
Zhang et al. Journal of Cloud Computing (2024) 13:78
https://doi.org/10.1186/s13677-024-00629-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Intelligent code search aids edge software
development
Fanlong Zhang1, Mengcheng Li1, Heng Wu2* and Tao Wu3*

Abstract

The growth of multimedia applications poses new challenges to software facilities in edge computing. Developers
must effectively develop edge computing software to accommodate the rapid expansion of multimedia applications.
Code search has become a prevalent practice to enhance the efficiency of the construction of edge software infra-
structure. Researchers have proposed lots of approaches for code search, and employed deep learning technology
to extract features from program representations, such as token, AST, graphs, method name, and API. Nevertheless,
two prominent issues remain: 1) there are only a few studies on the effective use of graph representation for code
search (especially in Java language), and 2) there is a lack of empirical study on the contributions of different pro-
gram representations. To address these issues, we conduct an empirical study to explore program representations,
especially program graphs. To the best of our knowledge, this is the first attempt to conduct code search with mixed
graphs representation for Java language, containing the control flow graph and the program dependence graph.
We also present a hybrid approach to capture and fuse the features of a program with representations of Token, AST,
and Mixed Graphs (TAMG). The results of our experiment show that our approach possesses the best ability (R@1
with 37% and R@10 with 67.1%). Our graph representation exhibits a positive effect, and the token and AST also have
a significant contribution to the code search. Our findings can aid developers in efficiently searching for the desired
code while constructing the software infrastructure for edge computing, which is crucial for the rapid expansion
of multimedia applications.

Keywords Cloud computing, Code retrieval, Multi-modal, Attention mechanism, Deep learning

Introduction
Given the rise of multimedia applications, such as video
streaming and computer games, there is a need to effi-
ciently construct software infrastructure in edge com-
puting to address the diverse issues encountered by
modern interactive media applications [1, 2]. Meanwhile,

in the software engineering (SE) community, the research
has entered the era of “Big code” with the assistance of
open-source resources. Researchers have begun applying
artificial intelligence (AI) technologies to software engi-
neering tasks [3, 4] (such as code search [5]), in which
developers retrieve an intent code snippet from websites
during the development process. Therefore, code search
not only helps developers substantially in boosting the
productivity of edge computing development efficiency
but also improves edge software quality and reliability by
reusing high-quality source code [6].

In the initial stages of code search research, traditional
technology was utilized to excavate intent codes from
software repositories [7, 8]. Linstead et al. [7] employed
IR techniques that incorporated source-specific heu-
ristics to search for and discover reusable software

*Correspondence:
Heng Wu
heng.wu@foxmail.com
Tao Wu
doctorwutao@163.com
1 School of Computer Science and Technology, Guangdong University
of Technology, Guangzhou 510006, China
2 School of Automation, Guangdong University of Technology,
Guangzhou 510006, China
3 Guangdong Provincial Corps Hospital of the Chinese People’s Armed
Police Forces, Guangzhou 510507, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00629-5&domain=pdf

Page 2 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

components. Mishne et al. [8] proposed an approach for
answering queries focused on API usage based on static
mining and temporal API specifications. However, these
methods inevitably rely on expert knowledge, making it
challenging to navigate the massive searchable code base.
Consequently, researchers utilize deep learning technol-
ogy to enhance the ability of code search, by learning
semantic features from source code and matching the
source code to the corresponding description. The first
approach was proposed by Gu et al. [9], which repre-
sented the code snippets and the queries as vectors with
a neural network. They captured code semantic infor-
mation from method name, code token, and API from
code snippets. Meanwhile, researchers proposed addi-
tional techniques for extracting semantic features from
various program representations, such as token [10],
tree [11], and graph [12]. Sachdev et al. [10] build neural
code search tool (NCS) by using a combination of word
embedding and TF-IDF techniques. Sun et al. [11] build
a structure-sensitive model named PSCS based on the
abstract syntax tree for code search. Ling et al. [12] pro-
posed a method called deep graph matching and search-
ing (DGMS), in which they realized a graph generation
approach to represent query texts and source codes.

To enhance the ability of code search, researchers have
made further attempts to extract enriched semantic fea-
tures with multiple representations of the program. The
forms of the representation can be method name, API,
tokens, abstract syntax trees (AST), the program graph.
Gu et al. [9] explored the method name, API invocation,
and code tokens to embed code snippets for Java pro-
gram language and their methods went beyond the tra-
ditional tools. Shuai et al. [13] improved the work of Gu
et al. by extending different neural networks for encod-
ing the same representation. Another attempt was made
by Meng et al. [14], and that employed three independ-
ent encoders, including a lexical encoder for the token,
a name encoder for the method name, and a structural
encoder for AST. There are also some approaches that
employ graph representation as well as token and AST
representations, such as MMAN [15]. They proposed a
deep model for semantic code search, that represented
source code on token, AST, and CFG (control flow graph)
only for C programming languages. However, in the cur-
rent code search research, there is a lack of studies on
program graph representations, especially for the Java
programming language. Nonetheless, there are a num-
ber of graph representations for code, such as the control
flow graph (CFG) and the program dependency graph
(PDG). In Fig. 1, we provide an example of these graph
representations. Figure 1a depicts a straightforward
example of Java code and its natural language descrip-
tion. The generated AST and CFG are depicted in Fig. 1b

and c, respectively. The PDG of the code is depicted in
Fig. 1d, which incorporates control dependence flow
(represented by blue lines) and data dependence flow
(represented by green lines). This example demonstrates
that multiple code graphs contain distinct semantic
information. This motivates us to investigate the efficacy
of multiple program representations on code search, espe-
cially the graph representations. There are two main dif-
ferences between us and Wan et al., on the one hand,
Wan et al. focus on the C programming language, while
we pay attention to JAVA programming language; on the
other hand We have additionally add PDG, with which
CFG are combined into a mixed graph, compared with
Wan et al. work with the token, AST, and CFG. More
specifically, we list here our research issues that need to
be addressed in the code search task:

• Whether graph representation of programs has a
positive effect on code search for edge computing
software?

• Whether each of these representations of the pro-
gram has a positive contribution, and which ones
provide a more significant effect?

• In practice, how do developers determine their rep-
resentations, and how to train their models to obtain
optimal performance to enhance the efficiency of
edge software?

Therefore, in this work, we propose a hybrid approach
to capture the features with several representations of
Token, AST, and Mixed Graphs (TAMG) for code search,
that explores the effectiveness of these representations
for java programming language. The mixed graph rep-
resentation contains control flow graph (CFG) and pro-
gram dependence graph (PDG). Specifically, with the
help of program analysis tools, we parse the source code
into several representation forms including token, AST,
and graphs. Then, we employ neural networks to learn
the syntax and semantic features of each representation.
We use long short-term memory (LSTM), tree-based
LSTM, gated graph neural networks (GGNN), and recur-
rent neural network (RNN) to characterize token, AST,
graph respectively. Furthermore, we also employ atten-
tion mechanism for each modality and use LSTM for
the description. To evaluate the efficacy of our approach,
we experiment on the dataset from three perspectives,
including the effectiveness experiment, the significant
experiment, and the performance experiment.

The results show that our hybrid approach possesses
the best effectiveness, that combines token, AST, and
mixed graph representations. Each of these represen-
tations plays a positive effect, and the employed ones
in our approach have a significant contribution to code

Page 3 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

search. When building their models, we recommend
developers retain all of them if possible and employ
the AST or graph while retaining at least the token.
We believe that our approach can assist developers in
building the software infrastructure for edge comput-
ing, a critical component for the accelerated expansion
of multimedia applications.

Our contributions to this work are as follows:

• We conduct an empirical investigation on code
search to examine the efficacy of various represen-
tations in assisting advanced edge software develop-
ment in the field of multimedia applications.

• We propose a hybrid approach (TAMG) for code
search to extract and fuse features of programs, espe-
cially the graph representations to enhance effective-
ness.

Fig. 1 An example of a program with different representations

Page 4 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

• Through experimentation, we assess their effec-
tiveness and answer proposed research issues. Our
hybrid approach has the best ability and our mixed
graph has a positive effect on code search. To achieve
the best performance, we recommend the token,
AST, and the graph when building the models, at
least of AST or graph while keeping the token.

Our paper is organized as follows. Related work section
is present some other works related to this paper. Meth-
odology section describes the details of our approach. In
Experimental methodology section, we show the details
of how to design our experiment. Results and discus-
sion section presents the evaluation of our experiment.
Threats to validity section presents threats to the valid-
ity, including external and internal threats. To the end, we
conclude our work in Conclusion section.

Related work
With the increasing popularity of multimedia applica-
tions like video streaming and computer games, it is
necessary to develop software infrastructure in edge
computing [1, 2]. Code search is a prevalent technique
that adeptly addresses the diverse challenges encountered
by modern interactive media apps. So, in this section, we
provide the related work on code search and program
representation learning. Program representation learning
employs deep learning to extract semantic features for
solving software engineering tasks, such as code search.

Code search
Code search/retrieval has become a common practice
in software development, aiding engineers in enhanc-
ing productivity for software infrastructure in edge
computing. Initially, researchers have utilized informa-
tion retrieval (IR) technology to get the code snippets.
For instance, Linstead et al. [7] developed a code search
engine named sourcerer based on the code rank method-
ology. Mishne et al. [8] constructed the search index with
a new method that statically mined code fragments and
merged temporal API specifications. Lv et al. [16] devel-
oped a technique named CodeHow for locating poten-
tial API, and the experimental results demonstrated that
it was effective. Ding et al. [17] creat a cloning search
engine named Kam1n0 by combining a new LST scheme
and graph matching, that was accurate, efficient, and
scalable for handling large amounts of code.

Following the program representing learning, researchers
have recently proposed deep learning-based approaches for
improving code search [3, 5]. It has been demonstrated that
deep learning-based code search models, such as DeepCS
[9], outperformed conventional code search techniques,
such as sorcerer and CodeHow. These methods are also

divided into the same three categories: token-based, tree-
based, and graph-based. Taking the token-based method as
an example, Sachdev et al. [10] build a search tool for large
codebases called neural code search (NCS) to obtain a bet-
ter result by adding a layer of supervision. Wang et al. [18]
proposed a new deep learning tool called COSEA, which
captured valuable code intrinsic structural logic for code
search. Cheng et al. [19] proposed CSRS, consisting of an
embedding module with n-gram embedding of queries
and codes. Alternatively, the abstract syntax tree (AST) can
provide more comprehensive semantic information. Thus,
researchers also utilized AST to carry out program repre-
sentation learning. Sun et al. [11] proposed PSCS, a path-
based neural model for learning semantics and the structure
code represented by an AST path, and their model showed
a significant improvement in search performance compared
to the current techniques. Researchers also explored the
graph representation for the program. Ling et al. [12] pro-
posed an end-to-end code search model named DGMS, that
utilized graph neural network to represent program graphs
generated from AST. Liu et al. [20] also constructed a code
search model based on the graph representation generated
from AST, that utilized a multi-head attention module to
obtain local structure and global dependency information.
Consequently, there is a dearth of research on code search
for program graphs, such as control flow graph (CFG) and
program dependency graph (PDG).

To improve the performance of code search models,
researchers have begun experimenting with combin-
ing multiple representations. Gu et al. [9] invented a
CODE-NN to embed code fragments, learning features
from the method’s name, API invocation sequence, and
code tokens for the Java program language. Their result
showed that CODE-NN went beyond the baseline, such
as CodeHow. Following that, Shuai et al. [13] extended
the work of Gu et al. by exploring additional neural
networks on the same representations, naming their
method as CARLCS-CNN. They also employed a co-
attention mechanism to merge the information of tokens,
method name, and API sequence. Du et al. [21] trained
three different encoders that concentrate on structure,
local variable, and API invocation separately, and then
fused three models under the tactic of ensemble learn-
ing. Some researchers also have incorporated ASTs into
their methods. Meng et al. [14] designed At-CodeSM that
embeds code, name, and ASTs. Their three independent
can handle lexical encoder, method name, and struc-
tural information. The experiment indicated that their
model learned the lexical and syntactic features effec-
tively. Mathew and Stolee [22] explored a model for code
search, that can support dynamic and static information
including the code tokens, generic ASTs, and IO relation-
ship. Shi et al. [23] deployed CoCoSoDa, which consisted

Page 5 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

of pre-trained encoders (GraphCodeBERT) and momen-
tum encoders to capture the high-quality sequence-level
representation on several languages. Their work lever-
aged contrastive learning and soft data augmentation to
promote the performance of code searches.

Although the works mentioned above are compat-
ible with the Java programming language, no program
graphs were incorporated to enhance their compatibility.
In addition, researchers also tried to apply the program
graph representation in their model on C programming
languages. Specifically, Wan et al. [15]. proposed a deep
model named MMAN for semantic code search, that rep-
resented source code with code token, AST, and CFG for
C programs. However, they did not account for the Java
programming language in their work, nor did they exam-
ine other graph representations, such as the program
dependence graph.

Unlike the approaches stated above, in our work, we
first make an empirical study to explore the contribution
of program representations (especially program graphs)
on code search for Java programming language. In our
work, we employ a mixed graph by merging the control
flow graph (CFG) and program dependence graph (PDG)
as well as the code token and AST to enhance the effec-
tiveness of our models.

Program representation learning
Nowadays, program representation learning has attracted
the attention of researchers [11, 12]. Deep learning is
being used in a greater variety of methods to extract
semantic information for software engineering tasks.
According to the program representation, such as pro-
gram token, abstract syntax tree, and control flow or pro-
gram dependence graph, these methods are divided into
token-based, tree-based, and graph-based approaches.

The n-gram language model used in natural lan-
guage processing can be traced back to the origins of
the token-based approaches. Such approaches are refer-
ring to the analogy of code token and natural language
word, that tokenism of the source code for representa-
tion learning using deep learning, and extending it to the
software engineering tasks (e.g. code completion, vul-
nerability detection, etc.). Nguyen et al. [24] developed
SLAMC on n-gram model for code recommendation
task, encoding the code token by incorporating semantic
information into the traditional encoding. Nguyen et al.
developed the MNIRE [25] for method name generation
by extracting features from code content, interface, and
class name that contains. Hu et al. [26] used the LSTM
to learn language models for making predictions on code
element completion. Kang et al. [27] assessed the token
embeddings on three downstream tasks including code

comment generation, code authorship identification, and
code clones detection.

For these tree-based approaches, researchers parse
the program into tree-based representations, such as
abstract syntax trees (AST). Mou et al. [28] propose the
novel tree-based convolutional neural network (TBCNN)
to model programming languages for clone detection. A
neural network model (ASTNN) was proposed by Zhang
et al. [29], which divided the AST into a series of small
corresponding statement trees, that can capture the lexi-
cal and syntactical knowledge of statements for source
code classification and code clone detection. They dis-
covered that their models were more excellent than state-
of-the-art methods for the tasks of code classification and
clone detection. Jayasundara et al. [30] employed a cap-
sule network to learn the syntactic structure and seman-
tic dependencies from AST, and vectorized the AST node
with types (instead of specific tokens) as lexical words.
Chakraborty[31] et al. propose a new tree-based neural
network named CODIT to model source code changes,
and their model was successful in suggesting program
modifications.

Researchers also constructed different graph forms
of source code to refine the effectiveness of representa-
tion learning. Wang et al. [32] employed heterogeneous
graphs on learning from source code, which had a bet-
ter ability than ASTNN. Xu et al. [33] proposed a graph-
based approach to compute the similarity between two
binary files based on the CFG, and implemented a pro-
totype called Gemini. Nair et al. [34] proposed funcGNN
on labeled CFGs, which also aimed to the similarity, and
achieve the best effectiveness. Chen et al. [35] proposes
a novel API recommendation method called APIRec-
CST by combining API usage with textual information in
source code based on API context graph networks. Gao
et al. [36] introduced VulSeeker for vulnerability detec-
tion, which first combined several graph representa-
tions of the program. David et al. [37] proposed a novel
method for predicting the procedure name in stripped
executables, which used static analysis to obtain aug-
mented representations of call sites, encoded them with
a control-flow graph (CFG), and then generated a target
name. In this paper, we investigate the use of program
graph representation to improve code search, as graph-
based learning methods are becoming increasingly popu-
lar in program representation learning.

Methodology
In this section, we provide the architecture of our
approach that employs deep learning technology for code
search and also provide the details of building our models

Page 6 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

with multiple representations of the program. More espe-
cially, we provide three research questions as follows:

• Whether graph representation of java programs can
have a positive effect on code search?

• Whether each of these representations of the pro-
gram has a positive contribution, and which ones
provide a more significant effect in code search?

• In practice, how do developers determine their rep-
resentations, and also how to train their models to
achieve optimal performance?

The architecture
Figure 2 represents the architecture of our approach
based on deep learning with multiple representations of
the program. It consists of two stages: the offline train-
ing stage and the online retrieving stage. In the offline
training stage, we build and train our model that extracts
and fuses the features from three representations of the
program, including token, AST, and mixed graph. In the
online retrieving stage, the developers provide a query
with natural language, then our well-trained model
will recommend the most relevant code snippets for
developers.

More specifically, the offline training stage can be
divided into three sub-parts, including program parser,
representation learning, and fusion with attention. In
the program parser, we employ the program analysis
technology to parse the source code into different rep-
resentations, including token, AST, and mixed graph.
The mixed graph consists of two distinct program
graphs: the control flow graph (CFG) and the program

dependence graph (PDG). These three employed repre-
sentations possess different levels of features, that play
an appropriate role in code search. To extract these
features, we employ deep learning to characterize the
program representations automatically, and we call this
modality representation learning. Here, we employ dif-
ferent neural networks as well as the attention mecha-
nism to transfer program representations into vectors.
In our model, we utilize (token, AST, and mixed graphs)
to build our model. So, in the fusion with attention
part, we fuse these three representations of the pro-
gram, and we also embed the queries (description of
the code snippet). Finally, we build and train our model
with a large-scale dataset that generated ourselves with
(code, description) pairs.

Program parser part
Different representations of the program have differ-
ent characteristics, such as syntax, semantics, program
behaviors and etc, that imply different features of the
program. We regard these representations of a program
as multiple modalities, and they are semantically consist-
ent to some extent (from one program). Researchers have
employed lots of representations, such as token [9, 15],
AST [11, 15, 38], graphs [12, 39, 40], method name [9],
and API [9, 16, 41]. In our experiment, we investigate the
corresponding significance of each program representa-
tion in code search. The results indicate that neither the
method name nor the API accurately reflects the positive
contribution. Consequently, our model retains the token,
AST, and graphs. The following are all these program
representations:

Fig. 2 The architecture on code search with multiple representations of the program

Page 7 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

• Token: the sequence of the original code tokens that
compose the method itself.

• AST: abstract syntax tree of the method, that contains
rich and well-defined structured information.

• Graphs: the graph representations of the program,
including the control flow graph (CFG) and program
dependence graph (PDG). Such graphs contain the
control and dependency relationships.

• Method name: the name of the given method. Devel-
opers consciously christen the method closer to its
functionality.

• API: the sequence of API calls in the method. Devel-
opers call API to implement a function, and the
sequence of the API calls contains some released
information.

These representations can facilitate the neural networks
to extract the syntax and semantic features. We take cor-
responding measures to parse the source code into dif-
ferent representations under the guidance of program
analysis technology. To get the token, we split the source
code into a sequence of tokens via {(space), \n} . We
employ ANTLR4, a cross-language parser, to generate the
AST that obtains richer information. Most of the code
from the data is piratical program, that are not compiled
by any tool when generating the program graphs. There-
fore, we employ Jcoffee to complete the partial program
for compilation and apply soot to generate the needed
graphs. In our work, we generate two kinds of program
graphs, including CFG and PDG, and merge these two
graphs to the mixed graphs. The details can be found in
Data collection section. For the method name and API,
we apply JAVALANG, a pure Python library, to obtain
the related properties that can be transformed into a
sequence of tokens.

Representation learning
In this section, we focus on feature extraction with deep
learning technology from the program representation
(Program parser part section). We regard each repre-
sentation as the program modality, which reveals some
special characteristics of the program. We first employ
a single neural network unit for each modality and then
fuse more than one modality to enhance the ability of
our model. To be specific, we apply LSTM with atten-
tion mechanism to characterizing token, tree-based
LSTM with attention mechanism for AST, graph neu-
ral network (GGNN) with attention mechanism for the
mixed graphs, and RNN for the method name and API.

Given a code snippet is denoted as c. The code snippet
is parsed into [tok; ast; g], which represent token, AST,
and mixed graphs respectively.

Token representation learning
We employ LSTM as our neural network unit for
extracting features from code tokens, as follows:

where i ∈ [1, n] , and n is the number of the tokens in this
code snippet c. The w is the word embedding layer, and
the last state htokn is the final token. We also employ an
attention mechanism to identify the significant informa-
tion from all tokens:

where htoki represent the ith hidden state in tokens, f tok denote
a linear layer and gtok is the inner project. The utok denotes
the context vector of token modality, which is a high-level
representation. The word context vector utok is randomly
initialized and jointly learned during training. Then, the final
token representation of this code snippet c can be present as
a vector as:

where w is the attention weight.

AST representation learning
The AST representation of the code snippet is a binary
tree, and its left children denote as (hL, cL) and right as
(hR, cR) . We employ the tree-based LSTM to transform
AST into vectors. As follows,

where i ∈ [1, n] , and operation [;] denotes the concatena-
tion operation of two vectors. Analogously, we also use
the attention mechanism to score the nodes of the AST,
and get the final vector of AST representation:

Graph representation learning
According to Program parser part section, we possess
two kinds of graph representations in our work, which
are the control flow graph and the program depend-
ence graph. Taking these two graphs, we also obtain
a third mixed graph that merges CFG and PDG into a
hybrid graph, denoted as Mix graph. For each graph, we

h
tok
i = LSTM h

tok
i−1,w(toki)

αtok
i =

exp(gtok(f tok(htoki),utok))
∑

j exp(g
tok(f tok(htokj),utok))

Tok = w

[

∑

i

atoki h
tok
i

]

(hasti , casti) = LSTM
(

([hastiL ;hastiR], [castiL ; castiR]),w(asti)
)

AST = w

[

∑

i

aasti h
ast
i

]

.

Page 8 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

employ the graph neural network (GGNN) with self-
node attention to embed it into a vector.

Given a directed graph, we use the GGNN to learn fea-
tures from the graph. We first get a graph with {V , E} ,
where V is a set of vertices (v, lv) , on behalf of all nodes of
the graph. E is a set of edges (vi, vj , le) , on behalf of each
relationship of code. lv and le are labels of vertex and edge.

We use GGNN to learn the vector. First, we initialize
the hidden state for each vertex v ∈ V as hgraphv,0 = w(lv) ,
w denotes the one-hot embedding. For every round t, each
vertex v ∈ V gets the vector mv,t+1 , which on behalf of the
message, converged from its neighbors. The vector mv,t+1
is aggregated as following:

where N (v) denotes the neighbours of vertex v. For
round t, Wle is the weight matrix to map messages from
each neighbor into a shared space. Then, GGNN uses
GRU(Gated Recurrent Unit) to update the hidden state of
each vertex, as follows:

In the end, after this t round of iterations, we gather all
hidden states of vertices to obtain the embedding. There-
fore, we adopt each graph node with the weight αgraph as:

where hgraphi represent the ith hidden state in Graph nodes.
f graph denote a linear layer and ggraph is the inner pro-
ject. ugraph denotes the context vector of Graph modal-
ity, a high-level representation of the whole Graph nodes.
Finally, we get the final representation of the graph:

where G is the final semantic representation of graph and
w is the attention weight.

To enhance the effectiveness of our approach, we natu-
rally can select more than one representations to build
our model. We believe that such multiple modalities play
a positive contribution to the code search. In this work, we
finally select token, AST, and graphs these three modalities.
To do that, we fuse these modalities of the program repre-
sentations with concatenation along every specific dimen-
sion. As follows,

mv,t+1 =
∑

v′∈N (v)

Wlehv′,t

h
graph
v,t+1 = GRU

(

h
graph
v,t ,mv,t+1

)

.

α
graph
i = sigmoid

(

ggraph(f graph(h
graph
i),ugraph)

)

G = w

[

∑

i

a
graph
i h

graph
i

]

C = tanh([Tok;AST ;G])

where C is the final representation of code snippet, the [;]
is the concatenation.

Besides, given a description d for a code snippet, that
corresponds to a code snippet c. We also employ the LSTM
with attention mechanism to represent natural language
description Des.

where i = 1,...,n, w is word embedding layer. And the last
state htokn is the final sample d in whole dataset. We apply
description attention layer to calculate the attention
score αdes(i) :

where hdesi represent the i-th hidden state in description.
f des denote a linear layer and gdes is the inner project.
u
des denotes the context vector of description modality,

which is a high level representation of the whole descrip-
tions. The word context vector udes is randomly initial-
ized and jointly learned during training. Finally, we get
the final representation of description Des:

where Des is the final semantic representation of Des and
w is the attention weight.

Model training
In our approach, we build and train our model that embeds
code and description into a unified vector space. The goal
of our model is that if a code snippet c and a description d
represent consistent semantics, then their embedded vec-
tors should be similar to each other.

When training our model, we construct each training
instance as a triple �c, d+, d−� . For each code snippet c,
there is a positive description d+ (correct description)
as well as a negative description d− (incorrect descrip-
tion), that is randomly chosen from our dataset D∗ .
Then, we employ the two couples �c, d+� and �c, d−� from
�c, d+, d−� to train our model with the following loss
function [9][15]:

where ǫ denotes the constant margin. (C,D+,D−) are the
embedded vectors for c, d+, d− . In our experiment, we
set the ǫ to 0.6.

h
des
i = LSTM(hdesi−1,w(di))

αdes
i =

exp(gdes(fdes(hdesi),udes))
∑

j exp(g
des(f des(hdesj),udes))

Des = w

[

∑

i

adesi h
des
i

]

L =
∑

�c,d+,d−�

max(0, ǫ − cos(C,D+)+ cos(C,D−))

Page 9 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

Experimental methodology
In this section, we provide the details of the dataset for
building our model and describe our experimental meth-
odology, including experiment steps and evaluation
metrics.

Data collection
A large-scale data corpus is essential for training our
models, which contain code fragments and the cor-
responding descriptions. We choose the dataset from
codeSearchNet1 as our original dataset, that it has been
widely adopted by researchers in this field [5, 13, 23,
42–44]. This dataset covers the code snippets in python,
JavaScript, Ruby, go, java, and PHP programming lan-
guages. In our work, we focus on the Java programming
language. The original dataset contains numerous web-
site-collected partial programs, but there are no appro-
priate representations of the program that can be used
in our work. We, therefore, parse these code snippets
according to Program parser part section to generate
our dataset. Our model employs multiple representa-
tions of the code fragment, including token, AST, and
mixed graphs (CFG and PDG). The generation details
are as follows:

• Code token: we spilled the source code with {(space), ; , .\}.
• AST: we employ ANTLR42 to build the AST of the

code, and transform it to binary trees following the
leftmost-child-next-right-sibling rule. Specifically, a)
the root node of tree is directly used as the root node
of the new binary tree; b) take the first child node of
the root node of the tree as the left son of the root
node, and if the child node has a sibling node, the
first sibling node (direction from left to right) of the
child node is the right son of the child node; c) add
the remaining nodes in the tree to the binary tree in
order as in the previous step, until all the nodes in the
tree are in the binary tree.

• Graph representation: we employ Soot3 to generate
the graph representations. Before the soot works,
we use Jcoffee4 to complete the partial code snip-
pet. Although this tool only can help us handle 26%
of them, it is enough for our model build (71865). In
our work, we explore three kinds of graphs, including
CFG, PDG, and mix graph (CFG and PDG).

• Method name and API: we employ JAVALANG5
to parser the method name and MethodInvoca-

tion of the code snippet, and split them into token
sequence by the camel case. For example, the
method name clearCache can be split into tokens
clear and Cache. These two representations are
used in our baselines.

For each code snippet in our dataset, we also extract the
description in natural language, that can be obtained
directly from the original dataset. Table 1 is the informa-
tion of the original dataset and our own dataset. From
this table, we can see that there are still a large number
of data from the original dataset remaining in our data-
set (71, 865). We divide our dataset into three parts,
including the training data (67, 865), the validation data
(2, 000), and the test data (2, 000).

Experimental steps
To assess the effectiveness of our approach, we conduct
our experiments from three perspectives, including the
effectiveness experiment, the modal experiment, and the
performance experiment.

• The effectiveness experiment: It assesses the best abil-
ity of our model in searching the intent code from our
corpus, that building and training with three modali-
ties including token, AST, and the mixed graphs.

• The modality experiment: It assesses the ability of
each modality in code search, especially the program
graph representation. It will help developers make
their decision on how to choose these representa-
tions in practice.

• The performance experiment: It assesses the effect
of the parameter in our model training process, and
also assesses the scope of the performance with the
training epochs.

Metric
We employ two kinds of metrics for evaluating our
well-trained model, including R@{k} that recalls at top
k successful recommendations and MRR that the mean
reciprocal ranking. These two metrics are as follows,

• R@{k} is the percentage of the correct result in the
top k results in a set of queries. It is calculated by

Table 1 The information of our experimental data set

Dataset Total Train Test Valid

CodeSearchNet 496,688 454,451 26,909 15,328

Our Dataset 71,865 67,865 2,000 2,000

1 https:// github. com/ github/ CodeS earch Net/ data- detai ls
2 https:// github. com/ antlr/ gramm ars- v4
3 https:// soot- build. cs. uni- pader born. de/ public/ origin/ devel op/ soot
4 https:// github. com/ piyus h69/ JCoff ee
5 https:// github. com/ c2nes/ javal ang

https://github.com/github/CodeSearchNet/data-details
https://github.com/antlr/grammars-v4
https://soot-build.cs.uni-paderborn.de/public/origin/develop/soot
https://github.com/piyush69/JCoffee
https://github.com/c2nes/javalang

Page 10 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

where Q is the set of queries, f(q, k) returns 1 if the
correct result exists in the top k result or returns 0
otherwise. So, a higher metric value represents the
better performance of our approach. In this work, we
select the value of k in (1, 5, 10).

• MRR(Mean Reciprocal Rank) is the average of recip-
rocal of ranks of queries, which is calculated by

 We also choose two state-of-the-art works as our
baselines, and that are DeepCS [9] and MMAN [15]. We
implement these baselines to adapt our dataset, and the
parameters for these approaches in our experiment are
the same, including word embedding size with 300, the
hidden size of LSTM and tree-based LSTM with 512,
the and 5 rounds of iteration in GGNN. We set the mar-
gin ǫ to 0.6, and the learning rate to 0.001, dropout with
0.1. The models in this work if not specified are trained
with 300 epochs and 256 batch size. We implement
these models using PyTorch 1.8.0 with Python 3.8.3 on a
machine with a NVIDIA RTX 3090 graphics card as well
as 24 GB memory. Our implementation can be found on
the GitHub6, and the dataset is available in the Google
Drive7.

Results and discussion
In this section, we provide the results of our experiment
and the discussions for our approach.

R@{k} =
1

|Q|

|Q|
∑

q=1

f (q, k)

MRR =

1

|Q|

|Q|
�

q=1

1

ranki

.

The effectiveness experiment

RQ1 Whether graph representation of Java programs
can have a positive effect on code search?

To evaluate the effectiveness of our approach, we con-
duct this effectiveness experiment. The results are shown
in Table 2. Column 1 depicts all the methods, and col-
umns 2-4 list the metrics employed in this experiment.
Rows 2 and 3 are the results of baselines (DeepCS and
MMAN), and the other Rows depict the effectiveness
of our improvement with the graph representations.
MMAN uses tokens, AST, and CFG to build the model,
while DeepCS uses tokens, API, and method name.
For our models, we employ token, AST, and the mixed
graphs, that abbreviated as “Mix”.

Compared with the baselines, the effectiveness of our
models is more effective. Particularly, every single met-
ric is higher than the other two baselines. From the
perspectives of graph representation, we can see that
those models that employ different graph have effective
effectiveness. In particular, the metrics of these models
are ranging from 35.1 to 37.0% for R@1, 58.3% to 59.4%
for R@5, 65.1% to 67.1% for R@10, and 45.6% to 47.4%
for MRR. Meanwhile, the model built with the mixed
graphs possesses the best effectiveness. Taking R@1 and
R@5 as examples, the R@1 reaches up to 37% and R@10
to 59.4%. Furthermore, there are no notable differences
among these models with various graphs.

Therefore, we can answer our research question 1, the
graph representation plays the positive effect in code
search, and we recommend that developers prefer mixed
graph representation to achieve the best ability.

The modality experiment

RQ2 Whether each of these representations of the pro-
gram has a positive contribution, and which ones pro-
vide a more significant effect in code search?

In our work, we parse the program with several repre-
sentations, and we call each representation as program
modality. To assess the significance of each modality,
we conduct this modal experiment. Table 3 displays the
effectiveness of our modal experiment. We explore the
single and double modality to find out their contribu-
tion. For the single modality (Rows 2-9), we investigate
the models that only employ method name (abbrevi-
ated “MN”), API, token, and graph representation (CFG,
PDG, and the Mix respectively. For the double modality
(Rows 10-16), we investigate the models with three kinds

Table 2 Results for the effectiveness experiment

Method R@1 R@5 R@10 MRR

DeepCS 0.294 0.495 0.589 0.393

MMAN 0.319 0.532 0.622 0.422

Token+AST+CFG 0.369 0.583 0.657 0.469

Token+AST+PDG 0.351 0.569 0.651 0.456

Token+AST+Mix 0.370 0.594 0.671 0.474

6 https:// github. com/ metac odete am/ codeS earch
7 https:// drive. google. com/ drive/ folde rs/ 1BTds QNMwX MFEZ4 bUHFV
ywnmh PTEjZ7- i? usp= shari ng

https://github.com/metacodeteam/codeSearch
https://drive.google.com/drive/folders/1BTdsQNMwXMFEZ4bUHFVywnmhPTEjZ7-i?usp=sharing
https://drive.google.com/drive/folders/1BTdsQNMwXMFEZ4bUHFVywnmhPTEjZ7-i?usp=sharing

Page 11 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

of combination, including AST and graphs, token and
AST, token and graphs.

For the single modality, models are built with only one
modality, and the results are shown in Rows 2-9. For the
method name and API, CFG, PDG, and mixed graph,
the effectiveness of them is incredibly unacceptable, and
they have no ability in finding target source code for the
developers. Specifically, the numbers of the R@1 metric
are all below 11.0%, and even R@10 below 31%. For the
modality of the token, we built two models that applied
different neural networks with LSTM and MLP. For AST
and Token (MLP), the effectiveness of these models is
acceptable, and have the general ability on code search.
In particular, the metric of R@1 is around 23.0%, R@5 is
around 42%, R@10 is around 50%, and MRR is around
32%. Nonetheless, the model that builds with token
(LSTM) possesses the positive effectiveness, that has the
stronger ability on code search. Specifically, the metric of
R@1 reaches 32.8%, R@5 to 55.0%, R@10 to 65.7%, and
MRR to 43.4%. Therefore, we can conclude that the mod-
els built with single modality have limited ability, we do
not advise developers to select this; and if that’s the only
option, we prefer to build the model with AST or token,
especially token (LSTM).

For the double modality, the models are built with two
modalities, and the results are shown in Rows 10-16.
According to that whether employing token modality or
not, these models are kindly divided into two categories,
the models without token (Rows 10-12) and the mod-
els with token (Rows 12-16). For these models without
token, the effectiveness of these models is acceptable,
that have the general ability on code search. Specifically,

the metric of R@1 is around 23.0%, R@5 is around 42%,
R@10 is around 50%, and MRR is around 32%. For these
models with token, they possess the positive effective-
ness, that have the stronger ability on code search. Spe-
cifically, the metric of R@1 reaches 32.8%, R@5 with
55.0%, R@10 with 65.7%, and MRR with 43.4%. There-
fore, we consulate that these models that are built with
dual modalities have positive effects, and the token plays
a significant role in code search.

In summary, we can answer our research question 2,
each representation plays a positive effect in code search.
When building the models, we strongly recommend
developers choose the appropriate double modality while
retaining the token in the model to achieve better ability
of effectiveness.

The performance experiment
To figure out the contribution of the parameter in our
model training, we conduct the performance experiment.
We build the models with the modalities of token, AST,
and mixed graph, and adjust three parameters, including
dropout, batch size, and learning rate. The performance
of our models is shown in Fig. 3. We set a default value
for each parameter (dropout=0.1, learning rate=0.001,
and batch size=256). For each model in the figures, the
x-axis and the y-axis is the number of epochs and the
score of our metrics respectively. These figures illustrate
the results of the experiment evaluated by different met-
rics, including R@1, R@5, R@10, and MRR. We display
our models for each parameter with colored curves as the
number of epochs increases (from 1 to 300).

We can observe that the effectiveness of our models
achieves its maximum results around 200 epochs. In the
early stage of training (from 1 to 100), the performance
of our models improves rapidly. From 100 to 200 epochs,
although the improvement of the models slows down, it
is still improving. When training more than 200 epochs,
the performance reaches stability. So, we recommend
developers train the models with 200 epochs to reach the
best ability.

Now, we set different values for other parameters.
First, we change dropout to 0.5. It can be concluded

that the dropout parameter only plays a positive effect on
the effectiveness of our models. As the dropout increases
to 0.5, the performance improvement is quite slight on
the effectiveness of our models. Specifically, the value of
the R@1 metric reaches up to the best, which is equal to
37.15%. Nonetheless, setting the value of dropout to 0.1 is
still a pretty option.

After that, we adjust batch size to 128. It can be derived
that it does not have a significant effect on the effective-
ness of our models. When reducing the value from 256 to
128, there are no significant differences between the two

Table 3 Results for the modal experiment

Method R@1 R@5 R@10 MRR

MN 0.001 0.002 0.004 0.004

API 0.003 0.004 0.007 0.006

CFG 0.052 0.118 0.177 0.095

PDG 0.061 0.154 0.201 0.112

Mix 0.106 0.241 0.310 0.177

AST 0.232 0.403 0.481 0.317

Token 0.235 0.433 0.522 0.333

AST+CFG 0.202 0.398 0.487 0.296

AST+PDG 0.216 0.388 0.477 0.301

AST+Mix 0.200 0.385 0.476 0.291

Token+AST 0.326 0.565 0.657 0.435

Token+CFG 0.326 0.565 0.656 0.435

Token+PDG 0.332 0.538 0.639 0.443

Token+Mix 0.321 0.549 0.639 0.427

Token+AST+Mix 0.370 0.594 0.671 0.474

Page 12 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

models. Nevertheless, this parameter still serves differ-
ent effects on metrics, which give slight improvement for
a certain metric, such as R@1 can be more accurate. So,
developers can make their own decisions for their special
preferences.

For the learning rate, it can be observed that our model
that has a learning rate of 0.001 possesses extremely neg-
ative effectiveness. Particularly, the metrics of the model
are below 7.35% for R@1, 22.65% for R@5, 32.8% for
R@10, and 15.68% for MRR, which is much worse than
the previous results. Such models cannot recommend
source code to developers. Therefore, we select 0.01 in
our experiment.

In summary, when building and training our mod-
els, the parameters play a decisive role in the perfor-
mance. We provide our suggestion on the parameter
values with our default setting, which can acquire a good
performance.

Discussion

RQ3 In practice, how do developers determine their
representations, and also how to train their models to
achieve optimal performance?

According to the results, we give our recommendation
for developers to build their models, and answer our last
research problem.

Our models built with three modalities (token, AST,
and mixed graph) possess the best ability on code search
according to the effectiveness experiment (The effective-
ness experiment section). We strongly suggest developers
employ such three modalities when performing a search.
Furthermore, the graph representation has a positive
effect. The developers should obtain the graph represen-
tation as much as possible to enhance the ability of the
model.

From the perspective of the modality selection, the
modality of token, AST, and mixed graphs play a more sig-
nificant impact than the others, especially the token. In a
situation where these three modalities are not available at
the same time, we strongly recommend that the develop-
ers employ the modality of AST or graph while retaining
at least the modality of token. The models trained by this
combination still achieve an effective ability.

Considering the parameters, developers should be
more careful in choosing the values. According to our
results of the performance experiment (The performance
experiment section), we recommend that developers fol-
low our default value. In the case that developers have

Fig. 3 The effectiveness of the performance experiment

Page 13 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

further special requirements, they may adjust param-
eters, while should ensure that the model’s capabilities
are not compromised. When training the models, it is a
good option that sets the number of epochs to 200 epochs
to reach the best performance.

Threats to validity
There are two threats to the validity of our work, includ-
ing internal threat and construct threat. The internal
threat to the validity is the construction of our used data-
set. To generate our dataset, we employ Jcoffee and Soot
to parse the program for graph representation. Some
semantic information from the program may have been
discarded. When we employ Jcoffee to complete the par-
tial code, the complemented part may not possess valid
semantics. Our defense is that the effect of the invalid
semantics is quite small. Our model still has strong capa-
bilities. The second threat to the validity is the construc-
tion of our models. We employ several neural networks
to characterize the program representations. Therefore,
there is a potential improvement in the selection of neu-
ral networks for each representation of the program. For
instance, we can employ the MLP and LSTM to encode
the token of the program, however, the effectiveness of
these two networks has significant differences. We rec-
ommend the LSTM to the developers because of the
better effectiveness. Analogous matters can also occur
for the other representations of the program. Mean-
while, for the specific neural network, the effectiveness
of the models is not necessarily optimal, and it is possi-
ble to enhance the predictive ability by adjusting specific
parameters. Nonetheless, we conclude that our models
with the current configuration already have a reasonable
capacity from our experiment. We make the selection of
the neural networks as well as the parameter adjusting as
our future work.

Conclusion
In response to the increasing expansion of multimedia
applications, we provide an approach for code search
to enhance productivity in the development of software
infrastructure in edge computing. This study conducted
an empirical investigation to assess the efficacy of rep-
resentations of the program on code search, including
token, AST, graph, method name, and API. Our model
that consists token, AST, and mixed graphs possessed the
best capability. Specifically, we construed a mixed pro-
gram graph for java language containing the control flow
and the program dependence graph and employed dif-
ferent neural networks to characterize this mixed graph
as well as the other representations. We constructed
an experiment to answer three research problems. The
result showed that our mixed graph has a positive effect,

and the token and AST have significant contributions
to our models. When building and training models, we
strongly recommend developers retain these three repre-
sentations, or keep AST or graphs while retaining at least
one token. Such selection helps developers to obtain an
effective ability model. The selection for parameters is
also provided to the developer who can optimize the per-
formance to the best.

In the future, we plan to further enhance the capabil-
ity of our model for multimedia application develop-
ment. We only handle the Java programming language in
this work, so intend to explore more programming lan-
guages, such as Python, C, JavaScript, etc. In this work,
the features captured from the program are simply fused
by concatenating together. We will also consider taking
a new fusion strategy on code search, that will be more
productive in the future.

Acknowledgements
We would like to express our sincere thanks to the editors and reviewers for
their insightful comments and suggestions on improving this paper.

Authors’ contributions
F.Z and M.L wrote the main manuscript text and conducted the experiment.
All authors reviewed the manuscript.

Funding
This work was partially supported by the National Natural Science Foundation
of China under Grant No. U20A6003, National Natural Science Foundation
of China for the Key Program under Grant No. 62237001, the Guangdong
Natural Science Fund Project under Grant No.2024A1515011502, the Key Area
Research and Development Program of Guangdong Province under Grant
No. 2018B010109007, and Guangdong Joint Fund of the National Natural
Science Foundation of China under Grant Nos. U1801263 and U1701262,
the Self-selected research projects in the field of national defense science
and technology of the Chinese People’s Armed Police Force under Grant No.
ZZKY20233115.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interests
The authors declare no competing interests.

Received: 14 December 2023 Accepted: 9 March 2024

References
 1. Bilal K, Erbad A (2017) Edge computing for interactive media and video

streaming. In: 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC). IEEE p 68–73

 2. Long C, Cao Y, Jiang T, Zhang Q (2017) Edge computing framework for
cooperative video processing in multimedia iot systems. IEEE Trans Multi-
media 20(5):1126–1139

Page 14 of 14Zhang et al. Journal of Cloud Computing (2024) 13:78

 3. Allamanis M, Barr ET, Devanbu P, Sutton C (2018) A survey of machine
learning for big code and naturalness. ACM Comput Surv (CSUR)
51(4):1–37

 4. Perkusich M, Silva LC, Costa A, Ramos F, Saraiva R, Freire A, Dilorenzo E,
Dantas E, Santos D, Gorgônio K et al (2020) Intelligent software engineer-
ing in the context of agile software development: A systematic literature
review. Inf Softw Technol 119:106241

 5. Di Grazia L, Pradel M (2023) Code search: A survey of techniques for find-
ing code. ACM Comput Surv 55(11):1–31

 6. Liu C, Xia X, Lo D, Gao C, Yang X, Grundy J (2021) Opportunities and chal-
lenges in code search tools. ACM Comput Surv (CSUR) 54(9):1–40

 7. Linstead E, Bajracharya S, Ngo T, Rigor P, Lopes C, Baldi P (2009) Sourcerer:
mining and searching internet-scale software repositories. Data Min
Knowl Discov 18(2):300–336

 8. Mishne A, Shoham S, Yahav E (2012) Typestate-based semantic code
search over partial programs. In: Proceedings of the ACM international
conference on Object oriented programming systems languages and
applications. p 997–1016

 9. Gu X, Zhang H, Kim S (2018) Deep code search. In: Proceedings of the
40th International Conference on Software Engineering. p 933–944

 10. Sachdev S, Li H, Luan S, Kim S, Sen K, Chandra S (2018) Retrieval on
source code: A neural code search. In: Proceedings of the 2nd ACM
SIGPLAN International Workshop on Machine Learning and Programming
Languages. p 31–41

 11. Sun Z, Liu Y, Yang C, Qian Y (2020) PSCS: A path-based neural model for
semantic code search. arXiv preprint arXiv:2008.03042.

 12. Ling X, Wu L, Wang S, Pan G, Ma T, Xu F, Liu AX, Wu C, Ji S (2021) Deep
graph matching and searching for semantic code retrieval. ACM Trans
Knowl Discov Data (TKDD) 15(5):1–21

 13. Shuai J, Xu L, Liu C, Yan M, Xia X, Lei Y (2020) Improving code search with
co-attentive representation learning. In: Proceedings of the 28th Interna-
tional Conference on Program Comprehension. p 196–207

 14. Meng Y (2021) An intelligent code search approach using hybrid encod-
ers. Wirel Commun Mob Com 2021:1–6

 15. Wan Y, Shu J, Sui Y, Xu G, Zhao Z, Wu J, Yu P (2019) Multi-modal attention
network learning for semantic source code retrieval. In: 2019 34th IEEE/
ACM International Conference on Automated Software Engineering
(ASE). IEEE, p 13–25

 16. Lv F, Zhang H, Lou JG, Wang S, Zhang D, Zhao J (2015) Codehow: Effec-
tive code search based on api understanding and extended boolean
model (e). In: 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, p 260–270

 17. Ding SH, Fung BC, Charland P (2016) Kam1n0: Mapreduce-based assem-
bly clone search for reverse engineering. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining. p 461-470

 18. Wang H, Zhang J, Xia Y, Bian J, Zhang C, Liu TY (2020) Cosea: Con-
volutional code search with layer-wise attention. arXiv preprint
arXiv:2010.09520.

 19. Cheng Y, Kuang L (2022) CSRS: code search with relevance matching and
semantic matching. In: Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension. p 533–542

 20. Liu S, Xie X, Siow J, Ma L, Meng G, Liu (2023) Graphsearchnet: Enhancing
gnns via capturing global dependencies for semantic code search. IEEE
Transactions on Software Engineering. p 1–6

 21. Du L, Shi X, Wang Y, Shi E, Han S, Zhang D (2021) Is a single model
enough? mucos: A multi-model ensemble learning approach for
semantic code search. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. p 2994–98

 22. Mathew G, Stolee KT (2021) Cross-language code search using static
and dynamic analyses. In: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. p 205–217

 23. Shi E, Gub W, Wang Y, Du L, Zhang H, Han S, Zhang D, Sun H (2022)
Enhancing semantic code search with multimodal contrastive learning
and soft data augmentation. arXiv preprint arXiv:2204.03293

 24. Nguyen TT, Nguyen AT, Nguyen HA, Nguyen TN (2023) A statistical
semantic language model for source code. In: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering. p 532–542

 25. Nguyen S, Phan H, Le T, Nguyen TN (2020) Suggesting natural method
names to check name consistencies. In: Proceedings of the ACM/IEEE
42nd international conference on software engineering. p 1372–1384

 26. Hu X, Men R, Li G, Jin Z (2019) Deep-autocoder: Learning to complete
code precisely with induced code tokens. In: 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC). IEEE,
1:159–168

 27. Kang HJ, Bissyandé TF, Lo D (2019) Assessing the generalizability of
code2vec token embeddings. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, p 1–12

 28. Mou L, Li G, Jin Z, Zhang L, Wang T (2014) TBCNN: A tree-based convo-
lutional neural network for programming language processing. arXiv
preprint arXiv:1409.5718

 29. Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019) A novel neural
source code representation based on abstract syntax tree. In: 2019 IEEE/
ACM 41st International Conference on Software Engineering (ICSE). IEEE,
p 783–794

 30. Jayasundara V, Bui ND, Jiang L, Lo D (2019) TreeCaps: Tree-structured
capsule networks for program source code processing. arXiv preprint
arXiv:1910.12306

 31. Chakraborty S, Ding Y, Allamanis M, Ray B (2020) Codit: Code editing with
tree-based neural models. IEEE Trans Softw Eng. 31;48(4):1385–99

 32. Wang W, Li G, Ma B, Xia X, Jin Z (2020) Detecting code clones with graph
neural networkand flow-augmented abstract syntax tree. arXiv preprint
arXiv:2002.08653

 33. Xu X, Liu C, Feng Q, Yin H, Song L, Song D (2017) Neural network-based
graph embedding for cross-platform binary code similarity detection.
In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security p 363–376

 34. Nair A, Roy A, Meinke K (2020) funcgnn: A graph neural network
approach to program similarity. In: Proceedings of the 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Meas-
urement (ESEM). p 1–11

 35. Chen C, Peng X, Xing Z, Sun J, Wang X, Zhao Y, Zhao (2021) Holistic
combination of structural and textual code information for context based
API recommendation. IEEE Trans Softw Eng. 48(8):2987–3009

 36. Gao J, Yang X, Fu Y, Jiang Y, Sun J (2018) Vulseeker: A semantic learning
based vulnerability seeker for cross-platform binary. In: Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. p 896–899

 37. David Y, Alon U, Yahav E (2020) Neural reverse engineering of stripped
binaries using augmented control flow graphs. Proc ACM Program Lang
4(OOPSLA):1–28

 38. LeClair A, Haque S, Wu L, McMillan C (2020) Improved code summariza-
tion via a graph neural network. In: Proceedings of the 28th international
conference on program comprehension. p 184–195

 39. Cummins C, Fisches ZV, Ben-Nun T, Hoefler T, Leather H (2020) Programl:
Graph-based deep learning for program optimization and analysis. arXiv
preprint arXiv:2003.10536

 40. Zeng C, Yu Y, Li S, Xia X, Wang Z, Geng M, Bai L, Dong W, Liao X (2023)
degraphcs: Embedding variable-based flow graph for neural code search.
ACM Transactions on Software Engineering and Methodology. 32(2):1–27

 41. Gu X, Zhang H, Zhang D, Kim S (2016) Deep API learning. In: Proceedings
of the 2016 24th ACM SIGSOFT international symposium on foundations
of software engineering. p 631–642

 42. Zhu Q, Sun Z, Liang X, Xiong Y, Zhang L (2020) Ocor: An overlapping-
aware code retriever. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. p 883–894

 43. Wang C, Nong Z, Gao C, Li Z, Zeng J, Xing Z, Liu Y (2022) Enriching query
semantics for code search with reinforcement learning. Neural Netw
145:22–32

 44. Ishtiaq AA, Hasan M, Haque MM, Mehrab KS, Muttaqueen T, Hasan T, Iqbal
A, Shahriyar R (2021) Bert2code: Can pretrained language models be
leveraged for code search?. arXiv preprint arXiv:2104.08017

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Intelligent code search aids edge software development
	Abstract
	Introduction
	Related work
	Code search
	Program representation learning

	Methodology
	The architecture
	Program parser part
	Representation learning
	Token representation learning
	AST representation learning
	Graph representation learning

	Model training

	Experimental methodology
	Data collection
	Experimental steps
	Metric

	Results and discussion
	The effectiveness experiment
	The modality experiment
	The performance experiment
	Discussion

	Threats to validity
	Conclusion
	Acknowledgements
	References

