
Zhang et al. Journal of Cloud Computing (2024) 13:81
https://doi.org/10.1186/s13677-024-00635-7

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A cloud‑edge collaborative task scheduling
method based on model segmentation
Chuanfu Zhang1,2, Jing Chen1,2*, Wen Li1,2, Hao Sun1,2, Yudong Geng1,2, Tianxiang Zhang1,2, Mingchao Ji1,2 and
Tonglin Fu1,2 

Abstract 

With the continuous development and combined application of cloud computing and artificial intelligence, some
new methods have emerged to reduce task execution time for training neural network models in a cloud-edge
collaborative environment. The most attractive method is neural network model segmentation. However, many
factors affect the segmentation point, such as resource allocation, system energy consumption, load balancing,
and network Bandwidth allocation. Some segmentation methods consider the shortest task execution time, which
ignores the utilization of resources at the edge and can result in resource waste. Additionally, these factors are difficult
to measure, which presents a challenge in calculating the best segmentation point to achieve the goal of maximum
resource utilization and minimum task execution time. To solve this problem, this paper proposes a cloud-edge
collaborative task scheduling method based on model segmentation (CECMS). This method first analyzes the fac-
tors affecting the segmentation point of the model and then obtains accurate factors that affect the segmentation
point calculation through the pre-execution method. Furthermore, a multi-objective solution algorithm is improved
to calculate the optimal model segmentation point. And tasks are separately offloaded to the edge and cloud based
on the optimal model segmentation point. Finally, the experiments are conducted to verify the effectiveness of this
method. Finally, the effectiveness of the CECMS method was verified through simulation experiments. Compared
with the Dynamic Adaptive DNN Surgery (DADS) method and an adaptive DNN inference acceleration framework
algorithm with end–edge–cloud collaborative computing algorithm (ADC), CECMS achieves the same effectiveness
as DADS and ADC in optimizing task execution time by comprehensively considering the utilization of edge resources
and minimizing task execution time, while also effectively ensuring resource utilization.

Keywords  Cloud-edge collaboration, Model segmentation, Task execution time, Resource utilization

Introduction
Cloud computing resource scheduling and IoT secu-
rity have made great progress through continu-
ous development [1]. Many studies focus on cloud

computing scheduling, including algorithms based on
deep reinforcement learning [2], system security [3],
ordinal optimization [4], and multi-objective trust-
awareness [5]. The time cost of AI tasks can be reduced
by applying cloud computing in AI [6]. The conven-
tional approach to combining cloud computing with
AI is to upload all AI tasks and data to be computed
to the cloud to leverage its high computing capacity,
which, however, potentially results in significant trans-
mission delay, hinders task completion, and incurs
high energy cost in the case of a long distance between
the cloud and the user and a large amount of calcula-
tion data. The massive transmission delay associated

*Correspondence:
Jing Chen
jingchen94@163.com
1 Key Laboratory of Computing Power Network and Information
Security, Ministry of Education, Shandong Computer Science Center
(National Supercomputer Center in Jinan), Qilu University of Technology
(Shandong Academy of Sciences), Jinan, China
2 Shandong Provincial Key Laboratory of Computer Networks, Shandong
Fundamental Research Center for Computer Science, Jinan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00635-7&domain=pdf

Page 2 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

with traditional cloud computing limits its effective-
ness in real-time medical treatment [7, 8], despite its
applications in the medical field. Similarly, combining
traditional cloud computing with artificial intelligence
proves ineffective in handling latency-sensitive tasks
such as autonomous driving [9] and networked vehicles
[10]. The emergence of edge computing has addressed
significant transmission delays brought by the distance
between the cloud and the end user [11]. Edge comput-
ing, which refers to adding a computing center near the
end user [12], decentralizes some of the cloud’s capa-
bilities to the edge to offload the task uploaded by the
end user to the cloud due to insufficient local comput-
ing resources. Edge computing has led to the develop-
ment of a more advantageous cloud-edge collaborative
architecture. If edge node has computing resources far
from being sufficient to complete the task offloaded by
the end-user, it will further offload the task to the cloud
[13], which avoids the extensive transmission delay
caused by uploading tasks from some end users far
from the cloud and enables real-time interaction. Com-
bining the advantages of cloud computing and edge
computing, cloud-edge collaborative computing makes
it more efficient to process massive computing tasks,
quicker to execute real-time tasks and more effective to
handle delay-sensitive tasks [14].

The training task of an artificial intelligence neural net-
work model is computationally intensive and requires
large amounts of data. When the neural network model
training task is offloaded into a cloud-edge collaborative
system, the edge computing resource may not be able to
complete the computation of the entire task [15]. There-
fore, tasks are often uploaded to the cloud for unloading,
which can result in significant transmission delays caused
by the massive data required for training, thus requir-
ing more time for completing the tasks. To make better
use of the cloud-edge collaboration system, the concept
of splitting the neural network model first prior to com-
puting is proposed. The DNN model is partitioned and
executed in a distributed manner by adjusting the DNN
partition points to achieve the optimal latency or mobil-
ity energy [16, 17].

In summary, Segmenting neural network models can
significantly reduces the time required for completing
neural network model tasks, which, however, needs the
corresponding segmentation points of the model to be
accurately calculated. Incorrect point calculation may
result in increased task completion time, resource waste,
deadlock, and even failure in task offloading. There are
a number of factors affecting the segmentation point
of the model in practical applications, such as resource
utilization at the edge, system energy consumption, and
network bandwidth. Therefore, it is crucial to take these

factors into account in determining how to segment the
neural network and solve the problem.

The main contributions of this paper are as follows.

1.	 Precisely determine the factors that affect model seg-
mentation through pre-execution, and establish a
cloud-edge collaborative computing paradigm based
on model segmentation.

2.	 Construct a multi-objective model to obtain mini-
mum completion time and maximum edge resource
utilization for a training model in a cloud-edge col-
laborative environment.

3.	 Enhance the multi-objective solving algorithm by
leveraging high concurrency and multiple popula-
tions while reducing the impact of uneven popula-
tion distribution.

4.	 Use an enhanced multi-objective solving algorithm
to calculate the optimal segmentation point of the
model with the goal of minimizing cloud-edge col-
laboration completion time and maximizing resource
utilization at the edge of model training, and then
utilize the optimal segmentation point for model
training in a cloud-edge collaboration environment.

Related works
The deployment of segmented neural network models in
cloud-edge collaborative environments has been a widely
discussed topic, both domestically and internationally.
This issue directly affects task unloading time, resource
allocation, system energy consumption, load balanc-
ing, and network bandwidth allocation in these environ-
ments. Kang et al. suggest that uploading a deep neural
network model to the cloud for execution increases task
completion time and mobile energy consumption. In this
context, they proposed a segmentation method using
the Neurosurgeon algorithm to reduce time and mobile
energy consumption during model execution [18]. Kum
et al. indicate that optimization methods for deploying AI
applications at the edge potentially reduce AI accuracy.
For this reason, they proposed a new deployment method
that divides AI models into more than two parts and
places them on either the edge or cloud using a container
structure that converts AI into microservices. Despite
increased end-to-end service delay, accuracy remained
unchanged [19]. To achieve fast response time of con-
volutional neural networks (CNN) in practical applica-
tions, Zhang et al. proposed to compress and segment
CNNs to generate a new network layer, which involves
two steps. One is that the model’s convolutional layer is
dealt with using low-rank decomposition, followed by
the full connection layer using singular value decomposi-
tion method, and the other is that processed network is
segmented into fine granularity for minimum execution

Page 3 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

delay. The model is fine-tuned to recover lost accu-
racy [20]. Hu et al. designed a DNN partition algorithm
capable to identify the best segmentation point to mini-
mize the overall delay of processing each frame under
light load and maximize throughput under heavy load
[21]. Mehta et al. put forward a new CNN segmentation
method that considers network bandwidth, data size, and
load at the edge to split the neural network model with
the goal of minimizing network bandwidth consumption
and combined it with various bandwidth optimization
algorithms in spite of reduced final accuracy [22]. Yang
et al. proposed a joint partitioning and compressing CNN
method that effectively reduces the transmission delay of
the model while ensuring accuracy, thereby reducing the
inference time of the model [23]. Gao et al. designed a
cloud-edge neural network model segmentation method
composed of three outlets to transmit data, which greatly
reduces end-to-end transmission delay compared to
pure cloud computing [24]. Xue et al. presented a novel
DNN partition method that segments the neural network
model to minimize delay, cost, and energy consumption
and escaped the failure caused by networks and other
factors in the transmission process of large-scale com-
puting data [25].

Neural network model segmentation has been widely
used not only in cloud-edge collaborative systems but
also in other distributed environments. Zhou et al. pro-
posed a convolutional neural network acceleration
framework to overcome the difficulty of deploying CNN
on resource-constrained devices. This framework parti-
tions CNN based on each layer’s calculation and device
communication delay and assigns each partition to corre-
sponding devices [26]. Dey et al. proposed a CNN depth
partitioning method to perform CNN tasks using limited
computing equipment. Employing the input and output
depth of the convolution layer to partition the load, the
proposed method accelerates the computation of CNN
tasks [27]. Qarariah et al. raised a DNN partition calcula-
tion graph strategy to train DNN models that cannot be
trained in a single device, which involves clustering each
layer of DNN into multiple partitions and then determin-
ing whether each partition breaks memory constraints
with the aim to minimize end-to-end communication
time and adjust the final partition according to memory
constraints [28]. Kung et al. proposed to solve compu-
tationally intensive DNN reasoning on resource-con-
strained devices by utilizing the distributed deep neural
network (DDNN) consisting of a small neural network
model on the terminal device to extract data features
and a large neural network in the cloud to receive data
features and perform inference operations [29]. Mao
et al. presented a locally distributed mobile comput-
ing system to partition neural network models without

resource constraints and compress them without any loss
while greatly accelerating DNN [30]. Ao et al. proposed
an end-to-end distributed training framework that takes
into account computing resources, model segmentation,
and task placement to reduce the impact of dynamic
resources on neural network model training and improve
the training efficiency of the model [31]. Hou et al. put
forward a strategy to divide neural network models into
edge devices, taking into account network and equipment
conditions, as well as CNN characteristics. Experiments
show that the presented method improves the inference
speed of CNN [32]. Jeong et al. designed a method to
partition the neural network model based on the current
communication situation in a distributed environment
[33]. Aiming at the shortage of computing resources for
edge devices, a load-balancing algorithm was raised by
Miao et al. to segment the neural network model and
assign it to different edge devices for task completion
[34]. Liu et al. brought about a new neural network model
partitioning method that fully considers network band-
width and load at the edge [35]. He et al. designed a serial
queue model to calculate the end-to-end delay, minimiz-
ing the segmentation of neural network models and thus
making better use of mobile edge computing [36].

The traditional cloud computing only considers task
offloading between mobile devices and cloud servers
and often fails to fully utilize edge nodes [37–39]. While
some methods achieve the minimum delay of real-time
inferring after neural network model segmentation, the
computing resources at the edge cannot be fully utilized.
On the other hand, some methods maximize the utiliza-
tion rate of computing resources at the edge but require
more time for task completion, which is not conducive to
solving delay-sensitive problems. Other methods fail to
achieve the goal of improving the utilization rate of the
edge and minimizing the task completion time in spite
of their consideration about the consumption of net-
work resources and the load balancing of servers. There-
fore, this paper proposes a cloud-edge collaborative task
scheduling method based on model segmentation by
considering considers the utilization rate of resources at
the edge, network condition, size of model output data,
and calculation delay in the cloud-edge collaborative
environment, which is able to obtain the best segmen-
tation point for the cloud-edge collaborative computing
neural network model while minimizing task completion
time and maximizing edge-resource utilization in the
cloud-edge collaborative environment.

System modeling and problem formalization
Using cloud computing traditionally for tasks of neu-
ral network model offloading often results in increased
completion time due to the need to transfer large task

Page 4 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

data, but accompanied by insufficient utilization of edge
resources. To shorten the time for large neutral network
models to complete tasks and improve the utilization of
edge resources, this paper proposes a cloud-edge collabo-
rative task scheduling method based on model segmen-
tation with the objective of minimizing the completion
time of task offloading and maximizing the utilization
of computing resources at the edge in a neural network
model training. To achieve this objective, factors includ-
ing delayed task calculation, the transmission delay of
intermediate data, and the resource utilization at the

edge are taken into account. By analyzing these factors,
the best segmentation point for the cloud-edge collabora-
tive computing neural network model can be obtained to
optimize the overall task scheduling process. Assuming
that the amount of data uploaded by users to the edge is
num , the neural network model to be trained has N lay-
ers (Table 1).

Task completion time
There are many factors affecting task completion time,
including calculation delay and the transmission delay of

Table 1  Notations

Notations Description

num the amount of data uploaded by users to the edge

N the number of layers in a neural network model

Tδ task calculation delay on the cloud or edge

δ ∈ {e, c} edge node and cloud node respectively

Ttotal transmission delay of intermediate data

Tc , Te cloud computing delay, edge computing delay

F FLOPs of the neural network model

Fc , Fe cloud computing and edge computing capability

Fδ FLOPS of the edge or cloud server

F = {f1, f2, ..., fn} FLOPs of each layer of the neural network model

Cin the number of input characteristic matrices

Kw , Kh width and height of convolution kernel

Cout the number of output characteristic matrices

w , h width and height of output characteristic matrices

FLOPscov , FLOPsfc FLOPs of convolution and full connection layer

NIn , NOut, input features, output features

Ncore , Hc cores number and frequency of the processor

Nfloat floating-point operations per cycle of the processor

Te = {te,1, te,2, ..., te,n} computing delay of each layer at the edge node

Tc = {tc,1, tc,2, ..., tc,n} computing delay of each layer at the cloud node

Vtrans , Vup,Vdown transmission rate, uplink rate, and downlink rate

O the size of data to be transmitted

O = {o0, o1, ..., on−1} the data output of each layer

Tup = {tup,0, tup,1, ..., tup,n−1} uplink delay of the output data of each layer

Tdown = {tdown,0, tdown,1, ..., tdown,n−1} downlink delay of the output data of each layer

Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1} transmission delay of the output data of each layer

Dsize the space occupied by the corresponding data type

(dim1, dim2, ..., dimm) the Tensor size output

Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1} the transmission delay of the data of each layer

T = {t0, t1, ..., tN} task completion time

Mtotal the total memory of the system

Mwait system memory consumption without task execution

M = {m0,m1, ...,mn} memory consumption of each layer when running task

Mcost = {mcos t ,0,mcos t ,1, ...,mcos t ,n} memory consumption of each layer

Rmemory = {rm,0, rm,1, ..., rm,n} memory occupancy of each layer

split the location of the segmentation point

Page 5 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

intermediate data. The task completion time function can
be expressed as T = f (Tδ ,Ttotal) , where δ ∈ {e, c} , Tδ rep-
resents the task calculation delay on the cloud or edge,
and Ttotal represents the transmission delay of intermedi-
ate data from the edge to the cloud.

The neural network model training is typically com-
putationally intensive, which requires a large number of
computational resources to process vast data. Thus, com-
puting delay is a crucial factor that significantly affects
the entire task unloading process. It is essential to con-
sider the calculation delay of each layer in determining
the optimal segmentation point of the neural network
model. Therefore, it is necessary to develop an accu-
rate method for calculating the computing delay of each
layer of the neural network for optimizing a cloud-edge
collaborative task scheduling method based on model
segmentation.

To achieve a more accurate calculation delay of the
neural network model, two indicators known as floating-
point operations (FLOPS) and floating-point per sec-
ond (FLOPS) are used in conjunction. By utilizing both
FLOPS and FLOPS in tandem, it becomes possible to
obtain a more comprehensive understanding of the com-
putation requirements for a given neural network model,
which, in turn, allows for more precise calculation of the
calculation delay and ultimately enables the determina-
tion of the optimal segmentation point for the model.
Pre-executing is used to estimate the amount of com-
putation required for each layer and calculate the com-
puting capacity of the server according to the processor
index of the server in the cloud or at the edge.

Let the calculation delay function be Tδ = f (F , Fδ) ,
where δ ∈ {e, c} , Tc , and Te represent cloud computing
delay and edge computing delay, respectively,F repre-
sents the FLOPs of the neural network model, and Fc and
Fe represent cloud computing capability and edge com-
puting capability, respectively. The specific calculation
method is as follows.

Since the neural network model mainly focuses on the
convolution layer and the full connection layer in the cal-
culation process, it is of great importance to understand
how to more accurately acquire the computing workload
of the two layers.

Let the FLOPs of each layer of the neural network
model be F = {f1, f2, ..., fn} , which can be calculated by:

where FLOPscov is the FLOPs of convolution layer, Cin
represents the number of input characteristic matrices,
Kw and Kh respectively represent the width and height of

(1)FLOPscov = [(Cin × Kw × Kh)+ (Cin × Kw × Kh − 1)+ 1]× Cout × w × h

(2)FLOPsfc = [NIn + (NIn − 1)+ 1]× NOut

convolution kernel, Cout is the number of output charac-
teristic matrices, w and h respectively represent the width
and height of output characteristic matrices.
FLOPsfc is the FLOPs of the full connection layer, NIn

and NOut respectively represent the number of input fea-
tures and the number of output features.

Assuming the FLOPS at the edge node as Fe and the
FLOPS at the cloud node as Fc , the calculation formula
can be written as:

where Fδ is the FLOPS of the edge or cloud server, Ncore
is the number of cores of the processor, Hc is the domi-
nant frequency of the processor, and Nfloat is the number
of floating-point operations per cycle of the processor.

According to the FLOPs F = {f1, f2, ..., fn} of each layer,
the FLOPS Fe of the edge and the FLOPS Fc of the cloud,
the computing delay Te = {te,1, te,2, ..., te,n} of each layer
of neural network at the edge and the computing delay
Tc = {tc,1, tc,2, ..., tc,n} at the cloud are calculated, where
(1 <= n <= N) . The calculation formula is expressed as:

In cloud-edge collaborative environments, the cloud
node is often distant from the edge node. Thus, upload-
ing the model and data to the cloud can lead to signifi-
cant transmission delays in the case of large amount of
data transmitted and poor network condition. These
factors can ultimately increase the total task completion
time of the neural network model. To mitigate this issue
and further reduce task completion time via optimal seg-
mentation point calculation, it is necessary to consider
the impact of transmission delays on required data.

There are many factors affecting transmission delay,
such as data size, network conditions, and allocated
bandwidth. In order to gain these factors, data output of
each layer of the neural network is obtained by pre-exe-
cuting the neural network model. Furthermore, current
network transmission rate is calculated by performing a
point-to-point network status query and analyzing sys-
tem network configurations. Considering the impact of
transmission delay of the required data during compu-
tation can help further reduce the task completion time

of neural network models in cloud-edge collaborative
environments.

Let the function of transmission delay be
Ttotal = f (Vtrans,Vup,Vdown,O) , where Vtrans , Vup and
Vdown respectively represent network transmission

(3)Fδ = Ncore ∗Hc ∗ Nfloat , δ ∈ {e, c}

(4)tδ,i =
fi

Fδ
(δ ∈ {e, c}, i ∈ [1,N])

Page 6 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

rate, uplink rate, and downlink rate between the edge
end and the cloud end, and O represent the size of data
to be transmitted. The specific calculation method is
expressed as:

Let the data output of each layer of the neural net-
work be O = {o0, o1, ..., on−1} . The current network
transmission rate Vtrans between the edge and the cloud

can be obtained through the ping command. The cor-
responding uplink rate Vup and downlink rate Vdown
can be obtained by querying the system network con-
figuration through the grep command. The uplink
delay Tup = {tup,0, tup,1, ..., tup,n−1} , downlink delay
Tdown = {tdown,0, tdown,1, ..., tdown,n−1} and transmission
delay Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1} of the output
data of each layer of the neural network can be calcu-
lated, where (1 <= n <= N) . The calculation formula is
expressed as:

where Dsize is the space occupied by the correspond-
ing data type, and (dim1, dim2, ..., dimm) is the Tensor
size output by the neural network model.

According to the uplink delay Tup = {tup,0, tup,1, ..., tup,n−1} ,
downlink delay Tdown = {tdown,0, tdown,1, ..., tdown,n−1} and
transmission delay Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1}
of the output data of each layer of the neural network, the
transmission delay Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1}
of the data of each layer of the neural network from the
edge to the cloud, or that of intermediate data corre-
sponding to each segmentation point from the edge to
the cloud can be calculawted, where (1 <= n <= N) .
The calculation formula is expressed as:

Using transmission delay and calculation delay, the
completion time of the task at different segmenta-
tion points can be accurately estimated. Assuming
the partition point to be split(0 <= split <= N) , the
task completion time T = {t0, t1, ..., tN} corresponding
to each partition point can be calculated according to
the calculation delay Te = {te,1, te,2, ..., te,n} of each layer

(5)oi =
dim1 ∗ dim2 ∗... ∗ dimm ∗Dsize

8

(6)tε,i =
oi

Vε

(ε ∈ {up, trans, down}, i ∈ [0,N − 1])

(7)ttotal,i = f (Tup,Ttrans,Tdown) = tup,i + ttrans,i + tdown,i (i ∈ [0,N − 1])

of a neural network at the edge, the calculation delay
Tc = {tc,1, tc,2, ..., tc,n} of the cloud, and the transmission
delay Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1} of the interme-
diate data corresponding to each partition point from
the edge to the cloud. The calculation formula is spe-
cifically expressed as:

Edge resource utilization
The goal of minimizing completion time is usually consid-
ered, while the utilization of edge resources is often over-
looked in cloud-edge collaborative environments, which
might be accompanied by edge resource wastes. Therefore,
real-time edge-end resource conditions need to be consid-
ered for calculating the optimal segmentation point.

Assume that the total memory of the system is Mtotal ,
the memory consumption in the absence of task execu-
tion is Mwait , and the system memory consumption of
each layer when running the neural network model task is
M = {m0,m1, ...,mn} , where (0 <= n <= N) . The mem-
ory consumption Mcost = {mcos t,0,mcos t,1, ...,mcos t,n} of
each layer of the neural network model can be calculated by:

The memory occupancy of each layer of the neural net-
work model isRmemory = {rm,0, rm,1, ..., rm,n}(0 <= n <= N) , which
can be calculated by:

Problem modeling
The resource utilization rate at the edge, network trans-
mission delay, and task calculation delay will affect the
calculation of the segmentation point. Therefore, it is
a multi-objective optimization problem to calculate
segmentation points, which includes minimizing task
completion time and maximizing memory resource

(8)tk = f (Ttotal ,Te,Tc) = ttotal,split +

split
∑

i=1

te,i +

n
∑

j=split+1

tc,j(1 <= k <= N − 1)

(9)tk = f (Ttotal ,Tc) = ttotal,0 +

n
∑

j=1

tc,j(k = 0)

(10)tk = f (Te) =

n

i=1

te,i(k = N)

(11)mcos t,n = f (M,Mwait) = mn −Mwait(0 <= n <= N)

(12)rm,n = f (Mcos t ,Mtotal) =
mcos t,n

Mtotal
∗ 100% (0 <= n <= N)

Page 7 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

utilization at the edge. The multi-objective function can
be constructed as:

where split is the location of the segmentation point,
Rmemory is the memory resource utilization at the edge,
and T is task completion time.

The NSGA-III (non-dominated sorting genetic algo-
rithm-III) algorithm is modified to achieve the optimal
segmentation point. The NSGA-III algorithm has the
advantages of great running speed, good convergence,
and nice high-dimensional multi-objective optimiza-
tion results. There are four steps in the process of retain-
ing individuals by the method, which are reference point
generation, population adaptive standardization, associa-
tion between individuals and reference points, and indi-
vidual selection. When the population iterates a certain
number of times, the optimal multi-objective optimiza-
tion solution set will be generated. However, the NSGA-
III algorithm also has certain limitations. Due to the high
randomness in the selection of initial reference points,
the initial state of the population will not be excellent

(13)

�

min{T }

min{1− Rmemory}


















C1 : 0 <= split <= N

C2 : split ∈ Z

C3 : Mcost +Mwait <= Mtotal

C4 : 0 <= Rmemory <= 1

enough, thereby affecting the final results. To solve this
problem, multi-population multi-objective optimiza-
tion methods have emerged. The multiple populations
can be combined with the NSGA-III algorithm to avoid
the impact on the final results caused by the poor initial
state of the population. At the same time, a combina-
tion of multi-threading and multi-group multi-objective
(MTMGMO) optimization is used to reduce calculation
time.

The number of populations is set as p , the ini-
tial number of populations for each population as
Pop = {pop1, pop2, ..., popp} , and the thread group as
Thd = {thd1, thd2, ..., thdp} . In the MTMGMO algo-
rithm, multiple threads are used to avoid increasing the
required time caused by the serial computing for mul-
tiple groups. Starting a new thread for each population
not only reduces the impact on the final result caused by
the poor initial state of the population but also avoids the
long serial computing time for multiple populations.

Cecms algorithm
Taking the training of the neural network model required
by end users as an example, a cloud-edge collaborative
task scheduling method based on model segmentation is
shown in Fig. 1.

A cloud-edge collaborative task scheduling method
based on model segmentation involves three steps,
namely, pre-executing, optimal segmentation point

Fig. 1  Flow chart of cloud-edge collaborative task scheduling method based on model segmentation

Page 8 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

calculation, and cloud-edge collaborative training.
Their relationships are illustrated in Fig. 2.

Pre-executing is performed at the edge node to cal-
culate the FLOPs of each layer of the neural network
model, the amount of data output, and the computing
resource occupancy at the edge node. The pre-executing
process is demonstrated in Fig. 3.

The specific steps are as follows:
Firstly, the user uploads his or her training data and

neural network model to the edge node. The edge node

then stores the necessary data and model files in the file
storage system and records the storage address in the
database. Secondly, the edge node loads the neural net-
work model and data required for training by referenc-
ing the saved address information in the database. The
system then evaluates whether all of the data can be
used for pre-executing based on the resource threshold
of edge node. If the computing resources available at the
edge exceed the pre-executing threshold and there is no

Fig. 2  Schematic diagram of the relationship between Pre-executing, optimal segmentation point calculation, and cloud edge collaborative
training

Fig. 3  Pre-executing flow chart

Page 9 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

limit, then the system will proceed to pre-train the entire
dataset.

However, if the data exceeds the threshold, the system
uses a sample of 10% of the data to calculate the FLOPs
of each layer of the neural network model and evalu-
ate the computational resource occupancy of the edge
node, thus allowing the acquisition of the information
required for optimal resource allocation and preventing
the overconsumption of computing resources. By selec-
tively training only a portion of the data, the edge node
can balance the computation workload while still accu-
rately calculating the FLOPs of each layer of the neural
network model, the amount of data output, and the com-
puting resource occupancy at the edge node. Overall,
this approach ensures that the edge node can effectively
take advantage of its computing resources while provid-
ing reasonable parameters for calculating segmentation
points.

The edge node performs the best segmentation point
calculation algorithm to calculate the best segmentation
point of the neural network model. The calculation pro-
cess is shown in Fig. 4.

The specific steps are as follows.

1: The edge node calculates the computing delay of
each layer of a neural network at the edge node and
the computing delay at the cloud node according
to the FLOPS of each layer, edge node, and cloud
node.
2: The edge node obtains the current network trans-
mission rate between the edge node and the cloud
through the ping command, and queries the system
network configuration through the grep command to

obtain the corresponding uplink rate and downlink
rate.
3: The edge node calculates the uplink delay, down-
link delay, and transmission delay of the output data
on each layer of the neural network according to
the data output, current network transmission rate,
uplink rate, and downlink rate.
4: The edge node calculates the transmission delay
of each layer of neural network data from the edge
node to the cloud node according to the uplink
delay, downlink delay, and transmission delay of
output data of each layer of the neural network,
or that of intermediate data corresponding to each
segmentation point from the edge node to the
cloud node.
5: The edge node obtains the total time delay trained
by the neural network model corresponding to each
segmentation point according to the calculated time
delay of each layer of a neural network at the edge
node and the calculated time delay of the cloud node
and the transmission time delay of the intermediate
data corresponding to each segmentation point from
the edge node to the cloud node.
6: According to the total time delay corresponding to
each segmentation point and the computing resource
occupancy rate of the edge node during the execution
of each layer of the neural network; the MTMGMO
algorithm is used for multi-objective optimization to
obtain the best segmentation point of the neural net-
work model.

After calculating the best segmentation point of the
model, the model is segmented according to the best
segmentation point. The network layer before and

Fig. 4  Flow chart of calculating the best segmentation point

Page 10 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

after the segmentation point is respectively trained at
the edge and cloud. The training process is shown in
Fig. 5.

The specific steps are as follows.

1: The edge node uploads the data needed for train-
ing and the neural network model needed for train-
ing to the cloud.
2: The cloud stores the neural network model to be
trained and the data to be trained in the file storage
system, and saves the storage address in the data-
base.
3: The edge and cloud nodes load neural network
models and all training data.
4: The edge node trains the network layer before
the segmentation point to obtain intermediate
data.
5: The edge node transmits the intermediate data to
the cloud through the Socket communication system.
6: After receiving the intermediate data, the cloud
node executes the neural network layer after the
segmentation point to obtain the final result. Cal-
culate the deviation loss between the final and
expected results, and determine whether the devia-
tion loss is within an acceptable range. If it is within
the acceptable range, save the model parameter
weight to end the training, and if it is not within the
acceptable range, calculate the neuron error of the
hidden layer.
7: The cloud calculates the error gradient according
to the neuron error of the hidden layer. The error

gradient is transmitted to the edge through the
Socket communication system, and then the cloud
updates the cloud neuron weight according to the
error gradient. In this process, the cloud error gra-
dient is firstly transmitted to the edge, and then the
cloud and the edge update the parameters of the
neural network model.
8: The edge receives the error gradient transmit-
ted from the cloud and updates the edge neuron
weight according to the error gradient. In this pro-
cess, the error is firstly transmitted from the back
to the front, and then the weight and offset value
from the back to the front is modified according to
the error.
9: Proceed to next training, which is to return to
Step 4.

Necessary conditions for model training only in the
cloud or edge:

(1) If the computing resources at the edge fail to the
requirements for training the first layer of the neu-
ral network, all the training will be conducted in the
cloud, and the segmentation point is 0.
(2) If all models are trained at the edge, training
in the cloud will lead to insufficient utilization of
computing resources at the edge. At this time, the
segmentation point is at the last layer of the net-
work.
A cloud-edge collaborative task scheduling method
based on model segmentation is designed as follows.

Fig. 5  Training process of the neural network model in cloud edge collaborative environment

Page 11 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

Algorithm 1 A cloud-edge collaborative task scheduling method based on model segmentation

Page 12 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

Finally, this paper compares the time complexity of
CECMS algorithm with an adaptive DNN inference
acceleration framework with end–edge–cloud collabo-
rative computing algorithm [40] (ADC) and a Dynamic
Adaptive DNN Surgery method (DADS) [21]. The com-
parison results are shown in Table 2.

The time complexity of the CECMS algorithm pro-
posed in this paper mainly originates from the multi-
objective solving part and the model pre-execution
with a small portion of data. The multi-objective solv-
ing algorithm is an improvement based on NSGA-III,
so the time complexity of the multi-objective solving
part is O (n2log n), where n is the number of popula-
tion. When the model pre-executes a small portion of
data, the time complexity is mainly related to the size
of the convolution kernels and input/output channels
in each convolutional layer. Assuming a neural net-
work has N layers, where L layers are convolutional
layers, each convolutional layer has a kernel size of ki,
an output matrix size of m, and the input and output
channels are ini and outi, respectively, then the time
complexity of the model’s pre-execution with a small
portion of data is O(

∑L
i=1m

2 ∗ k
2

i ∗ ini ∗ outi). In sum-
mary, the time complexity of the CECMS algorithm is
O (

∑L
i=1m

2 ∗ k
2

i ∗ ini ∗ outi) + O (n2log n), higher than
that of DADS algorithm, because of its use of multi-
objective solving algorithm to calculate the optimal
segmentation point.

Experiments and analysis
A series of experiments were carried out to verify the
effectiveness of a cloud-edge collaborative task sched-
uling method based on model segmentation. It was
assumed that there was an edge node and a cloud node
in the experimental environment. The cloud node was
a GPU cloud server with a specification of 16-core 60G
and Nvidia A100 GPU. The edge node was a cloud server
with 8 cores and 16G that used Cifar-10 data-set, and the
fine-tuned AlexNet [41] model and VGG [42] model as
the neural network models. There were 13 hidden layers
in the AlexNet model and 34 hidden layers in the VGG
model. During pre-execution, 5,000 images randomized
from the Cifar-10 dataset were used as input to the
AlexNet model and the VGG model. The Cifar-10 dataset
was divided into 10 batches in the training process, each
containing 5,000 images. In the multi-objective solv-
ing process, four populations were initialized, with each

initial population size of 100, 200, 300 and 400. The num-
ber of iterations was 500.

To verify the effectiveness of the MTMGMO algo-
rithm, comparative experiments were conducted with a
single-threaded multi-population algorithm. Four popu-
lations were initialized with each initial population size
of 100, 200, 300, and 400. The number of iterations was
set to 500. Tables 3 and 4 demonstrate the MTMGMO
algorithm and the single-threaded multi-population
algorithm, respectively, in which the "Initial distribution"
column represents the initial population distribution,
and the "Final distribution " column represents the popu-
lation distribution after 500 iterations. It can be observed
from both tables that the final results of two algorithms
were identical in the case of the same initial population.

Regarding execution time, experiments were conducted
for ten times on both algorithms in the same environ-
ment, as shown in Table 5 and 6. According to the experi-
mental results, the proposed MTMGMO algorithm was
60% faster than the single-threaded multi-population
algorithm. Overall, these comparative experiments dem-
onstrated that the MTMGMO algorithm was superior
to the single-threaded multi-population algorithm in
terms of both execution speed and optimization accu-
racy, which highlighted the effectiveness of the proposed
MTMGMO algorithm.

To ensure the correctness of the optimal segmenta-
tion points of the AlexNet and VGG models, the experi-
ments were conducted on each possible segmentation
point of the model, and the task execution time and edge
node memory resource utilization were obtained under
different segmentation points. The experimental results
are shown in Fig. 6. The abscissa represents each pos-
sible segmentation point of the model. Since the VGG
model after the 15th layer potentially caused the required
memory of the edge nodes to exceed the system memory
capacity, it was not possible to segment points. Figure 6a
and b respectively show the task execution time and the
memory resource utilization of edge node corresponding
to each possible segmentation point in the AlexNet and
VGG models.

Figure 6c more intuitively illustrates the impact of data
transmission delay and task execution time on the seg-
mentation point of the AlexNet model. As can be seen
from the figure, data transmission delay decreased while
task execution time increased layer by layer in the first
six layers, which was attributed to the decline in layer-
by-layer calculation of the neural network, the amount of
data output by the neural network model but the increase
in the calculation amount. Compared with the 6th layer,
despite reduced transmission delay, task calculation delay
increased. Therefore, task execution time was the short-
est when slicing in the 6th layer. It can be seen from

Table 2  Time complexity comparison

CECMS ADC DADS

Time complexity O (
∑L

i=1
m2 ∗ k

2

i ∗ ini ∗ outi)+ O (n2log n) O (N4) O (N3)

Page 13 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

Fig. 6a that the resource utilization of edge nodes gradu-
ally increased with the increase in the number of layers
increases (except for the 2nd layer) when the memory
resource utilization of edge nodes was taken into account
and that the optimal segmentation point of the model
was on the 6th layer when comprehensively considering
the utilization of edge node memory resources and task
execution time. Prior to the 6th layer, task execution time
decreased while the resource utilization of edge nodes
increased layer by layer. After the 6th layer, both of the
two increased, which, however, was not conducive to task
offloading.

Figure 6d clearly visualizes the impact of data transmis-
sion delay and task execution time on the segmentation
points of the VGG model. As demonstrated in Fig. 6d,
slicing on the 5th or 10th layer yields the shortest task
execution time. Concerning the memory resource uti-
lization of edge node, resource utilization rate gradually
increased as the number of layers increased starting from
the 2nd layer, as shown in Fig. 6b. When the memory
resource utilization of edge node and task execution time
were evaluated simultaneously, it was obvious that the
optimal segmentation point of VGG model was on the
10th layer. Though task execution time was the shortest

on the 5th layer, the resource utilization rate of edge
nodes was insufficient.

These findings provide valuable guidance for selecting
the optimal segmentation points of the VGG model and
the AlexNet model. They serve to ensure effective task
offloading between the cloud node and the edge node,
while reducing overall task execution time and maximiz-
ing resource utilization rate.

Through pre-execution, the transmission delay of each
layer of the neural network in the AlexNet model and
the VGG model, task execution time at the edge, and
the memory resource utilization at the edge nodes were
obtained. To analyze and compare the changes in each
layer more clearly, the data were normalized, as shown
in Figs. 7 and 8, where the abscissa indicates the number
of layers in the neural network model. It should be noted
that task completion time was composed of the sum of
both transfer time and task execution time.

An analysis of the two graphs in Fig. 7 indicates that to
minimize task completion time alone, the optimal seg-
mentation point for the AlexNet model should be set
on the 6th layer. However, there were several options
for selecting optimal segmentation points for the model,
considering minimizing task completion time and

Table 3  Population distribution of MTMGMO algorithm

Discrete values of the
population domain

0 1 2 3 4 5 6 7 8 9 10 11

Initial distribution 82 104 78 78 83 66 75 75 87 97 86 89

Final distribution 0 0 0 0 0 165 165 167 167 168 0 168

Table 4  Population distribution of single threaded multi population algorithms

Discrete values of the
population domain

0 1 2 3 4 5 6 7 8 9 10 11

Initial distribution 82 104 78 78 83 66 75 75 87 97 86 89

Final distribution 0 0 0 0 0 165 165 167 167 168 0 168

Table 5  MTMGMO algorithm execution time

Number of executions 1 2 3 4 5 6 7 8 9 10

Execution time 1.743 1.684 1.452 1.452 1.801 2.026 1.633 1.674 1.930 1.855

Table 6  Single threaded multi swarm algorithm execution time

Number of executions 1 2 3 4 5 6 7 8 9 10

Execution time 3.625 3.589 3.598 3.599 3.581 3.585 3.582 3.599 3.612 3.595

Page 14 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

maximizing the utilization of edge memory resources
(i.e. minimizing the remaining edge memory resources).
In order to calculate the optimal segmentation point
more accurately, the multi-objective solution algorithm
MTMGMO was utilized for final selection.

The optimal segmentation point of the AlexNet model
was determined to be on the 6th layer using the multi-
objective solution algorithm MTMGMO. Subsequently,
the model was trained with the edge executing the first
six layers of the neural network model and the cloud
executing all subsequent layers. The training effect
of the model is presented in Fig. 9. At the same time,
experiments were also conducted with the segmenta-
tion point on the 3rd layer and cloud-only training. By

firstly determining the minimum task completion time
and then adjusting the resource utilization of edge with-
out using the multi-objective solution algorithm, the seg-
mentation point was calculated to be on the 3rd layer.
The results showed that such segmentation point was not
the optimal, which further indicates the need to consider
multi-objective optimization.

Figure 9 demonstrates that when the optimal segmen-
tation point was on the 6th layer, the loss curve firstly
decreased but eventually fell within a range similar to
that when experiments were performed using the seg-
mentation point on the 3rd layer or cloud-only train-
ing after numerous training sessions. However, despite
increased training sessions, training duration was

Fig. 6  The transmission delay, task completion time, and utilization of memory resources of edge nodes of each layer of neural network in AlexNet
or VGG model

Page 15 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

significantly reduced by 75% compared to that when
experiments were performed using the segmentation
point on the 3rd layer, and by 85% compared to that
when experiments were performed using cloud-only
training, which could primarily be attributed to the
large amount of data uploaded to the cloud in a pure
cloud environment, resulting in substantial transmis-
sion delay.

As shown in Fig. 8, considering both the minimiza-
tion of task completion time and the maximization of
memory resource utilization at the edge, the optimal
segmentation point on the 10th layer was selected for
the VGG model. In order to accurately determine the

optimal segmentation point, MTMGMO was used
to select the segmentation point consistent with the
image analysis, and the optimal segmentation point
of the VGG model was determined to be on the 10th
layer.

Upon completion of the optimal segmentation point
calculation, the model training task was commenced.
The edge executed the first 10 layers of the neural net-
work model, while the cloud was responsible for execut-
ing all subsequent layers. Furthermore, cloud-only model
training was also performed for comparison. The training
effect of the model is presented in Fig. 10.

Fig. 7  The completion time of tasks corresponding to each split point of AlexNet and the Memory remaining rate at the edge

Fig. 8  The completion time of tasks corresponding to each split point of VGG and the Memory remaining rate at the edge

Page 16 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

Based on the above analyses, the optimal segmentation
points of the AlexNet model and the VGG model calcu-
lated using the method proposed in this paper were con-
sistent with the actual results.

In addition, for the purpose of further demonstrat-
ing the effectiveness of the method proposed in this
paper, comparative experiments were conducted using
an adaptive DNN inference acceleration framework

with end–edge–cloud collaborative computing algo-
rithm (ADC) [40] and a Dynamic Adaptive DNN Surgery
method (DADS) [21]. DADS was employed to segment
the neural network model, intending to minimize over-
all delay based on different network conditions. The
AlexNet and VGG16 models were selected for the com-
parative experiment by DADS method. The optimal
segmentation point calculated using the DADS method

Fig. 9  The Loos curve of the AlexNet model changes

Fig. 10  The Loos curve of VGG model changes

Page 17 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

respectively fell on the 9th layer of the AlexNet model
and on the 18th layer for the VGG16 model, while that
calculated using the CECMS method on the 6th layer for
the AlexNet model and on the 14th layer for the VGG16
model. The comparative experimental results of AlexNet
and VGG16 are shown in Figs. 11 and 12. In terms of
the AlexNet model, the task completion time calculated
by the CECMS method in the case of the segmentation
point on the 6th layer was shorter than that calculated by
the DADS method in the case of the segmentation point
on the 9th layer, but with little difference in edge memory
utilization between the two, as shown in Fig. 11. For the
VGG16 model, the task completion time obtained by the

CECMS method was basically the same as that by the
DADS method, and the fluctuation in numerical values
was caused by real-time network fluctuation. Meanwhile,
the edge memory utilization acquired by the CECMS
method was only about 1% lower than that by the DADS
method, proving the effectiveness of the CECMS method.

To verify the effectiveness of the CECMS method on
non-public datasets, a convolutional neural network,
named MedicalNet, with 13 layers, as shown in Fig. 13,
and a pathological recognition dataset of 20,000 images
were used for experiments. This paper found that the
recognition rate of medicalNet did not change signifi-
cantly when the image was rotated 90 or 180 degrees

Fig. 11  Comparison of AlexNet between CECMS and DADS

Fig. 12  Comparison of VGG16 between CECMS and DADS

Page 18 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

Fig. 13  The structure of MedicalNet

Fig. 14  The completion time and the Memory remaining rate of tasks corresponding to each split point of MedicalNet, as well as the comparison
of MedicalNet between CECMS and DADS

Page 19 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

through a series of experiments on model sensitiv-
ity. However, medicalNet’s recognition rate of images
decreases when images are cropped. It is because that
the rotation operations do not change the relative
position of key factors in the image, while the crop-
ping operations may lead to the loss of key factors in
the image. The optimal segmentation point calculated
using the CECMS method was on the 13th layer, mean-
ing that all the asks were unloaded at the edge, while
that calculated using the DADS method was on the
8th layer. The task completion time and edge mem-
ory resource utilization of each layer in the model are
shown in Fig. 14. As can be seen from the figure, mem-
ory resources at the edge were sufficient for task calcu-
lation, and task completion time was the least when the
optimal segmentation point was set on the 13th layer.
Thus, tasks should not be unloaded to the cloud for
execution. The memory resource utilization of the edge
node was the maximum when the optimal segmenta-
tion point was set on the 8th layer, and its calculation
time was slightly longer than that when the optimal
segmentation point fell on the 13th layer.

The ADC algorithm is a segmentation algorithm aimed
at minimizing end-to-end inference latency. This algo-
rithm finds the segmentation point that minimizes end-
to-end inference latency by traversing all layers of the
neural network. The neural network models AlexNet
and VGG with the same dataset Cifar-10 were used for
this comparison. This paper transforms the cloud-edge-
end strategy to the cloud-edge strategy so that the ADC
algorithm conforms to the cloud-edge collaboration sce-
nario, which means that the first segmentation point in
the ADC algorithm is set to 0.

A total of 100 batches (i.e. echo), were used in the com-
parative experiment between CECMS and ADC, with
each set to 5,000 images. The comparative experimental
results of the AlexNet model are shown in Fig. 15. The
segmentation points calculated by the two are 10 and 6,
respectively.

Through multiple experiments, it was found that it
takes approximately the same amount of time for AlexNet
to complete the task when the segmentation points are 6
and 10, but with certain differences in memory resource
utilization at edge node. When the segmentation points
are 6 and 10, task runtime is 5.25 s and 5.45 s, respec-
tively, and edge memory resource utilization rate is 97.3%
and 99.5%, respectively.

In the absence of the large difference in the task runt-
ime when segmentation points 6 and 10, the CECMS
algorithm tends to select a segmentation point of 10
for calculation due to its higher memory resource con-
sumption, aiming to maximize the use of edge resources
and reduce cloud load, while the ADC algorithm tends
to choose a segmentation point of 6 with a shorter task
runtime. Figure 15 shows the comparative experimental
results of these two algorithms, and it can be seen from
the figure that there is not much difference between
the two algorithms in terms of task runtime, and that
CECMS is generally about 2% higher than the ADC algo-
rithm in terms of edge memory resource utilization.

For the VGG model, it is found through multiple com-
parative experiments that the segmentation point calcu-
lated by the two algorithms is the same, and both are 10,
which is because task runtime is the shortest and edge
memory utilization is the highest when the segmentation
point is 10.

Fig. 15  The Comparison of AlexNet between CECMS and ADC

Page 20 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81

Based on the aforementioned experiments, a cloud-edge
collaborative task scheduling method based on model seg-
mentation effectively reduced the execution time of neural
network model tasks in the cloud-edge environment while
ensuring the full utilization of edge resources.

Conclusion
This paper proposed a cloud-edge collaborative task
scheduling method based on model segmentation to
enhance the efficiency of unloading large neural network
model tasks in collaborative environments. The proposed
method modeled and analyzed the factors influencing the
segmentation point of the model, and finally obtained
precise factors affecting the calculation of segmentation
points via pre-execution. Then, multi-objective solving
algorithms were utilized to extract the optimal model
segmentation point. For the sake of quick and accurate
calculation, the MTMGMO algorithm was designed
based on the traditional NSGA-III algorithm. Experimen-
tal results indicate that the MTMGMO algorithm is able
to improve the calculation speed by 60% compared to
single-threaded multi-group computation. Subsequently,
tasks were sent to the edge and cloud for task offload-
ing based on the optimal segmentation point. Finally, the
effectiveness of the proposed method was verified via
simulation and comparative experiments. The proposed
method significantly reduces the execution time of neural
network model tasks in a cloud-edge collaborative envi-
ronment while enhancing memory resource utilization
of edge nodes, reducing the cost and time required for
unloading large neural network model.

Acknowledgements
Not applicable.

Authors’ contributions
Jing Chen as the corresponding author is a major contributor in proposing the
method. Chuanfu Zhang implements this method and drafts this manuscript.
Wen Li and Yudong Geng carried out the partial experimental work. Hao Sun
contributed to the partial data analysis. Tianxiang Zhang, Mingchao Ji and
Tonglin Fu contributed to some image processing.

Funding
This work was supported by Project of Key R&D Program of Shandong Prov-
ince (2022CXGC020106), Qilu University of Technology (Shandong Academy
of Sciences) pilot major innovation project of integrating science, education
and industry(2022JBZ01-01), Shandong Innovation Ability Improvement
Project of Science and Technology small and medium-sized enterprises
(2022TSGC1064, 2022TSGC2186), China.

Availability of data and materials
The datasets used during the current study are available from the correspond-
ing author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 27 May 2023 Accepted: 13 March 2024

References
	1.	 Lone AN, Mustajab S, Alam M (2023) A comprehensive study on cyberse-

curity challenges and opportunities in the IoT world. Security and Privacy
6(6):e318

	2.	 Zhen C, Lin Z, Wang X et al (2023) Cloud–edge collaboration task sched-
uling in cloud manufacturing: An attention-based deep reinforcement
learning approach. Comput In Eng 177:109053

	3.	 Alam M, Shahid M, Mustajab S (2023) Security prioritized multiple
workflow allocation model under precedence constraints in cloud
computing environment. Cluster Comput 2023:1–36

	4.	 Yadav M, Mishra A (2023) An enhanced ordinal optimization with lower
scheduling overhead based novel approach for task scheduling in
cloud computing environment. J Cloud Comput 12(1):14

	5.	 Sudheer M, Ganesh RK, Utku K (2023) Multi objective trust aware task
scheduling algorithm in cloud computing using whale optimization. J
King Saud University 35(2):791–809

	6.	 Kushwaha U, Gupta P, Airen S, et al (2022) Analysis of CNN Model with
Traditional Approach and Cloud AI based Approach, 2022 International
Conference on Automation. Comput Renewable Syst (ICACRS) 835–842

	7.	 He XY, Qi G, Zhu Z, et al (2023) Medical image segmentation method
based on multi-feature interaction and fusion over cloud computing.
Simul Model Pract Theory 2023(126):102769

	8.	 Xu H, Zuo L, Sun F, et al (2022) Low-latency Patient Monitoring Service
for Cloud Computing Based Healthcare System by Applying Rein-
forcement Learning. 2022 IEEE 8th Int Conf Comput Commun (ICCC)
2022:1373–1377

	9.	 Hatem K, Mohammed L, Mohammed L et al (2021) Edge Computing
Assisted Autonomous Driving Using Artificial Intelligence. Int Wireless
Commun Mobile Comput (IWCMC) 2021:254–259

	10.	 Mukherjee M M, Vikas K, Maity D et al (2020) Delay-sensitive and
priority-aware task offloading for edge computing-assisted healthcare
services. GLOBECOM 2020–2020 IEEE Glob Commun Conf 2020:1–5

	11.	 Satyanarayanan M (2017) The Emergence of Edge Computing. Comput
50(1):30–39

	12.	 Zhang J, Letaief KB (2020) Mobile edge intelligence and computing for
the Internet of Vehicles. Proc IEEE 108(2):246–261

	13.	 Fan C, Lu Y, Leng X et al (2020) Data classification processing method
for the Power IoT based on cloud-edge collaborative architecture. 2020
IEEE 9th Joint Int Inf Technol Artif Intell Conf (ITAIC) 9:684–687

	14.	 Yang H, Zhao X, Yao Q et al (2022) Accurate fault location using deep
neural evolution network in cloud data center interconnection. IEEE
Trans Cloud Comput 10(2):1402–1412

	15.	 Chen M, Guo S, Liu K et al (2021) Robust computation offloading and
resource scheduling in cloudlet-based mobile cloud computing. IEEE
Trans Mobile Comput 20(5):2025–2040

	16.	 Eshratifar AE, Abrishami MS, Pedram M (2021) JointDNN: An efficient
training and inference engine for intelligent mobile cloud computing
services. IEEE Trans Mobile Comput 20(2):565–576

	17.	 Huang Y, Qiao X, Dustdar S et al (2022) Toward decentralized and
collaborative deep learning inference for intelligent IoT devices. IEEE
Netw 36(1):59–68

	18.	 Kang Y, Hauswald J, Gao C et al (2017) Neurosurgeon: Collaborative intel-
ligence between the cloud and mobile edge. ACM SIGARCH Comput
Arch News 45(1):615–629

	19.	 Kum S, Kim Y, Moon J (2019) Deploying Deep Neural Network on Edge-
Cloud environment. Int Conf Inf CommunTechnol Convergence (ICTC)
2019:242–244

	20.	 Zhang W, Wang N, Li L et al (2022) Joint compressing and partitioning
of CNNs for fast edge-cloud collaborative intelligence for IoT. J Syst Arch
125:102461

	21.	 Hu C, Bao W, Wang D, et al (2019) Dynamic Adaptive DNN Surgery for Infer-
ence Acceleration on the Edge. IEEE Conf Comput Commun 2019:1423–1431

	22.	 Mehta R, Shorey R (2020) DeepSplit: Dynamic Splitting of Collaborative
Edge-Cloud Convolutional Neural Networks. Int Conf Commu Syst Netw
(COMSNETS) 2020:720–725

Page 21 of 21Zhang et al. Journal of Cloud Computing (2024) 13:81 	

	23.	 Yang S, Zhang Z, Zhao C et al (2022) CNNPC: End-Edge-Cloud Collabora-
tive CNN Inference With Joint Model Partition Compression. IEEE Trans
Parallel Distributed Syst. 33(12):4039–4056

	24.	 Gao Z, Miao D, Zhao L et al (2021) Triple-partition Network: Collabora-
tive Neural Network based on the ‘End Device-Edge-Cloud.’ IEEE Wireless
Commun Netw Conf (WCNC) 2021:1–7

	25.	 Xue M, Wu H, Peng G et al (2022) DDPQN: An Efficient DNN Offloading
Strategy in Local-Edge-Cloud Collaborative Environments. IEEE Trans Serv
Comput 15(2):640–655

	26.	 Zhou L, Wen H, Teodorescu R, et al (2019) Distributing deep neural networks
with containerized partitions at the edge. The 10th USENIX Annu Tech Conf,
vol 2019. pp 1–7

	27.	 Dey S, Mukherjee A, Pal A, et al (2018) Partitioning of CNN Models for
Execution on Fog Devices. 1st ACM Int Workshop 2018:19–24

	28.	 Qararyah F, Wahib M, Dikbayır D et al (2021) A computational-graph parti-
tioning method for training memory-constrained DNNs. Parallel comput
04:102792

	29.	 Teerapittayanon S, Mcdanel B, Kung HT (2017) Distributed Deep Neural
Networks over the Cloud, the Edge and End Devices. 2017 IEEE 37th Int
Conf Distributed Comput Syst (ICDCS) 2017:328–339

	30.	 Mao J, Yang Z, Wei W et al (2017) MeDNN: A distributed mobile system
with enhanced partition and deployment for large-scale DNNs. IEEE/ACM
Int Conf Comput-Aided Des (ICCAD) 2017:751–756

	31.	 Ao Y, Wu Z, Yu D, et al (2021) End-to-end Adaptive Distributed Training on
PaddlePaddle. arXiv 2021(abs/2112.02752):1–16

	32.	 Hou X, Guan Y et al (2022) Distredge: Speeding up convolutional neural
network inference on distributed edge devices. 2022 IEEE Int Parallel
Distributed Process Symp (IPDPS) 2022:1097–1107

	33.	 Jeong J, Yang H (2021) Optimal Partitioning of Distributed Neural Net-
works for Various Communication Environments. Int Conf Artif Intell Inf
Commun (ICAIIC) 2021:269–272

	34.	 Miao W, Zeng Z, Wei L, et al (2020) Adaptive DNN Partition in Edge Com-
puting Environments. 2020 IEEE 26th Int Conf Parallel Distributed Syst
(ICPADS) 2020:685–690

	35.	 Liu H, Zheng W, Li L, et al (2022) LoADPart: Load-Aware Dynamic Partition
of Deep Neural Networks for Edge Offloading. 2022 IEEE 42nd Int Conf
Distributed Comput Syst (ICDCS) 2022:481–491

	36.	 He W, Guo S, Guo S et al (2020) Joint DNN Partition Deployment and
Resource Allocation for Delay-Sensitive Deep Learning Inference in IoT.
IEEE Internet Things J 7(10):9241–9254

	37.	 Zeng J, Liang Z, Zhang J, et al (2022) Research on cloud side collabora-
tion under Internet of vehicles. 2022 IEEE 6th Adv Inf Technol, Electron
Automation Control Conf (IAEAC) 2022:245–248

	38.	 Zhang X, Xi Z, Wang T, et al (2022) Source grid load and energy storage
management method based on cloud edge cooperation. 2022 7th Asia
Conf Power Electrical Eng (ACPEE) 2022:164–169

	39.	 Zhang Y, Wang X, He J et al (2020) A Transfer Learning-Based High
Impedance Fault Detection Method Under a Cloud-Edge Collaboration
Framework. IEEE Access 8:165099–165110

	40.	 Liu G, Fei D, Xu X et al (2023) An adaptive DNN inference acceleration
framework with end–edge–cloud collaborative computing. Future Gener
Comput Syst 140:422–435

	41.	 Krizhevsky A, Ilya S et al (2012) ImageNet classification with deep convo-
lutional neural networks. Commun ACM 60:84–90

	42.	 Simonyan K, Andrew Z (2015) Very Deep Convolutional Networks for
Large-Scale Image Recognition. Int Conf Learn Representat 2015:1–14

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	A cloud-edge collaborative task scheduling method based on model segmentation
	Abstract
	Introduction
	Related works
	System modeling and problem formalization
	Task completion time
	Edge resource utilization
	Problem modeling
	Cecms algorithm

	Experiments and analysis
	Conclusion
	Acknowledgements
	References

