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Abstract 

With the continuous development and combined application of cloud computing and artificial intelligence, some 
new methods have emerged to reduce task execution time for training neural network models in a cloud-edge 
collaborative environment. The most attractive method is neural network model segmentation. However, many 
factors affect the segmentation point, such as resource allocation, system energy consumption, load balancing, 
and network Bandwidth allocation. Some segmentation methods consider the shortest task execution time, which 
ignores the utilization of resources at the edge and can result in resource waste. Additionally, these factors are difficult 
to measure, which presents a challenge in calculating the best segmentation point to achieve the goal of maximum 
resource utilization and minimum task execution time. To solve this problem, this paper proposes a cloud-edge 
collaborative task scheduling method based on model segmentation (CECMS). This method first analyzes the fac-
tors affecting the segmentation point of the model and then obtains accurate factors that affect the segmentation 
point calculation through the pre-execution method. Furthermore, a multi-objective solution algorithm is improved 
to calculate the optimal model segmentation point. And tasks are separately offloaded to the edge and cloud based 
on the optimal model segmentation point. Finally, the experiments are conducted to verify the effectiveness of this 
method. Finally, the effectiveness of the CECMS method was verified through simulation experiments. Compared 
with the Dynamic Adaptive DNN Surgery (DADS) method and an adaptive DNN inference acceleration framework 
algorithm with end–edge–cloud collaborative computing algorithm (ADC), CECMS achieves the same effectiveness 
as DADS and ADC in optimizing task execution time by comprehensively considering the utilization of edge resources 
and minimizing task execution time, while also effectively ensuring resource utilization.
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Introduction
Cloud computing resource scheduling and IoT secu-
rity have made great progress through continu-
ous development [1]. Many studies focus on cloud 

computing scheduling, including algorithms based on 
deep reinforcement learning [2], system security [3], 
ordinal optimization [4], and multi-objective trust-
awareness [5]. The time cost of AI tasks can be reduced 
by applying cloud computing in AI [6]. The conven-
tional approach to combining cloud computing with 
AI is to upload all AI tasks and data to be computed 
to the cloud to leverage its high computing capacity, 
which, however, potentially results in significant trans-
mission delay, hinders task completion, and incurs 
high energy cost in the case of a long distance between 
the cloud and the user and a large amount of calcula-
tion data. The massive transmission delay associated 
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with traditional cloud computing limits its effective-
ness in real-time medical treatment [7, 8], despite its 
applications in the medical field. Similarly, combining 
traditional cloud computing with artificial intelligence 
proves ineffective in handling latency-sensitive tasks 
such as autonomous driving [9] and networked vehicles 
[10]. The emergence of edge computing has addressed 
significant transmission delays brought by the distance 
between the cloud and the end user [11]. Edge comput-
ing, which refers to adding a computing center near the 
end user [12], decentralizes some of the cloud’s capa-
bilities to the edge to offload the task uploaded by the 
end user to the cloud due to insufficient local comput-
ing resources. Edge computing has led to the develop-
ment of a more advantageous cloud-edge collaborative 
architecture. If edge node has computing resources far 
from being sufficient to complete the task offloaded by 
the end-user, it will further offload the task to the cloud 
[13], which avoids the extensive transmission delay 
caused by uploading tasks from some end users far 
from the cloud and enables real-time interaction. Com-
bining the advantages of cloud computing and edge 
computing, cloud-edge collaborative computing makes 
it more efficient to process massive computing tasks, 
quicker to execute real-time tasks and more effective to 
handle delay-sensitive tasks [14].

The training task of an artificial intelligence neural net-
work model is computationally intensive and requires 
large amounts of data. When the neural network model 
training task is offloaded into a cloud-edge collaborative 
system, the edge computing resource may not be able to 
complete the computation of the entire task [15]. There-
fore, tasks are often uploaded to the cloud for unloading, 
which can result in significant transmission delays caused 
by the massive data required for training, thus requir-
ing more time for completing the tasks. To make better 
use of the cloud-edge collaboration system, the concept 
of splitting the neural network model first prior to com-
puting is proposed. The DNN model is partitioned and 
executed in a distributed manner by adjusting the DNN 
partition points to achieve the optimal latency or mobil-
ity energy [16, 17].

In summary, Segmenting neural network models can 
significantly reduces the time required for completing 
neural network model tasks, which, however, needs the 
corresponding segmentation points of the model to be 
accurately calculated. Incorrect point calculation may 
result in increased task completion time, resource waste, 
deadlock, and even failure in task offloading. There are 
a number of factors affecting the segmentation point 
of the model in practical applications, such as resource 
utilization at the edge, system energy consumption, and 
network bandwidth. Therefore, it is crucial to take these 

factors into account in determining how to segment the 
neural network and solve the problem.

The main contributions of this paper are as follows.

1.	 Precisely determine the factors that affect model seg-
mentation through pre-execution, and establish a 
cloud-edge collaborative computing paradigm based 
on model segmentation.

2.	 Construct a multi-objective model to obtain mini-
mum completion time and maximum edge resource 
utilization for a training model in a cloud-edge col-
laborative environment.

3.	 Enhance the multi-objective solving algorithm by 
leveraging high concurrency and multiple popula-
tions while reducing the impact of uneven popula-
tion distribution.

4.	 Use an enhanced multi-objective solving algorithm 
to calculate the optimal segmentation point of the 
model with the goal of minimizing cloud-edge col-
laboration completion time and maximizing resource 
utilization at the edge of model training, and then 
utilize the optimal segmentation point for model 
training in a cloud-edge collaboration environment.

Related works
The deployment of segmented neural network models in 
cloud-edge collaborative environments has been a widely 
discussed topic, both domestically and internationally. 
This issue directly affects task unloading time, resource 
allocation, system energy consumption, load balanc-
ing, and network bandwidth allocation in these environ-
ments. Kang et al. suggest that uploading a deep neural 
network model to the cloud for execution increases task 
completion time and mobile energy consumption. In this 
context, they proposed a segmentation method using 
the Neurosurgeon algorithm to reduce time and mobile 
energy consumption during model execution [18]. Kum 
et al. indicate that optimization methods for deploying AI 
applications at the edge potentially reduce AI accuracy. 
For this reason, they proposed a new deployment method 
that divides AI models into more than two parts and 
places them on either the edge or cloud using a container 
structure that converts AI into microservices. Despite 
increased end-to-end service delay, accuracy remained 
unchanged [19]. To achieve fast response time of con-
volutional neural networks (CNN) in practical applica-
tions, Zhang et  al. proposed to compress and segment 
CNNs to generate a new network layer, which involves 
two steps. One is that the model’s convolutional layer is 
dealt with using low-rank decomposition, followed by 
the full connection layer using singular value decomposi-
tion method, and the other is that processed network is 
segmented into fine granularity for minimum execution 
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delay. The model is fine-tuned to recover lost accu-
racy [20]. Hu et al. designed a DNN partition algorithm 
capable to identify the best segmentation point to mini-
mize the overall delay of processing each frame under 
light load and maximize throughput under heavy load 
[21]. Mehta et al. put forward a new CNN segmentation 
method that considers network bandwidth, data size, and 
load at the edge to split the neural network model with 
the goal of minimizing network bandwidth consumption 
and combined it with various bandwidth optimization 
algorithms in spite of reduced final accuracy [22]. Yang 
et al. proposed a joint partitioning and compressing CNN 
method that effectively reduces the transmission delay of 
the model while ensuring accuracy, thereby reducing the 
inference time of the model [23]. Gao et  al. designed a 
cloud-edge neural network model segmentation method 
composed of three outlets to transmit data, which greatly 
reduces end-to-end transmission delay compared to 
pure cloud computing [24]. Xue et al. presented a novel 
DNN partition method that segments the neural network 
model to minimize delay, cost, and energy consumption 
and escaped the failure caused by networks and other 
factors in the transmission process of large-scale com-
puting data [25].

Neural network model segmentation has been widely 
used not only in cloud-edge collaborative systems but 
also in other distributed environments. Zhou et al. pro-
posed a convolutional neural network acceleration 
framework to overcome the difficulty of deploying CNN 
on resource-constrained devices. This framework parti-
tions CNN based on each layer’s calculation and device 
communication delay and assigns each partition to corre-
sponding devices [26]. Dey et al. proposed a CNN depth 
partitioning method to perform CNN tasks using limited 
computing equipment. Employing the input and output 
depth of the convolution layer to partition the load, the 
proposed method accelerates the computation of CNN 
tasks [27]. Qarariah et al. raised a DNN partition calcula-
tion graph strategy to train DNN models that cannot be 
trained in a single device, which involves clustering each 
layer of DNN into multiple partitions and then determin-
ing whether each partition breaks memory constraints 
with the aim to minimize end-to-end communication 
time and adjust the final partition according to memory 
constraints [28]. Kung et  al. proposed to solve compu-
tationally intensive DNN reasoning on resource-con-
strained devices by utilizing the distributed deep neural 
network (DDNN) consisting of a small neural network 
model on the terminal device to extract data features 
and a large neural network in the cloud to receive data 
features and perform inference operations [29]. Mao 
et  al. presented a locally distributed mobile comput-
ing system to partition neural network models without 

resource constraints and compress them without any loss 
while greatly accelerating DNN [30]. Ao et al. proposed 
an end-to-end distributed training framework that takes 
into account computing resources, model segmentation, 
and task placement to reduce the impact of dynamic 
resources on neural network model training and improve 
the training efficiency of the model [31]. Hou et  al. put 
forward a strategy to divide neural network models into 
edge devices, taking into account network and equipment 
conditions, as well as CNN characteristics. Experiments 
show that the presented method improves the inference 
speed of CNN [32]. Jeong et  al. designed a method to 
partition the neural network model based on the current 
communication situation in a distributed environment 
[33]. Aiming at the shortage of computing resources for 
edge devices, a load-balancing algorithm was raised by 
Miao et  al. to segment the neural network model and 
assign it to different edge devices for task completion 
[34]. Liu et al. brought about a new neural network model 
partitioning method that fully considers network band-
width and load at the edge [35]. He et al. designed a serial 
queue model to calculate the end-to-end delay, minimiz-
ing the segmentation of neural network models and thus 
making better use of mobile edge computing [36].

The traditional cloud computing only considers task 
offloading between mobile devices and cloud servers 
and often fails to fully utilize edge nodes [37–39]. While 
some methods achieve the minimum delay of real-time 
inferring after neural network model segmentation, the 
computing resources at the edge cannot be fully utilized. 
On the other hand, some methods maximize the utiliza-
tion rate of computing resources at the edge but require 
more time for task completion, which is not conducive to 
solving delay-sensitive problems. Other methods fail to 
achieve the goal of improving the utilization rate of the 
edge and minimizing the task completion time in spite 
of their consideration about the consumption of net-
work resources and the load balancing of servers. There-
fore, this paper proposes a cloud-edge collaborative task 
scheduling method based on model segmentation by 
considering considers the utilization rate of resources at 
the edge, network condition, size of model output data, 
and calculation delay in the cloud-edge collaborative 
environment, which is able to obtain the best segmen-
tation point for the cloud-edge collaborative computing 
neural network model while minimizing task completion 
time and maximizing edge-resource utilization in the 
cloud-edge collaborative environment.

System modeling and problem formalization
Using cloud computing traditionally for tasks of neu-
ral network model offloading often results in increased 
completion time due to the need to transfer large task 
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data, but accompanied by insufficient utilization of edge 
resources. To shorten the time for large neutral network 
models to complete tasks and improve the utilization of 
edge resources, this paper proposes a cloud-edge collabo-
rative task scheduling method based on model segmen-
tation with the objective of minimizing the completion 
time of task offloading and maximizing the utilization 
of computing resources at the edge in a neural network 
model training. To achieve this objective, factors includ-
ing delayed task calculation, the transmission delay of 
intermediate data, and the resource utilization at the 

edge are taken into account. By analyzing these factors, 
the best segmentation point for the cloud-edge collabora-
tive computing neural network model can be obtained to 
optimize the overall task scheduling process. Assuming 
that the amount of data uploaded by users to the edge is 
num , the neural network model to be trained has N  lay-
ers (Table 1).

Task completion time
There are many factors affecting task completion time, 
including calculation delay and the transmission delay of 

Table 1  Notations

Notations Description

num the amount of data uploaded by users to the edge

N the number of layers in a neural network model

Tδ task calculation delay on the cloud or edge

δ ∈ {e, c} edge node and cloud node respectively

Ttotal transmission delay of intermediate data

Tc , Te cloud computing delay, edge computing delay

F FLOPs of the neural network model

Fc , Fe cloud computing and edge computing capability

Fδ FLOPS of the edge or cloud server

F = {f1, f2, ..., fn} FLOPs of each layer of the neural network model

Cin the number of input characteristic matrices

Kw , Kh width and height of convolution kernel

Cout the number of output characteristic matrices

w , h width and height of output characteristic matrices

FLOPscov , FLOPsfc FLOPs of convolution and full connection layer

NIn , NOut, input features, output features

Ncore , Hc cores number and frequency of the processor

Nfloat floating-point operations per cycle of the processor

Te = {te,1, te,2, ..., te,n} computing delay of each layer at the edge node

Tc = {tc,1, tc,2, ..., tc,n} computing delay of each layer at the cloud node

Vtrans , Vup,Vdown transmission rate, uplink rate, and downlink rate

O the size of data to be transmitted

O = {o0, o1, ..., on−1} the data output of each layer

Tup = {tup,0, tup,1, ..., tup,n−1} uplink delay of the output data of each layer

Tdown = {tdown,0, tdown,1, ..., tdown,n−1} downlink delay of the output data of each layer

Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1} transmission delay of the output data of each layer

Dsize the space occupied by the corresponding data type

(dim1, dim2, ..., dimm) the Tensor size output

Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1} the transmission delay of the data of each layer

T = {t0, t1, ..., tN} task completion time

Mtotal the total memory of the system

Mwait system memory consumption without task execution

M = {m0,m1, ...,mn} memory consumption of each layer when running task

Mcost = {mcos t ,0,mcos t ,1, ...,mcos t ,n} memory consumption of each layer

Rmemory = {rm,0, rm,1, ..., rm,n} memory occupancy of each layer

split the location of the segmentation point
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intermediate data. The task completion time function can 
be expressed as T = f (Tδ ,Ttotal) , where δ ∈ {e, c} , Tδ rep-
resents the task calculation delay on the cloud or edge, 
and Ttotal represents the transmission delay of intermedi-
ate data from the edge to the cloud.

The neural network model training is typically com-
putationally intensive, which requires a large number of 
computational resources to process vast data. Thus, com-
puting delay is a crucial factor that significantly affects 
the entire task unloading process. It is essential to con-
sider the calculation delay of each layer in determining 
the optimal segmentation point of the neural network 
model. Therefore, it is necessary to develop an accu-
rate method for calculating the computing delay of each 
layer of the neural network for optimizing a cloud-edge 
collaborative task scheduling method based on model 
segmentation.

To achieve a more accurate calculation delay of the 
neural network model, two indicators known as floating-
point operations (FLOPS) and floating-point per sec-
ond (FLOPS) are used in conjunction. By utilizing both 
FLOPS and FLOPS in tandem, it becomes possible to 
obtain a more comprehensive understanding of the com-
putation requirements for a given neural network model, 
which, in turn, allows for more precise calculation of the 
calculation delay and ultimately enables the determina-
tion of the optimal segmentation point for the model. 
Pre-executing is used to estimate the amount of com-
putation required for each layer and calculate the com-
puting capacity of the server according to the processor 
index of the server in the cloud or at the edge.

Let the calculation delay function be Tδ = f (F , Fδ) , 
where δ ∈ {e, c} , Tc , and Te represent cloud computing 
delay and edge computing delay, respectively,F  repre-
sents the FLOPs of the neural network model, and Fc and 
Fe represent cloud computing capability and edge com-
puting capability, respectively. The specific calculation 
method is as follows.

Since the neural network model mainly focuses on the 
convolution layer and the full connection layer in the cal-
culation process, it is of great importance to understand 
how to more accurately acquire the computing workload 
of the two layers.

Let the FLOPs of each layer of the neural network 
model be F = {f1, f2, ..., fn} , which can be calculated by:

where FLOPscov is the FLOPs of convolution layer, Cin 
represents the number of input characteristic matrices, 
Kw and Kh respectively represent the width and height of 

(1)FLOPscov = [(Cin × Kw × Kh)+ (Cin × Kw × Kh − 1)+ 1]× Cout × w × h

(2)FLOPsfc = [NIn + (NIn − 1)+ 1]× NOut

convolution kernel, Cout is the number of output charac-
teristic matrices, w and h respectively represent the width 
and height of output characteristic matrices.
FLOPsfc is the FLOPs of the full connection layer, NIn 

and NOut respectively represent the number of input fea-
tures and the number of output features.

Assuming the FLOPS at the edge node as Fe and the 
FLOPS at the cloud node as Fc , the calculation formula 
can be written as:

where Fδ is the FLOPS of the edge or cloud server, Ncore 
is the number of cores of the processor, Hc is the domi-
nant frequency of the processor, and Nfloat is the number 
of floating-point operations per cycle of the processor.

According to the FLOPs F = {f1, f2, ..., fn} of each layer, 
the FLOPS Fe of the edge and the FLOPS Fc of the cloud, 
the computing delay Te = {te,1, te,2, ..., te,n} of each layer 
of neural network at the edge and the computing delay 
Tc = {tc,1, tc,2, ..., tc,n} at the cloud are calculated, where 
(1 <= n <= N ) . The calculation formula is expressed as:

In cloud-edge collaborative environments, the cloud 
node is often distant from the edge node. Thus, upload-
ing the model and data to the cloud can lead to signifi-
cant transmission delays in the case of large amount of 
data transmitted and poor network condition. These 
factors can ultimately increase the total task completion 
time of the neural network model. To mitigate this issue 
and further reduce task completion time via optimal seg-
mentation point calculation, it is necessary to consider 
the impact of transmission delays on required data.

There are many factors affecting transmission delay, 
such as data size, network conditions, and allocated 
bandwidth. In order to gain these factors, data output of 
each layer of the neural network is obtained by pre-exe-
cuting the neural network model. Furthermore, current 
network transmission rate is calculated by performing a 
point-to-point network status query and analyzing sys-
tem network configurations. Considering the impact of 
transmission delay of the required data during compu-
tation can help further reduce the task completion time 

of neural network models in cloud-edge collaborative 
environments.

Let the function of transmission delay be 
Ttotal = f (Vtrans,Vup,Vdown,O) , where Vtrans , Vup and 
Vdown respectively represent network transmission 

(3)Fδ = Ncore ∗Hc ∗ Nfloat , δ ∈ {e, c}

(4)tδ,i =
fi

Fδ
(δ ∈ {e, c}, i ∈ [1,N])
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rate, uplink rate, and downlink rate between the edge 
end and the cloud end, and O represent the size of data 
to be transmitted. The specific calculation method is 
expressed as:

Let the data output of each layer of the neural net-
work be O = {o0, o1, ..., on−1} . The current network 
transmission rate Vtrans between the edge and the cloud 

can be obtained through the ping command. The cor-
responding uplink rate Vup and downlink rate Vdown 
can be obtained by querying the system network con-
figuration through the grep command. The uplink 
delay Tup = {tup,0, tup,1, ..., tup,n−1} , downlink delay 
Tdown = {tdown,0, tdown,1, ..., tdown,n−1} and transmission 
delay Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1} of the output 
data of each layer of the neural network can be calcu-
lated, where (1 <= n <= N ) . The calculation formula is 
expressed as:

where Dsize is the space occupied by the correspond-
ing data type, and (dim1, dim2, ..., dimm) is the Tensor 
size output by the neural network model.

According to the uplink delay Tup = {tup,0, tup,1, ..., tup,n−1} , 
downlink delay Tdown = {tdown,0, tdown,1, ..., tdown,n−1} and 
transmission delay Ttrans = {ttrans,0, ttrans,1, ..., ttrans,n−1} 
of the output data of each layer of the neural network, the 
transmission delay Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1} 
of the data of each layer of the neural network from the 
edge to the cloud, or that of intermediate data corre-
sponding to each segmentation point from the edge to 
the cloud can be calculawted, where (1 <= n <= N ) . 
The calculation formula is expressed as:

Using transmission delay and calculation delay, the 
completion time of the task at different segmenta-
tion points can be accurately estimated. Assuming 
the partition point to be split(0 <= split <= N ) , the 
task completion time T = {t0, t1, ..., tN} corresponding 
to each partition point can be calculated according to 
the calculation delay Te = {te,1, te,2, ..., te,n} of each layer 

(5)oi =
dim1 ∗ dim2 ∗... ∗ dimm ∗Dsize

8

(6)tε,i =
oi

Vε

(ε ∈ {up, trans, down}, i ∈ [0,N − 1])

(7)ttotal,i = f (Tup,Ttrans,Tdown) = tup,i + ttrans,i + tdown,i (i ∈ [0,N − 1])

of a neural network at the edge, the calculation delay 
Tc = {tc,1, tc,2, ..., tc,n} of the cloud, and the transmission 
delay Ttotal = {ttotal,0, ttotal,1, ..., ttotal,n−1} of the interme-
diate data corresponding to each partition point from 
the edge to the cloud. The calculation formula is spe-
cifically expressed as:

Edge resource utilization
The goal of minimizing completion time is usually consid-
ered, while the utilization of edge resources is often over-
looked in cloud-edge collaborative environments, which 
might be accompanied by edge resource wastes. Therefore, 
real-time edge-end resource conditions need to be consid-
ered for calculating the optimal segmentation point.

Assume that the total memory of the system is Mtotal , 
the memory consumption in the absence of task execu-
tion is Mwait , and the system memory consumption of 
each layer when running the neural network model task is 
M = {m0,m1, ...,mn} , where (0 <= n <= N ) . The mem-
ory consumption Mcost = {mcos t,0,mcos t,1, ...,mcos t,n} of 
each layer of the neural network model can be calculated by:

The memory occupancy of each layer of the neural net-
work model isRmemory = {rm,0, rm,1, ..., rm,n}(0 <= n <= N ) , which 
can be calculated by:

Problem modeling
The resource utilization rate at the edge, network trans-
mission delay, and task calculation delay will affect the 
calculation of the segmentation point. Therefore, it is 
a multi-objective optimization problem to calculate 
segmentation points, which includes minimizing task 
completion time and maximizing memory resource 

(8)tk = f (Ttotal ,Te,Tc) = ttotal,split +

split
∑

i=1

te,i +

n
∑

j=split+1

tc,j(1 <= k <= N − 1)

(9)tk = f (Ttotal ,Tc) = ttotal,0 +

n
∑

j=1

tc,j(k = 0)

(10)tk = f (Te) =

n

i=1

te,i(k = N )

(11)mcos t,n = f (M,Mwait) = mn −Mwait(0 <= n <= N )

(12)rm,n = f (Mcos t ,Mtotal) =
mcos t,n

Mtotal
∗ 100% (0 <= n <= N )
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utilization at the edge. The multi-objective function can 
be constructed as:

where split is the location of the segmentation point, 
Rmemory is the memory resource utilization at the edge, 
and T  is task completion time.

The NSGA-III (non-dominated sorting genetic algo-
rithm-III) algorithm is modified to achieve the optimal 
segmentation point. The NSGA-III algorithm has the 
advantages of great running speed, good convergence, 
and nice high-dimensional multi-objective optimiza-
tion results. There are four steps in the process of retain-
ing individuals by the method, which are reference point 
generation, population adaptive standardization, associa-
tion between individuals and reference points, and indi-
vidual selection. When the population iterates a certain 
number of times, the optimal multi-objective optimiza-
tion solution set will be generated. However, the NSGA-
III algorithm also has certain limitations. Due to the high 
randomness in the selection of initial reference points, 
the initial state of the population will not be excellent 

(13)

�

min{T }

min{1− Rmemory}


















C1 : 0 <= split <= N

C2 : split ∈ Z

C3 : Mcost +Mwait <= Mtotal

C4 : 0 <= Rmemory <= 1

enough, thereby affecting the final results. To solve this 
problem, multi-population multi-objective optimiza-
tion methods have emerged. The multiple populations 
can be combined with the NSGA-III algorithm to avoid 
the impact on the final results caused by the poor initial 
state of the population. At the same time, a combina-
tion of multi-threading and multi-group multi-objective 
(MTMGMO) optimization is used to reduce calculation 
time.

The number of populations is set as p , the ini-
tial number of populations for each population as 
Pop = {pop1, pop2, ..., popp} , and the thread group as 
Thd = {thd1, thd2, ..., thdp} . In the MTMGMO algo-
rithm, multiple threads are used to avoid increasing the 
required time caused by the serial computing for mul-
tiple groups. Starting a new thread for each population 
not only reduces the impact on the final result caused by 
the poor initial state of the population but also avoids the 
long serial computing time for multiple populations.

Cecms algorithm
Taking the training of the neural network model required 
by end users as an example, a cloud-edge collaborative 
task scheduling method based on model segmentation is 
shown in Fig. 1.

A cloud-edge collaborative task scheduling method 
based on model segmentation involves three steps, 
namely, pre-executing, optimal segmentation point 

Fig. 1  Flow chart of cloud-edge collaborative task scheduling method based on model segmentation



Page 8 of 21Zhang et al. Journal of Cloud Computing           (2024) 13:81 

calculation, and cloud-edge collaborative training. 
Their relationships are illustrated in Fig. 2.

Pre-executing is performed at the edge node to cal-
culate the FLOPs of each layer of the neural network 
model, the amount of data output, and the computing 
resource occupancy at the edge node. The pre-executing 
process is demonstrated in Fig. 3.

The specific steps are as follows:
Firstly, the user uploads his or her training data and 

neural network model to the edge node. The edge node 

then stores the necessary data and model files in the file 
storage system and records the storage address in the 
database. Secondly, the edge node loads the neural net-
work model and data required for training by referenc-
ing the saved address information in the database. The 
system then evaluates whether all of the data can be 
used for pre-executing based on the resource threshold 
of edge node. If the computing resources available at the 
edge exceed the pre-executing threshold and there is no 

Fig. 2  Schematic diagram of the relationship between Pre-executing, optimal segmentation point calculation, and cloud edge collaborative 
training

Fig. 3  Pre-executing flow chart
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limit, then the system will proceed to pre-train the entire 
dataset.

However, if the data exceeds the threshold, the system 
uses a sample of 10% of the data to calculate the FLOPs 
of each layer of the neural network model and evalu-
ate the computational resource occupancy of the edge 
node, thus allowing the acquisition of the information 
required for optimal resource allocation and preventing 
the overconsumption of computing resources. By selec-
tively training only a portion of the data, the edge node 
can balance the computation workload while still accu-
rately calculating the FLOPs of each layer of the neural 
network model, the amount of data output, and the com-
puting resource occupancy at the edge node. Overall, 
this approach ensures that the edge node can effectively 
take advantage of its computing resources while provid-
ing reasonable parameters for calculating segmentation 
points.

The edge node performs the best segmentation point 
calculation algorithm to calculate the best segmentation 
point of the neural network model. The calculation pro-
cess is shown in Fig. 4.

The specific steps are as follows.

1: The edge node calculates the computing delay of 
each layer of a neural network at the edge node and 
the computing delay at the cloud node according 
to the FLOPS of each layer, edge node, and cloud 
node.
2: The edge node obtains the current network trans-
mission rate between the edge node and the cloud 
through the ping command, and queries the system 
network configuration through the grep command to 

obtain the corresponding uplink rate and downlink 
rate.
3: The edge node calculates the uplink delay, down-
link delay, and transmission delay of the output data 
on each layer of the neural network according to 
the data output, current network transmission rate, 
uplink rate, and downlink rate.
4: The edge node calculates the transmission delay 
of each layer of neural network data from the edge 
node to the cloud node according to the uplink 
delay, downlink delay, and transmission delay of 
output data of each layer of the neural network, 
or that of intermediate data corresponding to each 
segmentation point from the edge node to the 
cloud node.
5: The edge node obtains the total time delay trained 
by the neural network model corresponding to each 
segmentation point according to the calculated time 
delay of each layer of a neural network at the edge 
node and the calculated time delay of the cloud node 
and the transmission time delay of the intermediate 
data corresponding to each segmentation point from 
the edge node to the cloud node.
6: According to the total time delay corresponding to 
each segmentation point and the computing resource 
occupancy rate of the edge node during the execution 
of each layer of the neural network; the MTMGMO 
algorithm is used for multi-objective optimization to 
obtain the best segmentation point of the neural net-
work model.

After calculating the best segmentation point of the 
model, the model is segmented according to the best 
segmentation point. The network layer before and 

Fig. 4  Flow chart of calculating the best segmentation point
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after the segmentation point is respectively trained at 
the edge and cloud. The training process is shown in 
Fig. 5.

The specific steps are as follows.

1: The edge node uploads the data needed for train-
ing and the neural network model needed for train-
ing to the cloud.
2: The cloud stores the neural network model to be 
trained and the data to be trained in the file storage 
system, and saves the storage address in the data-
base.
3: The edge and cloud nodes load neural network 
models and all training data.
4: The edge node trains the network layer before 
the segmentation point to obtain intermediate 
data.
5: The edge node transmits the intermediate data to 
the cloud through the Socket communication system.
6: After receiving the intermediate data, the cloud 
node executes the neural network layer after the 
segmentation point to obtain the final result. Cal-
culate the deviation loss between the final and 
expected results, and determine whether the devia-
tion loss is within an acceptable range. If it is within 
the acceptable range, save the model parameter 
weight to end the training, and if it is not within the 
acceptable range, calculate the neuron error of the 
hidden layer.
7: The cloud calculates the error gradient according 
to the neuron error of the hidden layer. The error 

gradient is transmitted to the edge through the 
Socket communication system, and then the cloud 
updates the cloud neuron weight according to the 
error gradient. In this process, the cloud error gra-
dient is firstly transmitted to the edge, and then the 
cloud and the edge update the parameters of the 
neural network model.
8: The edge receives the error gradient transmit-
ted from the cloud and updates the edge neuron 
weight according to the error gradient. In this pro-
cess, the error is firstly transmitted from the back 
to the front, and then the weight and offset value 
from the back to the front is modified according to 
the error.
9: Proceed to next training, which is to return to 
Step 4.

Necessary conditions for model training only in the 
cloud or edge:

(1) If the computing resources at the edge fail to the 
requirements for training the first layer of the neu-
ral network, all the training will be conducted in the 
cloud, and the segmentation point is 0.
(2) If all models are trained at the edge, training 
in the cloud will lead to insufficient utilization of 
computing resources at the edge. At this time, the 
segmentation point is at the last layer of the net-
work.
A cloud-edge collaborative task scheduling method 
based on model segmentation is designed as follows.

Fig. 5  Training process of the neural network model in cloud edge collaborative environment
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Algorithm 1 A cloud-edge collaborative task scheduling method based on model segmentation
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Finally, this paper compares the time complexity of 
CECMS algorithm with an adaptive DNN inference 
acceleration framework with end–edge–cloud collabo-
rative computing algorithm [40] (ADC) and a Dynamic 
Adaptive DNN Surgery method (DADS) [21]. The com-
parison results are shown in Table 2.

The time complexity of the CECMS algorithm pro-
posed in this paper mainly originates from the multi-
objective solving part and the model pre-execution 
with a small portion of data. The multi-objective solv-
ing algorithm is an improvement based on NSGA-III, 
so the time complexity of the multi-objective solving 
part is O (n2log n), where n is the number of popula-
tion. When the model pre-executes a small portion of 
data, the time complexity is mainly related to the size 
of the convolution kernels and input/output channels 
in each convolutional layer. Assuming a neural net-
work has N layers, where L layers are convolutional 
layers, each convolutional layer has a kernel size of ki, 
an output matrix size of m, and the input and output 
channels are ini and outi, respectively, then the time 
complexity of the model’s pre-execution with a small 
portion of data is O(

∑L
i=1m

2 ∗ k
2

i ∗ ini ∗ outi). In sum-
mary, the time complexity of the CECMS algorithm is 
O (

∑L
i=1m

2 ∗ k
2

i ∗ ini ∗ outi) + O (n2log n), higher than 
that of DADS algorithm, because of its use of multi-
objective solving algorithm to calculate the optimal 
segmentation point.

Experiments and analysis
A series of experiments were carried out to verify the 
effectiveness of a cloud-edge collaborative task sched-
uling method based on model segmentation. It was 
assumed that there was an edge node and a cloud node 
in the experimental environment. The cloud node was 
a GPU cloud server with a specification of 16-core 60G 
and Nvidia A100 GPU. The edge node was a cloud server 
with 8 cores and 16G that used Cifar-10 data-set, and the 
fine-tuned AlexNet [41] model and VGG [42] model as 
the neural network models. There were 13 hidden layers 
in the AlexNet model and 34 hidden layers in the VGG 
model. During pre-execution, 5,000 images randomized 
from the Cifar-10 dataset were used as input to the 
AlexNet model and the VGG model. The Cifar-10 dataset 
was divided into 10 batches in the training process, each 
containing 5,000 images. In the multi-objective solv-
ing process, four populations were initialized, with each 

initial population size of 100, 200, 300 and 400. The num-
ber of iterations was 500.

To verify the effectiveness of the MTMGMO algo-
rithm, comparative experiments were conducted with a 
single-threaded multi-population algorithm. Four popu-
lations were initialized with each initial population size 
of 100, 200, 300, and 400. The number of iterations was 
set to 500. Tables  3 and 4 demonstrate the MTMGMO 
algorithm and the single-threaded multi-population 
algorithm, respectively, in which the "Initial distribution" 
column represents the initial population distribution, 
and the "Final distribution " column represents the popu-
lation distribution after 500 iterations. It can be observed 
from both tables that the final results of two algorithms 
were identical in the case of the same initial population.

Regarding execution time, experiments were conducted 
for ten times on both algorithms in the same environ-
ment, as shown in Table 5 and 6. According to the experi-
mental results, the proposed MTMGMO algorithm was 
60% faster than the single-threaded multi-population 
algorithm. Overall, these comparative experiments dem-
onstrated that the MTMGMO algorithm was superior 
to the single-threaded multi-population algorithm in 
terms of both execution speed and optimization accu-
racy, which highlighted the effectiveness of the proposed 
MTMGMO algorithm.

To ensure the correctness of the optimal segmenta-
tion points of the AlexNet and VGG models, the experi-
ments were conducted on each possible segmentation 
point of the model, and the task execution time and edge 
node memory resource utilization were obtained under 
different segmentation points. The experimental results 
are shown in Fig.  6. The abscissa represents each pos-
sible segmentation point of the model. Since the VGG 
model after the 15th layer potentially caused the required 
memory of the edge nodes to exceed the system memory 
capacity, it was not possible to segment points. Figure 6a 
and b respectively show the task execution time and the 
memory resource utilization of edge node corresponding 
to each possible segmentation point in the AlexNet and 
VGG models.

Figure 6c more intuitively illustrates the impact of data 
transmission delay and task execution time on the seg-
mentation point of the AlexNet model. As can be seen 
from the figure, data transmission delay decreased while 
task execution time increased layer by layer in the first 
six layers, which was attributed to the decline in layer-
by-layer calculation of the neural network, the amount of 
data output by the neural network model but the increase 
in the calculation amount. Compared with the 6th layer, 
despite reduced transmission delay, task calculation delay 
increased. Therefore, task execution time was the short-
est when slicing in the 6th layer. It can be seen from 

Table 2  Time complexity comparison

CECMS ADC DADS

Time complexity O (
∑L

i=1
m2 ∗ k

2

i ∗ ini ∗ outi)+ O (n2log n)   O (N4) O (N3)
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Fig. 6a that the resource utilization of edge nodes gradu-
ally increased with the increase in the number of layers 
increases (except for the 2nd layer) when the memory 
resource utilization of edge nodes was taken into account 
and that the optimal segmentation point of the model 
was on the 6th layer when comprehensively considering 
the utilization of edge node memory resources and task 
execution time. Prior to the 6th layer, task execution time 
decreased while the resource utilization of edge nodes 
increased layer by layer. After the 6th layer, both of the 
two increased, which, however, was not conducive to task 
offloading.

Figure 6d clearly visualizes the impact of data transmis-
sion delay and task execution time on the segmentation 
points of the VGG model. As demonstrated in Fig.  6d, 
slicing on the 5th or 10th layer yields the shortest task 
execution time. Concerning the memory resource uti-
lization of edge node, resource utilization rate gradually 
increased as the number of layers increased starting from 
the 2nd layer, as shown in Fig.  6b. When the memory 
resource utilization of edge node and task execution time 
were evaluated simultaneously, it was obvious that the 
optimal segmentation point of VGG model was on the 
10th layer. Though task execution time was the shortest 

on the 5th layer, the resource utilization rate of edge 
nodes was insufficient.

These findings provide valuable guidance for selecting 
the optimal segmentation points of the VGG model and 
the AlexNet model. They serve to ensure effective task 
offloading between the cloud node and the edge node, 
while reducing overall task execution time and maximiz-
ing resource utilization rate.

Through pre-execution, the transmission delay of each 
layer of the neural network in the AlexNet model and 
the VGG model, task execution time at the edge, and 
the memory resource utilization at the edge nodes were 
obtained. To analyze and compare the changes in each 
layer more clearly, the data were normalized, as shown 
in Figs. 7 and 8, where the abscissa indicates the number 
of layers in the neural network model. It should be noted 
that task completion time was composed of the sum of 
both transfer time and task execution time.

An analysis of the two graphs in Fig. 7 indicates that to 
minimize task completion time alone, the optimal seg-
mentation point for the AlexNet model should be set 
on the 6th layer. However, there were several options 
for selecting optimal segmentation points for the model, 
considering minimizing task completion time and 

Table 3  Population distribution of MTMGMO algorithm

Discrete values of the 
population domain

0 1 2 3 4 5 6 7 8 9 10 11

Initial distribution 82 104 78 78 83 66 75 75 87 97 86 89

Final distribution 0 0 0 0 0 165 165 167 167 168 0 168

Table 4  Population distribution of single threaded multi population algorithms

Discrete values of the 
population domain

0 1 2 3 4 5 6 7 8 9 10 11

Initial distribution 82 104 78 78 83 66 75 75 87 97 86 89

Final distribution 0 0 0 0 0 165 165 167 167 168 0 168

Table 5  MTMGMO algorithm execution time

Number of executions 1 2 3 4 5 6 7 8 9 10

Execution time 1.743 1.684 1.452 1.452 1.801 2.026 1.633 1.674 1.930 1.855

Table 6  Single threaded multi swarm algorithm execution time

Number of executions 1 2 3 4 5 6 7 8 9 10

Execution time 3.625 3.589 3.598 3.599 3.581 3.585 3.582 3.599 3.612 3.595
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maximizing the utilization of edge memory resources 
(i.e. minimizing the remaining edge memory resources). 
In order to calculate the optimal segmentation point 
more accurately, the multi-objective solution algorithm 
MTMGMO was utilized for final selection.

The optimal segmentation point of the AlexNet model 
was determined to be on the 6th layer using the multi-
objective solution algorithm MTMGMO. Subsequently, 
the model was trained with the edge executing the first 
six layers of the neural network model and the cloud 
executing all subsequent layers. The training effect 
of the model is presented in Fig.  9. At the same time, 
experiments were also conducted with the segmenta-
tion point on the 3rd layer and cloud-only training. By 

firstly determining the minimum task completion time 
and then adjusting the resource utilization of edge with-
out using the multi-objective solution algorithm, the seg-
mentation point was calculated to be on the 3rd layer. 
The results showed that such segmentation point was not 
the optimal, which further indicates the need to consider 
multi-objective optimization.

Figure 9 demonstrates that when the optimal segmen-
tation point was on the 6th layer, the loss curve firstly 
decreased but eventually fell within a range similar to 
that when experiments were performed using the seg-
mentation point on the 3rd layer or cloud-only train-
ing after numerous training sessions. However, despite 
increased training sessions, training duration was 

Fig. 6  The transmission delay, task completion time, and utilization of memory resources of edge nodes of each layer of neural network in AlexNet 
or VGG model
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significantly reduced by 75% compared to that when 
experiments were performed using the segmentation 
point on the 3rd layer, and by 85% compared to that 
when experiments were performed using cloud-only 
training, which could primarily be attributed to the 
large amount of data uploaded to the cloud in a pure 
cloud environment, resulting in substantial transmis-
sion delay.

As shown in Fig.  8, considering both the minimiza-
tion of task completion time and the maximization of 
memory resource utilization at the edge, the optimal 
segmentation point on the 10th layer was selected for 
the VGG model. In order to accurately determine the 

optimal segmentation point, MTMGMO was used 
to select the segmentation point consistent with the 
image analysis, and the optimal segmentation point 
of the VGG model was determined to be on the 10th 
layer.

Upon completion of the optimal segmentation point 
calculation, the model training task was commenced. 
The edge executed the first 10 layers of the neural net-
work model, while the cloud was responsible for execut-
ing all subsequent layers. Furthermore, cloud-only model 
training was also performed for comparison. The training 
effect of the model is presented in Fig. 10.

Fig. 7  The completion time of tasks corresponding to each split point of AlexNet and the Memory remaining rate at the edge

Fig. 8  The completion time of tasks corresponding to each split point of VGG and the Memory remaining rate at the edge
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Based on the above analyses, the optimal segmentation 
points of the AlexNet model and the VGG model calcu-
lated using the method proposed in this paper were con-
sistent with the actual results.

In addition, for the purpose of further demonstrat-
ing the effectiveness of the method proposed in this 
paper, comparative experiments were conducted using 
an adaptive DNN inference acceleration framework 

with end–edge–cloud collaborative computing algo-
rithm (ADC) [40] and a Dynamic Adaptive DNN Surgery 
method (DADS) [21]. DADS was employed to segment 
the neural network model, intending to minimize over-
all delay based on different network conditions. The 
AlexNet and VGG16 models were selected for the com-
parative experiment by DADS method. The optimal 
segmentation point calculated using the DADS method 

Fig. 9  The Loos curve of the AlexNet model changes

Fig. 10  The Loos curve of VGG model changes
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respectively fell on the 9th layer of the AlexNet model 
and on the 18th layer for the VGG16 model, while that 
calculated using the CECMS method on the 6th layer for 
the AlexNet model and on the 14th layer for the VGG16 
model. The comparative experimental results of AlexNet 
and VGG16 are shown in Figs.  11 and 12. In terms of 
the AlexNet model, the task completion time calculated 
by the CECMS method in the case of the segmentation 
point on the 6th layer was shorter than that calculated by 
the DADS method in the case of the segmentation point 
on the 9th layer, but with little difference in edge memory 
utilization between the two, as shown in Fig. 11. For the 
VGG16 model, the task completion time obtained by the 

CECMS method was basically the same as that by the 
DADS method, and the fluctuation in numerical values 
was caused by real-time network fluctuation. Meanwhile, 
the edge memory utilization acquired by the CECMS 
method was only about 1% lower than that by the DADS 
method, proving the effectiveness of the CECMS method.

To verify the effectiveness of the CECMS method on 
non-public datasets, a convolutional neural network, 
named MedicalNet, with 13 layers, as shown in Fig. 13, 
and a pathological recognition dataset of 20,000 images 
were used for experiments. This paper found that the 
recognition rate of medicalNet did not change signifi-
cantly when the image was rotated 90 or 180 degrees 

Fig. 11  Comparison of AlexNet between CECMS and DADS

Fig. 12  Comparison of VGG16 between CECMS and DADS
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Fig. 13  The structure of MedicalNet

Fig. 14  The completion time and the Memory remaining rate of tasks corresponding to each split point of MedicalNet, as well as the comparison 
of MedicalNet between CECMS and DADS
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through a series of experiments on model sensitiv-
ity. However, medicalNet’s recognition rate of images 
decreases when images are cropped. It is because that 
the rotation operations do not change the relative 
position of key factors in the image, while the crop-
ping operations may lead to the loss of key factors in 
the image. The optimal segmentation point calculated 
using the CECMS method was on the 13th layer, mean-
ing that all the asks were unloaded at the edge, while 
that calculated using the DADS method was on the 
8th layer. The task completion time and edge mem-
ory resource utilization of each layer in the model are 
shown in Fig. 14. As can be seen from the figure, mem-
ory resources at the edge were sufficient for task calcu-
lation, and task completion time was the least when the 
optimal segmentation point was set on the 13th layer. 
Thus, tasks should not be unloaded to the cloud for 
execution. The memory resource utilization of the edge 
node was the maximum when the optimal segmenta-
tion point was set on the 8th layer, and its calculation 
time was slightly longer than that when the optimal 
segmentation point fell on the 13th layer.

The ADC algorithm is a segmentation algorithm aimed 
at minimizing end-to-end inference latency. This algo-
rithm finds the segmentation point that minimizes end-
to-end inference latency by traversing all layers of the 
neural network. The neural network models AlexNet 
and VGG with the same dataset Cifar-10 were used for 
this comparison. This paper transforms the cloud-edge-
end strategy to the cloud-edge strategy so that the ADC 
algorithm conforms to the cloud-edge collaboration sce-
nario, which means that the first segmentation point in 
the ADC algorithm is set to 0.

A total of 100 batches (i.e. echo), were used in the com-
parative experiment between CECMS and ADC, with 
each set to 5,000 images. The comparative experimental 
results of the AlexNet model are shown in Fig.  15. The 
segmentation points calculated by the two are 10 and 6, 
respectively.

Through multiple experiments, it was found that it 
takes approximately the same amount of time for AlexNet 
to complete the task when the segmentation points are 6 
and 10, but with certain differences in memory resource 
utilization at edge node. When the segmentation points 
are 6 and 10, task runtime is 5.25  s and 5.45  s, respec-
tively, and edge memory resource utilization rate is 97.3% 
and 99.5%, respectively.

In the absence of the large difference in the task runt-
ime when segmentation points 6 and 10, the CECMS 
algorithm tends to select a segmentation point of 10 
for calculation due to its higher memory resource con-
sumption, aiming to maximize the use of edge resources 
and reduce cloud load, while the ADC algorithm tends 
to choose a segmentation point of 6 with a shorter task 
runtime. Figure 15 shows the comparative experimental 
results of these two algorithms, and it can be seen from 
the figure that there is not much difference between 
the two algorithms in terms of task runtime, and that 
CECMS is generally about 2% higher than the ADC algo-
rithm in terms of edge memory resource utilization.

For the VGG model, it is found through multiple com-
parative experiments that the segmentation point calcu-
lated by the two algorithms is the same, and both are 10, 
which is because task runtime is the shortest and edge 
memory utilization is the highest when the segmentation 
point is 10.

Fig. 15  The Comparison of AlexNet between CECMS and ADC
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Based on the aforementioned experiments, a cloud-edge 
collaborative task scheduling method based on model seg-
mentation effectively reduced the execution time of neural 
network model tasks in the cloud-edge environment while 
ensuring the full utilization of edge resources.

Conclusion
This paper proposed a cloud-edge collaborative task 
scheduling method based on model segmentation to 
enhance the efficiency of unloading large neural network 
model tasks in collaborative environments. The proposed 
method modeled and analyzed the factors influencing the 
segmentation point of the model, and finally obtained 
precise factors affecting the calculation of segmentation 
points via pre-execution. Then, multi-objective solving 
algorithms were utilized to extract the optimal model 
segmentation point. For the sake of quick and accurate 
calculation, the MTMGMO algorithm was designed 
based on the traditional NSGA-III algorithm. Experimen-
tal results indicate that the MTMGMO algorithm is able 
to improve the calculation speed by 60% compared to 
single-threaded multi-group computation. Subsequently, 
tasks were sent to the edge and cloud for task offload-
ing based on the optimal segmentation point. Finally, the 
effectiveness of the proposed method was verified via 
simulation and comparative experiments. The proposed 
method significantly reduces the execution time of neural 
network model tasks in a cloud-edge collaborative envi-
ronment while enhancing memory resource utilization 
of edge nodes, reducing the cost and time required for 
unloading large neural network model.
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