
Jiao et al. Journal of Cloud Computing (2024) 13:58
https://doi.org/10.1186/s13677-024-00622-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

SRA‑E‑ABCO: terminal task offloading
for cloud‑edge‑end environments
Shun Jiao1, Haiyan Wang1,2* and Jian Luo1 

Abstract 

The rapid development of the Internet technology along with the emergence of intelligent applications has put
forward higher requirements for task offloading. In Cloud-Edge-End (CEE) environments, offloading computing tasks
of terminal devices to edge and cloud servers can effectively reduce system delay and alleviate network conges-
tion. Designing a reliable task offloading strategy in CEE environments to meet users’ requirements is a challenging
issue. To design an effective offloading strategy, a Service Reliability Analysis and Elite-Artificial Bee Colony Offloading
model (SRA-E-ABCO) is presented for cloud-edge-end environments. Specifically, a Service Reliability Analysis (SRA)
method is proposed to assist in predicting the offloading necessity of terminal tasks and analyzing the attributes
of terminal devices and edge nodes. An Elite Artificial Bee Colony Offloading (E-ABCO) method is also proposed,
which optimizes the offloading strategy by combining elite populations with improved fitness formulas, position
update formulas, and population initialization methods. Simulation results on real datasets validate the efficient
performance of the proposed scheme that not only reduces task offloading delay but also optimize system overhead
in comparison to baseline schemes.

Keywords  Cloud-edge-end, Terminal device, Service reliability, Bee colony algorithm, Task offloading

Introduction
With the rapid advancement of Internet technology,
there has been a significant increase in the number of
User Equipments such as smartphones, tablets, and port-
able devices. According to a report published by Cisco
[1], it is predicted that the number of User Equipments
connected to the network has reached 13.1 billion by the
end of 2023. Although the performance of User Equip-
ments in computing power, battery life, and memory
capacity has been improving continuously, it cannot
meet the computational demands of latency-sensitive
and computing intensive applications. As a result, there
arises a necessity to offload computing tasks from User

Equipments to the cloud center or edge servers located
nearby to minimize system delay.

Cloud-edge-end (CEE) converged computing is a prom-
inent computing paradigm resulting from the advance-
ment of big data [2]. It encompasses various computing
forms to create a unified architecture that incorporates
end devices, edge nodes, and the cloud computing center.
This architecture efficiently handles computationally
demanding and time-sensitive tasks by offloading them
from low-capacity and energy-constrained end devices to
the edge of the network. To minimize latency and energy
consumption on end devices, computation offloading
strategies are employed in the cloud-edge-end scenario.
Currently, researchers primarily focus on addressing the
mismatch between application demands and end device
capabilities in CEE environments. The core concept
involves deploying edge servers in the neighborhood to
terminal devices and offloading users’ tasks to these serv-
ers, which possess computational and storage resources
for processing. However, in the CEE scenario, the lack of

*Correspondence:
Haiyan Wang
wanghy@njupt.edu.cn
1 School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
2 Jiangsu Key Laboratory of Big Data Security and Intelligent Processing,
Nanjing 210023, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00622-y&domain=pdf

Page 2 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

an effective task offloading strategy not only hinders the
benefits of CEE collaboration but also compromises ser-
vice reliability. Therefore, it is crucial to investigate task
offloading methods that prioritize service reliability in
CEE scenarios, with the key aspect being the formulation
of effective offloading strategies.

However, there are still some problems in traditional
task offloading methods. First, these methods lack reli-
able predictions for determining whether tasks need to
be offloaded from the terminal device. Second, they fail
to consider the correlation between edge nodes, resulting
in low offloading reliability. Finally, existing methods do
not thoroughly analyze the relationship between histori-
cal processing records of nodes and task types, leading
to inefficient offloading strategies. For instance, tradi-
tional heuristic algorithms only consider node processing
capacity and load, disregarding important indicators such
as energy consumption and reliability. These problems
will lead to inefficient offloading results.

To address these issues, this paper proposes an effi-
cient and low-latency task offloading strategy. This strat-
egy combines the analysis of offloading reliability and
the optimization of bee colony algorithms to minimize
energy consumption and reduce system delay. The main
contributions of this paper are as follows:

1.	 A service reliability analysis (SRA) method for cloud
edge-end environments is proposed, which first pre-
dicts whether an end task is offloaded or not by the
attributes of the end device using the Logistic Regres-
sion model (LR) and then uses the historical process-
ing data of each edge node, combined with the task
attributes to construct a correlation matching matrix.
By analyzing the matrix, a set of offloading decision
vectors is obtained to provide relevant parameters
for subsequent terminal task offloading decisions.

2.	 An offloading decision formulation method (Elite-
Artificial Bee Colony Offloading, E-ABCO) is pro-
posed, which continuously optimizes the offloading
decision scheme by improving the fitness formula
and the position update formula and improves the
offloading efficiency and success of the terminal task
offloading by means of cross-honey search.

3.	 A series of comparison experiments are con ducted
on public datasets in Kaggle,1 comparing the offload-
ing schemes formulated by the proposed algorithm
with those of local offloading, all offloading, greedy
algorithm-based offloading, deep neural network
model-based offloading, and directional bee colony

algorithm offloading, and verifying the validity of the
model proposed in this paper.

Related work
Task offloading
Gao et al. [3] proposed a cloud-edge cooperative archi-
tecture based on Lyapunov optimization theory, which
reduces the problem to a constrained optimization prob-
lem by establishing a dynamic queueing model of cloud
computing servers and edge computing servers and
combining the system power function to form a drift
plus penalty function framework. Li et al. [4] proposed
a multi-objective strategy based on Biogeographic Opti-
mization (BBO) algorithm and constructs a time-energy
model and a cost model for task offloading, based on
which the BBO algorithm is introduced into task offload-
ing for MEC to solve the multi-objective optimization
problem. Zhang et al. [5] proposed a multi-user, multi-
computing task offloading scheme based on mobile cloud
computing and mobile edge computing that minimizes
energy consumption and latency through differential
evolutionary algorithms and provides optimal computa-
tional task offloading decisions. Liu et al. [6] proposed a
DVR-minimizing computational offloading scheme with
task migration and merging with the goal of minimiz-
ing the system deadline rate (DVR), constructs an overall
directed acyclic graph (DAG) for all current dependent
tasks, develops a migration-enabled multi-prioritized
task ranking algorithm that creatively introduces multi-
ple task prioritization metrics and determines the opti-
mal order in which tasks should be executed, and, finally,
develops a learning algorithm based on the Deep Deter-
ministic Policy Gradient (DDPG) for finding the optimal
offloading strategy. Ai et al. [7] designed a smart collabo-
rative framework scheme, establishes a theoretical model
including a Hierarchical Spatial–Temporal Monitoring
(HSTM) module and a fine-grained resource scheduling
(FRS) module, applies a hybrid deep learning algorithm
to the monitoring module from the Spatial–Temporal
dimension, and in addition, adopts a hybrid game and
improves the queuing theory to improve the offloading
efficiency of the FRS module. Li et al. [8] utilized mobile
edge computing and deep learning to decompose a con-
volutional neural network-based encoder-decoder model
and deploy the encoder on the edge server to extract
features of the task and derive user tolerance limits at
the edge server by using a linear regression model in
order to further improve the quality of user experience.
Liu et al. [9] calculated the optimal task allocation ratio
by a mathematical analysis method with the objective
of minimizing the processing delay, and then uses the
Lagrangian Dyadic (LD) method to obtain the optimal
task offloading and resource allocation policy. Lv et al.

1  Kaggle’s official website: https://​www.​kaggle.​com/​datas​ets/​sachi​n26240/​
vehic​ularf​ogcom​puting

https://www.kaggle.com/datasets/sachin26240/vehicularfogcomputing
https://www.kaggle.com/datasets/sachin26240/vehicularfogcomputing

Page 3 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

[10] studied the mobile edge computing task offload-
ing problem under dependency and service caching
constraints and proposed a table-based task offloading
algorithm to optimize the maximum completion time
and energy consumption by predicting the impact of off-
loading decisions. Ko et al. [11] proposed a belief-based
task offloading algorithm (BTOA), in which the vehicle
selects the target edge cloud and subchannels based on
its beliefs and observes its current resource and channel
conditions, and based on the observed information, the
vehicle ultimately determines the most appropriate edge
cloud and subchannels. Gao et al. [12] proposed a hier-
archical computational partitioning strategy for DNNs,
which divides the tasks of each MD into subtasks, Sec-
ond, we develop a latency prediction model for DNNs to
characterize the computational latency of the MDs and
each subtask on the server. Third, we design a slot model
and a dynamic pricing strategy for the server to efficiently
schedule the offloaded subtasks. Fourth, we jointly opti-
mize the design of task partitioning and offloading to
minimize the cost of each MD in terms of computa-
tion latency, energy consumption, and price paid to the
server. Yilin et al. [13] carried out in-depth research on
the research progress of computational offloading in
mobile edge computing, summarizes and generalizes two
types of traditional task methods and intelligent methods
based on online learning, and analyzes and compares the
traditional computational offloading based on heuristic
algorithms from the minimization of latency time, mini-
mization of energy consumption, and trade-off between
time and energy consumption with three different opti-
mization objectives.

Li et al. [14] proposed a new multi-objective strategy
based on the biogeography-based optimization (BBO)
algorithm. In this strategy, a time-energy consumption
model and a cost model are constructed for task offload-
ing firstly. Based on these models, the BBO algorithm
is introduced into task offloading for MEC to solve the
problem of multi-objective optimization. Gao et al. [15]
proposed a cloud-edge collaboration architecture, then
by establishing the dynamic queue model of cloud com-
puting server and edge computing server, and combin-
ing with the system power function to form a drift plus
penalty function framework, the problem is reduced to a
constrained optimization problem.

Service reliability
Tang et al. [16] proposed a heuristic greedy reliability
and cost-aware job scheduling (RCJS) algorithm, which
mainly addresses the problem of high service cost due
to multiple replications caused by reliability enhance-
ment techniques. Li et al. [17] investigated the problem
of providing reliable VNF service provisioning in Mobile

Edge Cloud (MEC) networks, proposes a new VNF ser-
vice reliability problem and develops an effective online
algorithm through primary and backup VNF instance
placement and primitive pairwise updating techniques,
and experimentally demonstrates the algorithm’s prom-
ising nature. Li et al. [18] investigated the problem of
providing reliable VNF services in mobile edge comput-
ing environments by providing primary and backup VNF
instances to satisfy the reliability requirements of the
users, and two efficient online scheduling algorithms are
developed for the problem under two different backup
scenarios, onsite (local) and offsite (remote), by using
both primal and dual update techniques. Zhang et al.
[19] proposed a new logistic function based Service Reli-
ability Probability (SRP) estimation model which does
not specify the distribution of resource requirements,
investigates the Average SRP Maximization Problem
(ASRPMP) in VM-based Edge Computing Servers (ECSs)
by jointly optimizing the Service Quality Ratios (SQRs)
and computational resource allocations, and proposes an
Alternative Optimization Algorithm (AOA) transformed
into a Resource Allocation Problem (RAP) and a Service
Quality Control Problem (SQCP) by decomposing the
problem. Yu et al. [20] proposed a new Hierarchical Intel-
ligent Memory Fault Prediction (HiMFP) framework that
predicts UCEs at multiple levels of a memory system and
correlates it with memory recovery techniques that uti-
lize CE addresses at multiple levels of memory (especially
at the bit level) and constructs machine learning models
based on spatial and temporal CE information. Luo et al.
[21] introduced a fail-safe software design for a layered
protection and validation perspective based on root
cause analysis of more than 800 cloud reliability prob-
lems using an example of a hyperscale platform software,
Intel Media Driver. Hu et al. [22] obtained the closed net-
work reliability as a polynomial expression of link relia-
bility using the Hop-State Algorithm (HSA) based on the
Markov model. Jia et al. [23] formulated the service func-
tion chain scheduling problem in 5G networks support-
ing Network Functions Virtualization (NFV) as mixed
integer nonlinear programming with the objective of
maximizing the number of requests that satisfy the delay
and reliability constraints, proposes an efficient algo-
rithm to determine the redundancy of the VNFs while
minimizing the reducing the delay, and using state-of-
the-art reinforcement learning techniques to learn SFC
scheduling policies to improve the success rate of service
function chain requests.

Optimization algorithms
Fu et al. [24] proposed a genetic hybrid algorithm based
on particle bee colony optimization, which divides the
particle population of each generation, and uses the

Page 4 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

swallowing mechanism and cross mutation of the genetic
algorithm to change the position of the particles in the
subpopulation, so as to expand the search range of the
solution space; and then merges the subpopulations,
which ensures the diversity of the particles in the popula-
tions, and reduces the probability of the algorithm fall-
ing into the local optimal solution; finally, the feedback
mechanism will feedback the flight experience and the
accompanying flight experience of the particles to the
next generation particle population, so as to ensure that
the particle population can always move towards the
optimal solution. Finally, using the feedback mechanism,
the flight experience of the particles themselves and the
accompanying flight experience are fed back to the next
generation of particle populations, to ensure that the par-
ticle populations can always move forward in the direc-
tion of the optimal solution. Rizvi et al. [25] proposed
an algorithm named MFGA (Modified Fuzzy Adaptive
Genetic Algorithm) to minimize makespan and improve
resource utilization under deadline and budget con-
straints, and a fuzzy logic controller is designed to con-
trol the crossover rate and the mutation rate to prevent
the MFGA from getting stuck in local optima. Senthil
et al. [26] proposed a task allocation algorithm based on
Cat Swarm Optimization and BAT algorithm. The BAT
algorithm helps the CSO algorithm to get rid of the pre-
convergence problem. Gai et al. [27] proposed a heuris-
tic elastic PSO algorithm, which adopts the A* algorithm
to provide global guidance for path planning of large-
scale grids. The elastic PSO algorithm utilizes contrac-
tion operations to determine the globally optimal paths
formed by locally optimal nodes, so that the particles can
converge quickly, and the particle diversity is ensured by
the rebound operation in the iterative process.

To sum up, existing research on task offloading pays
more attention to whether tasks can be decomposed
into subtasks and how many tasks should be offloaded.
Considering the performance limitations of the termi-
nal devices, how to offload their tasks to an appropriate
server with abundant resources is a challenging problem.
Especially, how to predict the offloading necessity of ter-
minal tasks in advance and how to formulate an effective
offload strategy according to the attributes of terminal
devices and edge nodes are also challenging issues. This
is exactly the research work of this paper.

System model
This section describes the general task offloading archi-
tecture for CEE collaboration. As shown in Fig. 1, the
CEE system architecture includes the cloud center layer
on top, the edge server layer in the middle, and the end
layer at the bottom.

(1)	 Cloud center layer: The cloud center layer com-
prises a cloud computing center consisting of
centralized cloud servers located at a significant
distance from the local equipment. These cloud
servers possess abundant computing resources and
offer rapid task response times. However, due to
the distance factor, there exists a certain round-trip
transmission delay for the transmission of comput-
ing results.

(2)	 Edge Layer: The Edge Layer is an edge cluster con-
sisting of dispersed fixed-point edge servers close
to the local equipment; edge server computing
power and resources are weaker than cloud servers,
but the advantage in transmission delay is obvious.
There is an overlap in the communication coverage
of edge servers within the coverage area of a single
base station; one edge server is set up next to each
base station, the number of which is all n. The set of
edge servers Edge = {E1,E2, . . . ,En}.

(3)	 End layer: The end layer consists of many local ter-
minal devices, which run computationally intensive
applications or delay-sensitive applications and are
limited in computational and storage resources due
to the constraints of hardware, computing power,
energy consumption, and other factors. The same
end device may be within the communication range
of different mobile edge servers. The set of end
devices UE = {U1,U2, . . . ,Um}

Under the CEE collaborative computation offloading
system architecture, the local terminal device can choose
to keep the computation task running at the local device,
offload it to the edge server in the edge layer for execu-
tion, and offload it to the central cloud for execution.

We assume that a server can process several differ-
ent types of tasks simultaneously. The main scenario in
this paper has multiple edge nodes, a cloud center, and
a macro base station, while terminal devices are over-
laid around the macro base station, and users can offload
tasks by uploading them to the macro base station. The
macro station can receive multiple task requests at the
same time because the macro station is a transit station,
which facilitates users to offload their tasks to edge nodes
and the cloud center.

Problem formulation
The system has a total of M terminal devices, each of which
initiates a service request, and all tasks can be offloaded and
scheduled. Each request T is described by three parameters
(L,C,D), L denotes the amount of data (in bits) required to
process the terminal task, C denotes the number of CPU
cycles required to process each unit of data for that termi-
nal task, and D denotes the maximum tolerable delay for

Page 5 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

that task. Each node is described by the two parameters
(

f ser ,mser
)

 , f ser denotes the processing power of the node
and mser denotes the remaining memory of the node.

In this paper, we focus on the case where the terminal
devices have limited computational resources and each ter-
minal task cannot be further divided, each terminal device
is equipped with only one antenna and can only transmit
one terminal task at a time; all users share the system trans-
mission bandwidth equally; therefore, the rate at which the
terminal device transmits the task T to the edge node is
denoted as:

where the total transmission bandwidth is W and p
denotes the transmission power of the end-device off-
loading task T to the edge server. gji is the channel gain of
the end-device and the edge server. N0 is the noise power
spectral density. Each task can choose to be executed

Taski = (Li,Ci,Di)

Edgei = f seri ,mser
i

(1)ri,j =
W
n log2

(

1+
pg

j
i

W
n N0

)

locally or offloaded to the edge server or the cloud center
for execution, therefore, we introduce an offloading deci-
sion variable V=

{

vi,j
}

 to represent the task offloading
situation. Set the number of cloud center and n edge
servers to {0,1, …, n}:

If vi,j is 1 and j is 0, it is offloaded to the cloud center. If vi,j
is 1 and j is not 0, it is offloaded to an edge server.

All edge devices are randomly and uniformly distributed
next to the base station, and the distance obeys a uniform
distribution L ∼ Unif ([lmin, lmax]) , the total frequency of
the edge server is Fi , the frequency assigned to the edge
device Ui is f seri  , and the local CPU frequency of the user
Ui is f useri  , and the CPU frequency of the cloud center is
fcloud.

End Devices Ui Tasks initiated Ti at the execution time at
the edge server is expressed as tedgei,j :

(2)vi,j =

{

1 Perform task offloading
0 Task local execution

(3)t
edge
i,j =

Ci
f seri

Fig. 1  System model

Page 6 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

The local execution time of task Ti is expressed as tlocali :

The cloud execution time of task Ti is expressed as tcloudi,0 :

The transfer time of the task Ti offloaded to the edge
server is expressed as ttrani,j :

The transfer time of the task Ti offloaded to the edge
server is expressed as ttrani,0 :

The transmission energy consumption of task Ti
offloaded to the edge server is expressed as etrani,j :

The transmission energy consumption of task Ti
offloaded to the cloud center is expressed as etrani,0 :

The local execution energy consumption of task Ti is
represented as elocali :

Of which ci is the terminal device Ui ’s effective capaci-
tance factor, which depends on the chip architecture of
the CPU.

The edge execution energy consumption of task Ti is
expressed as eedgei,j :

The cloud execution energy consumption of task Ti is
expressed as ecloudi,0 :

Then the total delay consumption of the whole offload-
ing model system can be expressed as the sum of the delay
of the task performing local computation and the delay of
the task performing offloading, i.e., it is expressed as T:

(4)tlocali =
Ci
f useri

(5)tcloudi,0 =
Ci

fcloud

(6)ttrani,j =
Li
ri,j

(7)ttrani,0 =
Li
ri,0

(8)etrani,j = ttrani,j p

(9)etrani,0 = ttrani,0 p

(10)elocali = cif
user
i

2Ci

(11)e
edge
i,j = kif

ser
i

2Ci

(12)ecloudi,0 = kcloudf
ser
i

2Ci

(13)
T = max

{

(1− xi,j
)

tlocali + xi,j

(

ttrani,j + t
edge
i,j

)

+xi,0

(

ttrani,0 + tcloudi,0

)

}

Similarly, the total system energy consumption is
expressed as E:

The mathematical model described in this paper is a
constrained joint optimization problem to optimize the
offloading decision, offloading scheduling under the
condition of limited server resources. Therefore, the
optimization objective equation of the model can be
expressed as:

α, β is calculated by entropy weighting method based
on the historical processing data of the edge nodes, and
α + β = 1

The objective function Eq. (15) represents a linear
combination of system latency and energy consump-
tion. Constraint (16) states that the computational pro-
cessing power of the end device should not exceed the
frequency of the edge server. Constraint (17) specifies
that a task can only be offloaded to a single edge server.
Constraint (18) indicates that the total latency of an
endpoint task should not exceed its maximum tolera-
ble latency, and if it exceeds, it should be offloaded to a
cloud center for processing. Constraint (19) states that
the amount of data of a pending task on a node should
not exceed the remaining memory of that node. Prob-
lem (15) can be solved by finding the optimal offload-
ing decision. However, the offloading decision vector
V represents a feasible set of binary variables, and the
objective function represents a non-convex problem. In
this paper, we propose a joint solution to the offload-
ing decision problem on terminal devices by combining
service reliability analysis method and an improved bee
colony optimization method.

(14)
E =

m
∑

i=1

(1− xi,j)e
local
i,j + xi,j

(

e
edge
i,j + etrani,j

)

+xi,0

(

ecloudi,0 + etrani,0

)

(15)minW = αT + βE

s.t.

(16)f seri,j ≤ Fi

(17)vi,j ∈ {0, 1}

(18)Ti ≤ Di

(19)FQueuei ≤ mser
i

Page 7 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

Algorithm implementation
In this section, we first propose the system model of a
Service Reliability Analysis and Elite-Artificial Bee Col-
ony Offloading. Then, we describe SRA and E-ABCO in
detail.

SRA‑E‑ABCO model
The bee colony algorithm is utilized as an optimization
method to determine the best offloading solution for
tasks by constructing an optimization model (shown
in Fig. 2) that meet user needs and system reliability
requirements. The model comprises two significant
components: (a) Service Reliability Analysis (SRA): This
component takes the service request of the end device
as input and generates a set of offloading decision vec-
tors, known as the elite population, as output. It predicts
whether the end task should be offloaded or not through
the LR model. Subsequently, it calculates the correlation
degree between the edge nodes and the matching degree
of the end device with the edge node. This calculation
employs the service processing records stored in the
edge nodes to derive a set of offloading vectors for the
elite population. (b) Elite-Artificial Bee Colony Offload-
ing (E-ABCO): This component takes the elite popula-
tion obtained from the service reliability analysis method
as part of the input and yields the optimal offloading

decision vectors as output. The population is initialized
using inverse learning and tent mapping techniques. Fur-
thermore, the location update formula is enhanced by the
elite population, and the adaptation formula incorporates
delay and energy consumption considerations to ensure
load balancing among nodes. Ultimately, this process
yields a set of optimal offloading decision vectors.

Service Reliability Analysis (SRA)
As shown in Fig. 2a, this method first employs the
LR model in machine learning to model and predict
whether a task on the corresponding end device should
be offloaded or not. Subsequently, it obtains a set of reli-
able offloading decision vectors by conducting reliability
analysis on the surrounding edge servers available for off-
loading. The LR model and the service reliability analysis
are detailed below.

The logistic regression model is essentially a modified
maximum likelihood estimation model with a binomial
categorical dependent variable. When offloading tasks
from a terminal device for classification purposes, it
is common to use the decision of whether to offload or
not as the dependent variable (0 indicates not to offload,
while 1 indicates to offload). The attributes of the termi-
nal device, such as CPU utilization, memory utilization,
remaining power, and network bandwidth, serve as the
independent variables, represented as x = (x1, x2, x3, x4).

Fig. 2  SRA-E-ABCO Model

Page 8 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

The training dataset in this paper is based on the Kag-
gle real dataset of cloud-fog computing from the official
website. The dataset is binary classified (offloaded and
not offloaded) by unsupervised learning to provide the
training dataset for the LR model. Finally, we get the
training dataset as x = (x1, x2, x3, x4, x5) , where x1 is the
CPU utilization, x2 is the memory utilization, x3 is the
remaining power, x4 is the network bandwidth, and x5 is
a label indicating whether the task needs to be offloaded
to the cloud for processing. The value is 0 or 1, where
0 means that the task is computed locally on the end
device, and 1 means that the task needs to be offloaded.

When making task offloading decisions, in addition
to considering service reliability, we also need to con-
sider the resource utilization of the terminal device.
For this reason, we can predict whether the task should
be offloaded to the cloud for processing by analyzing
attributes such as CPU utilization, memory utilization,
remaining power, and network bandwidth of the end
device. The following section describes how to make pre-
dictions using the LR model. LR, or Logistic Regression,
is a probability-based classification algorithm that can be
employed for predicting binary classification problems.
In this paper, we aim to predict whether a task should be
offloaded to the cloud for processing or not using the LR
model. The prediction formula for the LR model is pro-
vided below:

where θ is a model parameter, x is a sample feature vec-
tor, and g(z) is a sigmoid function with the expression:

When performing model training, we need to define
the loss function. In the LR model, the commonly used
loss function is the logarithmic loss function with the
expression:

where m is the number of samples, y is the sample label,
and hθ (x) is the model prediction value.

For model training, we need to use the gradient descent
algorithm to minimize the loss function. The update for-
mula for the gradient descent algorithm is:

where α is the learning rate, which controls the step size
of each parameter update.

(20)hθ (x) = g
(

θTx
)

(21)g(z) = 1
1+e−z

z = θ0 + θ1x1 + θ2x2+θ3x3 + θθx4

(22)J (θ) = − 1
m

m
∑

i=1

[

y(i)log
(

hθ
(

x(i)
))

+
(

1− y(i)
)

log
(

1− hθ
(

x(i)
))

]

(23)θj := θj − αm
m
∑

i=1

(

hθ
(

x(i)
)

− y(i)
)

x(i)

In this paper, we can consider attributes such as CPU
utilization, memory utilization, remaining power, and net-
work bandwidth of the terminal device as the input features
of the LR model. The output label of the LR model would
indicate whether the terminal task should be offloaded to
the cloud for processing. By training and predicting with
the LR model, we can determine whether the terminal task
should be offloaded, thereby making the decision on termi-
nal task offloading more rational.

Based on the results predicted by the LR model, the
terminal tasks earmarked for offloading are analyzed for
service reliability as follows: The definition of service reli-
ability analysis involves scrutinizing services processed by
the edge nodes with regard to delay. It assesses the match-
ing degree of existing service requests and similar ser-
vice requests corresponding to the edge nodes, ultimately
determining service reliability by analyzing the matching
degree of the edge nodes. This section primarily focuses
on utilizing historical processing data cached by the edge
nodes through a series of matrix variations and analyses.
The goal is to obtain a set of offloading vectors for subse-
quent use as elite populations.

In this paper, we make use of the existing user task data-
set to initialize ten sets of service request records that have
been processed at each edge node in the following approxi-
mate format: (1, type, maxtime, truetime), where truetime
is the actual processing time at the edge node, and we add
a data attribute to perform better service reliability analysis
completion:

It is used to indicate the degree of completion (user sat-
isfaction) of the service, so we end up with the following
actual data:

(1, type, maxtime, truetime, completion)

It is assumed that each end-user device has had a service
request data record at each edge node.

Firstly, calculate the connectivity correlation between
edge nodes. The user satisfaction matrix of service process-
ing results Cm×n is constructed by completion, as shown in
Table 1. where m is the number of terminal devices and n is
the number of edge nodes.

The service similarity between the historical data of the
edge nodes is calculated using Eq. (24).

where k i and k j are the i th edge node and the j th edge
node, respectively, i.e., the column vectors consisting of
the data in column i and column j of Table 1.

completion =
maxtime − truetime

maxtime

(24)Sim = cosθ =
k i×k j

|k i|×|k j|

Page 9 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

Calculate the correlation between edge nodes. Firstly,
using the service types of the edge nodes in the dataset,
the matrix of service types corresponding to the edge
nodes is obtained. And the confidence level of the fre-
quent binomial set is obtained by calculating conf. Then
the confidence of the frequent binomial set is obtained
using the Apriori algorithm and its related principle
(Eq. 25) to find the correlation between edge nodes and
form the correlation matrix associationn×n.

Finally, the edge node matching degree is calculated,
i.e., the similarity and correlation between edge nodes are
weighted and fused as shown in Eq. 26, where the weight
coefficients are determined using the sigmoid function is
determined as shown in Eq. 27.

Where α is the weighting factor that Iu denotes the
number of times a service request issued by a user is pro-
cessed at the edge node i and j number of times it is pro-
cessed. Calculate the edge node matching degree matrix
Mn×n , as shown in Table 2.

Then when the end device issues a new service request,
the task type is analyzed and filtered with all the resource
types of the edge node, the edge node with the cor-
responding task type is selected, the service reliabil-
ity of the corresponding task is calculated Ri =

∑n
1 Mik

n  ,

(25)association
(

i, j
)

=
2con f (i, j) ∗ con f(j, i)
conf(i, j)+ con f(j, i)

(26)
M
(

i, j
)

= α
(

i, j
)

× Sim
(

i, j
)

+
(

1− α
(

i, j
))

∗ association
(

i, j
)

(27)α
(

i, j
)

= 2×
(

1− 1
1+e−|Iu|

)

and set the offload vector a = (a1, a2, . . . , ak) , the
ai = maxRi =

∑n
1 Mik

n  , through the above service reliability
analysis , a set of off loading vectors is obtained
a0 = (a1, a2, . . . , ak) , which will be used as the elite
population of the bee colony algorithm.

At the same time, delay limits are set so that the maxi-
mum tolerable delay cannot be exceeded, the edge server
resource limit cannot be exceeded, and the minimum
reliability is offloaded to the cloud center for processing.

Elite Artificial Bee Colony Offloading (E‑ABCO)
The optimization process for the terminal task offloading
strategy based on the bee colony algorithm is as follows:
we start by initializing each honey source and assigning
a hired bee to each source. The hired bee searches for
new honey sources using a specific search method. Then,
based on the adaptability of the honey sources, we cal-
culate the probability that the honey source found by the
hired bee will be followed by a subsequent bee. The sub-
sequent bee then searches for new honey sources using
its own search method. As shown in Fig. 2b, this iterative
process continues until the maximum number of itera-
tions is reached.

The honey source update formula of the basic artificial
bee colony algorithm involves randomly searching for a
new honey source around the target honey source, lead-
ing to slow convergence due to the overly blind search. In
this paper, we borrow the variation operator from the dif-
ferential evolutionary algorithm and use the neighboring
nectar sources as a guide when searching for new nectar
sources. The improved nectar update formula searches
more purposefully and has stronger local search ability.
At the same time, the honey source fitness formula in
this paper is improved. The fitness formula of the basic
artificial bee colony algorithm sometimes does not truly
reflect the goodness of honey sources, which seriously
affects the optimization accuracy of the algorithm.

The improved fitness equation is as follows:

In the fitness formula, the reliability of the service
mainly depends on the number of current service
resources remaining in the assigned edge node Q, the
number of services in the waiting queue W, and the
latency of processing the task T and the energy con-
sumption required to perform that service E. Where α
and β represent the weights of latency and energy con-
sumption, respectively (calculated using the entropy
weighting method described above), with the closer to
1 indicating the greater importance placed on them.
The more the number of remaining services, the less
the number of services waiting for the resource, the

(28)fi =
αTi+βEi
1+Qi−Wi

Table 1  User-edge server satisfaction matrix

Terminal equipment Edge node

e1 e2 … en

u1 C11 C12 … C1n

u2 C21 C22 … C2n

⁝ ⁝ ⁝ ⁝ ⁝
um Cm1 Cm2 … Cmn

Table 2  Edge node matching matrix

Edge node e1 e2 … en

e1 M11 M12 … M1n

e2 M21 M22 … M2n

⁝ ⁝ ⁝ ⁝ ⁝
en Mn1 Mn2 … Mnn

Page 10 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

less the energy consumption of executing the service,
and the less the delay of executing the service i.e.,
the higher the reliability of the service, the more the
reliability formula improves the fitness formula, thus
optimizing the efficiency of the search for an excellent
honey source.

Assuming that there aren edge nodes, then at each
edge node is equal to one nectar source, i.e., there are
n number of offloading decision vectors generated.
Xi = (x1, x2, . . . , xm) where xi = j denotes the terminal
deviceui offloaded to the firstj edge node for process-
ing. In order to enable the artificial bee colony algo-
rithm to be applied to the task offloading problem
in the CEE scenario, the following mapping relation-
ship needs to be established to represent the offload-
ing decision by the location of the nectar source, and
transform the process of searching for the offloading
decision into the process of searching for the nectar
source by the artificial bee colony algorithm by using
the Tent mapping to generate the initial population,
which does not change the nature of randomness that
is present at the time of initialization, but maintains
the diversity of the initial population.

According to the chaotic sequence obtained from the
above equation, mapping it to the range of values of
the variable[1, n] to obtain the mapped population Xi
The mapped population is obtained. Then the individu-
als in the search space are relocated to more promising
regions through reverse learning to help the algorithm
jump out of the local optimum:

Reverse learning is defined as follows: suppose
Xi = (x1, x2, . . . , xm) is any point in the D-dimensional
search space, and Xi ∈ [1, n], then Xi The inverse point
of is defined as oXi = (ox1, ox2, . . . , oxm) where oxi is
computed according to the following equation:

Based on the fitness function values simultaneously
evaluate the current Tent mapping population and
the reverse population and selects the more favorable
n individuals as the initial population. In this way, the
diversity of the initial population can be improved, thus
accelerating the convergence of the algorithm.

(29)fitnessi =

{

1
1+f (Xi)

, f (Xi) ≥ 0

1+
∣

∣f (Xi)
∣

∣, otherwise

(30)xn =







xn−1
a , 0 ≤ xn−1 ≤ a

(1−xn−1)
1−a , a < xn−1 ≤ 1

x0 is a (0, 1) randomnumber

(31)oxi = 1+ n− xi

Improvements to the position updating formulae for
employed bees are obtained:

where xgood is an elite individual, a randomly selected
individual from the elite population that ranks in the top
five in terms of fitness for everyone in the a0 offloading
vector above.

where Xijmin is the least adapted individual in that nectar
source.

According to the nature of the three types of bees,
a two-bees search strategy is proposed, i.e., after the
employed bees have found a nectar source, the position
update is carried out through Eq. (32), due to the ran-
dom nature of the bee colony algorithm, a single ran-
dom position update is prone to make a premature fall
into the local optimum. Therefore, this paper alters the
position updating formula of the follower bees, and the
follower bees carry out a local optimization of this nec-
tar source through Eq. (33), thus preventing a prema-
ture falling into local optimum.

That is, the position update formula for the two-bees
search is proposed using Eqs. (32) and (33), after the
hiring bees are updated, the following bees position
update selects the individual with the smallest fitness
in the current offloading decision, and the position
update is carried out according to Eq. (33), and the
cycle is carried out sequentially until the number of
iterations is reached.

When searching for a new nectar source, a greedy
selection strategy is followed by first initializing the
Vbest = X1:

After a certain number of iterations of optimiza-
tion, a set of offloading decision vectors Vbest is finally
obtained, i.e., the service requests initiated by the ter-
minal devices are offloaded according to Vbest to satisfy
the user’s needs.

Coding of SRA‑E‑ABCO in cloud‑edge‑end environments
In order to enable the artificial bee colony algorithm to
be applied to the edge computing offloading problem,
the following mapping relationship needs to be estab-
lished to represent the offloading decision by the loca-
tion of the nectar source, and the process of searching

(32)Vij = Xij + ϕ
(

xgoodj − Xij

)

+ δ(Xik − Xvk)

(33)Vij = Xijmin + ϕ
(

Xijmin − Xvj

)

Vbest =

{

Vij ,Vij ≥ Vbest

Vbest ,Vij < Vbest

Page 11 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

for the offloading decision is transformed into the pro-
cess of searching for the nectar source by the artificial
bee colony algorithm, so it is necessary to discretize
the artificial bee colony algorithm.

The offloading decision vectors are coded for CEE
environments based on M terminal mobile devices,
N edge servers and 1 cloud server. That is, 0 is used to
denote local computation, 1, 2…N denotes offloading to
the corresponding numbered edge server computation,
and N + 1 number denotes offloading to the cloud server
computation. Discrete processing of the nectar initializa-
tion formulas (30) and (31) is obtained:

where Xi is the initialised population of [0, 1] obtained
from the Tent mapping and inverse learning of Eqs. (30)
and (31) above, which is mapped to between [0, N + 1] by
the above formulae to apply to the task offloading of the
cloud-side-end scenario. The final nectar Ai is obtained,
and each nectar Ai represents an offloading decision
vector with 1 row and M columns, and the values of the
elements in the vector indicate the locations where the
device needs to offload the tasks.

Similarly, the position update Eqs. (32) and (33) are
discretized so that their position updated values are also
mapped between [0, N + 1].

Obtained by discretizing the position update Eq. (32):

Where
[

Yij
]

 is the term in Eq. (35) other than Xij the other
terms in Eq. (35), i.e., equal to the increment of displacement.

Obtained by discretizing the position update Eq. (33):

Since the range of Ai obtained by encoding the nec-
tar source is [0, N + 1], and φ and δ are both random
numbers of [-1, 1], the range of [ Yij ] is [-N-1, N + 1].
If [ Yij] = 0, it means that the offloading is still in the
original position, if [ Yij] > 0, it means that it is neces-
sary to move the computational position of the device
backward by [ Yij ] bits, and then take the remainder of
N + 2, and a loop structure is constructed to ensure
that the update is still an integer of [0, N + 1]. If [ Yij
] < 0, then move [ Yij ] forward accordingly, as shown in
Eqs. (35) and (36).

(34)Ai = Xi ∗ (N + 1)

(35)

Vij =

{ (

Xij +
[

Yij
])

%(N + 2),
[

Yij
]

≥ 0
(

Xij +
[

Yij
]

+ N + 2
)

%(N + 2), otherwise
[

Yij
]

= Xij + ϕ
(

xgoodj − Xij

)

+ δ(Xik − Xvk)

(36)

Vij =

{ (

Xij +
[

Yij
])

%(N + 2),
[

Yij
]

≥ 0
(

Xij +
[

Yij
]

+ N + 2
)

%(N + 2), otherwise
[

Yij
]

= Xij + ϕ
(

Xijmin − Xvj

)

Algorithm 1. SRA-E-ABCO

SRA‑E‑ABCO analysis
To validate the efficacy of the algorithm in high-dimen-
sional scenarios, experiments were performed in 30 and
50 dimensions using three test functions obtained from
IEEE CEC 2017. Among these, F1 represents a single-
peak function, while F8 and F9 represent multi-peak
functions. The proximity of the algorithm’s optimiza-
tion outcomes to the optimal values of each test func-
tion serves as a measure of the algorithm’s optimization
capability.

SRA-E-ABCO was compared with the classical ABC
algorithm and the improved swarm algorithm GABC for
experiments, setting 30-dimensional time Gmax = 1000
times, 50-dimensional time Gmax = 2000 times, initialised

Page 12 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

in a uniform way to ensure fairness, each algorithm
solves the 3 test functions independently and records
the final finding results. Repeat the above process for 30
times and calculate the mean and standard deviation of
the final optimization results of each algorithm on the 3
test functions.

The results obtained are shown in Tables 3 and 4, where
the data in Table 3 are the mean and standard deviation
of the three optimization algorithms ABC, GABC, and
SRA-E-ABCO after the optimization calculations on 30
dimensions for the three test functions F1, F8, and F9
respectively. The data in Table 4 shows the mean and
standard deviation of the three optimization algorithms
ABC, GABC, SRA-E-ABCO after optimization computa-
tion on 50 dimensions for the three test functions F1, F8
and F9 respectively. The bolded part is the optimal value,
and there are cases in the table where the values are the
same but not bolded, which is because there is rounding
when the data are counted by scientific notation, and the
real value will be slightly larger than the bolded value.
From the table, it is obvious that the improved swarm
algorithm SRA-E-ABCO in this paper has achieved bet-
ter results on the data of the three test functions.

In the above two tables, the first column is the name
of the function, columns 2–4 are the experimental data
of the three optimization algorithms, column 5 is the
minimum value of the three functions, and the last
row is the number of times that the three optimization
algorithms achieved the best experimental results. The
experimental results show that at 30 dimensions SRA-
E-ABC is able to approximate the respective minima
of the three test functions faster, but the advantage
over the other two optimization algorithms is not very
obvious. While at 50 dimensions, the advantage of

SRA-E-ABC is gradually manifested with the increase
of the number of dimensions and iterations, and after
2000 iterations, SRA-E-ABCO is obviously closer to the
convergence values of the three test functions.

The following convergence curve graph to show the
convergence effect, because with the increase in the
number of iterations, the function of the value of the
jump is large, so through the lg function to shrink, so
that it is easier to reflect the experimental effect from
the line graph. As shown in the Fig. 3 below, the con-
vergence curves of F1 single-peak test function and
F9 multi-peak test function in 30 and 50 dimensions
respectively are shown. In this paper, to better demon-
strate the difference in convergence accuracy through
the line graph, the maximum number of iterations is set
to 0–8000 times. The experiments show that SRA-E-
ABCO has better optimal searching ability and is more
advantageous for high-dimensional problems.

Experimental results and analysis
In this paper, we use IntelliJ IDEA Community Edition
2022.3.1 for computational migration system model
simulation construction of MEC to perform experimen-
tal simulation of the proposed SRA-E-ABCO method.

Datasets
The dataset selected for this paper is Kaggle Cloud-Fog
Computing dataset in the official website, this dataset
is generated by selecting 13 nodes and the number of
tasks starts from 40 and increases in intervals of 40
tasks and increases to 120, which also includes the
details of the tasks and the details of the nodes.

Table 3  Comparison of 30-dimensional algorithm results (means ± std.)

Function ABC GABC SRA-E-ABCO Fmin

F1 1.95E-09 ± 2.24246E-09 8.77E-08 ± 1.07647E-07 1.20076E-11 ± 4.62515E-11 0

F8 -1.19E + 04 ± 1.80E + 02 -1.20E + 04 ± 1.65E + 02 -1.21E + 04 ± 1.38E + 02 -12,569.5

F9 1.221643497 ± 1.0480 4.10E-01 ± 5.16E-01 3.91E-05 ± 0.00010177 0

Best 0 0 3

Table 4  Comparison of 50-dimensional algorithm results (means ± std.)

Function ABC GABC SRA-E-ABCO Fmin

F1 1.23E-11 ± 1.9111E-11 6.32E-09 ± 1.27068E-08 3.08E-14 ± 7.18437E-14 0

F8 -1.99E + 04 ± 1.10E + 02 -2.01E + 04 ± 1.71E + 02 -2.03E + 04 ± 1.66E + 02 -20,949.5

F9 1.428443 ± 1.112589 0.95233338 ± 0.493758465 4.84E-07 ± 4.817E-07 0

Best 0 0 3

Page 13 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

Baseline schemes
To evaluate the performance of the proposed computa-
tional offloading strategy, we introduce the following six
baselines:

•	 Only in Local (OL): the mobile device performs
all computing tasks locally at the highest CPU fre-
quency.

•	 All offloaded to edge node execution (All in MEC,
AM): all computational tasks are fully offloaded to
the edge servers for execution without executing any
tasks on the end devices and cloud servers.

•	 Greedy Computation Offloading (GCO) [28]: the
mobile device selects the least costly execution for
each computational task based on execution delay
and transmission delay.

•	 Deep neural network-based offloading methods
(DNN models, DNNs) [29]: use learning between
multiple deep neural networks (DNNs) to gener-
ate task offloading policies, and rank and reasonably
allocate resources based on the principle of stack.

•	 Directed Artificial Bee Colony Algorithm (DABC)
[30]: temporarily searching for a solution during
the hiring and following bee phases and providing a
solution to the ABC algorithm provides directional
information and explores 20% of the surrounding
neighborhood nectar sources, synergizing the com-
putational resources at the edge end.

Experiments are conducted to investigate the effects
of different number of tasks on the system latency
and overall overhead, different number of edge nodes,

Fig. 3  Convergence plot of test function curves

Page 14 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

incremental increase in data volume of end tasks and
incremental increase in CPU frequency of edge servers
on the overall system latency and overhead.

Experimental parameter settings
In this paper, we consider CEE environments with Macro
Base stations (MBS), several Small Base stations (SBS)
and a data cloud center within a certain range, and each
SBS deploys a MEC server with moderate computing
power. Without loss of generality, the number of SBS is
set to 10–30, that is, there are 10–30 MEC servers. This
paper considers a certain number of users through the
macro station unified offloading to the corresponding
MEC server, and ignore the delay of offloading tasks from
terminal devices to the macro base station, and the delay
of the macro base station to each edge server is different.
The main parameters are shown in the Table 5:

Results and analysis
The experiment first compares the impact of offloading
latency and overall system overhead for different num-
bers of tasks in several task offloading methods.

As shown in Fig. 4, the offloading delay of all six meth-
ods increases by different magnitudes as the number of
tasks increases from 40 to 120, and it can be seen from
the figure that the other four methods are significantly
better than the OL and AM methods. Among the six
methods, the offloading delay of the OL method is par-
ticularly large, and the increase of the offloading delay
of the OL method is the largest with the increase of the
number of tasks, which is because all its tasks are pro-
cessed locally on the terminal device and are limited by
the CPU computation frequency of the terminal device,

so the overall offloading performance of the OL method
is the poorest. The AM method is to offload all the tasks
from the terminal device to edge nodes for execution,
and he makes full use of the rich computing resources
of edge nodes, so the latency of processing tasks is much
lower than that of OL. GCO offloads the tasks to the edge
nodes that have the smallest computation time for com-
pleting the computation, and because of the different pri-
orities of the tasks, it will result in the waiting time of the
tasks with low priority being too long, but because the
number of tasks in the latency scenario of this paper is
not a large number of tasks, the waiting latency for the
tasks with low priority is not very long.

This is also the advantage of GCO in this scenario.
DNNs method has a slightly higher system overhead
when the number of tasks is 120 since the task latency is
supposed to be smaller in the single base station multi-
user scenario, and since it self-predicts the task offload-
ing labels with a slight error. When the number of tasks
is small, its offloading efficiency is higher, and as the
number of tasks gradually increases, the error gradually
increases. The DABC method is a nectar source directed
exploration algorithm with better optimization capability,
which fully coordinates the computational resources of
end devices and edge nodes in this scenario, but its opti-
mization capability is slightly worse compared to SRA-E-
ABCO because it only explores 20% of the surrounding
nectar sources. The SRA-E-ABCO method in this paper
shows high performance with different number of tasks,
and its advantage is more obvious as the number of tasks
increases.

Figure 5 shows the effect of different number of tasks
on the overall overhead of the system, the overall over-
head is mainly a blend of delay and energy consumption.
With the increase of the number of tasks, the overall

Table 5  Basic simulation parameters

Parameter Value

m Number of terminal devices [40, 120]

n Number of edge nodes [10, 30]

g
j
i

Channel gain 127+ logd

C The number of CPU cycles requested by the service [0, 1]

N0 Noise power in uplink bandwidth 2× 10−13

W System bandwidth 15 MHz

Pi Terminal transmission power 1w

Tmax
i Maximum time delay 1–3 s

f ser Terminal equipment processing capability 4–8 GHz

fedge Processing power of the edge server 16–24 GHz

fcloud Processing power of the cloud center 30 GHz

ci Terminal device CPU energy coefficient 10−25

ki Edge server CPU energy coefficient 10−26

α Learning rate 0.0001

Fig. 4  Plot of offloading delay for different number of tasks

Page 15 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

system overhead of the six methods is increasing, but
the increase is different in which the OL method has the
largest increase in overhead; the other five methods can
be clearly seen in this paper, the SRA-E-ABCO method
has the smallest increase, the GCO can have a better per-
formance in the delay above, but it ignores the impact
of the energy consumption on the overall overhead, in
this paper, the SRA-E-ABCO method integrates the off-
loading delay and the energy consumption to achieve a
certain advantage in the overall overhead of the system.
The SRA-E-ABCO method in this paper considers the
offloading delay and energy consumption and achieves a
certain advantage in the overall overhead of the system.

At a task number of 40, the data volume size of the
offloaded tasks is gradually increased. Figure 6 shows
the change in the overall system overhead from a 20%
increase in the task data volume size to an 80% increase.
Since under the OL method, the end device will only
process one task for a period of time, its overall system
overhead increases with a positive correlation trend

as the task data volume increases. The performance
of the two methods, GCO and AM, is more similar,
and the greedy strategy always offloads the tasks to the
edge servers with higher CPU computation frequency,
and its drawback, i.e., the waiting latency, is gradually
revealed as the task data volume increases, so the GCO
has the largest increase in system overhead when the
data volume increases to 80%.The prediction accuracy
of DNNs decreases when the task data volume increases
because there are fewer tasks with similar data volume
in the training dataset in its training model, so its sys-
tem overhead increases more when the task data volume
increases. The DABC method explores the surrounding
during the search of nectar 20% of the neighborhood
and then optimizes the offloading strategy, and the fol-
lowing bee will replace the offloading node with the
least adapted one, which is also the task with the high-
est offloading latency, so its offloading overall overhead
is better than the other baseline methods. Finally, under
this paper’s SRA-E-ABCO method, the overall overhead
of the system grows steadily, which indicates that this
paper’s method effectively synergizes the computational
resources of the cloud, edge, and end, and by improving
the bee colony algorithm and considering both latency
and energy consumption, an efficient offloading decision
is formulated, so this paper’s algorithm outperforms the
other five baselines.

At a task number of 40, the number of edge nodes is
gradually increased. Figure 7 shows the change in the
overall overhead of the system for increasing the num-
ber of edge nodes from 10 to 30. Since OL is always
processed locally at the end device, the increase in the
number of edge nodes has no effect on its overall over-
head. The AM method offloads all the tasks to the
edge nodes for processing, and since the waiting delay

Fig. 5  System overhead graph for different number of tasks

Fig. 6  System overhead diagram for incremental task data volume Fig. 7  System overhead graph for different number of edge nodes

Page 16 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58

decreases with the increase in the number of edge nodes,
there is a certain reduction in the overall system over-
head of the AM method. The GCO method always seeks
for edge nodes that have a high CPU computation fre-
quency node, so there is a corresponding increase in the
transmission energy consumption of the edge nodes that
may be increased, so there is a corresponding increase
in the overall overhead of GCO. the DABC method only
explores 20% of the neighborhood each time it explores
the nectar, in its algorithm, the edge nodes are the nec-
tar, so when the number of edge nodes increases that
is, when the nectar becomes more, its optimization
efficiency will be unstable, so there is an increase and
decrease in its system overhead.

As shown in Fig. 8, in the case of constant number of
tasks and gradual increase in the CPU frequency of edge
servers, excluding the OL offloading method, the rest
of the methods show an overall decreasing trend. the
AM method, due to offloading all the terminal tasks to
the edge servers, has a gradual edge-smaller offloading
latency with the increase in the edge servers’ processing
power, but with higher randomness. the GCO and DABC
have no significant advantage in the case of increasing
edge servers’ CPU frequency increment, the advantages
of the two methods are not obvious, GCO favors edge
servers with higher CPU frequency, resulting in higher
transmission delay, so the offloading delay decreases by
a smaller margin, while DABC cannot reflect its advan-
tages when the number of tasks is small due to its explo-
ration of 20% of the nectar sources. DNNs and this
paper’s SRA-E-ABCO, in the case of changing only the
CPU frequency of edge servers, the advantage is more
obvious, since DNNs trains the model based on task
attributes, changing the edge server CPU frequency does
not degrade its training model performance, whereas in

this paper SRA-E-ABCO has a slight reduction in opti-
mization ability when the edge server CPU frequency is
incremented due to considering both latency and energy
consumption, but overall it is able to reduce the offload-
ing latency.

Finally, the SRA-E-ABCO method in this paper per-
forms a service reliability analysis of the offloaded tasks
before task offloading, and combines the obtained elite
population with the improved bee colony algorithm
for updating, all of which have a better optimization of
the offloading strategy with comprehensive considera-
tion of latency and energy consumption, but since some
of the tasks are predicted to be processed at the end
device before offloading, the increase in the number of
edge nodes SRA-E-ABCO also only has a small advan-
tage, but from other angles of analysis, it is necessary to
make predictions about whether to offload or not before
offloading.

Conclusion
We propose a service reliability analysis method (SRA)
and a terminal task offloading method (E-ABCO) for
CEE environments. The SRA method combines terminal
devices task attributes, and edge node histories to predict
offloading and comprehensively analyses the reliability of
offloading for terminal tasks. E-ABCO method improves
the traditional bee colony algorithm on initialization
population, position update formula and fitness formula.
It also fuses the reliable offloading vectors analyzed by
the SRA model as an elite population, and finally com-
pletes the offloading of terminal tasks.

Our current work primarily focuses on analyzing the
characteristics of stationary terminal devices to solve task
offloading in CEE environments. However, the assump-
tion of static data is limited in the real application sce-
narios, and acquiring dynamic user attributes, such as
mobile trajectories and user preferences, is more chal-
lenging compared with getting static device information.
Our future work will include the exploration of predict-
ing users’ mobile trajectories and leveraging collabora-
tion between edge nodes for task offloading.

Acknowledgements
The work was supported by the National Natural Science Foundation of China
under Grant No.62272243.

Authors’ contributions
Shun Jiao, Haiyan Wang, and Jian Luo wrote the main manuscript text and
related works. All authors reviewed the manuscript.

Funding
The work was supported by the National Natural Science Foundation of China
under Grant No.62272243.

Availability of data and materials
No datasets were generated or analysed during the current study.

Fig. 8  Offload Latency Plot for Edge Server CPU Frequency
Increments

Page 17 of 17Jiao et al. Journal of Cloud Computing (2024) 13:58 	

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 10 January 2024 Accepted: 1 March 2024

References
	1.	 Cisco (2020) Cisco annual internet report. White Paper (2020)
	2.	 Kai C, Zhou H, Yi Y, Huang W (2021) Collaborative cloud-edge-end task

offloading in mobile-edge computing networks with limited communi-
cation capability. IEEE Trans Cogn Commun Netw 7:624–634

	3.	 Gao J, Chang R, Yang Z et al (2023) A task offloading algorithm for
cloud-edge collaborative system based on Lyapunov optimization. Clust
Comput 26(1):337–348

	4.	 Li H, Zheng P, Wang T et al (2022) A multi-objective task offloading based
on BBO algorithm under deadline constrain in mobile edge computing.
Clust Comput 26:4051–4067

	5.	 Zhang R, Zhou C (2022) Acomputation task offloading scheme based
on mobile-cloud and edge computing for WBANS mobilecloud-
andedgecomputingforWBANs. IEEE Int. Conf. Commun. (ICC), Seoul
South Korea, p 4504–4509

	6.	 Liu S, Yu Y, Lian X et al (2023) Dependent task scheduling and offload-
ing for minimizing deadline violation ratio in mobile edge computing
networks. IEEE J Sel Areas Commun 41(2):538–554

	7.	 Ai Z, Zhang W, Li M et al (2023) A smart collaborative framework for
dynamic multi-task offloading in IIoT-MEC networks. Peer Peer Netw Appl
16(2):749–764

	8.	 Li X, Xu Z, Fang F, Fan Q, Wang X , Leung VC (2023) Task Offloading for
Deep Learning Empowered Automatic Speech Analysis in Mobile Edge-
Cloud Computing Networks. IEEE Trans Cloud Comput 11:1985–1998

	9.	 Liu F, Huang J, Wang X (2023) Joint Task Offloading and Resource Alloca-
tion for Device Edge-Cloud Collaboration With Subtask Dependencies.
IEEE Trans Cloud Compu 11:3027–3039

	10.	 Lv X, Du H, Ye Q (2022) TBTOA: a DAG-based task offloading scheme for
mobile edge computing. In Proc. IEEE Int. Conf., 2022, p 4607–4612

	11.	 Ko H, Kim J, Ryoo D, Cha I, Pack S (2023) A Belief-Based Task Offload-
ing Algorithm in Vehicular Edge Computing. IEEE Trans Intell Transp
Syst 24:5467–5476

	12.	 Gao M, Shen R, Shi L, Qi W, Li J, Li Y (2023) Task Partitioning and Offload-
ing in DNN-Task Enabled Mobile Edge Computing Networks. IEEE Trans
Mob Comput 22:2435–2445

	13.	 Zhang Y, Liang Y, Yin M et al (2021) A review of computation offloading
schemes in mobile edge computing. J Comput 44(12):2406–2430

	14.	 Li H, Zheng P, Wang T et al (2023) A multi-objective task offloading based
on BBO algorithm under deadline constrain in mobile edge computing.
Clust Comput 26(6):4051–4067

	15.	 Gao J, Chang R, Yang Z, Huang Q, Zhao Y, Wu Y (2022) A task offload-
ing algorithm for cloud-edge collaborative system based on Lyapunov
optimization. Cluster Comput 26:337–348

	16.	 Tang X, Liu Y, Zeng Z, Veeravalli B (2023) Service Cost Effective and
Reliability Aware Job Scheduling Algorithm on Cloud Computing Sys-
tems. IEEE Trans Cloud Comput 11:1461–1473

	17.	 Li J, Liang W, Huang M et al (2020) Reliability-aware network service
provisioning in mobile edge-cloud networks. IEEE Trans Parallel Distrib
Syst 31(7):1545–1558

	18.	 Li J, Liang W, Huang M, Jia X (2019) Providing reliability-aware virtualized
network function services for mobile edge computing. In Proc. IEEE 39th
Int. Conf. Distrib. Comput. Sys., p 732–741

	19.	 Zhang W, Zeadally S, Zhou H et al (2022) Joint service quality control and
resource allocation for service reliability maximization in edge comput-
ing. IEEE Trans Commun 71(2):935–948

	20.	 Yu Q, Zhang W, Notaro P et al (2023) HiMFP: hierarchical intelligent
memory failure prediction for cloud service reliability. In: 2023 53rd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), IEEE, p 216–228

	21.	 Luo N, Xiong Y (2021) Platform software reliability for cloud service
continuity-challenges and opportunities. In: 2021 IEEE 21st International
Conference on Software Quality, Reliability and Security (QRS), IEEE, p
388–393

	22.	 Hu J, Cai L, Pan J (2021) Mesh network reliability analysis for ultra-reliable
low-latency services. In: 2021 IEEE 18th International Conference on
Mobile Ad Hoc and Smart Systems (MASS), Virtual, p 198–206

	23.	 Jia J, Yang L, Cao J (2021) Reliability-aware dynamic service chain schedul-
ing in 5G networks based on reinforcement learning. In Proc. IEEE Conf.
Comput. Commun. (INFOCOM), p. 1-10

	24.	 Fu X, Sun Y, Wang H et al (2023) Task scheduling of cloud computing
based on hybrid particle swarm algorithm and genetic algorithm. Clust
Comput 26(5):2479–2488

	25.	 Rizvi N, Ramesh D, Wang L et al (2022) A workflow scheduling approach
with modified fuzzy adaptive genetic algorithm in IaaS clouds. IEEE Trans
Serv Comput 16(2):872–885

	26.	 Senthil Kumar AM, Padmanaban K, Velmurugan AK et al (2023) A novel
resource management framework in a cloud computing environment
using hybrid cat swarm BAT (HCSBAT) algorithm. Distrib Parallel Data-
bases 41(1–2):53–63

	27.	 Cai L (2022) Decision-making of transportation vehicle routing based on
particle swarm optimization algorithm in logistics distribution manage-
ment. Clust Comput 1–12

	28.	 Chen L, Wu J, Zhang J et al (2020) Dependency-aware computation
offloading for mobile edge computing with edge-cloud cooperation.
IEEE Trans Cloud Comput 10(4):2451–2468

	29.	 Meng L, Wang Y, Wang H, Tong X, Sun Z, Cai Z (2023) Task offloading
optimization mechanism based on deep neural network in edge-cloud
environment. J Cloud Comput 12:1–12

	30.	 Thirugnanasambandam K et al (2022) Directed Artificial Bee Colony
algorithm with revamped search strategy to solve global numerical
optimization problems. Autom Softw Eng 29:1–31

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	SRA-E-ABCO: terminal task offloading for cloud-edge-end environments
	Abstract
	Introduction
	Related work
	Task offloading
	Service reliability
	Optimization algorithms

	System model
	Problem formulation
	Algorithm implementation
	SRA-E-ABCO model
	Service Reliability Analysis (SRA)
	Elite Artificial Bee Colony Offloading (E-ABCO)
	Coding of SRA-E-ABCO in cloud-edge-end environments
	SRA-E-ABCO analysis

	Experimental results and analysis
	Datasets
	Baseline schemes
	Experimental parameter settings
	Results and analysis

	Conclusion
	Acknowledgements
	References

