does not change the nature of randomness that 
is present at the time of initialization, but maintains 
the diversity of the initial population.

According to the chaotic sequence obtained from the 
above equation, mapping it to the range of values of 
the variable[1, n] to obtain the mapped population Xi 
The mapped population is obtained. Then the individu-
als in the search space are relocated to more promising 
regions through reverse learning to help the algorithm 
jump out of the local optimum:

Reverse learning is defined as follows: suppose 
Xi = (x1, x2, . . . , xm) is any point in the D-dimensional 
search space, and Xi ∈ [1, n], then Xi The inverse point 
of is defined as oXi = (ox1, ox2, . . . , oxm) where oxi is 
computed according to the following equation:

Based on the fitness function values simultaneously 
evaluate the current Tent mapping population and 
the reverse population and selects the more favorable 
n individuals as the initial population. In this way, the 
diversity of the initial population can be improved, thus 
accelerating the convergence of the algorithm.

(29)fitnessi =

{

1
1+f (Xi)

, f (Xi) ≥ 0

1+
∣

∣f (Xi)
∣

∣, otherwise

(30)xn =







xn−1
a , 0 ≤ xn−1 ≤ a

(1−xn−1)
1−a , a < xn−1 ≤ 1

x0 is a (0, 1) randomnumber

(31)oxi = 1+ n− xi

Improvements to the position updating formulae for 
employed bees are obtained:

where xgood is an elite individual, a randomly selected 
individual from the elite population that ranks in the top 
five in terms of fitness for everyone in the a0 offloading 
vector above.

where Xijmin is the least adapted individual in that nectar 
source.

According to the nature of the three types of bees, 
a two-bees search strategy is proposed, i.e., after the 
employed bees have found a nectar source, the position 
update is carried out through Eq. (32), due to the ran-
dom nature of the bee colony algorithm, a single ran-
dom position update is prone to make a premature fall 
into the local optimum. Therefore, this paper alters the 
position updating formula of the follower bees, and the 
follower bees carry out a local optimization of this nec-
tar source through Eq.  (33), thus preventing a prema-
ture falling into local optimum.

That is, the position update formula for the two-bees 
search is proposed using Eqs.  (32) and (33), after the 
hiring bees are updated, the following bees position 
update selects the individual with the smallest fitness 
in the current offloading decision, and the position 
update is carried out according to Eq.  (33), and the 
cycle is carried out sequentially until the number of 
iterations is reached.

When searching for a new nectar source, a greedy 
selection strategy is followed by first initializing the 
Vbest = X1:

After a certain number of iterations of optimiza-
tion, a set of offloading decision vectors Vbest is finally 
obtained, i.e., the service requests initiated by the ter-
minal devices are offloaded according to Vbest to satisfy 
the user’s needs.

Coding of SRA‑E‑ABCO in cloud‑edge‑end environments
In order to enable the artificial bee colony algorithm to 
be applied to the edge computing offloading problem, 
the following mapping relationship needs to be estab-
lished to represent the offloading decision by the loca-
tion of the nectar source, and the process of searching 

(32)Vij = Xij + ϕ
(

xgoodj − Xij

)

+ δ(Xik − Xvk)

(33)Vij = Xijmin + ϕ
(

Xijmin − Xvj

)

Vbest =

{

Vij ,Vij ≥ Vbest

Vbest ,Vij < Vbest
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for the offloading decision is transformed into the pro-
cess of searching for the nectar source by the artificial 
bee colony algorithm, so it is necessary to discretize 
the artificial bee colony algorithm.

The offloading decision vectors are coded for CEE 
environments based on M terminal mobile devices, 
N edge servers and 1 cloud server. That is, 0 is used to 
denote local computation, 1, 2…N denotes offloading to 
the corresponding numbered edge server computation, 
and N + 1 number denotes offloading to the cloud server 
computation. Discrete processing of the nectar initializa-
tion formulas (30) and (31) is obtained:

where Xi is the initialised population of [0, 1] obtained 
from the Tent mapping and inverse learning of Eqs. (30) 
and (31) above, which is mapped to between [0, N + 1] by 
the above formulae to apply to the task offloading of the 
cloud-side-end scenario. The final nectar Ai is obtained, 
and each nectar Ai represents an offloading decision 
vector with 1 row and M columns, and the values of the 
elements in the vector indicate the locations where the 
device needs to offload the tasks.

Similarly, the position update Eqs.  (32) and (33) are 
discretized so that their position updated values are also 
mapped between [0, N + 1].

Obtained by discretizing the position update Eq. (32):

Where 
[

Yij
]

 is the term in Eq. (35) other than Xij the other 
terms in Eq. (35), i.e., equal to the increment of displacement.

Obtained by discretizing the position update Eq. (33):

Since the range of Ai obtained by encoding the nec-
tar source is [0, N + 1], and φ and δ are both random 
numbers of [-1, 1], the range of [ Yij ] is [-N-1, N + 1]. 
If [ Yij] = 0, it means that the offloading is still in the 
original position, if [ Yij] > 0, it means that it is neces-
sary to move the computational position of the device 
backward by [ Yij ] bits, and then take the remainder of 
N + 2, and a loop structure is constructed to ensure 
that the update is still an integer of [0, N + 1]. If [ Yij
] < 0, then move [ Yij ] forward accordingly, as shown in 
Eqs. (35) and (36).

(34)Ai = Xi ∗ (N + 1)

(35)

Vij =

{ (

Xij +
[

Yij
])

%(N + 2),
[

Yij
]

≥ 0
(

Xij +
[

Yij
]

+ N + 2
)

%(N + 2), otherwise
[

Yij
]

= Xij + ϕ
(

xgoodj − Xij

)

+ δ(Xik − Xvk)

(36)

Vij =

{ (

Xij +
[

Yij
])

%(N + 2),
[

Yij
]

≥ 0
(

Xij +
[

Yij
]

+ N + 2
)

%(N + 2), otherwise
[

Yij
]

= Xij + ϕ
(

Xijmin − Xvj

)

Algorithm 1. SRA-E-ABCO

SRA‑E‑ABCO analysis
To validate the efficacy of the algorithm in high-dimen-
sional scenarios, experiments were performed in 30 and 
50 dimensions using three test functions obtained from 
IEEE CEC 2017. Among these, F1 represents a single-
peak function, while F8 and F9 represent multi-peak 
functions. The proximity of the algorithm’s optimiza-
tion outcomes to the optimal values of each test func-
tion serves as a measure of the algorithm’s optimization 
capability.

SRA-E-ABCO was compared with the classical ABC 
algorithm and the improved swarm algorithm GABC for 
experiments, setting 30-dimensional time Gmax = 1000 
times, 50-dimensional time Gmax = 2000 times, initialised 
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in a uniform way to ensure fairness, each algorithm 
solves the 3 test functions independently and records 
the final finding results. Repeat the above process for 30 
times and calculate the mean and standard deviation of 
the final optimization results of each algorithm on the 3 
test functions.

The results obtained are shown in Tables 3 and 4, where 
the data in Table 3 are the mean and standard deviation 
of the three optimization algorithms ABC, GABC, and 
SRA-E-ABCO after the optimization calculations on 30 
dimensions for the three test functions F1, F8, and F9 
respectively. The data in Table  4 shows the mean and 
standard deviation of the three optimization algorithms 
ABC, GABC, SRA-E-ABCO after optimization computa-
tion on 50 dimensions for the three test functions F1, F8 
and F9 respectively. The bolded part is the optimal value, 
and there are cases in the table where the values are the 
same but not bolded, which is because there is rounding 
when the data are counted by scientific notation, and the 
real value will be slightly larger than the bolded value. 
From the table, it is obvious that the improved swarm 
algorithm SRA-E-ABCO in this paper has achieved bet-
ter results on the data of the three test functions.

In the above two tables, the first column is the name 
of the function, columns 2–4 are the experimental data 
of the three optimization algorithms, column 5 is the 
minimum value of the three functions, and the last 
row is the number of times that the three optimization 
algorithms achieved the best experimental results. The 
experimental results show that at 30 dimensions SRA-
E-ABC is able to approximate the respective minima 
of the three test functions faster, but the advantage 
over the other two optimization algorithms is not very 
obvious. While at 50 dimensions, the advantage of 

SRA-E-ABC is gradually manifested with the increase 
of the number of dimensions and iterations, and after 
2000 iterations, SRA-E-ABCO is obviously closer to the 
convergence values of the three test functions.

The following convergence curve graph to show the 
convergence effect, because with the increase in the 
number of iterations, the function of the value of the 
jump is large, so through the lg function to shrink, so 
that it is easier to reflect the experimental effect from 
the line graph. As shown in the Fig. 3 below, the con-
vergence curves of F1 single-peak test function and 
F9 multi-peak test function in 30 and 50 dimensions 
respectively are shown. In this paper, to better demon-
strate the difference in convergence accuracy through 
the line graph, the maximum number of iterations is set 
to 0–8000 times. The experiments show that SRA-E-
ABCO has better optimal searching ability and is more 
advantageous for high-dimensional problems.

Experimental results and analysis
In this paper, we use IntelliJ IDEA Community Edition 
2022.3.1 for computational migration system model 
simulation construction of MEC to perform experimen-
tal simulation of the proposed SRA-E-ABCO method.

Datasets
The dataset selected for this paper is Kaggle Cloud-Fog 
Computing dataset in the official website, this dataset 
is generated by selecting 13 nodes and the number of 
tasks starts from 40 and increases in intervals of 40 
tasks and increases to 120, which also includes the 
details of the tasks and the details of the nodes.

Table 3 Comparison of 30-dimensional algorithm results (means ± std.)

Function ABC GABC SRA‑E‑ABCO Fmin

F1 1.95E-09 ± 2.24246E-09 8.77E-08 ± 1.07647E-07 1.20076E‑11 ± 4.62515E‑11 0

F8 -1.19E + 04 ± 1.80E + 02 -1.20E + 04 ± 1.65E + 02 ‑1.21E + 04 ± 1.38E + 02 -12,569.5

F9 1.221643497 ± 1.0480 4.10E-01 ± 5.16E-01 3.91E‑05 ± 0.00010177 0

Best 0 0 3

Table 4 Comparison of 50-dimensional algorithm results (means ± std.)

Function ABC GABC SRA‑E‑ABCO Fmin

F1 1.23E-11 ± 1.9111E-11 6.32E-09 ± 1.27068E-08 3.08E‑14 ± 7.18437E‑14 0

F8 -1.99E + 04 ± 1.10E + 02 -2.01E + 04 ± 1.71E + 02 ‑2.03E + 04 ± 1.66E + 02 -20,949.5

F9 1.428443 ± 1.112589 0.95233338 ± 0.493758465 4.84E‑07 ± 4.817E‑07 0

Best 0 0 3
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Baseline schemes
To evaluate the performance of the proposed computa-
tional offloading strategy, we introduce the following six 
baselines:

• Only in Local (OL): the mobile device performs 
all computing tasks locally at the highest CPU fre-
quency.

• All offloaded to edge node execution (All in MEC, 
AM): all computational tasks are fully offloaded to 
the edge servers for execution without executing any 
tasks on the end devices and cloud servers.

• Greedy Computation Offloading (GCO) [28]: the 
mobile device selects the least costly execution for 
each computational task based on execution delay 
and transmission delay.

• Deep neural network-based offloading methods 
(DNN models, DNNs) [29]: use learning between 
multiple deep neural networks (DNNs) to gener-
ate task offloading policies, and rank and reasonably 
allocate resources based on the principle of stack.

• Directed Artificial Bee Colony Algorithm (DABC) 
[30]: temporarily searching for a solution during 
the hiring and following bee phases and providing a 
solution to the ABC algorithm provides directional 
information and explores 20% of the surrounding 
neighborhood nectar sources, synergizing the com-
putational resources at the edge end.

Experiments are conducted to investigate the effects 
of different number of tasks on the system latency 
and overall overhead, different number of edge nodes, 

Fig. 3 Convergence plot of test function curves
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incremental increase in data volume of end tasks and 
incremental increase in CPU frequency of edge servers 
on the overall system latency and overhead.

Experimental parameter settings
In this paper, we consider CEE environments with Macro 
Base stations (MBS), several Small Base stations (SBS) 
and a data cloud center within a certain range, and each 
SBS deploys a MEC server with moderate computing 
power. Without loss of generality, the number of SBS is 
set to 10–30, that is, there are 10–30 MEC servers. This 
paper considers a certain number of users through the 
macro station unified offloading to the corresponding 
MEC server, and ignore the delay of offloading tasks from 
terminal devices to the macro base station, and the delay 
of the macro base station to each edge server is different. 
The main parameters are shown in the Table 5:

Results and analysis
The experiment first compares the impact of offloading 
latency and overall system overhead for different num-
bers of tasks in several task offloading methods.

As shown in Fig. 4, the offloading delay of all six meth-
ods increases by different magnitudes as the number of 
tasks increases from 40 to 120, and it can be seen from 
the figure that the other four methods are significantly 
better than the OL and AM methods. Among the six 
methods, the offloading delay of the OL method is par-
ticularly large, and the increase of the offloading delay 
of the OL method is the largest with the increase of the 
number of tasks, which is because all its tasks are pro-
cessed locally on the terminal device and are limited by 
the CPU computation frequency of the terminal device, 

so the overall offloading performance of the OL method 
is the poorest. The AM method is to offload all the tasks 
from the terminal device to edge nodes for execution, 
and he makes full use of the rich computing resources 
of edge nodes, so the latency of processing tasks is much 
lower than that of OL. GCO offloads the tasks to the edge 
nodes that have the smallest computation time for com-
pleting the computation, and because of the different pri-
orities of the tasks, it will result in the waiting time of the 
tasks with low priority being too long, but because the 
number of tasks in the latency scenario of this paper is 
not a large number of tasks, the waiting latency for the 
tasks with low priority is not very long.

This is also the advantage of GCO in this scenario. 
DNNs method has a slightly higher system overhead 
when the number of tasks is 120 since the task latency is 
supposed to be smaller in the single base station multi-
user scenario, and since it self-predicts the task offload-
ing labels with a slight error. When the number of tasks 
is small, its offloading efficiency is higher, and as the 
number of tasks gradually increases, the error gradually 
increases. The DABC method is a nectar source directed 
exploration algorithm with better optimization capability, 
which fully coordinates the computational resources of 
end devices and edge nodes in this scenario, but its opti-
mization capability is slightly worse compared to SRA-E-
ABCO because it only explores 20% of the surrounding 
nectar sources. The SRA-E-ABCO method in this paper 
shows high performance with different number of tasks, 
and its advantage is more obvious as the number of tasks 
increases.

Figure 5 shows the effect of different number of tasks 
on the overall overhead of the system, the overall over-
head is mainly a blend of delay and energy consumption. 
With the increase of the number of tasks, the overall 

Table 5 Basic simulation parameters

Parameter Value

m Number of terminal devices [40, 120]

n Number of edge nodes [10, 30]

g
j
i

Channel gain 127+ logd

C The number of CPU cycles requested by the service [0, 1]

N0 Noise power in uplink bandwidth 2× 10−13

W System bandwidth 15 MHz

Pi Terminal transmission power 1w

Tmax
i Maximum time delay 1–3 s

f ser Terminal equipment processing capability 4–8 GHz

fedge Processing power of the edge server 16–24 GHz

fcloud Processing power of the cloud center 30 GHz

ci Terminal device CPU energy coefficient 10−25

ki Edge server CPU energy coefficient 10−26

α Learning rate 0.0001

Fig. 4 Plot of offloading delay for different number of tasks
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system overhead of the six methods is increasing, but 
the increase is different in which the OL method has the 
largest increase in overhead; the other five methods can 
be clearly seen in this paper, the SRA-E-ABCO method 
has the smallest increase, the GCO can have a better per-
formance in the delay above, but it ignores the impact 
of the energy consumption on the overall overhead, in 
this paper, the SRA-E-ABCO method integrates the off-
loading delay and the energy consumption to achieve a 
certain advantage in the overall overhead of the system. 
The SRA-E-ABCO method in this paper considers the 
offloading delay and energy consumption and achieves a 
certain advantage in the overall overhead of the system.

At a task number of 40, the data volume size of the 
offloaded tasks is gradually increased. Figure  6 shows 
the change in the overall system overhead from a 20% 
increase in the task data volume size to an 80% increase. 
Since under the OL method, the end device will only 
process one task for a period of time, its overall system 
overhead increases with a positive correlation trend 

as the task data volume increases. The performance 
of the two methods, GCO and AM, is more similar, 
and the greedy strategy always offloads the tasks to the 
edge servers with higher CPU computation frequency, 
and its drawback, i.e., the waiting latency, is gradually 
revealed as the task data volume increases, so the GCO 
has the largest increase in system overhead when the 
data volume increases to 80%.The prediction accuracy 
of DNNs decreases when the task data volume increases 
because there are fewer tasks with similar data volume 
in the training dataset in its training model, so its sys-
tem overhead increases more when the task data volume 
increases. The DABC method explores the surrounding 
during the search of nectar 20% of the neighborhood 
and then optimizes the offloading strategy, and the fol-
lowing bee will replace the offloading node with the 
least adapted one, which is also the task with the high-
est offloading latency, so its offloading overall overhead 
is better than the other baseline methods. Finally, under 
this paper’s SRA-E-ABCO method, the overall overhead 
of the system grows steadily, which indicates that this 
paper’s method effectively synergizes the computational 
resources of the cloud, edge, and end, and by improving 
the bee colony algorithm and considering both latency 
and energy consumption, an efficient offloading decision 
is formulated, so this paper’s algorithm outperforms the 
other five baselines.

At a task number of 40, the number of edge nodes is 
gradually increased. Figure  7 shows the change in the 
overall overhead of the system for increasing the num-
ber of edge nodes from 10 to 30. Since OL is always 
processed locally at the end device, the increase in the 
number of edge nodes has no effect on its overall over-
head. The AM method offloads all the tasks to the 
edge nodes for processing, and since the waiting delay 

Fig. 5 System overhead graph for different number of tasks

Fig. 6 System overhead diagram for incremental task data volume Fig. 7 System overhead graph for different number of edge nodes
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decreases with the increase in the number of edge nodes, 
there is a certain reduction in the overall system over-
head of the AM method. The GCO method always seeks 
for edge nodes that have a high CPU computation fre-
quency node, so there is a corresponding increase in the 
transmission energy consumption of the edge nodes that 
may be increased, so there is a corresponding increase 
in the overall overhead of GCO. the DABC method only 
explores 20% of the neighborhood each time it explores 
the nectar, in its algorithm, the edge nodes are the nec-
tar, so when the number of edge nodes increases that 
is, when the nectar becomes more, its optimization 
efficiency will be unstable, so there is an increase and 
decrease in its system overhead.

As shown in Fig. 8, in the case of constant number of 
tasks and gradual increase in the CPU frequency of edge 
servers, excluding the OL offloading method, the rest 
of the methods show an overall decreasing trend. the 
AM method, due to offloading all the terminal tasks to 
the edge servers, has a gradual edge-smaller offloading 
latency with the increase in the edge servers’ processing 
power, but with higher randomness. the GCO and DABC 
have no significant advantage in the case of increasing 
edge servers’ CPU frequency increment, the advantages 
of the two methods are not obvious, GCO favors edge 
servers with higher CPU frequency, resulting in higher 
transmission delay, so the offloading delay decreases by 
a smaller margin, while DABC cannot reflect its advan-
tages when the number of tasks is small due to its explo-
ration of 20% of the nectar sources. DNNs and this 
paper’s SRA-E-ABCO, in the case of changing only the 
CPU frequency of edge servers, the advantage is more 
obvious, since DNNs trains the model based on task 
attributes, changing the edge server CPU frequency does 
not degrade its training model performance, whereas in 

this paper SRA-E-ABCO has a slight reduction in opti-
mization ability when the edge server CPU frequency is 
incremented due to considering both latency and energy 
consumption, but overall it is able to reduce the offload-
ing latency.

Finally, the SRA-E-ABCO method in this paper per-
forms a service reliability analysis of the offloaded tasks 
before task offloading, and combines the obtained elite 
population with the improved bee colony algorithm 
for updating, all of which have a better optimization of 
the offloading strategy with comprehensive considera-
tion of latency and energy consumption, but since some 
of the tasks are predicted to be processed at the end 
device before offloading, the increase in the number of 
edge nodes SRA-E-ABCO also only has a small advan-
tage, but from other angles of analysis, it is necessary to 
make predictions about whether to offload or not before 
offloading.

Conclusion
We propose a service reliability analysis method (SRA) 
and a terminal task offloading method (E-ABCO) for 
CEE environments. The SRA method combines terminal 
devices task attributes, and edge node histories to predict 
offloading and comprehensively analyses the reliability of 
offloading for terminal tasks. E-ABCO method improves 
the traditional bee colony algorithm on initialization 
population, position update formula and fitness formula. 
It also fuses the reliable offloading vectors analyzed by 
the SRA model as an elite population, and finally com-
pletes the offloading of terminal tasks.

Our current work primarily focuses on analyzing the 
characteristics of stationary terminal devices to solve task 
offloading in CEE environments. However, the assump-
tion of static data is limited in the real application sce-
narios, and acquiring dynamic user attributes, such as 
mobile trajectories and user preferences, is more chal-
lenging compared with getting static device information. 
Our future work will include the exploration of predict-
ing users’ mobile trajectories and leveraging collabora-
tion between edge nodes for task offloading.
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