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Abstract 

The growth of multimedia applications poses new challenges to software facilities in edge computing. Developers 
must effectively develop edge computing software to accommodate the rapid expansion of multimedia applications. 
Code search has become a prevalent practice to enhance the efficiency of the construction of edge software infra-
structure. Researchers have proposed lots of approaches for code search, and employed deep learning technology 
to extract features from program representations, such as token, AST, graphs, method name, and API. Nevertheless, 
two prominent issues remain: 1) there are only a few studies on the effective use of graph representation for code 
search (especially in Java language), and 2) there is a lack of empirical study on the contributions of different pro-
gram representations. To address these issues, we conduct an empirical study to explore program representations, 
especially program graphs. To the best of our knowledge, this is the first attempt to conduct code search with mixed 
graphs representation for Java language, containing the control flow graph and the program dependence graph. 
We also present a hybrid approach to capture and fuse the features of a program with representations of Token, AST, 
and Mixed Graphs (TAMG). The results of our experiment show that our approach possesses the best ability (R@1 
with 37% and R@10 with 67.1%). Our graph representation exhibits a positive effect, and the token and AST also have 
a significant contribution to the code search. Our findings can aid developers in efficiently searching for the desired 
code while constructing the software infrastructure for edge computing, which is crucial for the rapid expansion 
of multimedia applications.
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Introduction
Given the rise of multimedia applications, such as video 
streaming and computer games, there is a need to effi-
ciently construct software infrastructure in edge com-
puting to address the diverse issues encountered by 
modern interactive media applications [1, 2]. Meanwhile, 

in the software engineering (SE) community, the research 
has entered the era of “Big code” with the assistance of 
open-source resources. Researchers have begun applying 
artificial intelligence (AI) technologies to software engi-
neering tasks [3, 4] (such as code search [5]), in which 
developers retrieve an intent code snippet from websites 
during the development process. Therefore, code search 
not only helps developers substantially in boosting the 
productivity of edge computing development efficiency 
but also improves edge software quality and reliability by 
reusing high-quality source code [6].

In the initial stages of code search research, traditional 
technology was utilized to excavate intent codes from 
software repositories [7, 8]. Linstead et al. [7] employed 
IR techniques that incorporated source-specific heu-
ristics to search for and discover reusable software 

*Correspondence:
Heng Wu
heng.wu@foxmail.com
Tao Wu
doctorwutao@163.com
1 School of Computer Science and Technology, Guangdong University 
of Technology, Guangzhou 510006, China
2 School of Automation, Guangdong University of Technology, 
Guangzhou 510006, China
3 Guangdong Provincial Corps Hospital of the Chinese People’s Armed 
Police Forces, Guangzhou 510507, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00629-5&domain=pdf


Page 2 of 14Zhang et al. Journal of Cloud Computing           (2024) 13:78 

components. Mishne et al. [8] proposed an approach for 
answering queries focused on API usage based on static 
mining and temporal API specifications. However, these 
methods inevitably rely on expert knowledge, making it 
challenging to navigate the massive searchable code base. 
Consequently, researchers utilize deep learning technol-
ogy to enhance the ability of code search, by learning 
semantic features from source code and matching the 
source code to the corresponding description. The first 
approach was proposed by Gu et  al. [9], which repre-
sented the code snippets and the queries as vectors with 
a neural network. They captured code semantic infor-
mation from method name, code token, and API from 
code snippets. Meanwhile, researchers proposed addi-
tional techniques for extracting semantic features from 
various program representations, such as token [10], 
tree [11], and graph [12]. Sachdev et al. [10] build neural 
code search tool (NCS) by using a combination of word 
embedding and TF-IDF techniques. Sun et al. [11] build 
a structure-sensitive model named PSCS based on the 
abstract syntax tree for code search. Ling et al. [12] pro-
posed a method called deep graph matching and search-
ing (DGMS), in which they realized a graph generation 
approach to represent query texts and source codes.

To enhance the ability of code search, researchers have 
made further attempts to extract enriched semantic fea-
tures with multiple representations of the program. The 
forms of the representation can be method name, API, 
tokens, abstract syntax trees (AST), the program graph. 
Gu et al. [9] explored the method name, API invocation, 
and code tokens to embed code snippets for Java pro-
gram language and their methods went beyond the tra-
ditional tools. Shuai et al. [13] improved the work of Gu 
et  al. by extending different neural networks for encod-
ing the same representation. Another attempt was made 
by Meng et al. [14], and that employed three independ-
ent encoders, including a lexical encoder for the token, 
a name encoder for the method name, and a structural 
encoder for AST. There are also some approaches that 
employ graph representation as well as token and AST 
representations, such as MMAN [15]. They proposed a 
deep model for semantic code search, that represented 
source code on token, AST, and CFG (control flow graph) 
only for C programming languages. However, in the cur-
rent code search research, there is a lack of studies on 
program graph representations, especially for the Java 
programming language. Nonetheless, there are a num-
ber of graph representations for code, such as the control 
flow graph (CFG) and the program dependency graph 
(PDG). In Fig.  1, we provide an example of these graph 
representations. Figure  1a depicts a straightforward 
example of Java code and its natural language descrip-
tion. The generated AST and CFG are depicted in Fig. 1b 

and c, respectively. The PDG of the code is depicted in 
Fig.  1d, which incorporates control dependence flow 
(represented by blue lines) and data dependence flow 
(represented by green lines). This example demonstrates 
that multiple code graphs contain distinct semantic 
information. This motivates us to investigate the efficacy 
of multiple program representations on code search, espe-
cially the graph representations. There are two main dif-
ferences between us and Wan et  al., on the one hand, 
Wan et al. focus on the C programming language, while 
we pay attention to JAVA programming language; on the 
other hand We have additionally add PDG, with which 
CFG are combined into a mixed graph, compared with 
Wan et  al. work with the token, AST, and CFG. More 
specifically, we list here our research issues that need to 
be addressed in the code search task:

• Whether graph representation of programs has a 
positive effect on code search for edge computing 
software?

• Whether each of these representations of the pro-
gram has a positive contribution, and which ones 
provide a more significant effect?

• In practice, how do developers determine their rep-
resentations, and how to train their models to obtain 
optimal performance to enhance the efficiency of 
edge software?

Therefore, in this work, we propose a hybrid approach 
to capture the features with several representations of 
Token, AST, and Mixed Graphs (TAMG) for code search, 
that explores the effectiveness of these representations 
for java programming language. The mixed graph rep-
resentation contains control flow graph (CFG) and pro-
gram dependence graph (PDG). Specifically, with the 
help of program analysis tools, we parse the source code 
into several representation forms including token, AST, 
and graphs. Then, we employ neural networks to learn 
the syntax and semantic features of each representation. 
We use long short-term memory (LSTM), tree-based 
LSTM, gated graph neural networks (GGNN), and recur-
rent neural network (RNN) to characterize token, AST, 
graph respectively. Furthermore, we also employ atten-
tion mechanism for each modality and use LSTM for 
the description. To evaluate the efficacy of our approach, 
we experiment on the dataset from three perspectives, 
including the effectiveness experiment, the significant 
experiment, and the performance experiment.

The results show that our hybrid approach possesses 
the best effectiveness, that combines token, AST, and 
mixed graph representations. Each of these represen-
tations plays a positive effect, and the employed ones 
in our approach have a significant contribution to code 
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search. When building their models, we recommend 
developers retain all of them if possible and employ 
the AST or graph while retaining at least the token. 
We believe that our approach can assist developers in 
building the software infrastructure for edge comput-
ing, a critical component for the accelerated expansion 
of multimedia applications.

Our contributions to this work are as follows:

• We conduct an empirical investigation on code 
search to examine the efficacy of various represen-
tations in assisting advanced edge software develop-
ment in the field of multimedia applications.

• We propose a hybrid approach (TAMG) for code 
search to extract and fuse features of programs, espe-
cially the graph representations to enhance effective-
ness.

Fig. 1 An example of a program with different representations
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• Through experimentation, we assess their effec-
tiveness and answer proposed research issues. Our 
hybrid approach has the best ability and our mixed 
graph has a positive effect on code search. To achieve 
the best performance, we recommend the token, 
AST, and the graph when building the models, at 
least of AST or graph while keeping the token.

Our paper is organized as follows. Related work section 
is present some other works related to this paper. Meth-
odology section describes the details of our approach. In 
Experimental methodology section, we show the details 
of how to design our experiment. Results and discus-
sion section presents the evaluation of our experiment. 
Threats to validity section presents threats to the valid-
ity, including external and internal threats. To the end, we 
conclude our work in Conclusion section.

Related work
With the increasing popularity of multimedia applica-
tions like video streaming and computer games, it is 
necessary to develop software infrastructure in edge 
computing [1, 2]. Code search is a prevalent technique 
that adeptly addresses the diverse challenges encountered 
by modern interactive media apps. So, in this section, we 
provide the related work on code search and program 
representation learning. Program representation learning 
employs deep learning to extract semantic features for 
solving software engineering tasks, such as code search.

Code search
Code search/retrieval has become a common practice 
in software development, aiding engineers in enhanc-
ing productivity for software infrastructure in edge 
computing. Initially, researchers have utilized informa-
tion retrieval (IR) technology to get the code snippets. 
For instance, Linstead et al. [7] developed a code search 
engine named sourcerer based on the code rank method-
ology. Mishne et al. [8] constructed the search index with 
a new method that statically mined code fragments and 
merged temporal API specifications. Lv et al. [16] devel-
oped a technique named CodeHow for locating poten-
tial API, and the experimental results demonstrated that 
it was effective. Ding et  al. [17] creat a cloning search 
engine named Kam1n0 by combining a new LST scheme 
and graph matching, that was accurate, efficient, and 
scalable for handling large amounts of code.

Following the program representing learning, researchers 
have recently proposed deep learning-based approaches for 
improving code search [3, 5]. It has been demonstrated that 
deep learning-based code search models, such as DeepCS 
[9], outperformed conventional code search techniques, 
such as sorcerer and CodeHow. These methods are also 

divided into the same three categories: token-based, tree-
based, and graph-based. Taking the token-based method as 
an example, Sachdev et al. [10] build a search tool for large 
codebases called neural code search (NCS) to obtain a bet-
ter result by adding a layer of supervision. Wang et al. [18] 
proposed a new deep learning tool called COSEA, which 
captured valuable code intrinsic structural logic for code 
search. Cheng et  al. [19] proposed CSRS, consisting of an 
embedding module with n-gram embedding of queries 
and codes. Alternatively, the abstract syntax tree (AST) can 
provide more comprehensive semantic information. Thus, 
researchers also utilized AST to carry out program repre-
sentation learning. Sun et  al. [11] proposed PSCS, a path-
based neural model for learning semantics and the structure 
code represented by an AST path, and their model showed 
a significant improvement in search performance compared 
to the current techniques. Researchers also explored the 
graph representation for the program. Ling et al. [12] pro-
posed an end-to-end code search model named DGMS, that 
utilized graph neural network to represent program graphs 
generated from AST. Liu et al. [20] also constructed a code 
search model based on the graph representation generated 
from AST, that utilized a multi-head attention module to 
obtain local structure and global dependency information. 
Consequently, there is a dearth of research on code search 
for program graphs, such as control flow graph (CFG) and 
program dependency graph (PDG).

To improve the performance of code search models, 
researchers have begun experimenting with combin-
ing multiple representations. Gu et  al. [9] invented a 
CODE-NN to embed code fragments, learning features 
from the method’s name, API invocation sequence, and 
code tokens for the Java program language. Their result 
showed that CODE-NN went beyond the baseline, such 
as CodeHow. Following that, Shuai et  al. [13] extended 
the work of Gu et  al. by exploring additional neural 
networks on the same representations, naming their 
method as CARLCS-CNN. They also employed a co-
attention mechanism to merge the information of tokens, 
method name, and API sequence. Du et  al. [21] trained 
three different encoders that concentrate on structure, 
local variable, and API invocation separately, and then 
fused three models under the tactic of ensemble learn-
ing. Some researchers also have incorporated ASTs into 
their methods. Meng et al. [14] designed At-CodeSM that 
embeds code, name, and ASTs. Their three independent 
can handle lexical encoder, method name, and struc-
tural information. The experiment indicated that their 
model learned the lexical and syntactic features effec-
tively. Mathew and Stolee [22] explored a model for code 
search, that can support dynamic and static information 
including the code tokens, generic ASTs, and IO relation-
ship. Shi et al. [23] deployed CoCoSoDa, which consisted 
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of pre-trained encoders (GraphCodeBERT) and momen-
tum encoders to capture the high-quality sequence-level 
representation on several languages. Their work lever-
aged contrastive learning and soft data augmentation to 
promote the performance of code searches.

Although the works mentioned above are compat-
ible with the Java programming language, no program 
graphs were incorporated to enhance their compatibility. 
In addition, researchers also tried to apply the program 
graph representation in their model on C programming 
languages. Specifically, Wan et al. [15]. proposed a deep 
model named MMAN for semantic code search, that rep-
resented source code with code token, AST, and CFG for 
C programs. However, they did not account for the Java 
programming language in their work, nor did they exam-
ine other graph representations, such as the program 
dependence graph.

Unlike the approaches stated above, in our work, we 
first make an empirical study to explore the contribution 
of program representations (especially program graphs) 
on code search for Java programming language. In our 
work, we employ a mixed graph by merging the control 
flow graph (CFG) and program dependence graph (PDG) 
as well as the code token and AST to enhance the effec-
tiveness of our models.

Program representation learning
Nowadays, program representation learning has attracted 
the attention of researchers [11, 12]. Deep learning is 
being used in a greater variety of methods to extract 
semantic information for software engineering tasks. 
According to the program representation, such as pro-
gram token, abstract syntax tree, and control flow or pro-
gram dependence graph, these methods are divided into 
token-based, tree-based, and graph-based approaches.

The n-gram language model used in natural lan-
guage processing can be traced back to the origins of 
the token-based approaches. Such approaches are refer-
ring to the analogy of code token and natural language 
word, that tokenism of the source code for representa-
tion learning using deep learning, and extending it to the 
software engineering tasks (e.g. code completion, vul-
nerability detection, etc.). Nguyen et  al. [24] developed 
SLAMC on n-gram model for code recommendation 
task, encoding the code token by incorporating semantic 
information into the traditional encoding. Nguyen et al. 
developed the MNIRE [25] for method name generation 
by extracting features from code content, interface, and 
class name that contains. Hu et  al. [26] used the LSTM 
to learn language models for making predictions on code 
element completion. Kang et  al. [27] assessed the token 
embeddings on three downstream tasks including code 

comment generation, code authorship identification, and 
code clones detection.

For these tree-based approaches, researchers parse 
the program into tree-based representations, such as 
abstract syntax trees (AST). Mou et al. [28] propose the 
novel tree-based convolutional neural network (TBCNN) 
to model programming languages for clone detection. A 
neural network model (ASTNN) was proposed by Zhang 
et  al. [29], which divided the AST into a series of small 
corresponding statement trees, that can capture the lexi-
cal and syntactical knowledge of statements for source 
code classification and code clone detection. They dis-
covered that their models were more excellent than state-
of-the-art methods for the tasks of code classification and 
clone detection. Jayasundara et al. [30] employed a cap-
sule network to learn the syntactic structure and seman-
tic dependencies from AST, and vectorized the AST node 
with types (instead of specific tokens) as lexical words. 
Chakraborty[31] et  al. propose a new tree-based neural 
network named CODIT to model source code changes, 
and their model was successful in suggesting program 
modifications.

Researchers also constructed different graph forms 
of source code to refine the effectiveness of representa-
tion learning. Wang et  al. [32] employed heterogeneous 
graphs on learning from source code, which had a bet-
ter ability than ASTNN. Xu et al. [33] proposed a graph-
based approach to compute the similarity between two 
binary files based on the CFG, and implemented a pro-
totype called Gemini. Nair et al. [34] proposed funcGNN 
on labeled CFGs, which also aimed to the similarity, and 
achieve the best effectiveness. Chen et al. [35] proposes 
a novel API recommendation method called APIRec-
CST by combining API usage with textual information in 
source code based on API context graph networks. Gao 
et  al. [36] introduced VulSeeker for vulnerability detec-
tion, which first combined several graph representa-
tions of the program. David et al. [37] proposed a novel 
method for predicting the procedure name in stripped 
executables, which used static analysis to obtain aug-
mented representations of call sites, encoded them with 
a control-flow graph (CFG), and then generated a target 
name. In this paper, we investigate the use of program 
graph representation to improve code search, as graph-
based learning methods are becoming increasingly popu-
lar in program representation learning.

Methodology
In this section, we provide the architecture of our 
approach that employs deep learning technology for code 
search and also provide the details of building our models 
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with multiple representations of the program. More espe-
cially, we provide three research questions as follows:

• Whether graph representation of java programs can 
have a positive effect on code search?

• Whether each of these representations of the pro-
gram has a positive contribution, and which ones 
provide a more significant effect in code search?

• In practice, how do developers determine their rep-
resentations, and also how to train their models to 
achieve optimal performance?

The architecture
Figure  2 represents the architecture of our approach 
based on deep learning with multiple representations of 
the program. It consists of two stages: the offline train-
ing stage and the online retrieving stage. In the offline 
training stage, we build and train our model that extracts 
and fuses the features from three representations of the 
program, including token, AST, and mixed graph. In the 
online retrieving stage, the developers provide a query 
with natural language, then our well-trained model 
will recommend the most relevant code snippets for 
developers.

More specifically, the offline training stage can be 
divided into three sub-parts, including program parser, 
representation learning, and fusion with attention. In 
the program parser, we employ the program analysis 
technology to parse the source code into different rep-
resentations, including token, AST, and mixed graph. 
The mixed graph consists of two distinct program 
graphs: the control flow graph (CFG) and the program 

dependence graph (PDG). These three employed repre-
sentations possess different levels of features, that play 
an appropriate role in code search. To extract these 
features, we employ deep learning to characterize the 
program representations automatically, and we call this 
modality representation learning. Here, we employ dif-
ferent neural networks as well as the attention mecha-
nism to transfer program representations into vectors. 
In our model, we utilize (token, AST, and mixed graphs) 
to build our model. So, in the fusion with attention 
part, we fuse these three representations of the pro-
gram, and we also embed the queries (description of 
the code snippet). Finally, we build and train our model 
with a large-scale dataset that generated ourselves with 
(code, description) pairs.

Program parser part
Different representations of the program have differ-
ent characteristics, such as syntax, semantics, program 
behaviors and etc, that imply different features of the 
program. We regard these representations of a program 
as multiple modalities, and they are semantically consist-
ent to some extent (from one program). Researchers have 
employed lots of representations, such as token [9, 15], 
AST [11, 15, 38], graphs [12, 39, 40], method name [9], 
and API [9, 16, 41]. In our experiment, we investigate the 
corresponding significance of each program representa-
tion in code search. The results indicate that neither the 
method name nor the API accurately reflects the positive 
contribution. Consequently, our model retains the token, 
AST, and graphs. The following are all these program 
representations:

Fig. 2 The architecture on code search with multiple representations of the program
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• Token: the sequence of the original code tokens that 
compose the method itself.

• AST: abstract syntax tree of the method, that contains 
rich and well-defined structured information.

• Graphs: the graph representations of the program, 
including the control flow graph (CFG) and program 
dependence graph (PDG). Such graphs contain the 
control and dependency relationships.

• Method name: the name of the given method. Devel-
opers consciously christen the method closer to its 
functionality.

• API: the sequence of API calls in the method. Devel-
opers call API to implement a function, and the 
sequence of the API calls contains some released 
information.

These representations can facilitate the neural networks 
to extract the syntax and semantic features. We take cor-
responding measures to parse the source code into dif-
ferent representations under the guidance of program 
analysis technology. To get the token, we split the source 
code into a sequence of tokens via {(space), \n} . We 
employ ANTLR4, a cross-language parser, to generate the 
AST that obtains richer information. Most of the code 
from the data is piratical program, that are not compiled 
by any tool when generating the program graphs. There-
fore, we employ Jcoffee to complete the partial program 
for compilation and apply soot to generate the needed 
graphs. In our work, we generate two kinds of program 
graphs, including CFG and PDG, and merge these two 
graphs to the mixed graphs. The details can be found in 
Data collection  section. For the method name and API, 
we apply JAVALANG, a pure Python library, to obtain 
the related properties that can be transformed into a 
sequence of tokens.

Representation learning
In this section, we focus on feature extraction with deep 
learning technology from the program representation 
(Program parser part  section). We regard each repre-
sentation as the program modality, which reveals some 
special characteristics of the program. We first employ 
a single neural network unit for each modality and then 
fuse more than one modality to enhance the ability of 
our model. To be specific, we apply LSTM with atten-
tion mechanism to characterizing token, tree-based 
LSTM with attention mechanism for AST, graph neu-
ral network (GGNN) with attention mechanism for the 
mixed graphs, and RNN for the method name and API.

Given a code snippet is denoted as c. The code snippet 
is parsed into [tok;  ast;  g], which represent token, AST, 
and mixed graphs respectively.

Token representation learning
We employ LSTM as our neural network unit for 
extracting features from code tokens, as follows:

where i ∈ [1, n] , and n is the number of the tokens in this 
code snippet c. The w is the word embedding layer, and 
the last state htokn  is the final token. We also employ an 
attention mechanism to identify the significant informa-
tion from all tokens:

where htoki  represent the ith hidden state in tokens, f tok denote 
a linear layer and gtok is the inner project. The utok denotes 
the context vector of token modality, which is a high-level  
representation. The word context vector utok is randomly 
initialized and jointly learned during training. Then, the final 
token representation of this code snippet c can be present as 
a vector as:

where w is the attention weight.

AST representation learning
The AST representation of the code snippet is a binary 
tree, and its left children denote as (hL, cL) and right as 
(hR, cR) . We employ the tree-based LSTM to transform 
AST into vectors. As follows,

where i ∈ [1, n] , and operation [; ] denotes the concatena-
tion operation of two vectors. Analogously, we also use 
the attention mechanism to score the nodes of the AST, 
and get the final vector of AST representation:

Graph representation learning
According to Program parser part  section, we possess 
two kinds of graph representations in our work, which 
are the control flow graph and the program depend-
ence graph. Taking these two graphs, we also obtain 
a third mixed graph that merges CFG and PDG into a 
hybrid graph, denoted as Mix graph. For each graph, we 

h
tok
i = LSTM h

tok
i−1,w(toki)

αtok
i =

exp(gtok(f tok(htoki ),utok))
∑
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[

∑
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aasti h
ast
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]
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employ the graph neural network (GGNN) with self-
node attention to embed it into a vector.

Given a directed graph, we use the GGNN to learn fea-
tures from the graph. We first get a graph with {V , E} , 
where V is a set of vertices (v, lv) , on behalf of all nodes of 
the graph. E is a set of edges (vi, vj , le) , on behalf of each 
relationship of code. lv and le are labels of vertex and edge.

We use GGNN to learn the vector. First, we initialize 
the hidden state for each vertex v ∈ V as hgraphv,0 = w(lv) , 
w denotes the one-hot embedding. For every round t, each 
vertex v ∈ V gets the vector mv,t+1 , which on behalf of the 
message, converged from its neighbors. The vector mv,t+1 
is aggregated as following:

where N (v) denotes the neighbours of vertex v. For 
round t, Wle is the weight matrix to map messages from 
each neighbor into a shared space. Then, GGNN uses 
GRU(Gated Recurrent Unit) to update the hidden state of 
each vertex, as follows:

In the end, after this t round of iterations, we gather all 
hidden states of vertices to obtain the embedding. There-
fore, we adopt each graph node with the weight αgraph as:

where hgraphi  represent the ith hidden state in Graph nodes. 
f graph denote a linear layer and ggraph is the inner pro-
ject. ugraph denotes the context vector of Graph modal-
ity, a high-level representation of the whole Graph nodes. 
Finally, we get the final representation of the graph:

where G is the final semantic representation of graph and 
w is the attention weight.

To enhance the effectiveness of our approach, we natu-
rally can select more than one representations to build 
our model. We believe that such multiple modalities play 
a positive contribution to the code search. In this work, we 
finally select token, AST, and graphs these three modalities. 
To do that, we fuse these modalities of the program repre-
sentations with concatenation along every specific dimen-
sion. As follows,

mv,t+1 =
∑

v′∈N (v)

Wlehv′,t

h
graph
v,t+1 = GRU

(

h
graph
v,t ,mv,t+1

)

.

α
graph
i = sigmoid

(

ggraph(f graph(h
graph
i ),ugraph)

)

G = w

[

∑

i

a
graph
i h

graph
i

]

C = tanh([Tok;AST ;G])

where C is the final representation of code snippet, the [;] 
is the concatenation.

Besides, given a description d for a code snippet, that 
corresponds to a code snippet c. We also employ the LSTM 
with attention mechanism to represent natural language 
description Des.

where i = 1,...,n, w is word embedding layer. And the last 
state htokn  is the final sample d in whole dataset. We apply 
description attention layer to calculate the attention 
score αdes(i) :

where hdesi  represent the i-th hidden state in description. 
f des denote a linear layer and gdes is the inner project. 
u
des denotes the context vector of description modality, 

which is a high level representation of the whole descrip-
tions. The word context vector udes is randomly initial-
ized and jointly learned during training. Finally, we get 
the final representation of description Des:

where Des is the final semantic representation of Des and 
w is the attention weight.

Model training
In our approach, we build and train our model that embeds 
code and description into a unified vector space. The goal 
of our model is that if a code snippet c and a description d 
represent consistent semantics, then their embedded vec-
tors should be similar to each other.

When training our model, we construct each training 
instance as a triple �c, d+, d−� . For each code snippet c, 
there is a positive description d+ (correct description) 
as well as a negative description d− (incorrect descrip-
tion), that is randomly chosen from our dataset D∗ . 
Then, we employ the two couples �c, d+� and �c, d−� from 
�c, d+, d−� to train our model with the following loss 
function [9][15]:

where ǫ denotes the constant margin. (C,D+,D−) are the 
embedded vectors for c, d+, d− . In our experiment, we 
set the ǫ to 0.6.

h
des
i = LSTM(hdesi−1,w(di))

αdes
i =

exp(gdes(fdes(hdesi ),udes))
∑

j exp(g
des(f des(hdesj ),udes))

Des = w

[

∑

i

adesi h
des
i

]

L =
∑

�c,d+,d−�

max(0, ǫ − cos(C,D+)+ cos(C,D−))
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Experimental methodology
In this section, we provide the details of the dataset for 
building our model and describe our experimental meth-
odology, including experiment steps and evaluation 
metrics.

Data collection
A large-scale data corpus is essential for training our 
models, which contain code fragments and the cor-
responding descriptions. We choose the dataset from 
codeSearchNet1 as our original dataset, that it has been 
widely adopted by researchers in this field [5, 13, 23, 
42–44]. This dataset covers the code snippets in python, 
JavaScript, Ruby, go, java, and PHP programming lan-
guages. In our work, we focus on the Java programming 
language. The original dataset contains numerous web-
site-collected partial programs, but there are no appro-
priate representations of the program that can be used 
in our work. We, therefore, parse these code snippets 
according to Program parser part  section to generate 
our dataset. Our model employs multiple representa-
tions of the code fragment, including token, AST, and 
mixed graphs (CFG and PDG). The generation details 
are as follows:

• Code token: we spilled the source code with {(space), ; , .\}.
• AST: we employ ANTLR42 to build the AST of the 

code, and transform it to binary trees following the 
leftmost-child-next-right-sibling rule. Specifically, a) 
the root node of tree is directly used as the root node 
of the new binary tree; b) take the first child node of 
the root node of the tree as the left son of the root 
node, and if the child node has a sibling node, the 
first sibling node (direction from left to right) of the 
child node is the right son of the child node; c) add 
the remaining nodes in the tree to the binary tree in 
order as in the previous step, until all the nodes in the 
tree are in the binary tree.

• Graph representation: we employ Soot3 to generate 
the graph representations. Before the soot works, 
we use Jcoffee4 to complete the partial code snip-
pet. Although this tool only can help us handle 26% 
of them, it is enough for our model build (71865). In 
our work, we explore three kinds of graphs, including 
CFG, PDG, and mix graph (CFG and PDG).

• Method name and API: we employ JAVALANG5 
to parser the method name and MethodInvoca-

tion of the code snippet, and split them into token 
sequence by the camel case. For example, the 
method name clearCache can be split into tokens 
clear and Cache. These two representations are 
used in our baselines.

For each code snippet in our dataset, we also extract the 
description in natural language, that can be obtained 
directly from the original dataset. Table 1 is the informa-
tion of the original dataset and our own dataset. From 
this table, we can see that there are still a large number 
of data from the original dataset remaining in our data-
set (71,  865). We divide our dataset into three parts, 
including the training data (67, 865), the validation data 
(2, 000), and the test data (2, 000).

Experimental steps
To assess the effectiveness of our approach, we conduct 
our experiments from three perspectives, including the 
effectiveness experiment, the modal experiment, and the 
performance experiment.

• The effectiveness experiment: It assesses the best abil-
ity of our model in searching the intent code from our 
corpus, that building and training with three modali-
ties including token, AST, and the mixed graphs.

• The modality experiment: It assesses the ability of 
each modality in code search, especially the program 
graph representation. It will help developers make 
their decision on how to choose these representa-
tions in practice.

• The performance experiment: It assesses the effect 
of the parameter in our model training process, and 
also assesses the scope of the performance with the 
training epochs.

Metric
We employ two kinds of metrics for evaluating our 
well-trained model, including R@{k} that recalls at top 
k successful recommendations and MRR that the mean 
reciprocal ranking. These two metrics are as follows,

• R@{k}  is the percentage of the correct result in the 
top k results in a set of queries. It is calculated by 

Table 1 The information of our experimental data set

Dataset Total Train Test Valid

CodeSearchNet 496,688 454,451 26,909 15,328

Our Dataset 71,865 67,865 2,000 2,000

1 https:// github. com/ github/ CodeS earch Net/ data- detai ls
2 https:// github. com/ antlr/ gramm ars- v4
3 https:// soot- build. cs. uni- pader born. de/ public/ origin/ devel op/ soot
4 https:// github. com/ piyus h69/ JCoff ee
5 https:// github. com/ c2nes/ javal ang

https://github.com/github/CodeSearchNet/data-details
https://github.com/antlr/grammars-v4
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot
https://github.com/piyush69/JCoffee
https://github.com/c2nes/javalang
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where Q is the set of queries, f(q, k) returns 1 if the 
correct result exists in the top k result or returns 0 
otherwise. So, a higher metric value represents the 
better performance of our approach. In this work, we 
select the value of k in (1, 5, 10).

• MRR(Mean Reciprocal Rank) is the average of recip-
rocal of ranks of queries, which is calculated by 

 We also choose two state-of-the-art works as our 
baselines, and that are DeepCS [9] and MMAN [15]. We 
implement these baselines to adapt our dataset, and the 
parameters for these approaches in our experiment are 
the same, including word embedding size with 300, the 
hidden size of LSTM and tree-based LSTM with 512, 
the and 5 rounds of iteration in GGNN. We set the mar-
gin ǫ to 0.6, and the learning rate to 0.001, dropout with 
0.1. The models in this work if not specified are trained 
with 300 epochs and 256 batch size. We implement 
these models using PyTorch 1.8.0 with Python 3.8.3 on a 
machine with a NVIDIA RTX 3090 graphics card as well 
as 24 GB memory. Our implementation can be found on 
the GitHub6, and the dataset is available in the Google 
Drive7.

Results and discussion
In this section, we provide the results of our experiment 
and the discussions for our approach.

R@{k} =
1

|Q|

|Q|
∑

q=1

f (q, k)

MRR =





1

|Q|

|Q|
�

q=1

1

ranki



.

The effectiveness experiment

RQ1 Whether graph representation of Java programs 
can have a positive effect on code search?

To evaluate the effectiveness of our approach, we con-
duct this effectiveness experiment. The results are shown 
in Table  2. Column 1 depicts all the methods, and col-
umns 2-4 list the metrics employed in this experiment. 
Rows 2 and 3 are the results of baselines (DeepCS and 
MMAN), and the other Rows depict the effectiveness 
of our improvement with the graph representations. 
MMAN uses tokens, AST, and CFG to build the model, 
while DeepCS uses tokens, API, and method name. 
For our models, we employ token, AST, and the mixed 
graphs, that abbreviated as “Mix”.

Compared with the baselines, the effectiveness of our 
models is more effective. Particularly, every single met-
ric is higher than the other two baselines. From the 
perspectives of graph representation, we can see that 
those models that employ different graph have effective 
effectiveness. In particular, the metrics of these models 
are ranging from 35.1 to 37.0% for R@1, 58.3% to 59.4% 
for R@5, 65.1% to 67.1% for R@10, and 45.6% to 47.4% 
for MRR. Meanwhile, the model built with the mixed 
graphs possesses the best effectiveness. Taking R@1 and 
R@5 as examples, the R@1 reaches up to 37% and R@10 
to 59.4%. Furthermore, there are no notable differences 
among these models with various graphs.

Therefore, we can answer our research question 1, the 
graph representation plays the positive effect in code 
search, and we recommend that developers prefer mixed 
graph representation to achieve the best ability.

The modality experiment

RQ2 Whether each of these representations of the pro-
gram has a positive contribution, and which ones pro-
vide a more significant effect in code search?

In our work, we parse the program with several repre-
sentations, and we call each representation as program 
modality. To assess the significance of each modality, 
we conduct this modal experiment. Table 3 displays the 
effectiveness of our modal experiment. We explore the 
single and double modality to find out their contribu-
tion. For the single modality (Rows 2-9), we investigate 
the models that only employ method name (abbrevi-
ated “MN”), API, token, and graph representation (CFG, 
PDG, and the Mix respectively. For the double modality 
(Rows 10-16), we investigate the models with three kinds 

Table 2 Results for the effectiveness experiment

Method R@1 R@5 R@10 MRR

DeepCS 0.294 0.495 0.589 0.393

MMAN 0.319 0.532 0.622 0.422

Token+AST+CFG 0.369 0.583 0.657 0.469

Token+AST+PDG 0.351 0.569 0.651 0.456

Token+AST+Mix  0.370  0.594  0.671  0.474

6 https:// github. com/ metac odete am/ codeS earch
7 https:// drive. google. com/ drive/ folde rs/ 1BTds QNMwX MFEZ4 bUHFV 
ywnmh PTEjZ7- i? usp= shari ng

https://github.com/metacodeteam/codeSearch
https://drive.google.com/drive/folders/1BTdsQNMwXMFEZ4bUHFVywnmhPTEjZ7-i?usp=sharing
https://drive.google.com/drive/folders/1BTdsQNMwXMFEZ4bUHFVywnmhPTEjZ7-i?usp=sharing
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of combination, including AST and graphs, token and 
AST, token and graphs.

For the single modality, models are built with only one 
modality, and the results are shown in Rows 2-9. For the 
method name and API, CFG, PDG, and mixed graph, 
the effectiveness of them is incredibly unacceptable, and 
they have no ability in finding target source code for the 
developers. Specifically, the numbers of the R@1 metric 
are all below 11.0%, and even R@10 below 31%. For the 
modality of the token, we built two models that applied 
different neural networks with LSTM and MLP. For AST 
and Token (MLP), the effectiveness of these models is 
acceptable, and have the general ability on code search. 
In particular, the metric of R@1 is around 23.0%, R@5 is 
around 42%, R@10 is around 50%, and MRR is around 
32%. Nonetheless, the model that builds with token 
(LSTM) possesses the positive effectiveness, that has the 
stronger ability on code search. Specifically, the metric of 
R@1 reaches 32.8%, R@5 to 55.0%, R@10 to 65.7%, and 
MRR to 43.4%. Therefore, we can conclude that the mod-
els built with single modality have limited ability, we do 
not advise developers to select this; and if that’s the only 
option, we prefer to build the model with AST or token, 
especially token (LSTM).

For the double modality, the models are built with two 
modalities, and the results are shown in Rows 10-16. 
According to that whether employing token modality or 
not, these models are kindly divided into two categories, 
the models without token (Rows 10-12) and the mod-
els with token (Rows 12-16). For these models without 
token, the effectiveness of these models is acceptable, 
that have the general ability on code search. Specifically, 

the metric of R@1 is around 23.0%, R@5 is around 42%, 
R@10 is around 50%, and MRR is around 32%. For these 
models with token, they possess the positive effective-
ness, that have the stronger ability on code search. Spe-
cifically, the metric of R@1 reaches 32.8%, R@5 with 
55.0%, R@10 with 65.7%, and MRR with 43.4%. There-
fore, we consulate that these models that are built with 
dual modalities have positive effects, and the token plays 
a significant role in code search.

In summary, we can answer our research question 2, 
each representation plays a positive effect in code search. 
When building the models, we strongly recommend 
developers choose the appropriate double modality while 
retaining the token in the model to achieve better ability 
of effectiveness.

The performance experiment
To figure out the contribution of the parameter in our 
model training, we conduct the performance experiment. 
We build the models with the modalities of token, AST, 
and mixed graph, and adjust three parameters, including 
dropout, batch size, and learning rate. The performance 
of our models is shown in Fig. 3. We set a default value 
for each parameter (dropout=0.1, learning rate=0.001, 
and batch size=256). For each model in the figures, the 
x-axis and the y-axis is the number of epochs and the 
score of our metrics respectively. These figures illustrate 
the results of the experiment evaluated by different met-
rics, including R@1, R@5, R@10, and MRR. We display 
our models for each parameter with colored curves as the 
number of epochs increases (from 1 to 300).

We can observe that the effectiveness of our models 
achieves its maximum results around 200 epochs. In the 
early stage of training (from 1 to 100), the performance 
of our models improves rapidly. From 100 to 200 epochs, 
although the improvement of the models slows down, it 
is still improving. When training more than 200 epochs, 
the performance reaches stability. So, we recommend 
developers train the models with 200 epochs to reach the 
best ability.

Now, we set different values for other parameters.
First, we change dropout to 0.5. It can be concluded 

that the dropout parameter only plays a positive effect on 
the effectiveness of our models. As the dropout increases 
to 0.5, the performance improvement is quite slight on 
the effectiveness of our models. Specifically, the value of 
the R@1 metric reaches up to the best, which is equal to 
37.15%. Nonetheless, setting the value of dropout to 0.1 is 
still a pretty option.

After that, we adjust batch size to 128. It can be derived 
that it does not have a significant effect on the effective-
ness of our models. When reducing the value from 256 to 
128, there are no significant differences between the two 

Table 3 Results for the modal experiment

Method R@1 R@5 R@10 MRR

MN 0.001 0.002 0.004 0.004

API 0.003 0.004 0.007 0.006

CFG 0.052 0.118 0.177 0.095

PDG 0.061 0.154 0.201 0.112

Mix 0.106 0.241 0.310 0.177

AST 0.232 0.403 0.481 0.317

Token 0.235 0.433 0.522 0.333

AST+CFG 0.202 0.398 0.487 0.296

AST+PDG 0.216 0.388 0.477 0.301

AST+Mix 0.200 0.385 0.476 0.291

Token+AST 0.326 0.565 0.657 0.435

Token+CFG 0.326 0.565 0.656 0.435

Token+PDG 0.332 0.538 0.639 0.443

Token+Mix 0.321 0.549 0.639 0.427

Token+AST+Mix  0.370  0.594  0.671  0.474
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models. Nevertheless, this parameter still serves differ-
ent effects on metrics, which give slight improvement for 
a certain metric, such as R@1 can be more accurate. So, 
developers can make their own decisions for their special 
preferences.

For the learning rate, it can be observed that our model 
that has a learning rate of 0.001 possesses extremely neg-
ative effectiveness. Particularly, the metrics of the model 
are below 7.35% for R@1, 22.65% for R@5, 32.8% for 
R@10, and 15.68% for MRR, which is much worse than 
the previous results. Such models cannot recommend 
source code to developers. Therefore, we select 0.01 in 
our experiment.

In summary, when building and training our mod-
els, the parameters play a decisive role in the perfor-
mance. We provide our suggestion on the parameter 
values with our default setting, which can acquire a good 
performance.

Discussion

RQ3 In practice, how do developers determine their 
representations, and also how to train their models to 
achieve optimal performance?

According to the results, we give our recommendation 
for developers to build their models, and answer our last 
research problem.

Our models built with three modalities (token, AST, 
and mixed graph) possess the best ability on code search 
according to the effectiveness experiment (The effective-
ness experiment section). We strongly suggest developers 
employ such three modalities when performing a search. 
Furthermore, the graph representation has a positive 
effect. The developers should obtain the graph represen-
tation as much as possible to enhance the ability of the 
model.

From the perspective of the modality selection, the 
modality of token, AST, and mixed graphs play a more sig-
nificant impact than the others, especially the token. In a 
situation where these three modalities are not available at 
the same time, we strongly recommend that the develop-
ers employ the modality of AST or graph while retaining 
at least the modality of token. The models trained by this 
combination still achieve an effective ability.

Considering the parameters, developers should be 
more careful in choosing the values. According to our 
results of the performance experiment (The performance 
experiment section), we recommend that developers fol-
low our default value. In the case that developers have 

Fig. 3 The effectiveness of the performance experiment
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further special requirements, they may adjust param-
eters, while should ensure that the model’s capabilities 
are not compromised. When training the models, it is a 
good option that sets the number of epochs to 200 epochs 
to reach the best performance.

Threats to validity
There are two threats to the validity of our work, includ-
ing internal threat and construct threat. The internal 
threat to the validity is the construction of our used data-
set. To generate our dataset, we employ Jcoffee and Soot 
to parse the program for graph representation. Some 
semantic information from the program may have been 
discarded. When we employ Jcoffee to complete the par-
tial code, the complemented part may not possess valid 
semantics. Our defense is that the effect of the invalid 
semantics is quite small. Our model still has strong capa-
bilities. The second threat to the validity is the construc-
tion of our models. We employ several neural networks 
to characterize the program representations. Therefore, 
there is a potential improvement in the selection of neu-
ral networks for each representation of the program. For 
instance, we can employ the MLP and LSTM to encode 
the token of the program, however, the effectiveness of 
these two networks has significant differences. We rec-
ommend the LSTM to the developers because of the 
better effectiveness. Analogous matters can also occur 
for the other representations of the program. Mean-
while, for the specific neural network, the effectiveness 
of the models is not necessarily optimal, and it is possi-
ble to enhance the predictive ability by adjusting specific 
parameters. Nonetheless, we conclude that our models 
with the current configuration already have a reasonable 
capacity from our experiment. We make the selection of 
the neural networks as well as the parameter adjusting as 
our future work.

Conclusion
In response to the increasing expansion of multimedia 
applications, we provide an approach for code search 
to enhance productivity in the development of software 
infrastructure in edge computing. This study conducted 
an empirical investigation to assess the efficacy of rep-
resentations of the program on code search, including 
token, AST, graph, method name, and API. Our model 
that consists token, AST, and mixed graphs possessed the 
best capability. Specifically, we construed a mixed pro-
gram graph for java language containing the control flow 
and the program dependence graph and employed dif-
ferent neural networks to characterize this mixed graph 
as well as the other representations. We constructed 
an experiment to answer three research problems. The 
result showed that our mixed graph has a positive effect, 

and the token and AST have significant contributions 
to our models. When building and training models, we 
strongly recommend developers retain these three repre-
sentations, or keep AST or graphs while retaining at least 
one token. Such selection helps developers to obtain an 
effective ability model. The selection for parameters is 
also provided to the developer who can optimize the per-
formance to the best.

In the future, we plan to further enhance the capabil-
ity of our model for multimedia application develop-
ment. We only handle the Java programming language in 
this work, so intend to explore more programming lan-
guages, such as Python, C, JavaScript, etc. In this work, 
the features captured from the program are simply fused 
by concatenating together. We will also consider taking 
a new fusion strategy on code search, that will be more 
productive in the future.
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