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Abstract 

Solar energy has emerged as a key industry in the field of renewable energy due to its universality, harmlessness, 
and sustainability. Accurate prediction of solar radiation is crucial for optimizing the economic benefits of pho-
tovoltaic power plants. In this paper, we propose a novel spatiotemporal attention mechanism model based 
on an encoder-translator-decoder architecture. Our model is built upon a temporal AttUNet network and incorpo-
rates an auxiliary attention branch to enhance the extraction of spatiotemporal correlation information from input 
images. And utilize the powerful ability of edge intelligence to process meteorological data and solar radiation param-
eters in real-time, adjust the prediction model in real-time, thereby improving the real-time performance of predic-
tion. The dataset utilized in this study is sourced from the total surface solar incident radiation (SSI) product provided 
by the geostationary meteorological satellite FY4A. After experiments, the SSIM has been improved to 0.86. Compared 
with other existing models, our model has obvious advantages and has great prospects for short-term prediction 
of surface solar incident radiation.

Keywords Solar energy, Edge intelligence, Attention mechanism, AttUNet

Introduction
Against the backdrop of a series of ecological and envi-
ronmental issues caused by the large-scale development 
and utilization of traditional energy, solar energy has 
gradually become one of the key industries in the field 
of new energy due to its universality, harmlessness, and 
durability [1]. Renewable energy refers to energy that is 
constantly updated and inexhaustible in nature, and its 
use will not cause sustained damage to the environment. 
Renewable energy includes various forms such as solar 

energy, wind energy, hydro energy, geothermal energy, 
etc. Solar energy has become an increasingly important 
source of clean energy by capturing sunlight and convert-
ing it into electrical or thermal energy. The World Energy 
Outlook predicts that by 2040, approximately two-thirds 
of global investment in new power plant construction 
will be focused on renewable energy, with the largest por-
tion coming from solar energy.

Solar power generation harnesses the shortwave radia-
tion emitted by the sun, converting it into electrical 
energy through atmospheric propagation and scattering, 
either directly or indirectly. This process is character-
ized by its environmental friendliness, as it generates no 
pollutants and releases no greenhouse gases, particulate 
matter, or harmful substances. Compared to traditional 
fossil fuel power generation, solar power generation has 
a significantly lower impact on atmospheric quality and 
the environment, contributing to reductions in air and 
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water pollution, carbon emissions, and efforts to mitigate 
climate change.

Moreover, the operational expenses associated with 
solar power generation systems are relatively modest 
[2]. Although the initial investment may be relatively 
high, in the long term, solar power generation can lead 
to decreased energy costs and yield substantial economic 
benefits. Photovoltaic power generation stands as the 
most prevalent technology in the solar power generation 
sector, with solar radiation serving as its primary energy 
source. However, it is important to note that solar energy 
bears resemblance to hydroelectric energy and is subject 
to atmospheric conditions, resulting in some challenges 
such as the intermittent nature and volatility of power 
generation, as well as potential fluctuations in voltage and 
frequency [3]. Presently, the utilization of energy stor-
age systems represents a common approach to address 
the instability of photovoltaic power generation. How-
ever, challenges including high costs, limited lifespan, 
energy conversion losses, and environmental impacts still 
require further resolution [4].

Therefore, accurate short-term prediction of solar radi-
ation plays an important role in photovoltaic power gen-
eration, which can optimize energy scheduling, improve 
energy supply reliability, improve photovoltaic power 
generation efficiency, and help optimize the operation 
of photovoltaic power generation projects economi-
cally.Solar radiation forecasting can be segmented based 
on the projected time frames, encompassing extremely 
short-term, short-term, medium-term, and long-term 
predictions. While extremely short-term forecasts of 5 to 
30 minutes prove invaluable for power system manage-
ment and network stability, accurate short-term forecasts 
spanning hours to several days are vital for informed 
decision-making, supply equilibrium, and meticulous 
scheduling.Therefore, extremely short and short-term 
accurate solar radiation forecasts are crucial for the suc-
cessful operation of different solar applications [5].

With the rapid development of meteorological satel-
lites, facing the demand for massive meteorological data 
processing, the existing cloud computing service mode 
can no longer meet the performance requirements of 
meteorological satellite data quality control. It is crucial 
to introduce edge cloud collaboration into meteorologi-
cal data quality control and expand it into edge devices 
with computing and storage capabilities.In summary, the 
main contributions of this paper are as follows:

• Introducing edge-cloud collaboration into meteoro-
logical data quality control and extending it to edge 
devices with computational and storage capabilities.

• Proposing the EDA-AttUNet prediction model based 
on the Encoder-Translator-Decoder architecture, 

where the encoder extracts spatial features through 
multi-layer stacking. The translator introduces a 
UNet network architecture, forming a standalone 
encoder-decoder structure. Additionally, an atten-
tion mechanism is incorporated into the translator to 
allow the network to capture both local details and 
global contextual information simultaneously. The 
decoder reconstructs the actual surface solar incident 
radiation through multi-layer stacking.

• Conducting a comprehensive evaluation of the pre-
dictive performance and generalization ability of the 
model through the analysis of SSI data for the China 
region from FY4A during the entire year of 2021-
2022, as well as predictions for different seasons.

Related work
At present, the adoption of edge cloud models in the field 
of meteorology is gaining momentum, exerting a signifi-
cant influence on the management of weather-related big 
data [6]. Within the realm of intelligent services for edge 
cloud collaboration, a central challenge lies in the real-
time control of data quality and the acquisition of highly 
dependable raw data. In our forthcoming endeavors, 
we plan to integrate the physical resources of the mete-
orological network with densely deployed edge servers 
in 5G environments, aiming to facilitate cross-network 
resource sharing and further enhance the overall quality 
of user experience.

In recent years, the methods for short-term and immi-
nent forecasting of solar energy resources can be mainly 
divided into numerical weather forecasting methods, 
statistical model methods, and artificial intelligence 
methods based on the different data used.The numerical 
prediction model is one of the effective means for con-
ducting solar energy resource assessment and predic-
tion. It can use methods such as solar radiation output 
from the model, other variables, model prediction, and 
observation data to establish prediction models for solar 
energy assessment and prediction [7]. Based on the ini-
tial meteorological field data and the establishment of 
simulation domain and grids, the atmospheric dynami-
cal processes within the specified region are simulated. 
By combining the simulated atmospheric dynamics with 
solar radiation data, solar energy resource forecasts are 
generated. However, due to factors such as data qual-
ity and the highly complex and dynamic nature of the 
atmospheric system, this method has certain limitations 
and uncertainties. System errors caused by physical pro-
cesses have not been properly addressed in numerical 
weather prediction models [8].

The main method of artificial intelligence is machine 
learning. Machine learning models can solve problems 
that cannot be represented by explicit algorithms, and 



Page 3 of 13Cui et al. Journal of Cloud Computing           (2024) 13:67  

with strong extraction ability for nonlinear features, They 
have demonstrated commendable accuracy in their solar 
energy forecasting endeavors [9]. Guijo Rubio et al. The 
performance of various evolutionary neural networks 
in predicting solar radiation in Toledo was evaluated 
by [10]. In their experimental testing, they found that 
the best model was achieved through the design of the 
S-shaped unit with evolutionary training.Huang and Liu 
[11] used set wavelet transform to decompose input data 
and predicted solar radiation based on an autoregressive 
model of an external input neural network [12].

In addition to their widespread application in time 
series analysis, recurrent neural networks (RNNs), par-
ticularly LSTM networks, have gained prominence for 
their adeptness in capturing both short-term and long-
term dependencies [13]. Amit et  al. [14] employed a 
combination of CNN and BiLSTM for predicting mid-
term solar radiation. The assessment conducted at three 
distinct stations of varying locations demonstrated the 
robustness of this approach. Similarly, it was observed 
that the CNN-LSTM architecture exhibits favorable 
performance across different seasons and weather con-
ditions. Furthermore, CNN has found utility in conjunc-
tion with various models for solar radiation prediction.
In addition to combining with RNN, CNN is also used to 
predict solar radiation in conjunction with other models 
[15]. Omaima et al. The CNN-MLP model was used for 
solar radiation prediction, and it achieved a stable deter-
mination coefficient between 0.99 and 0.94. These results 
demonstrate its ability to deliver good performance even 
in cloudy weather [16]. In [17], the research demon-
strates that by synergistically integrating two powerful 
deep learning techniques, namely CNN and LSTM, the 
resulting approach surpassed the performance of dif-
ferent benchmark methods in predicting Global Solar 
Radiation. This superiority was evident in terms of accu-
racy, forecasting speed, and the stability of prediction 

outcomes.The combined model showcased its potential 
for significantly improving solar radiation prediction, 
presenting a notable advancement in this field. Nielsen 
et al. A combination of quantitative measurements used 
inspired [18] to propose a new transformer-based frame-
work. The results showed that IrradianceNet, inspired by 
the latest developments in deep learning spatiotempo-
ral prediction models based on post feature level fusion, 
used SARAH-2.1 satellite data to predict surface solar 
irradiance in Europe for the next 4 hours, demonstrating 
superior performance over persistent models and optical 
flow methods. Zhang et al. [19] compared the sky imager 
image with the classic CNN model of solar radiation, and 
the transformer-based framework, incorporating early 
feature-level prediction, demonstrated notable enhance-
ments in slope event balance accuracy. Specifically, it 
achieved an improvement of 9.3% at the 2-minute scale 
and 3.91% at the 6-minute scale. Furthermore, propelled 
by advancements in deep learning and harnessing the 
strengths of CNNs, the deep fully convolutional neu-
ral network has found extensive applications in diverse 
domains, including image segmentation and classifica-
tion [20]. These methods are gradually beginning to be 
applied to satellite images. Zhang et  al. [21] introduced 
a specially designed deep fully convolutional network to 
learn depth patterns for detecting clouds and snow from 
multispectral satellite images. Numerous experiments 
have shown that the proposed depth model outperforms 
the most advanced methods in both quantitative and 
qualitative performance [22].

Preliminary
Convolutional neural network
Convolutional Neural Network(CNN) is a feedforward 
neural network that is particularly suitable for process-
ing data with grid structures, such as images and vid-
eos. As shown in Fig.  1, it usually consists of multiple 

Fig. 1 Basic architecture of a CNN
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convolutional layers, pooling layers, and fully connected 
layers. By stacking multiple layers for feature extraction 
and abstraction, it can automatically learn and extract 
features from input data, and has certain robustness to 
changes such as translation, scaling, and rotation.

Convolutional layers are the core components of CNN. 
In the convolutional layer, feature maps are generated 
through linear convolutional filters and nonlinear activa-
tion functions (corrector, sigmoid, tanh, etc.). These con-
volutional kernels can extract spatial features of images, 
such as edges, textures, etc [23]. Taking a linear rectifier 
as an example, the calculation method for feature map-
ping is as follows:

Where (i, j) is the pixel index in the feature map, xi,j is 
the input patch centered on position (i, j), k is the chan-
nel index of the feature map, and f represents the output 
feature values after activation function.

The CNN pooling layer plays a role in reducing dimen-
sionality, extracting important features, translation invar-
iance, and reducing overfitting in convolutional neural 
networks, helping to improve network efficiency, extract 
more representative features, and possess certain image 
spatial invariance. The mathematical expression for pool-
ing layers can be represented as follows: where P repre-
sents pooling operations (such as maximum pooling or 
average pooling), S represents the step size of pooling, f 
represents the input feature map, while the resulting out-
put feature map is represented as Y:

Among them, i and j represent the position coordinates 
of the output feature map, and k represents the channel 
of the output feature map divided by the depth. K repre-
sents the size of the pooling window, usually a square. In 

(1)fi,j,k = max

(

wT
k xi,j , 0

)

(2)Y (i, j, k) = P f is : is+k , js : js+k ,K

maximum pooling, the P operation selects the maximum 
value in the input window as the output; In average pool-
ing, the P operation calculates the average value in the 
input window as the output. Finally, the Fully Connected 
Layer flattens the feature map into a one-dimensional 
vector and integrates the features from various positions. 
The formula can be expressed as follows:

Among them, y stands for the output of the fully con-
nected layer, and Y signifies the one-dimensional vector 
derived from the output feature map of the convolutional 
layer. W stands for the weight matrix of the fully con-
nected layer, and b denotes the bias vector. F denotes the 
activation function, typically using nonlinear functions 
such as ReLU, Sigmoid, or Tanh.

Depthwise separable convolution
Deepwise Separable Convolution (DWConv) is a spe-
cial convolutional operation used in convolutional neu-
ral networks [24, 25]. As shown in Fig. 2, deep separable 
convolution divides the convolution operation into two 
independent steps: deep convolution and point by point 
convolution. Compared with traditional convolution 
operations, it greatly reduces the number of parame-
ters, especially when there are many input channels, the 
reduction in the number of parameters is very signifi-
cant. The deep convolution stage of deep separable con-
volution only performs convolution operations on each 
channel, avoiding computational redundancy between 
channels and reducing the risk of overfitting while main-
taining model performance.

When the input feature map is X and the output fea-
ture map is Y, the calculation formula for depth separable 
convolution can be expressed in the following form: For 
each channel k of input feature map X, a deep filter D(k) 
is used for convolution operation. Assuming the size of 

(3)y = F(WY + b)

Fig. 2 Deepwise Separated Convolution work process diagram
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the input feature map k is H ×W  , the number of chan-
nels is C, and the size of the depth filter is K × K  . The 
calculation formula for deep convolution is:

Among them, Y
(

i, j, k
)

 represents the value of the ele-
ment with position 

(

i, j
)

 and channel k in the output fea-
ture map Y. D(k)(p, q) represents the value of depth filter 
D(k) at position (p, q) . X

(

i + p, j + q, k
)

 represents the 
value of input feature map X at position 

(

i + q, j + q, k
)

 . 
S represents a sum operation. Perform point by point 
convolution on the output feature map of deep convolu-
tion using a 1 × 1 Convolutional kernel of. Assuming the 
output feature map size of deep convolution is H ′ ×W ′ , 
the number of channels is C . The calculation formula for 
point by point convolution is:

Among them, Z
(

i′, j′, k ′
)

 represents the value of the 
element with position 

(

i′, j′
)

 and channel k ′ in the out-
put feature map Z of point by point convolution. W  

(4)Q =

H ,W
∑

i,j=1

K
∑

p,q=1

C
∑

k=1

X
(

i + p, j + q, k
)

(5)Y (i, j, k) = sum

K
∑

p,q=1

C
∑

k=1

(D(k)(p, q) ∗ Q)

(6)

Z(i′, j′, k ′) = sum

H ′,W ′
∑

i,j=1

C ′
∑

k ′

(

W
(

c, k ′
)

∗ Y
(

i′, j′, k ′
))

(

c, k ′
)

 represents the value of position 
(

c, k ′
)

 in the weight 
matrix of point by point convolution. Y

(

i′, j′, k ′
)

 repre-
sents the value of the element with position 

(

i′, j′
)

 and 
channel k ′ in the output feature map of deep convolution. 
sum represents the sum operation.

Convolutional block attention module
The Convolutional Block Attention Module (CBAM) is 
an attention mechanism employed to augment the capa-
bilities of CNNs [26]. As shown in Fig. 3, this introduces 
two modules: channel attention and spatial attention. 
These modules enable the network to dynamically select 
and adjust crucial information within the feature map, 
thereby enhancing the model’s expressive capacity and 
overall performance.

The channel attention module serves to discern the 
relationships and significance of feature maps within the 
channel dimension. This is achieved by learning chan-
nel attention weights through global average pooling and 
fully connected layers, which are then applied to each 
channel within the input feature map. On the other hand, 
the spatial attention module is designed to grasp the rela-
tionships and importance of feature maps in the spatial 
dimension. It accomplishes this by learning spatial atten-
tion weights through a combination of maximum pool-
ing and average pooling operations, and subsequently 
applying these weights to each spatial position within 
the input feature map.By concatenating channel atten-
tion modules and spatial attention modules, CBAM can 
simultaneously consider the importance of both channels 

Fig. 3 Convolutional Block Attention Module structure diagram
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and spaces, thereby improving the performance of the 
network in various computer vision tasks. Assuming the 
input feature map is X, where MC and MS represent the 
channel attention and spatial attention functions, the 
expression for this attention can be expressed as follows:

Among them, MaxPool and AvgPool represent maxi-
mum pooling and average pooling operations, respec-
tively, MLP represents shared weight multi-layer 
perceptron, σ represents the Sigmoid function, ⊗ repre-
sents element by element multiplication, X ′ represents 
the output feature map of channel attention, and X ′′ rep-
resents the output feature map of spatial attention.

Atrous spatial pyramid pooling
ASPP (Atrous Spatial Pyramid Pooling) is a deep learn-
ing technique used for semantic segmentation tasks. As 
shown in Fig.  4, ASPP can capture contextual informa-
tion of different scales and expand the receptive field by 
using parallel convolutional branches with different sam-
pling rates to process input feature maps. This multi-scale 
perception ability enables ASPP to better understand 
objects of different scales and improve its understanding 
of complex scenes. Secondly, ASPP adopts dilated convo-
lution operation to avoid information loss and resolution 
reduction, while retaining more detailed information. 
The effectiveness of this feature representation helps to 

(7)MC (X) = σ
(

MLP
(

AvgPool(X)+MLP(MaxPool(X))
))

(8)X ′ = MC(X)⊗ X

(9)MS(X) = σ

(

f b×b
[AvgPool(X),MaxPool(X)]

)

(10)X ′′ = MS

(

X ′
)

⊗ X ′

improve the performance and accuracy of the model. In 
addition, ASPP also combines global pooling operations 
to aggregate features across a larger range of contextual 
information, providing a more global perspective. This 
helps the model to better understand the overall struc-
ture and contextual relationships.

Taking the input feature map Z and Dilation rate 
list [r1, r2, r3, r4] as an example, the formula can be 
expressed as:

Among them, W represents the convolutional kernel 
weight corresponding to the void ratio, and Xr represents 
the result of convolution operation and pooling opera-
tion for each Dilation ratio r and the weight W of void 
convolution Rate represents porosity, Pooling represents 
pooling operation, Concatenate represents cascading 
operation, and Sum represents adding operation by chan-
nel.Z′ represents concatenating all pooled feature maps 
to obtain the final ASPP output feature map.

Method
Figure  5 illustrates the research scheme adopted in this 
article. Establish a deep learning model for predicting 
surface solar incident radiation based on satellite images. 
This method is mainly divided into three parts: the data 
preprocessing part, which performs region selection, 
quality control, interpolation, and normalization pro-
cessing on the original data, and finally groups it into a 
format that conforms to deep learning training; The sec-
ond part is to train the model, which inputs the allocated 
training set during preprocessing into the model for 
training. With the powerful learning ability of convolu-
tional neural networks, the model can gradually improve 

(11)Xr = Pooling(Conv(Z,W , dilation_rate = r))

(12)Z′ = Concatenate(X1,X2,X3,X4)

Fig. 4 Atrous Spatial Pyramid Pooling structure diagram
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the accuracy and generalization ability of predictions. 
Each round of training will undergo a validation set test, 
and based on the performance indicators on the valida-
tion set, hyperparameters can be adjusted and network 
structure modified to improve the performance of the 
model. The final section compares the predicted results 
of the input model output of the test set with the actual 
results, and evaluates the performance and generaliza-
tion ability of multiple models in real scenarios by evalu-
ating them on the test set.

EDA‑AttUNet
This subsection will describe the method behind 
the EDA-AttUNet model, as shown in Fig.  6, which 
is our spatiotemporal prediction model based on 
encoder-translator-decoder.
Encoder The encoder extracts spatial features by stack-

ing residual blocks composed of DWConv, LayerNorm, 
and LeakyRelu. Assuming the input data time step is T, 
the number of channels is C, and the height and width of 
the image are H and W, respectively, that is, the input fea-
ture shape is (T, C, H, W). The expression for the encoder 
can be represented as follows:

(13)X ′
i = Xi ⊙

(

σ
(

LayerNorm(DWConv(Xi))
))

Among them, the shapes of input Xi and output X ′
i are 

(T, C, H, W). σ represents the Sigmoid function, ⊙ repre-
sents the Hadamard product.
Translator By introducing AttUNet [27, 28], which 

includes a skip connection mechanism, the translator 
constructs an Encode-Decode structure separately. The 
encoder part plays a role in extracting temporal features, 
while the decoder part is used to restore the feature map 
to the resolution of the original image. By connecting fea-
ture maps at different levels in the encoder and decoder, 
the fusion of low-level and high-level features is achieved. 
This feature fusion capability helps to improve the accu-
racy of segmentation results and the ability to retain 
details. By using skip connections and feature fusion, the 
model can simultaneously utilize feature information at 
different levels, enabling it to capture contextual informa-
tion at different scales. And an attention module com-
bining CBAM was introduced between the encoder and 
decoder. These attention modules are used to calculate 
the importance weights of features and apply them to the 
feature representation of the decoder. Taking the (t-th) 
layer as an example, the upsampling output of the (t-th) 
layer can be expressed as:

(14)X ′
t = concat

(

deconv(Xt−1),A
(

X ′
t−1,Xt

))

Fig. 5 Overall framework for predicting surface solar incident radiation
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Among them, Xt represents the feature map of encoder 
t-layer, X ′

t−1 represents the feature map of encoder t-1 
layer, and X ′

t represents the feature map of encoder 
t-layer. Here, A represents the Attention Gate function.

As shown in Fig. 5, the Attention Gate first undergoes 
an ASPP (Hole Space Pyramid Pooling) to convolution 
the input features using different hole rates, while main-
taining computational efficiency while obtaining multiple 
receptive fields of different scales. This enables the net-
work to simultaneously capture local details and global 
contextual information, improving the performance of 
the model. Then, the ASPP output results are fed into 
the channel attention mechanism and spatial attention 
mechanism to adaptively learn the importance of features 
and improve the model’s expressive and perceptual abili-
ties. Taking the t-layer as an example, the calculation for-
mula for Attention Gate is as follows:

(15)Z = Conv
(

X ′
t−1

)

+ Conv(Xt)

(16)Z′ = concat(b1, b6, b12, b18,mean(Conv(upsample(Z))))

Among them, Xt represents the feature map of the 
encoder t-layer, X ′

t−1 represents the feature map of 
the encoder t-1 layer, concat represents stitching,b1 
,b6 ,b12 and b18 are the outputs of different partition 
rates in ASPP, mean represents the adaptive average 
pooling layer, and upsample represents the upsampling 
operation.
Decoder The decoder reconstructs the real surface 

solar incident radiation by stacking blocks composed 
of ConvTranspose2d, LayerNorm, and LeakyRelu. 
The expression for the decoder can be represented as 
follows:

Among them, the input Xk−1 and output shapes of Xk 
are (T, C, H, W).The ConvTranspose2d mentioned in 
the article is represented in the formula as unConv2d.

(17)Z′′ = MC

(

Z′
)

⊗ Z′

(18)Z′′′ = MS

(

Z′′
)

⊗ Z′′

(19)Xk = σ
(

LayerNorm
(

unConv2d
(

Xk−1

)))

Fig. 6 Surface solar incident radiation prediction model EDA-AttUNet based on Encoder-Translator-Decoder
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Dynamic weighted loss function
The loss function used in this article is the sum of the 
weighted mean square error(MSE) and the mean abso-
lute error(MAE) . By multiplying by the given weight, 
high radiation data with fewer samples can have a greater 
“contribution” and improve prediction accuracy. The for-
mula is as follows:

The equation involves variables where wn,p,q denotes 
the weight of the radiation value at position (p, q) in the 
nth image, yn,p,q represents the radiation value at position 
(p, q) in the nth image, and ŷn,p,q stands for the ground 
truth radiation value at position (p, q) in the nth image. 
The value of dynamic weight W is shown in (19):

In the given context, The variable y represents the solar 
radiation value, measured in W /m2 . When W = 1 , it 
represents a relatively low solar radiation value at loca-
tions (i,  j), indicating a lower photovoltaic power gen-
eration efficiency. When W = 5 , it represents a gradually 
improving solar radiation value at locations (i,  j), ena-
bling the photovoltaic system to generate a considerable 
amount of electricity. When W = 20 , it represents a high 
solar radiation value at locations (i, j), allowing the pho-
tovoltaic system to generate a large amount of electric-
ity. When W = 50 , it represents a solar radiation value at 
locations (i, j) that maximizes the efficiency of the photo-
voltaic system, resulting in the highest power output.

Experiments
Study area and data
The data used in this experiment is the surface solar 
incident radiation(SSI) full disk data product provided 
by the geostationary meteorological satellite FY4A. This 
product considers parameters such as clouds, aero-
sols, water vapor content, surface albedo, and surface 
elevation, which can better grasp the impact of different 
weather conditions on solar radiation and make up for 
the shortage of radiation observation data in photovoltaic 
power generation meteorological forecasting services. 
The time resolution of this product is generally 1 hour, 
with a maximum of 15 minutes. The experimental pre-
processing interpolates the parts less than 15 minutes. 
This experiment extracts China’s regional data for train-
ing from the full disk data center based on the product 

(20)

loss =
1

N

N
∑

n=1

∑

p,q

(

wn,i,q

(

(

ŷn,p,q − yn,p,q
)2

+
∣

∣ŷn,p,q − yn,p,q
∣

∣

))

(21)W
�

y
�

=















1 0 < y
�

i, j
�

< 200

5 200 <= y
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manual provided by the China Meteorological Data Net-
work. Due to the limitations of the radiation transfer 
software package plane parallel algorithm currently used 
by FY-4A, when the solar zenith angle is greater than 70 
degrees, the plane parallel mode is no longer applicable 
due to the influence of Earth’s curvature. Therefore, in the 
inversion process, to ensure the accuracy of the calcula-
tion results, Set the critical value of the solar zenith angle 
to 70, and when the critical value is exceeded, there will 
be no output of irradiance products. This has resulted in 
a large area of high latitude areas being without radiation 
for a long time from the end of December to the begin-
ning of February, resulting in a small number of samples.

Therefore, utilizing the computing and storage capa-
bilities of edge devices [29, 30], performing data quality 
control tasks, and optimizing data transmission and pro-
cessing through edge cloud collaboration, such as trans-
mitting data results processed on edge devices to the 
cloud for further analysis and storage [31]. Ensure that 
the edge cloud collaboration system has real-time and 
scalability by optimizing data transmission and process-
ing latency, and dynamically adjusting the workload of 
the edge and cloud. Through this approach, edge cloud 
collaboration can effectively introduce meteorological 
data quality control and extend it to edge devices with 
computing and storage capabilities, improving the accu-
racy and reliability of meteorological data [32, 33].

We select the data for the entire year 2021, with the 
last 10 days of each month as the validation and testing 
sets, and the rest as the training set. The data preproc-
essing involved using bilinear interpolation to interpo-
late the temporal resolution of the hourly data to every 
15 minutes. As a result, the final total number of samples 
is 28,670, with 6,820 samples in spring, 8,530 samples in 
summer, 8,040 samples in autumn, and 5,280 samples in 
winter.Each sequence has 16 radiation data in chronolog-
ical order within two hours. In the experiment, the model 
uses the radiation maps from the first 8 hours as input 
to predict the radiation maps from the next 8 hours. The 
initial size of each radiation map is 386 × 256, downsam-
pling will be performed to improve the performance of 
the model. Due to the large amount of solar radiation 
data and varying peak values at different time periods, 
in order to facilitate processing, it is necessary to nor-
malize the data before training. The specific normaliza-
tion method for converting the data into the 0-1 range is 
shown in expression (20) as follows:

Among them, min (I) denotes the lowest recorded 
solar radiation value within the entirety of the dataset 
under consideration, while max (I) signifies the highest 

(22)Inorm =
I −min (I)

max (I)−min (I)
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recorded solar radiation value within the same dataset. 
Here, I represents a solar radiation data point.

Experiment setup and evaluation metrics
This experiment analyzes the performance of the SSI 
Dataset for predicting ground incident solar radiation 
in different seasons throughout the year 2021-2022.

In order to test the performance of the model in pre-
dicting radiation tasks, some typical benchmark models 
were selected for comparative experiments, including 
ConvLSTM [34], PhyDNet [35], E3D-LSTM [36], Traj-
GRU [37], PredRNN [38], PredRNN++ [39]. All models 
are built using the Python framework, and equivalent 
parameters are used for all models in each experiment 
to ensure the fairness of test results. The encoder and 
decoder as well as NE and ND in the model proposed 
in this article are all 4. The model uses an Adam opti-
mizer to optimize parameters. Each model uses early 
stop and sets the number of iterations to 50. The ini-
tial learning rate and batch size are set to 0.001 and 8, 
respectively. All experiments were conducted on a per-
sonal computer equipped with a Windows 10 operating 
system, 64.0 GB of RAM, 3.60GHz Intel (R) Core (TM) 
i7-11700KF CPU, and NVIDIA GeForce RTX 3090 
GPU.

In the formula, ŷi represents the i-th predicted value, 
and yi represents the i-th true value. yavg and ŷavg rep-
resent the average predicted value and the average true 
value, while N represents the current total number of 
observations. µ is the average value, and σ is the stand-
ard deviation. C1 and C2 are constants used to prevent 
the denominator from reaching zero when µ and σ are 
too small.

(23)MAE =
1

N

N
∑

i=1

∣
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Experiment results and analysis
In Fig.  7, we show the visualization of the predicted 
results of each model within two hours, with a time reso-
lution of 15 minutes. From the graph, it can be seen that 
the PhyDNet and ConvLSTM models have weaker abil-
ity to extract spatiotemporal changes. Although the Con-
vLSTM model made adjustments to the changes on the 
right side after one hour, it is clear that the model did not 
truly learn the spatiotemporal characteristics of radiation 
variations. It is unable to extract effective spatiotempo-
ral state changes at 60 minutes, and no corresponding 
movement state changes are made in the following hour. 
Although the PredRNN model made adjustments to the 
changes in spatiotemporal state within 60 minutes, it was 
not outstanding and to some extent relied on the perfor-
mance of the previous moment. The PredRNN++ model, 
with its stacked structure compared to the single-layer 
recurrent prediction units of PredRNN, exhibits better 
temporal modeling capabilities, resulting in improved 
predictive performance. However, it is worth noting that 
the training time for PredRNN++ is twice as long as Pre-
dRNN. Finally, the model proposed in this article not 
only significantly predicted the true distribution of solar 
radiation within 60 minutes, but also predicted the dis-
tribution changes of radiation more accurately after 60 
minutes.

The results of various indicators for all models from 
2021 to 2022 are displayed in Table 1. From the table, it 
can be seen that the performance indicators of our model 
have achieved the best.The SSIM metric reached 0.86, 
and both PredRNN and PredRNN++ achieved high lev-
els of SSIM, but from our experimental process, it is evi-
dent that they required significantly more training time 
compared to EDA-AttUNet. ConvLSTM, PhyDNet, and 
Traj GRU are far inferior to the other models in terms of 
both visual results and experimental indicators.

The comparison of root mean square error indicators 
for 8 predicted time steps of surface solar incident radia-
tion using different models from 2021 to 2022 is shown 
in Table 2. From the table, it can be seen that our model 
not only achieved good results within 1 hour, but also 
achieved better results within 1-2 hours. Although the 
PredRNN and PredRNN++ models performed slightly 
better in the initial prediction time steps, their perfor-
mance declined more significantly in subsequent predic-
tions. In contrast, EDA-AttUNet demonstrated greater 
stability as the prediction horizon increased. Similarly, 
PhyDNet performed better than Traj-GRU in predicting 
within 1 hour, but with increasing prediction frequency, 
the root mean square error increased more significantly.
The E3D-LSTM model also struggles to accurately pre-
dict the distribution of radiation as the prediction hori-
zon increases.
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Fig. 7 Prediction examples of each model relative to the true value of SSI. 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, 90 minutes, 
105 minutes, and 120 minutes refer to the future predicted time relative to the initial start time at 2021-07-22 09:59

Table 1 Comparison of all statistical indicators for all models throughout the year

Metric ConvLSTM PhyDNet Traj‑GRU E3D‑LSTM PredRNN PredRNN++ EDA‑AttUNet

MAE 114.74 103.19 94.57 97.49 96.25 92.65 89.56
RMSE 167.82 148.26 157.63 150.22 141.34 138.77 134.2
nRMSE 35.52 31.48 33.81 31.97 30.88 30.04 29.47
SSIM 0.73 0.82 0.78 0.80 0.83 0.84 0.86

Table 2 Comparison of Root Mean Square Error indicators for prediction results of different time steps of various models throughout 
the year

Model Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

ConvLSTM 100.08 109.65 121.06 133.25 154.93 183.92 211.48 235.49

PhyDNet 96.52 103.82 115.22 128.47 151.91 178.44 195.59 227.88

Traj-GRU 97.88 104.77 119.31 130.21 150.32 174.46 190.93 224.31

E3D-LSTM 95.24 101.92 116.01 125.44 142.09 163.44 180.19 207.23

PredRNN 89.29 96.48 114.61 127.23 145.37 169.23 187.04 211.19

PredRNN++ 87.11 93.22 107.42 124.23 141.50 162.91 184.75 209.41

EDA-AttUNet 90.47 97.84 109.37 124.74 139.93 158.37 175.74 192.93
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Due to the seasonal influence of solar radiation, the 
results of various performance indicators in spring, sum-
mer, and autumn from 2021 to 2022 are presented in 
Table  3. In the inversion algorithm of FY-4A, the solar 
zenith angle of 70 degrees is the critical value, which 
results in a small number of effective samples in some 
regions of China during winter. Therefore, seasonal test-
ing is not conducted here. From the table, it can be seen 
that the error in spring is higher than that in summer 
and autumn. It is worth noting that the PredRNN and 
PredRNN++ models have lower MAE values in summer 
compared to the proposed model, with a difference of 
0.59 and 2.74, and lower RMSE values with a difference of 
13.79 and 15.83. We tentatively attribute this to the sig-
nificantly larger number of effective samples and higher 
radiation values during the summer season. The stacked 
structure of PredRNN++ clearly has an advantage in 
handling such data.

Conclusion
The paper introduces a novel encoder-decoder based on 
AttUNet, which incorporates an attention mechanism. 
This enhancement aims to capture the spatial variations 
and temporal dependencies of radiation motion, thereby 
improving the model’s ability to evolve with radiation 
dynamics. Compared to traditional methods, this model 

can better capture the complex spatial and temporal 
characteristics of radiation motion, thereby improving 
the accuracy of prediction. In addition, this method also 
has good generalization ability and is suitable for radia-
tion prediction in different regions and time scales. The 
experimental results of the proposed model demonstrate 
its effectiveness in practical radiation forecasting.Future 
research will focus on advancing the integration of satel-
lite data with ground observations, as well as consider-
ing the impact of weather conditions on solar radiation to 
enhance the accuracy of radiation prediction.
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