
Yang et al. Journal of Cloud Computing (2024) 13:71
https://doi.org/10.1186/s13677-024-00639-3

RESEARCH

Optimus: association-based dynamic
system call filtering for container attack surface
reduction
Seungyong Yang1,2, Brent Byunghoon Kang1 and Jaehyun Nam3*

Abstract

While container adoption has witnessed significant growth in facilitating the operation of large-scale applications, this
increased attention has also attracted adversaries who exploit numerous vulnerabilities present in contemporary con-
tainers. Unfortunately, existing security solutions largely overlooked the need to restrict container access to the shared
host kernel, particularly exhibiting critical limitations in enforcing the least privilege for containers during runtime.
Hence, we propose Optimus, an automated and comprehensive system that confines container operations and gov-
erns their interactions with the host kernel using an association-based system call filtering. Optimus efficiently identi-
fies the essential system calls required by containers and enhances their security posture by dynamically enforcing
the minimal set of system calls for each container during runtime. This is achieved through (1) lightweight system call
monitoring leveraging eBPF, (2) system call validation via association analysis, and (3) dynamic system call filtering
by adopting covert container renewal. Our evaluation shows that Optimus effectively minimizes the necessary system
calls for containers while maintaining their serviceability and operational efficiency during runtime.

Keywords Container security, Association analysis, System call, eBPF, Seccomp

Introduction
These days, containers have gained significant traction to
operate large-scale applications comprised of microser-
vices effectively. Their widespread adoption by the indus-
try, as evident from the recent survey [13], has solidified
their significance in modern computing environments.
Container orchestration platforms (e.g., Kubernetes [36]
and OpenShift [54]) have further accelerated this trend,
enabling seamless automation and scalability of container
workloads.

However, the shared kernel-resource model that con-
tainers rely on presents significant security challenges,
regarding maintaining strong isolation [15] between con-
tainers. These concerns are exacerbated by vulnerabilities
within legitimate container images [42, 67], providing
opportunities for adversaries to exploit weaknesses to
breach container isolation. Consequently, unauthorized
access to other containers and even the underlying host
system becomes possible, posing substantial risks to the
overall security posture.

To counter such threats, today’s security solutions
focus primarily on three aspects: (1) inspecting known
vulnerabilities in container images before deploy-
ment [24, 53], (2) detecting runtime policy violations
within containers [7, 60], and (3) implementing resource
restrictions to reduce attack surfaces [34, 55]. However,
these solutions often neglect the vital aspect of container
interaction with the underlying Linux kernel and leave
container environments vulnerable to significant damage,

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence:
Jaehyun Nam
jaehyun.nam@dankook.ac.kr
1 School of Computing, KAIST, 291 Daehak-ro, Yuseong-gu,
Daejeon 34141, Republic of Korea
2 S2W Inc., 12, Pangyoyeok-ro 192beon-gil, Bundang-gu, Seongnam-si,
Gyeonggi-do, Republic of Korea
3 Department of Computer Engineering, Dankook University, 152,
Jukjeon-ro, Suji-gu, Yongin 16890, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00639-3&domain=pdf

Page 2 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

highlighting the pressing need for a comprehensive secu-
rity framework that adequately addresses the critical
nature of container-to-kernel interactions.

Several studies [19, 30, 68, 70] have explored leverag-
ing Linux’s secure computing mode (Seccomp) [63] to
accomplish this need by restricting both container-to-
kernel interactions and container behavior (filtering
invoked system calls). Unfortunately, these approaches
also face critical security limitations. First, extracting
the minimal sets of system calls required for containers
can result in sets that are either too permissive, failing to
adequately minimize attack surfaces, or overly restric-
tive, hindering proper container functionality. Second,
the absence of system call validation leaves room for the
potential invocation of unauthorized system calls due to
adversarial intervention. Lastly, applying the extracted
system calls to containers during runtime requires modi-
fications to containerized applications and the underlying
host system due to the limitations of Seccomp.

To effectively tackle the security challenges, we pro-
pose Optimus, an automated and comprehensive system
that performs sustainable identification of the neces-
sary system calls for containers in parallel and continu-
ously enforces the minimal set of required system calls
at runtime, ensuring the hardening of containers. Unlike
previous approaches that generate a fixed set of allowed
system calls for each container, Optimus dynamically
adapts to the evolving requirements of containers, main-
taining their serviceability while significantly mitigating
potential security risks in containers.

Optimus consists of three components: the container
manager, the system call monitor, and the profile gen-
erator. The container manager oversees the lifecycles of
containers and detects any changes in container config-
urations. The system call monitor tracks all system calls
invoked from active containers and accurately segregates
the system calls associated with each container by map-
ping container metadata with relevant system metadata.
The profile generator utilizes association analysis on
the monitored system calls to generate a tailored set of
essential system calls specific to each container, eliminat-
ing any ambiguities or uncertain system calls. Finally, the
container manager enforces the newly generated system
call sets onto the respective containers using covert con-
tainer renewal. This iterative process ensures comprehen-
sive coverage and support for the operations unexplored
within the containers, enhancing the overall security and
stability of the containerized environment.

We implement a prototype of Optimus by leverag-
ing the Extended Berkeley Packet Filter (eBPF) and con-
duct an evaluation using a diverse set of 71 container
images obtained from Docker Hub [21]. The results are
highly promising: Optimus not only surpasses static

analysis-based solutions by effectively filtering out an
additional 25% of system calls but also demonstrates
impressive resilience, trailing just 1.76% behind dynamic
analysis-based solutions. Regarding serviceability, Opti-
mus’s covert container renewal leads to only a minimal
1.07% increase in response time, contrasting sharply with
Kubernetes’s rolling update, which experiences a signifi-
cant 722% spike in response time when enforcing newly
identified system call sets onto containers. Optimus
successfully identifies unexplored operations that the
dynamic analysis-based solutions fail to capture, high-
lighting its robustness in detecting previously unknown
system call behaviors.

In summary, our contributions include the following:

• Design and implementation of Optimus, an innova-
tive and unified system that continuously monitors
system calls invoked from containers and dynami-
cally restricts the available system calls to minimize
attack surfaces.

• Development of a novel association-based dynamic
system call filtering that validates system calls
invoked from containers by analyzing their relation-
ships and filtering out lower-relevance system calls.

• Demonstration of Optimus’s capability to reduce the
attack surface using real-world container images,
along with the identification of system calls for unex-
plored operations and their dynamic enforcement
onto containers at runtime with high serviceability
and minimal overhead.

The remainder of this paper is structured as follows:
“Background and motivation” section discusses the
security challenges in prior work related to attack sur-
face reduction in container security. “Optimus design”
and “Implementation” sections introduce our associ-
ation-based dynamic system call filtering system. The
results of security and performance evaluations are pre-
sented in “Experimental validation” and “Performance
evaluation” sections respectively. “Related work” section
reviews related studies, and finally, “Conclusion” section
provides the concluding remarks for the paper.

Background and motivation
This section focuses on the key Linux primitives that
deliver resource isolation and access control for contain-
ers, as well as the security challenges outlined in prior
research concerning the reduction of the kernel’s attack
surface.

The state of container security
Containerization is an operating-system-level virtual-
ization technology that harnesses the powerful isolation

Page 3 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

primitives available in the Linux kernel, such as names-
paces [64], control groups (cgroups) [65], and capabili-
ties [66]. By leveraging these primitives, containerized
applications can operate in virtual environments (i.e.,
containers) with distinct process trees, file systems, and
networking stacks, the illusion of independent and iso-
lated systems, granting applications restricted access to
system resources and facilitating highly secure and effi-
cient runtime environments.

Despite the inherent isolation provided by contain-
ers, containerized applications are not immune to secu-
rity vulnerabilities and remain susceptible to targeted
attacks [15, 67]. In fact, according to Cloud Native Sur-
vey [13], 92% of organizations have employed contain-
ers in production, marking a remarkable 300% increase
since 2016. However, container security has remained a
common area of oversight. The Cloud-Native Security
Survey by Aqua Security [5] starkly highlights the lack of
awareness among 97% of respondents regarding critical
container security principles, leading to misconceptions
surrounding default security attributes. These findings
emphasize the urgent need to address container security
challenges and proactively implement effective measures
to reduce attack surfaces.

Containerized applications are legacy applications
packaged with containerization techniques, meaning that
there is no difference between legacy applications and
containerized applications. Any vulnerabilities in legacy
applications can exist in the corresponding containers.
Lin et al. [42] present that about 56% of the application
exploits (e.g., remote code execution and privilege escala-
tion) collected from the Exploit Database [26] are feasi-
ble in today’s container environments. Furthermore, such
vulnerabilities become particularly exploitable within the
context of the shared kernel-resource model, which car-
ries profound security implications. These implications
are especially acute regarding the capacity of the host
OS to sustain isolation when a single container is com-
promised. For example, container escape attacks [45–48]
exploit vulnerabilities in containerized applications to
breach the boundaries of container isolation, effectively
gaining unauthorized access to the host system.

Attack surface reduction
To protect containers from such attacks, several security
solutions have been devised to mitigate the attack sur-
faces associated with containers. Initial lines of defense
include security scanning solutions such as Clair [53] and
Docker Scan [24], which proactively scrutinize container
images for known vulnerabilities using CVE databases,
thus empowering operators to preempt potential threats
before container deployment. Complementing this, runt-
ime threat detection solutions (e.g., Tracee [7] and Falco

[60]) observe container behavior, identify policy viola-
tions during runtime, and conduct anomaly detection,
enabling real-time threat mitigation. Additionally, Linux
security modules (e.g., AppArmor [34] and SELinux [55])
are deployed to impose further restrictions on contain-
ers, managing process executions and file access within
containers to fortify container isolation.

However, it is critical to note that these solutions pre-
dominantly focus on safeguarding individual containers
from a userspace perspective, thereby inadvertently leav-
ing interactions with the host kernel less secured – an
aspect capable of causing more comprehensive damage
in container environments. Thus, this work emphasizes
a crucial yet under-explored aspect of container secu-
rity: minimizing the attack surface during interactions
with the Linux kernel, aiming to contribute towards a
more comprehensive security paradigm for containerized
environments.

Challenges in attack surface reduction
To diminish attack surfaces, the Linux Secure Computing
Mode (Seccomp) [63] emerges as one of the most potent
mechanisms widely employed. Seccomp curtails the
system calls that applications can initiate, significantly
reducing potential attack vectors. The recent Linux ker-
nel offers a vast suite of system calls (approximately 400
syscalls), each capable of becoming an attack vector.
However, most applications only engage with a small
subset of these system calls. Detecting any unused system
calls being invoked could signal a potential compromise,
prompting proactive measures to block such actions.

Despite the restrictive power of Seccomp, it necessi-
tates a pre-determined set of system calls that the appli-
cation is expected to use. In effect, this requires operators
to undertake a detailed analysis of the applications, fol-
lowed by the extraction of the necessary system calls for
each, a process that is both intricate and time-consum-
ing. While numerous studies [19, 30, 41] have sought to
automate the extraction of system calls, they persistently
grapple with substantial limitations in the realm of con-
tainer security.

False Inference of Necessary System Calls: While
extracting necessary system calls to execute container-
ized applications, a significant challenge presents itself
in the form of the false inference problem. The system
calls derived from the applications could either prove to
be too coarse-grained, thereby not minimizing the attack
surfaces of applications as effectively as possible, or too
restrictive, potentially hindering the optimal functioning
of the applications.

In general, two methodologies can be employed to
extract system calls needed for application execution:
static analysis and dynamic analysis. Static analysis-based

Page 4 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

approaches [19, 30] examine the source code or binaries
of applications, along with all dependencies on external
libraries. This allows the collection of all possible system
calls that applications might invoke. However, many of
these identified system calls may remain unnecessary and
unused during runtime, creating potential attack vec-
tors that adversaries can exploit to target the applications
and the host kernel. In addition, static analysis does not
take into account the specific characteristics of container
environments. In particular, it does not adequately cover
the process of container creation and initialization before
the execution of containerized applications.

On the other hand, dynamic analysis-based approaches
[68, 70] identify necessary system calls by monitoring those
actually invoked during the rule mining phase, resulting in a
significantly reduced set of required system calls for the entire
process of container creation, initialization, and execution
of applications within containers. However, a potential limi-
tation of dynamic analysis is its dependence on the specific
workloads used in the rule mining phase, which may not fully
represent the diverse scenarios encountered in a production
environment during runtime. Consequently, this approach
risks missing critical system calls essential for proper appli-
cation operation, potentially leading to application failures.
Striking the right balance between the advantages of static
and dynamic analysis methods is, therefore, a complex and
crucial challenge to ensure accurate and reliable system call
extraction for containerized environments.

No Validation of Identified System Calls: Another
concern arises from the inadvertent detection of unex-
pected system calls during the extraction of necessary
system calls due to the absence of stringent validation
measures. This deficiency can result in potentially inse-
cure or unnecessary system calls in the final set, com-
promising the overall security posture of containerized
environments. Adversaries could exploit such vulnerabil-
ities to launch attacks or gain unauthorized access. Thus,
it is imperative to implement rigorous validation during
the system call extraction.

However, previous studies [19, 30, 68, 70] in sys-
tem call extraction often lack a comprehensive security
mechanism to verify the validity of the identified sys-
tem calls. This limitation opens the door for adversar-
ies to maliciously manipulate the system call sets to suit
their malevolent intentions. For instance, through supply
chain attacks [6, 61], attackers could tamper with devel-
opment environments, coercing developers into using
compromised applications or container images. Conse-
quently, when developers seek to identify the necessary
system calls for their applications, they may uninten-
tionally include system calls used in container attacks,
such as privilege escalation or remote code execution.
Moreover, adversaries could directly intervene during

the identification phase by deliberately invoking specific
system calls necessary for container attacks, as current
solutions tend to extract all system calls within contain-
ers indiscriminately, regardless of the triggering process.
Thus, these malicious system calls could be classified
as essential, as the lack of proper validation hinders the
accurate identification and exclusion of potentially harm-
ful system calls.

Limitation of Seccomp in profile update: To mini-
mize potential attack surfaces exposed from container-
ized applications, the initial step involves the application
of Seccomp profiles (i.e., the sets of allowable system
calls) during container creation. However, a significant
challenge arises from the lack of support for modifying
and removing already-applied Seccomp profiles during
runtime, limiting the adaptability of Seccomp according
to evolving security demands.

There are two primary reasons for needing to update
existing Seccomp profiles: further restriction and cover-
age adjustment. When further restriction is required,
applications can layer multiple Seccomp profiles, but
once attached, these profiles cannot be removed during
runtime. Ghavamnia et al. [31] address this limitation
by injecting code into applications to stack a new profile
on top of the initial one during runtime, achieving the
effect of updating the initial profile while imposing addi-
tional restrictions on allowable system calls. However,
this approach demands access to the application’s source
code not available in production. Also, it cannot be easily
extended to container environments since the modifica-
tions of container platforms are not feasible.

On the other hand, when coverage adjustment is
needed, Seccomp’s inability to modify existing pro-
files during runtime becomes problematic. Speaker [41]
addresses this limitation by introducing a new kernel
module into the host kernel, allowing for the replace-
ment of existing Seccomp profiles with updated ones.
While effective, this approach requires full privileges on
the host system, making it unsuitable for cloud environ-
ments with limited privileges. In addition, it may neces-
sitate multiple kernel modules to support heterogeneous
host systems, adding complexity to the implementation.
As a result, finding a solution that addresses both further
restriction and coverage adjustment of Seccomp profiles
while considering the constraints of commercial applica-
tions and cloud environments remains an ongoing chal-
lenge in the pursuit of container security.

Optimus design
This section presents an advanced and automated sys-
tem, Optimus, for comprehensive container attack sur-
face reduction. In addition, it discusses how Optimus

Page 5 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

effectively addresses the limitations outlined in “Chal-
lenges in attack surface reduction” section.

Design considerations
To bolster container security and mitigate poten-
tial risks as discussed in “Challenges in attack surface
reduction” section, three essential requirements have
been identified as follows:

R1: Minimizing attack surfaces in container-to-
kernel interactions while not breaking availability. A
system should meticulously determine the necessary
system calls for each container, specifically those uti-
lized by the containerized applications, rather than
including all possible functionalities. Also, a system
should continuously update the set of system calls for
each container during runtime to promptly detect any
previously undiscovered system calls and maintain an
accurate and up-to-date list of essential system calls.

R2: Validating identified system calls. To minimize
the risk of security breaches, a system should consider
the possibility of compromised containerized appli-
cations containing unintended system calls and the
potential for adversaries to trigger unintended system
calls within containers. In the same context, a system
should verify the legitimacy of identified system calls.

R3: Getting through Seccomp limitations. A system
should effectively apply up-to-date Seccomp profiles
to containers without requiring container or host sys-
tem modifications. Also, a system should ensure the
stability and availability of containers from the users’
perspective while bolstering their security with up-to-
date security policies.

Overview
This section presents the overall design of Optimus, an
automated and cohesive system aimed at identifying the
necessary system calls essential for the seamless opera-
tion of each container, including containerized appli-
cations. Optimus also enforces a hardened container
environment by ensuring a minimal set of required sys-
tem calls during runtime, all while guaranteeing continu-
ous container serviceability. While Optimus is primarily
designed for Kubernetes with Docker as the container
runtime, it is not limited to this specific environment. Its
design can be applied to various container environments,
such as OpenShift [54] with CRI-O [12], expanding its
applicability to a broader range of container platforms
without compromising effectiveness.

Figure 1 depicts the overall architecture of Optimus,
comprising three main components: the container man-
ager, system call monitor, and profile generator. The
container manager is responsible for monitoring con-
tainer-related events, such as creation and removal, and
promptly responds by creating or cleaning up corre-
sponding entities in Optimus storage (trace table). Each
entity records the system calls associated with a new
container, ensuring that all relevant information is effi-
ciently captured. The system call monitor comprises two
modules, one in the kernel space and the other in the
user space. (1) The kernel-space monitor tracks all system
calls triggered from containers, while (2) the user-space
monitor periodically fetches these records from the ker-
nel space and stores them in Optimus storage, contex-
tualized with the respective containers. (3) The profile
generator then performs an association analysis on the
identified system calls for each container and filters out

Fig. 1 Overall architecture of Optimus with three main components: the container manager, system call monitor, and profile generator

Page 6 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

any abnormal calls that could potentially result from
adversarial interventions, ensuring the validation of iden-
tified system calls (R2). (4) Upon successful validation,
the profile generator generates a new Seccomp profile
containing an up-to-date set of system calls for the con-
tainer. (5) The container manager subsequently enforces
this new profile to the container, leveraging covert con-
tainer renewal without requiring modifications to the
given containers and host systems (R3). To ensure com-
prehensive system call identification, Optimus repeats
the steps outlined above (1-5) to handle potential unex-
plored system calls (R1). The combined operation of
these components empowers Optimus to identify neces-
sary system calls sustainably for containerized applica-
tions, fortify the container environment with minimal
system calls, and maintain container serviceability.

System call monitoring
To accurately identify the essential system calls required
by containerized applications (R1), rather than including
unnecessary functionalities, Optimus’s system call moni-
tor takes on the crucial task of collecting all system calls
triggered from containers and classifying them according
to their respective containers in real-time while ensur-
ing no loss of system calls invoked from them. For this,
the system call monitor introduces two pivotal features:
lightweight system call monitoring, which prevents any
loss of system calls triggered by multiple containers, and
container awareness, effectively bridging the gap between
system-level and container-level metadata.

Lightweight System Call Monitoring: When it comes
to system call monitoring, strace[59] and perf[62] are
popular choices due to their user-friendly interfaces and
versatility, particularly in common scenarios such as
application debugging. Nevertheless, these tools carry
a significant performance overhead as they require fre-
quent transitions between the kernel and user spaces
to decode the context of each triggered system call.
This inherent drawback makes them less than ideal
for continuous monitoring, which represents a fun-
damental requirement of Optimus (R1). In contrast,
Optimus embraces the Extended Berkeley Packet Filter
(eBPF) [25], a powerful framework enabling the monitor-
ing and tracking of various kernel space activities, includ-
ing system calls. By harnessing eBPF, Optimus efficiently
and continuously traces all system calls without imposing
significant performance overhead, thus ensuring seam-
less and effective system call monitoring within the con-
tainerized environment.

To identify the system calls triggered by containers,
Optimus first employs an eBPF program by attaching
it at the raw_syscall tracepoint, where the control flow
of all system calls originates. Then, the eBPF program

intercepts and captures all system calls, allowing for the
extraction of relevant context from the container pro-
cesses invoking these system calls. As containers are iso-
lated using Linux namespaces, each container process
possesses unique IDs within its namespace. Conversely,
host processes have a predefined (static) namespace
ID (i.e., PROC_PID_INIT_INO). When a system call is
invoked, the eBPF program captures the event. It then
acquires the process context (i.e., PID namespace ID and
Process ID) associated with the system call by referencing
the task_struct structure of the processes, along with the
System Call ID. The program then uses the PID names-
pace ID to determine whether the process invoking the
system call belongs to a container. If the system call is
not triggered within a container, the program promptly
skips further processing for that specific system call.
This efficient filtering mechanism ensures that Optimus
solely focuses on monitoring and analyzing system calls
originating from containers, thus minimizing unneces-
sary overhead and enhancing the accuracy of system call
identification.

As Optimus endeavors to identify a minimal set of nec-
essary system calls essential for container operations, it
is crucial to monitor all system calls from the inception
of container creation. However, for containers that might
already be running before the execution of Optimus,
it skips the monitoring of the system calls triggered by
those containers since it can only identify a subset of sys-
tem calls for them. When a new container is created, it
undergoes a transition from the default PID namespace
to a new PID namespace, resulting in the PID of the ini-
tial process becoming 1. Recognizing this characteristic,
Optimus utilizes the PID of a process being 1 as a trigger
point to commence tracing system calls for new contain-
ers. This approach ensures that Optimus efficiently moni-
tors the system calls from newly created containers while
avoiding redundant monitoring for existing containers,
thereby maintaining the focus on acquiring the complete
set of necessary system calls for each container.

Figure 2 illustrates the systematic workflow of Opti-
mus in tracing all system calls for containers. When the
initial process (with PID = 1) of a container is launched
and invokes a system call, the eBPF program initiates the
process by registering the PID namespace ID of the con-
tainer in the pid_ns map. Subsequently, whenever a sys-
tem call is invoked, the eBPF program checks the pid_ns
map to verify if the PID namespace ID associated with
the system call exists. If the PID namespace ID is found
in the map, indicating that the system call originated
from within a container, the eBPF program proceeds to
record the system call, along with its respective process
context, in the shared buffer. This buffer resides between
the eBPF program and the system call monitor in the

Page 7 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

user space. Conversely, if the PID namespace ID is not
found in the pid_ns map, signifying that a container did
not trigger the system call, the eBPF program bypasses
monitoring the system call. This approach efficiently
ensures that Optimus exclusively traces and captures
system calls relevant to containers, not the processes
running on the host.

Container Awareness: While the system call monitor
can detect system calls made by all container processes,
it still has a limited view of which source containers are
making these system calls, primarily because container
metadata such as Container ID and Container Labels are
user-defined and lack inherent context within the host

system. This gap between system metadata, including
PID namespace ID and Process ID, and container meta-
data necessitates an additional step to establish a link
between the two, effectively bridging this gap and ena-
bling accurate identification and association of system
calls with their respective containers.

To bridge the gap between system-level and container-
level metadata, as depicted in Fig. 3, the container man-
ager actively monitors container changes within the
container platform, maintaining entities for system call
records in Optimus’s trace table, including context infor-
mation such as Container ID and Container Label for
all active containers. Also, when Optimus detects a new

Fig. 2 Overall workflow of lightweight system call monitoring. (1) The system call monitor checks if containers trigger any invoked system calls. (2)
It verifies if the invoked system calls need to be monitored based on predefined criteria. (3) The monitor selectively records the required system calls
and notifies the update to the user-space monitor

Fig. 3 Overview of container-aware system call recording. (1) The container manager maintains Optimus’s trace and container mapping tables
by extracting container context from the container platform. (2) The system call monitor updates system call records in the trace table using
information obtained from the container mapping table

Page 8 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

container, it takes proactive measures to identify the cor-
responding PID namespace ID for each container by ref-
erencing the proc file system (specifically, /proc/the PID
of the initial process for a container/ns/pid). Then, to
effectively associate the system metadata with container
metadata, Optimus maintains a container mapping table,
which correlates PID namespace IDs with container IDs.
Subsequently, when the system call monitor pulls system
call records from the shared buffer, it references the con-
tainer mapping table to find the mapped container IDs
associated with the specific PID namespace IDs. This
process enables the system call monitor to update the
monitored set of system calls accurately for each con-
tainer in the trace table with the identified system calls,
allowing precise profiling of system call activities within
individual containers.

Performance Optimization: When monitoring system
calls for specific processes, the information on each sys-
tem call is typically received on a per-system-call basis,
as immediate actions or tasks may be required for each
call. However, in the containerized environment where
numerous containers run on the same host system, there
is a significantly higher volume of system calls gener-
ated by multiple container processes, even within a short
period. Consequently, the communication channel can
quickly become overloaded when transferring the infor-
mation for invoked system calls from the kernel space to
the user space through the shared buffer. This can lead to
the loss of some system calls due to the lack of space in
the shared buffer.

Optimus implements a batch mode to efficiently han-
dle heavy system call invocations while pulling a col-
lection of system call records from the kernel space. As
Optimus explicitly requires a set of system calls invoked
from each container, it does not need to retain all the
information for each system call. By eliminating dupli-
cated system call events already recorded in the shared
buffer, Optimus substantially reduces the number of
records that need to be transferred to the user space.
This intelligent batching approach allows Optimus to
pull only a small number of essential system call records
and update the trace table without sacrificing the accu-
racy or completeness of the system call monitoring. The
performance benefits of this batch mode and how Opti-
mus effectively resolves the performance issue under
heavy system call invocations are elaborated in “Impact
on system monitoring” section (Table 3).

System call analysis
As discussed in “Challenges in attack surface reduc-
tion” section, the possibility of adversaries intervening
in the system call identification process by compromis-
ing container images or development environments

should be appropriately considered. However, this
aspect has received relatively less attention in previous
research. Furthermore, determining which system calls
should be included or excluded without the context of
running containers poses significant challenges, par-
ticularly in the containerized environment where mul-
tiple tenants deploy diverse container types together.
To address the security concerns related to the valida-
tion of identified system calls (R2), Optimus proposes
the implementation of an association-based system call
filtering mechanism. This approach is designed to dis-
cern and filter out less confident system calls identified
within each container, thereby minimizing the potential
impact of adversarial interference.

Association Analysis: The primary objective of
association analysis [8, 27] is to discover meaning-
ful relationships within given datasets. In the context
of Optimus, these relationships manifest as frequent
item sets or association rules, representing collec-
tions of system calls that frequently co-occur. To vali-
date the relevance of identified system calls for each
container independently, Optimus leverages associa-
tion analysis to uncover relationships among the sys-
tem calls. By doing so, it identifies patterns of system
calls that commonly appear together within the data-
set. Subsequently, Optimus filters out system calls that
exhibit lower relevance compared to other system calls,
effectively reducing the likelihood of including poten-
tially irrelevant or less essential system calls in the final
set of necessary system calls. This association-based
approach allows Optimus to assess the significance of
individual system calls within the context of their co-
occurrence patterns, contributing to a more accurate
and context-aware system call filtering process.

Association Rule Mining: To uncover relationships
among system calls, as illustrated in Fig. 4, the initial
step involves establishing association rules for the sys-
tem calls using the top 100 publicly available container
images from Docker Hub [21], deploying them and
meticulously collecting the set of system calls invoked by
each container process within these deployed containers.
Subsequently, the FP-Growth algorithm is employed, a
well-known and efficient algorithm [3, 33, 50] for asso-
ciation rule mining that demonstrates effectiveness on
large datasets owing to its compact data structure. The
generation of association rules is a one-time task, and
Optimus leverages the produced rules in the system call
filtering process for all containers. By employing this
approach, Optimus can effectively discover meaningful
relationships among system calls, enabling it to filter out
less relevant calls based on their co-occurrence patterns
and enhance the accuracy of system call identification for
individual containers.

Page 9 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

During the process of generating association rules, two
crucial parameters, support and confidence, need to be
determined. Support refers to how frequently two system
calls, X and Y, appear together in the dataset, while con-
fidence indicates the likelihood of system call X appear-
ing when system call Y is present in the dataset. In this
work, the optimal constraints for support (40%) and con-
fidence (80%) are empirically identified, demonstrating a
high accuracy score in obtaining sets of highly relevant
system calls. Here, the accuracy score represents the
measure of correctly identified cases, encompassing true
positives and true negatives among all observations. The
overall process of determining the optimal parameter set
will be elaborated upon in “Effectiveness of association
analysis” section, outlining the methodology employed to
achieve accurate and reliable system call filtering based
on their associations.

The process of generating association rules based on
combinations of items in the dataset can lead to a signifi-
cant increase in rule size, particularly when dealing with
diverse items. In this work, since system calls are used as
the items for association analysis, in the worst-case sce-
nario, approximately 400 system calls from the recent
Linux kernel could be involved. Consequently, the result-
ing association rules could become excessively large,
making it impractical to find relationships among identi-
fied system calls for each container in runtime. To tackle
this issue, we introduce a novel pruning technique aimed
at reducing the number of association rules. An investi-
gation into the accuracy score concerning different num-
bers of items reveals that the change in accuracy becomes
subtle once the number of items exceeds a certain thresh-
old, as depicted in the Fig. 9. Based on this observation,
association rules containing more than two system calls

are removed, effectively reducing the number of associa-
tion rules by 94.4%.

Finally, a unique set of system calls included in the
association rules is generated. Note that it is possible that
some of the system calls identified from containers may
not appear in the association rules. In such cases, match-
ing the identified system calls with the association rules
would be redundant and consume unnecessary system
resources. To optimize this process, a valid set of system
calls is created for matching with the association rules,
allowing Optimus to filter out identified system calls that
cannot be matched during system call validation. This
significantly alleviates the workload of profile genera-
tion and ensures that Optimus focuses only on relevant
and matchable system calls, enhancing the efficiency and
effectiveness of the system call filtering.

Seccomp profile generation
Figure 5 illustrates the process of how the profile gen-
erator efficiently creates a new Seccomp profile for each
container. During this procedure, the profile genera-
tor adopts slightly different approaches for the first and
subsequent iterations. For the initial creation of the Sec-
comp profile, the generator derives valid candidate sys-
tem calls by matching newly monitored system calls with
candidates extracted through association analysis. These
valid candidates are then combined with the previously
allowed system calls to form the basis of the new profile.
In subsequent iterations, the profile generator leverages
the existing profile and incrementally updates it with
newly identified system calls from the association anal-
ysis, further refining the profile. This iterative approach
optimizes the profile creation process and ensures the

Fig. 4 Procedure to identify highly relevant system calls through association analysis. On the left side, one-time offline processes derive association
rules from system calls extracted from diverse container processes, and valid system calls are extracted from these rules. On the right side,
the profile generator component utilizes the association rules to identify candidate system calls that exhibit high confidence with the monitored
ones

Page 10 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

inclusion of highly relevant and context-aware system
calls for each container’s specific requirements.

Profile Generation: When operators deploy contain-
ers, the containers are initially created with the default
Seccomp profile [20], which typically allows most sys-
tem calls. The profile generator’s initial focus lies in the
removal of redundant system calls, which are allowed in
the default profile but do not actually appear in the con-
tainer’s operations. As the profile generator does not
initially possess the system calls required for system call
validation, it adopts a pragmatic approach. The generator
simply incorporates the system calls monitored within a
container into a new Seccomp profile. This strategy effec-
tively reduces the scope of allowed operations for the
container, enhancing its security posture.

Once a new Seccomp profile is applied to a container,
Seccomp starts restricting unexpected operations with
the new profile while allowing most functions necessary
for the service of the container. However, it is still pos-
sible that certain system calls remain uninvoked until
the previous profile generation, potentially representing
unexplored operations for the container’s service. There-
fore, the profile generator shifts its focus to address the
addition of undiscovered system calls after the initial pro-
file generation.

Whenever Optimus discovers new system calls in a
container, the profile generator is required to update
the Seccomp profile applied to the container to accom-
modate the unexplored operations. To achieve this, the
profile generator initiates a validation process for the
newly monitored system calls based on the association
rules. Specifically, it generates combinations of the sys-
tem calls already applied to the container while excluding
system calls that do not exist in the valid set of system

calls derived from the association rules. The profile gen-
erator then matches each combination with the associa-
tion rules, identifying candidate system calls present in
the matched rules but not in the set of already-applied
system calls. Subsequently, the profile generator checks
if each newly monitored system call is among the can-
didate system calls. If it is, the profile generator deems
the newly monitored system call as highly relevant to the
system calls invoked until the previous profile generation
and automatically includes it in a new Seccomp profile,
created with all the system calls previously applied to the
container.

However, if a newly monitored system call is not among
the candidate system calls, the profile generator tempo-
rarily blocks the system call, as it may not be invoked for
the container’s service. In such cases, the profile genera-
tor notifies operators about the unexpected system call
and seeks their approval. Unless operators permit the
inclusion of this unexpected system call, the profile gen-
erator continues to exclude it from the new profile. It is
important to note that making decisions in these situa-
tions may necessitate the involvement of system security
administrators or third-party entities, such as anomaly
detection engines. We acknowledge that this aspect goes
beyond the scope of our current paper.

Considering the unique behavior of each container
image and the various execution scenarios, predicting
occurrences of previously unobserved correct executions
presents a substantial challenge. Consequently, Opti-
mus consistently engages in decision-making and pro-
file update procedures until the container is terminated,
ensuring the availability of the container’s intended ser-
vice. However, if the association analysis fails to identify
any candidate system calls with significant associations,

Fig. 5 Process of how Optimus creates new profiles for containers. The profile generator derives valid candidate system calls by matching newly
monitored system calls with candidates extracted through association analysis. Combining these valid candidates with previously allowed system
calls results in a new set of allowed system calls. The essential system calls required for container initialization are added to this set, culminating
in the creation of a new Seccomp profile tailored to the specific container’s needs

Page 11 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

Optimus ceases the process of profile updates. This
dynamic and context-aware approach allows the profile
generator to adaptively update the profile for each con-
tainer, ensuring the inclusion of highly relevant system
calls while mitigating the potential risks associated with
unexplored system call operations.

System Calls for Container Initialization: During the
analysis of when a Seccomp profile is applied to a con-
tainer during the container creation and initialization,
it has come to our attention that there exists a hidden
space where a Seccomp profile is applied to a container,
but the initial process of the container is yet to be exe-
cuted. This situation poses a challenge as Optimus might
miss certain system calls that are required for the proper
functioning of running containers. To address this con-
cern and ensure comprehensive coverage, a meticulous
manual analysis is conducted using the same container
images utilized for association rule generation in “System
call analysis” section. This additional analysis allows us to
thoroughly identify and incorporate any system calls that
might have been overlooked during the initial Seccomp
profile generation process, enhancing the accuracy and
completeness of Optimus’s system call filtering for con-
tainer environments.

Figure 6 illustrates the container spawning process.
When an operator deploys a new container, the container
platform initiates the runc process, which serves as a
low-level container runtime. The runc process configures
namespaces, cgroups, and capabilities for the container,
establishing the container’s isolation. Once the container
isolation is set up, the runc process proceeds to apply a
given Seccomp profile (e.g., the default Seccomp profile)
to itself. From this point onwards, all operations (i.e., all
invoked system calls) within the runc process are subject

to Seccomp’s control. The runc process then sets up the
container environment, performing tasks like setting user
and group IDs, altering the ownership of standard I/O file
descriptors, and adjusting the working directory. During
this environment setup phase, Optimus might miss par-
ticular system calls invoked in this context. Finally, the
runc process executes the entry point of the container,
fully initializing the container environment.

Through our careful analysis, 22 essential system calls1
required during the container initialization phase have
been identified. These essential system calls are funda-
mental for setting up the container environment and
enabling its proper operation. Thus, the profile generator
automatically attaches them to the new Seccomp profile
for each container at the conclusion of the profile gen-
eration process. By including these essential system calls,
Optimus ensures the completeness and accuracy of sys-
tem call filtering, mitigating any gaps that might have
arisen during the container initialization.

Covert container renewal
Following the generation of a new Seccomp profile by
Optimus for a particular container, it encounters a chal-
lenge associated with Seccomp’s runtime profile update
limitations (R3) for active containers, as detailed in
“Challenges in attack surface reduction” section. To over-
come this constraint, Optimus employs a streamlined
approach to dynamically update the Seccomp profile for
an active container without necessitating modifications

Fig. 6 Workflow of container creation and initialization. Red words highlight the changes in the cgroup, the PID namespace, and the PID

1 It is observed that a container invokes setgroups, setuid, setgid, capset,
chdir, getdents64, fstat, newfstatat, fstatfs, fcntl, futex, fchown, execve, get-
ppid, prctl, epoll_ctl, epoll_pwait, openat, read, write, close, and nanosleep
system calls during the container initialization.

Page 12 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

to either the containers or host systems, thereby mini-
mizing disruptions to the container service. This method
involves replacing the running container with a new
identical container, referred to as an alternative con-
tainer, which is fortified with the new Seccomp profile.
By adopting this approach, Optimus efficiently applies
the updated profile to the container while maintaining
continuous service availability. The container manager
component plays a key role in managing this process, as
depicted in Fig. 7.

Alternative Container Creation: Unlike typical appli-
cations, containers are designed with scalability in mind,
allowing multiple containers (replicas) to serve the same
container service. To update the Seccomp profile of a
container, Optimus employs an alternative container that
is identical to the running container. When the container
manager receives the new Seccomp profile for a specific
container from the profile generator, it proceeds with
the update process by first deploying the new Seccomp
profile into the host systems. Additionally, the container
manager increases the number of replicas associated with
the container service.

The container platform automatically creates a new
container, known as the alternative container, equipped
with the updated Seccomp profile. By increasing the
number of replicas, Optimus ensures the availability of
the container service without any interruptions. This
approach prevents service downtime that may occur if
the container were simply recreated with the new profile.
Without adjusting the number of replicas, the container
platform might immediately terminate either the original
container or the alternative container while attempting

to maintain the specified number of replica containers
for the container service. This could result in either the
container service being unsupported or facing a service
interruption until the new container is fully initialized.
Therefore, Optimus proactively increases the number of
replicas to avoid such potential scenarios and ensures
the seamless update of the Seccomp profile with uninter-
rupted service availability for containers.

Old Container Removal: Upon the readiness of the
alternative container, the container platform automati-
cally load-balances incoming traffic between the original
and alternative containers. Typically, container platforms
group containers based on assigned labels and treat con-
tainers with the same labels as endpoints for the same
container service.

However, at this stage, it becomes challenging to
determine the completion of the container service ini-
tialization, as there is no direct context available for the
container service. To address this, Optimus relies on the
patterns (variations) of invoked system calls from the
alternative container. As shown in Fig. 11 (“Managing
unexplored operations” section), most containers exhibit
a consistent number of system calls once initialization is
complete. Conversely, during initialization, the number
of system calls generated fluctuates. Optimus capital-
izes on this observation by assessing the stability of the
container service through the differential of the moving
average in the number of system calls over a specific time
period. Once Optimus deems the alternative container
fully initialized and the container service stable, it pro-
ceeds to remove the old container by reducing the num-
ber of replicas.

Fig. 7 Workflow of covert container renewal. The container manager creates an identical alternative container to the existing one. Then, it enforces
a new Seccomp profile into the alternative container, enhancing its security posture. Lastly, the service proxy seamlessly redirects incoming traffic
from the old container to the alternative one

Page 13 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

To ensure the efficient termination of the old con-
tainer, Optimus strategically decreases the priority
(deletion cost) of the old container, making it the first
selection for termination before modifying the number
of replicas. Consequently, the container platform grace-
fully terminates the old container, directing all incoming
traffic to the alternative container, where the updated
profile is applied to allow previously unsupported opera-
tions. Therefore, Optimus achieves a seamless transition
from the old container to the alternative one with the
updated Seccomp profile, preserving continuous service
availability.

Implementation
The Optimus prototype is implemented using 8.1K lines
of Go and C code, running on the Linux 5.4 kernel with
Kubernetes v1.21 [14] and Docker v19.03.9 [23].

Container Manager: Optimus leverages Kubernetes’s
Client-Go [37], which enables interaction with the
Kubernetes API server, to monitor container resources
across all nodes in the Kubernetes cluster. Using watch
events for each pod, Optimus can track container crea-
tion, modification, and deletion. In covert container
renewal, Optimus utilizes labels to categorize containers
for the same logical stream, as Kubernetes lacks an inher-
ent method to represent the relationship between con-
tainers with different Seccomp profiles.

System Call Monitor: The system call monitor com-
prises two main components: the system monitor in
the user space and the eBPF program in the kernel
space. Optimus employs the BPF Compiler Collection
(BCC) [35] to install and retrieve data from the eBPF pro-
gram in the kernel space. The eBPF program is attached
to the raw_syscalls tracepoint to monitor all system calls.
Optimus also utilizes two types of eBPF maps: BPF_
HASH (pid_ns map) to internally store the PID names-
pace IDs for the containers and BPF_ARRAY (shared
buffer) to store system call records.

Profile Generator: To generate Seccomp profiles for
containers in the Kubernetes cluster, the profile genera-
tor constructs profiles with three essential fields: syscalls,
architectures, and defaultAction. It enumerates the set of
derived system calls into syscalls with the ALLOW return
action, specifies the corresponding architectures since
system calls can differ by architecture, and configures
the defaultAction as BLOCK, indicating a whitelist-based
Seccomp profile.

Experimental validation
In this section, we assess the effectiveness of Optimus in
accurately profiling and extracting the minimum neces-
sary system calls for containers while maintaining sup-
port for required operations. The evaluations consist of

three main types: association analysis validation, attack
surface reduction, and management of unexplored oper-
ations. For the experiments, three machines were utilized
to create a Kubernetes cluster with Flannel [28]. Each
machine was equipped with an Intel E5-2678 CPU (12
cores, 2.5GHz) and 16 GB of RAM.

Effectiveness of association analysis
This section presents the accuracy of Optimus in extract-
ing candidate system calls that are highly relevant and
provides experimental results that showcase the identi-
fication of appropriate association rules to maximize the
performance of association analysis. Also, it verifies the
impact of association rules optimized for efficient asso-
ciation analysis.

Optimal Constraints on Association Rule: To attain
optimal results in extracting highly relevant candidate
system calls, we conducted a comprehensive evaluation
of association analysis, employing different metric values
for support and confidence with the accuracy score as our
performance measure. The accuracy score allowed us to
gauge the quality of association rules, assessing the pre-
cise identification of cases, including both true positives
(where predicted system call occurrences match actual
appearances) and true negatives (where predicted system
calls, expected to be absent, do not occur). Ensuring the
robustness and credibility of our experimental results,
we systematically tested each generated association rule,
considering various combinations of constraints, across
the dataset comprising 71 carefully selected container
images among the top 100 publicly available container
images from Docker Hub [21], repeating the process 10
times. Note that we excluded 29 container images (e.g.,
OpenJDK [16], Sentry [17], and Apache Storm [18]) from
this dataset. This decision was made to individually con-
figure container images, ensuring they represented a
diverse range of workloads independently.

Figure 8 illustrates the accuracy scores of association
rules generated through the combination of support
constraints ranging from 30% to 50% and confidence
constraints from 70% to 90%. Upon examination of the
generated association rules under the same support con-
straint, it is evident that accuracy scores decline for con-
fidence constraints below 80%, attributable to diminished
association strength. Interestingly, accuracy scores also
decrease when the confidence constraint exceeds 80%,
indicating a reduction in the size of extracted candidate
system calls. Conversely, under the same confidence con-
straint level, the analysis reveals that the accuracy score
reaches its peak at a 40% support constraint, indicating
that the accuracy scores do not exhibit a proportional
increase as the constraint level escalates, which can be
attributed to the sparser extraction of candidate rules.

Page 14 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

Performance of Association Analysis: Using the
optimal set of association rules, a comprehensive experi-
ment was conducted with 71 container images to assess
the performance of our association analysis model in
extracting candidate system calls that actually occur dur-
ing the container’s service runtime. The results showed
that, on average, 10 out of 11 candidate system calls were
observed to occur, representing true positive obser-
vations. Conversely, out of 325 system calls that were
excluded from the candidates due to their low relevance,
265 system calls did not occur as predicted, indicat-
ing true negative observations. This demonstrates that
Optimus can accurately predict the occurrence and non-
occurrence of system calls with high correlation and low
correlation, respectively, achieving an accuracy of 81.8%.

Optimization for Association Analysis: To evaluate
the performance of the filtered association rules, we con-
ducted experiments with various rule sets by pruning the
original rules based on the number of items in each rule.

Figure 9 shows that as the maximum number of items
in a rule increases, the file size of the rule set signifi-
cantly increases from 1.8 MB to 339 MB. However, the

accuracy remains constant at 81.8% for rule sets con-
taining up to 2 items. Notably, the file size of the rule set
with less than or equal to 2 items is only 19 MB, which is
a substantial reduction of 94.4% compared to the origi-
nal set’s size of 339 MB, while maintaining the same
accuracy score. This significant reduction in file size
greatly alleviates the workload of matching input system
call combinations to the rules, improving efficiency dur-
ing system call validation.

System call filtering
To evaluate the attack surface reduction achieved by
Optimus, we measured the number of system calls
disabled by Optimus. Figure 10 displays the results of
this assessment for various container images, includ-
ing MySQL, PostgreSQL, MongoDB, and Redis, which
are widely used in practice. The experiments were con-
ducted on a total of 71 container images; nevertheless,
the figure exclusively showcases the outcomes for images
that were mutually selected from those evaluations in
other works. To enhance the reliability of these experi-
ments, we conducted 10 iterations for all association

Fig. 8 Accuracy scores of the association rule set extracted under varying support (30% to 50%) and confidence (70% to 90%) constraints

Fig. 9 The accuracy score and rule size of the association rule sets with the different number of items per rule

Page 15 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

rules filtered based on the maximum number of items
across the 71 selected images.

In the evaluation of attack surface reduction, Optimus
demonstrated a significant reduction in the number of
allowable system calls for common container images.
Specifically, Optimus achieved a system call reduc-
tion rate of 69.4%, which is about 25% higher than Con-
fine [30], a static analysis-based approach that extracts
allowable system calls by statically analyzing the library
functions observed at the beginning of execution. While
Mining Sandbox [70], a dynamic analysis-based method
that derives the set of allowable system calls through
offline training, achieved the highest reduction rate of
71.16%, Optimus’s result is only 1.76% lower, making it
a competitive solution for minimizing the attack surface.
Moreover, Speaker [41], another dynamic analysis-based
approach, presented the highest reduction rate of 84.12%
since it removes the system calls, which are only required
for the booting phase at the start of the running phase.
However, Optimus provides an essential advantage over
these dynamic analysis-based approaches by support-
ing the reliable execution of containers even in the case
of unexplored operations. This is made possible through
Optimus’s covert container renewal mechanism, which
allows for seamless updates of Seccomp profiles without
disrupting container service. Notably, Optimus’s evalua-
tion focuses on container-native environments, differen-
tiating it from static analysis-based approaches designed
for host-native applications.

To validate the accuracy and reliability of the profiles
generated by Optimus, we conducted inspections on
the status of containers and application logs for all 71
containers that were applied with profiles corrected by
Optimus. The results revealed that all containers were
successfully launched without encountering any issues
or disruptions. This demonstrates that Optimus effec-
tively creates valid profiles that do not interfere with the

essential functionality required for the normal execution
of containers. The thorough validation process ensures
that the profiles derived by Optimus are robust and
dependable, providing an added layer of confidence in
the security and stability of containerized applications.

Managing unexplored operations
To evaluate Optimus’s capability in handling unexplored
operations and exceptional cases, we verified the valid-
ity of the profiles generated by Optimus after correcting
them to accommodate these intended operations. Addi-
tionally, we analyzed the occurrence patterns of system
calls to ensure the proper initialization of containerized
applications.

Unexplored Operation Discovery: Table 1 provides a
detailed description of the exceptional cases introduced
to test Optimus’s ability to handle unexplored operations.

• Memory Buffer Bloating. PostgreSQL encountered
memory buffer problems when subjected to sig-
nificant stress. These issues were traced back to the
execution of a large number of insert queries using
the sysbench utility, which was running within the cli-
ent-side container. In response to this situation, Post-
greSQL dynamically increased the memory buffer
size by making use of the sys_mremap system call to
extend an existing block of virtual memory.

• Configuration Reload. Nginx performed configura-
tion reloads, typically triggered by rare events such as
SSL certificate updates, the implementation of redi-
rect rules, or adjustments to rate limits. To assess
Nginx’s configuration reload process, we initiated
it by sending a SIGHUP signal. The master process
conducted checks on the new configuration file’s
status using the sys_lstat system call. Additionally, it
employed the sys_umask system call to set file crea-
tion permissions for log files and new sockets. When

Fig. 10 System call reduction rate achieved by different profiling methods

Page 16 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

replacing the worker process, the master process uti-
lized the sys_getpgrp and sys_kill system calls to send
a SIGTERM signal.

• Cache Purging. In the case of Nginx, we also con-
ducted an examination of cache content management
in exceptional scenarios. This involved saturating the
cache memory by utilizing the ab and curl utilities.
In cases where the requested content was not found
in the cache, the cache manager performed a flush
operation on the most recently accessed cached con-
tent, which in turn triggered the use of the sys_unlink
system call to remove the cached data.

• Server Reconfiguration. Exploration of server
reconfiguration, a rarely executed operation by web
daemons, was also investigated for Apache httpd. A
graceful reload of Apache Httpd was conducted while
actively handling traffic generated via the httperf
utility. Throughout this process, the parent process
duplicated the file descriptor of the dummy socket
using the sys_dup2 system call and leveraged the sys_
info system call to assess the current server memory
statistics. To signal the termination of worker pro-
cesses, the sys_getpgrp, sys_kill, and sys_tgkill system
calls were employed. These exceptional scenarios
exemplify potential occurrences during runtime.

To validate the effectiveness of the profiles generated
by Optimus, we thoroughly examined the status of con-
tainers and the application logs when the containers,
equipped with the derived profiles, encountered the
exceptional cases introduced earlier. Remarkably, all
containers fortified with the corrected profiles exhib-
ited flawless performance without encountering any
issues or errors during application initialization and

when dealing with previously unexplored operations.
Here, we confirm that Optimus adeptly manages the
occurrence of unexplored operations while effectively
minimizing the attack surface exposed to the kernel.

System Call Invocation Pattern: To assess the com-
pletion of application initialization, we conducted an
in-depth analysis of system call invocation patterns on
71 container images that were subjected to Optimus.
Figure 11 illustrates the analysis results for the plone
container, chosen as a representative case. The col-
umn bar graph depicts the number of invoked system
calls, measured at 500 ms intervals from the begin-
ning of the container deployment. Notably, there were
significant fluctuations in the number of system calls
during the first 12 seconds of container deployment.
After careful examination of the application logs, we
concluded that the containerized application completes
its initialization after these fluctuations have subsided.
A similar pattern was observed across most container
images where Optimus was applied, where either no
system calls were issued or a stable number of system
calls were intermittently repeated after initialization
was completed. These findings affirm Optimus’s abil-
ity to identify the optimal timing for container renewal,
ensuring seamless and reliable execution.

To achieve a comprehensive understanding of varia-
tions in the number of system call occurrences during
application initialization, a moving average approach
was employed. As observed in Fig. 11, this differential
value gradually approaches zero after the application’s
initialization phase. By leveraging moving averages,
Optimus was able to ascertain the moment when the
containerized application achieved a stable state, fully
initialized, and capable of serving traffic.

Table 1 Example cases of unexplored operations that do not belong to normal execution paths. Each case exceptionally appears
under specific conditions, not simple benchmarks or training. The above system calls are required to perform the required operation
successfully

Container Image Operation that rarely occurs Required system
calls

Reason to invoke system calls

PostgreSQL Memory Buffer Bloating mremap To resize memory space for transaction logs and caching

Nginx Configuration Reload lstat To confirm and parsing the new configuration file

umask To open log files and new sockets

getpgrp To obtain the PGID of the old worker processes

kill To send the SIGTERM signal to the old worker processes

Nginx Cache Purging unlink To delete the old cached files

Apache Httpd Server Reconfiguration dup2 To duplicate the file descriptor of the dummy socket

sysinfo To get available memory/swap space size

getpgrp To obtain the PGID of the old worker processes

kill, tgkill To send the SIGTERM signal to the old worker processes

Page 17 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

Performance evaluation
Unlike previous studies that rely on offline analysis,
Optimus continuously monitors system calls while
the container is running, which may impact the per-
formance of the host system and containerized appli-
cations. To assess the influence of Optimus on the
performance of the host system, we conducted several
measurements to evaluate its effect.

Impact on system monitoring
Processing Time by Monitoring Mechanisms: To
assess the performance degradation caused by the mon-
itoring mechanism utilized by Optimus, we conducted
a series of measurements to measure the processing
time for a set of system calls. The measurements were
performed 30 times for three different scenarios: the

absence of monitoring (Base), the use of the strace util-
ity, and the application of eBPF. These scenarios were
chosen to evaluate the suitability and effectiveness of
Optimus.

As shown in Table 2, the strace utility exhibited a
22.39% increase in processing time compared to the
baseline scenario, where no monitoring mechanisms for
system call invocations were employed. This significant
increase in processing time is attributed to the need for
frequent transitions between user and kernel space for
capturing and decoding system calls. The high number of
context switches between user and kernel spaces leads to
considerable performance degradation on the host sys-
tem. On the other hand, the eBPF approach showed only
a 1.41% increase in processing time, which is a signifi-
cantly more reasonable overhead compared to strace. The
eBPF mechanism operates within the kernel and facili-
tates interactions with user space through the eBPF map,
which is accessible from both spaces. As a result, there
is no need for frequent context switching between spaces
to trace system calls. Based on the system call process-
ing time measurement results, we conclude that eBPF is
a suitable and high-performance approach for system call
monitoring.

Effectiveness of Batch Monitoring: In scenarios
where the container execution involves a vast number of
system calls, a new challenge arises in accurately identi-
fying and handling these system calls. This is due to the
events getting heavily stacked in the eBPF map and the
non-atomic handling of events. We have devised an opti-
mized batch mode to overcome this issue and reduce the
performance degradation caused by the basic process of
the classic eBPF.

We measured the number of (monitored and lost) sys-
tem call events in containers to assess the batch mode’s
performance benefits. Table 3 displays the results of
event invocations when the classic and batch modes were

Fig. 11 Measurements on the number of system call invocations and moving averages for estimating the completion of container initialization

Table 2 Measurements of the elapsed time in handling system
calls, depending on monitoring schemes: strace and eBPF

Processing time (µs) Increment
rate (%)

Base 15.07 -

Strace 18.45 (+3.38) 22.39

eBPF 15.29 (+0.22) 1.41

Table 3 A performance comparison between classic and batch
modes of eBPF in monitoring system call events. The total events
indicate the number of events transferred to the eBPF map,
whereas the lost events represent what was not processed and
wasted occurrences

Total events Lost events

Classic Mode 2,579,794 853,583 (33.1%)

Batch Mode 95 0 (0%)

Page 18 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

applied, respectively. The classic eBPF generated 2.5 mil-
lion events that had to be processed in user space. In
contrast, the batch version of eBPF significantly reduced
the number of events by 99.99%, resulting in only 95
events. Moreover, 33.1% of all events in the classic eBPF
were discarded without processing due to the eBPF map
being already full of unprocessed events. In contrast, no
events were lost in the batch mode, thanks to the signifi-
cant reduction in total events. The dramatic reduction in
the scale of events in user space significantly mitigated
performance degradation, addressing potential strain on
host system resources, particularly in environments with
numerous active containers.

Impact on container applications
To assess the impact of the Covert Container Renewal
on the containerized application’s service availability,
we measured the response time and the rate of failed
requests. The goal was to evaluate whether the renewal
process has any noticeable effect on the performance and
reliability of the containerized application’s service.

Response Time on Container Renewal: We deployed
Apache Httpd with accessible web pages on the server-
side container and used another container as a client
to send requests using ab [4]. We then recorded the
response time while the server-side container was
replaced with a new one through different container
alternation approaches. Response time refers to the dura-
tion it takes for a system to process and respond to a cli-
ent’s request, encompassing the round-trip time from
client to server and back.

Figure 12 shows the response time of requests through
the respective container alternation approach. When
there was no container alternation, the average response
time was 60.83 ms. However, with the Kubernetes-native
Rolling Update approach, the response time spiked to
439.14 ms at the start of the container alternation (at 4

seconds). This increase in latency was due to the abrupt
termination of the server-side container before the new
container’s application had fully initialized, leading to
connection establishment issues and delays in respond-
ing to requests. Additionally, during the period between 5
and 19 seconds, the requests experienced lower response
time than the container with no alternation because the
server-side container was busy with initialization and
unable to respond promptly.

On the other hand, Optimus’s Covert Container
Renewal approach yielded an average response time
of 61.48 ms, only a 1.07% increase compared to the
container with no alternation, and displayed a similar
response time pattern. This is because Optimus keeps the
old container on the server side until the new container’s
application completes its initialization process, ensuring
that the service remains available during the renewal pro-
cess, unlike the Kubernetes-native Rolling Update, which
causes disruptions in service availability during the con-
tainer alternation.

Request Failure Rate: In the evaluation of request fail-
ure rates during container alternation at various request
concurrency levels, Fig. 13 shows the results for both
the Kubernetes Rolling Update and Optimus’s Covert
Container Renewal. In this context, the request failure
rate denotes the proportion of requests sent to a con-
tainerized application that either lacks a valid response
or receives an error response. At a concurrency level of
4,000, the Kubernetes Rolling Update exhibited a loss rate
of 0.43%, indicating the highest increase of up to 1,076%
compared to the container without alternations. On aver-
age, the request failure rate during the Kubernetes Roll-
ing Update was 797.69% higher than that of the container
without alternations.

In contrast, Optimus’s Covert Container Renewal
displayed a loss rate of 0.05% at the 2,500 concurrency
level, resulting in a decrease of -27.98% compared to the

Fig. 12 Time series of response time variations during the Kubernetes-native Rolling Update and Covert Container Renewal

Page 19 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

container without alternations. On average, Optimus
achieved a slightly lower request failure rate of 5.94%
compared to the container without alternations. This
improvement is attributed to the divided burden on the
server during the coexistence period of the old and alter-
native containers, which helps alleviate the request fail-
ure rate when the server is under heavy load.

With these results, Optimus effectively updates the
applied profile during container execution while ensur-
ing the high availability of the application within the con-
tainer. The Covert Container Renewal approach mitigates
the service disruption issues observed in the Kubernetes-
native Rolling Update, allowing for smoother and more
reliable container alternation without breaking the appli-
cation’s availability.

Related work
Application debloating: One approach to reduce attack
surfaces is removing the unused parts of code from the
application memory space. They achieve this through
techniques such as library specialization [49, 52], func-
tion call graph analysis [2], data dependency analysis [51,
58], argument-level specialization [44], and user-defined
feature analysis [56]. These approaches reorganize pro-
grams or libraries to minimize the code that is loaded
and executed, thereby reducing potential attack vectors.
In contrast, Optimus addresses the security of contain-
erized applications by restricting the interactions with
the Linux kernel through dynamic and association-based
system call filtering. Rather than modifying the applica-
tion code itself, Optimus monitors system calls at runt-
ime and dynamically enforces a tailored Seccomp profile
to limit the available system calls, effectively minimizing
the exposed attack surface to the Linux kernel.

Kernel debloating: Several works [1, 32, 38–40, 73]
have focused on reducing the attack surface of appli-
cations by minimizing kernel memory space. These

approaches involve tailoring the Linux kernel to specific
workloads [40], instrumenting kernel functions to iden-
tify and remove unused code sections [38, 39], generating
customized kernel profiles for individual applications [32,
73], and conducting dynamic switching of in-memory
kernel code based on application profiles [1]. While these
methods share the goal of minimizing the kernel’s expo-
sure to potential attacks, our approach in this research
centers on securing interactions with the Linux kernel by
restricting access to system calls, rather than customizing
the kernel for individual containers.

System call restriction: Several studies have explored
the use of system call restriction for reducing the attack
surface of applications.

Static analysis-based approaches. Sysfilter [19] employs
static binary analysis to identify necessary system calls
from library functions that have a dependency on a given
application, creating a tailored Seccomp profile for sys-
tem call restriction. TAILOR [71] also determines the
required system calls for applications by conducting
a thorough static analysis of the standard library at the
source code level. Saphire [10] identifies API functions
of the PHP interpreter and captures the system calls
invoked from these functions to create a restricted pro-
file. While research employing static analysis techniques
has produced a comprehensive whitelist of system calls,
Optimus diverges by tracking system calls during actual
runtime. This approach minimizes potentially risky or
unnecessary system calls, thus reducing the superfluous
attack surface.

Dynamic analysis-based approaches. Wan et al. [68,
70] utilize test suites to train the execution of contain-
erized applications and dynamically record accessed
system calls using the sysdig [9] trace logs. DockerSlim
[22] is a dynamic analysis tool that optimizes contain-
ers by removing unnecessary parts from container
images and automatically generates a custom Seccomp

Fig. 13 Request failure variations during container alternation with an increment in concurrent connections

Page 20 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

profile for the container. However, in dynamic analysis-
based research, the generation of system call profiles
relies on specific workloads, limiting its ability to adapt
to various scenarios encountered throughout the entire
execution of a container. In contrast, our system can
support the additional system calls required by con-
tainer applications during actual runtime through cov-
ert container renewal.

Hybrid approaches. Confine [30] introduces a dynamic
method to capture executables launched during the ini-
tial configuration time and performs static analysis on
these captured executables to reduce unnecessary sys-
tem calls. Similarly, RSDS [69] obtains the executed
ELF files by monitoring events on the host file system
corresponding to each layer of a container image using
inotify [43]. Canella et al. [11] employ optional dynamic
analysis to complement system calls missed from static
analysis. Nimos [57] utilizes both static and dynamic
analysis techniques to scrutinize the sequence of system
call occurrences in kernel exploit codes, utilizing them
as attack patterns. However, attempts to merge static and
dynamic analysis methods in such research endeavors
have encountered pitfalls inherent in each approach, such
as erroneous inferences about necessary system calls. In
contrast, our system dynamically alters profiles at runt-
ime, thereby minimizing the exposed attack surface while
supporting the necessary system calls for the proper exe-
cution of container applications.

Temporal approaches. Some studies use temporal
separation to apply different policies to applications at
different times. Ghavamnia et al. [31] identify distinct
initialization and serving phases during an application’s
execution time and enforce different system call poli-
cies for each phase based on static analysis. Speaker [41]
presents a similar approach but utilizes dynamic analysis
to identify the required system calls for the initializa-
tion and run-time phases. Similarly, Yunlong et al. [72]
propose a methodology for partitioning the container
execution lifecycle into three distinct phases: booting,
running, and shutdown. Subsequently, profiles, crafted
through dynamic analysis, are strategically applied to the
respective phase. SysXCHG [29] introduces an innova-
tive system call filter model by augmenting the existing
seccomp-BPF and integrating it into individual ELF bina-
ries. This approach enables the refinement of the permit-
ted syscall set dynamically at runtime, precisely at the
point of execution of execve. Research utilizing temporal
separation of profile application, similar to Optimus, has
innovated new approaches to system call policy enforce-
ment, enabling dynamic replacement with appropriate
system call policies at runtime. However, inevitable mod-
ifications to the target binaries or kernel pose compatibil-
ity issues with existing operating systems.

Conclusion
In the realm of securing containerized applications, there
has been a lack of focus on restricting container access to
the shared kernel of the host system. Existing approaches
to limit container operations and interactions with the
host kernel have encountered significant security chal-
lenges. To address this gap, we propose Optimus, an
automated and unified system that employs association-
based dynamic system call filtering in container envi-
ronments. Optimus utilizes eBPF to monitor all system
calls invoked from containers at the kernel level, applies
association analysis to filter out irrelevant system calls
for each container, and enforces runtime restrictions on
available system calls. Through evaluations with real-
world container images, we demonstrate that Optimus
effectively reduces necessary system calls for containers
during runtime, while ensuring continuous container
serviceability.

Authors’ contributions
S.Y. and J.N. conceived the presented idea and designed the system. S.Y.
carried out the implementation and performed the experiments. S.Y. and J.N.
interpreted the results and wrote the manuscript. S.Y., B.K., and J.N. reviewed
and contributed to the final manuscript. J.N. supervised the work.

Funding
This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the ICAN (ICT Challenge and Advanced Network of HRD) support
program (IITP-2024-RS-2023-00259867) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 10 October 2023 Accepted: 16 March 2024

References
 1. Abubakar M, Ahmad A, Fonseca P, Xu D (2021) Shard: fine-grained kernel

specialization with context-aware hardening. In: Proceedings of the
Security Symposium, USENIX

 2. Agadakos I, Jin D, Williams-King D, Kemerlis VP, Portokalidis G (2019)
Nibbler: Debloating binary shared libraries. In: Proceedings of the Annual
Computer Security Applications Conference, ACM

 3. Agrawal R, Srikant R, et al (1994) Fast algorithms for mining association
rules. In: Proceedings of the International Conference on Very Large Data
Bases, Citeseer

 4. Apache Group (1997) Apache http benchmarking tool. https:// httpd.
apache. org/ docs/2. 4/ progr ams/ ab. html. Accessed 03/2021.

 5. Aqua Security. 2021 cloud native security survey reveals runtime knowl-
edge gap. https:// www. aquas ec. com/ news/ cloud- native- runti me- secur
ity- survey. Accessed 05/2021.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.aquasec.com/news/cloud-native-runtime-security-survey
https://www.aquasec.com/news/cloud-native-runtime-security-survey

Page 21 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

 6. Aqua Security (2019) Supply chain attacks using container images.
https:// blog. aquas ec. com/ supply- chain- threa ts- using- conta iner-
images. Accessed 06/2021.

 7. Aqua Security (2019) Tracee: Runtime security and forensics using ebpf.
https:// github. com/ aquas ecuri ty/ tracee. Accessed 10/2020.

 8. Baralis E, Cagliero L, Cerquitelli T, Garza P (2012) Generalized association
rule mining with constraints. Inf Sci 194:68–84

 9. Borello G (2015) System and application monitoring and troubleshoot-
ing with sysdig. In: Proceedings of the Conference on Large Installation
System Administration, USENIX

 10. Bulekov A, Jahanshahi R, Egele M (2021) Saphire: Sandboxing PHP
Applications with Tailored System Call Allowlists. In: Proceedings of the
Security Symposium, USENIX

 11. Canella C, Werner M, Gruss D, Schwarz M (2021) Automating seccomp
filter generation for linux applications. In: Proceedings of the Workshop
on Cloud Computing Security, ACM

 12. CNCF (2016) CRI-O. https:// github. com/ cri-o/ cri-o. Accessed 02/2022.
 13. CNCF (2020) Cloud native survey 2020 Containers in production jump

300% from our first survey. https:// www. cncf. io/ wp- conte nt/ uploa ds/
2020/ 11/ CNCF_ Survey_ Report_ 2020. pdf. Accessed 06/2022.

 14. CNCF (2021) Kubernetes v1.21. https:// github. com/ kuber netes/ kuber
netes/ tree/ v1. 21.0. Accessed 07/2022.

 15. Combe T, Martin A, Di Pietro R (2016) To docker or not to docker: a secu-
rity perspective. IEEE Cloud Comput 3(5):54–62

 16. Community TD. Openjdk. https:// hub. docker. com/_/ openj dk. Accessed
11/2021.

 17. Community TD. Sentry. https:// hub. docker. com/_/ sentry. Accessed
12/2021.

 18. Community TD. Apache storm. https:// hub. docker. com/_/
storm. Accessed 11/2021.

 19. DeMarinis N, Williams-King K, Jin D, Fonseca R, Kemerlis VP (2020) Sysfilter:
Automated system call filtering for commodity software. In: Proceedings
of the International Symposium on Research in Attacks, Intrusions and
Defenses

 20. Docker. Default seccomp profile. https:// docs. docker. com/ engine/ secur
ity/ secco mp/. Accessed 10/2020.

 21. Docker (2014) Docker hub. https:// hub. docker. com/. Accessed 01/2021.
 22. Docker (2016) DockerSlim. https:// github. com/ docker- slim/ docker-

slim. Accessed 01/2021.
 23. Docker (2019) Docker v19.03.9. https:// github. com/ moby/ moby/ tree/

v19. 03.9. Accessed 02/2021.
 24. Docker (2020) Docker scan. https:// github. com/ docker/ scan- cli-

plugin. Accessed 02/2021.
 25. eBPF Foundation. What is ebpf? https:// ebpf. found ation/ what- is-

ebpf/. Accessed 09/2020.
 26. Exploit Database (2010) About the exploit database. https:// www. explo

it- db. com/ about- explo it- db. Accessed 03/2022.
 27. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to

knowledge discovery in databases. AI Mag 17(3):37
 28. Flannel Maintainer Community (2016) Flannel overlay network. https://

github. com/ flann el- io/ flann el. Accessed 06/2021.
 29. Gaidis AJ, Atlidakis V, Kemerlis VP (2023) Sysxchg: Refining privilege with

adaptive system call filters. In: Proceedings of the Conference on Com-
puter and Communications Security, ACM, p 1964–1978

 30. Ghavamnia S, Palit T, Benameur A, Polychronakis M (2020) Confine:
Automated system call policy generation for container attack surface
reduction. In: Proceedings of the International Symposium on Research
in Attacks, Intrusions and Defenses

 31. Ghavamnia S, Palit T, Mishra S, Polychronakis M (2020) Temporal system
call specialization for attack surface reduction. In: Proceedings of the
Security Symposium, USENIX

 32. Gu Z, Saltaformaggio B, Zhang X, Xu D (2014) Face-change: Application-
driven dynamic kernel view switching in a virtual machine. In: Proceed-
ings of the International Conference on Dependable Systems and
Networks, IEEE

 33. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach. Data Min Knowl Disc
8(1):53–87

 34. Immunix (1998) AppArmor. https:// gitlab. com/ appar mor/ appar
mor. Accessed 09/2021.

 35. IO Visor Project (2016) Bpf compiler collection (bcc). https:// github. com/
iovis or/ bcc. Accessed 07/2021.

 36. Kubernetes. Production-Grade Container Orchestration. https:// kuber
netes. io. Accessed 11/2021.

 37. Kubernetes (2017) Client-go: official client library for interacting with a
kubernetes cluster. https:// github. com/ kuber netes/ client- go. Accessed
12/2020.

 38. Kurmus A, Dechand S, Kapitza R (2014) Quantifiable run-time kernel attack
surface reduction. In: Proceedings of the International Conference on Detec-
tion of Intrusions and Malware, and Vulnerability Assessment, Springer

 39. Kurmus A, Sorniotti A, Kapitza R (2011) Attack surface reduction for
commodity os kernels: trimmed garden plants may attract less bugs. In:
Proceedings of the European Workshop on System Security, ACM

 40. Kurmus A, Tartler R, Dorneanu D, Heinloth B, Rothberg V, Ruprecht A,
Schröder-Preikschat W, Lohmann D, Kapitza R (2013) Attack surface
metrics and automated compile-time os kernel tailoring. In: Proceedings
of The Network and Distributed System Security Symposium

 41. Lei L, Sun J, Sun K, Shenefiel C, Ma R, Wang Y, Li Q (2017) Speaker:
Split-phase execution of application containers. In: Proceedings of the
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer

 42. Lin X, Lei L, Wang Y, Jing J, Sun K, Zhou Q (2018) A measurement study on
linux container security: Attacks and countermeasures. In: Proceedings of
the Annual Computer Security Applications Conference, ACM

 43. Love R (2005) Kernel korner: Intro to inotify. Linux J 2005(139):8
 44. Mishra S, Polychronakis M (2018) Shredder: Breaking exploits through api

specialization. In: Proceedings of the Annual Computer Security Applica-
tions Conference, ACM

 45. MITRE Corporation (2017) Cve-2017-7308. https:// cve. mitre. org/ cgi- bin/
cvena me. cgi? name= CVE- 2017- 7308. Accessed 01/2022.

 46. MITRE Corporation (2019) Cve-2019-14271. https:// cve. mitre. org/ cgi- bin/
cvena me. cgi? name= CVE- 2019- 14271. Accessed 01/2022.

 47. MITRE Corporation (2019) Cve-2019-5736. https:// nvd. nist. gov/ vuln/
detail/ CVE- 2019- 5736. Accessed 01/2022.

 48. MITRE Corporation (2020) Cve-2020-14386. https:// cve. mitre. org/ cgi- bin/
cvena me. cgi? name= CVE- 2020- 14386. Accessed 01/2022.

 49. Mulliner C, Neugschwandtner M (2015) Breaking payloads with runtime
code stripping and image freezing. In: Proceedings of the International
Conference, Black Hat USA

 50. Pearce C (2018) An implementation of FP-Growth algorithm. https://
github. com/ cpear ce/ arm- go. Accessed 02/2022.

 51. Porter C, Mururu G, Barua P, Pande S (2020) Blankit library debloating: Get-
ting what you want instead of cutting what you don’t. In: Proceedings of
the Conference on Programming Language Design and Implementation,
ACM

 52. Quach A, Prakash A, Yan L (2018) Debloating software through piece-wise
compilation and loading. In: Proceedings of the Security Symposium, USENIX

 53. Quay (2020) Clair. https:// github. com/ quay/ clair. Accessed 04/2021.
 54. RedHat. Openshift. https:// github. com/ opens hift. Accessed 08/2021.
 55. RedHat (2000) SELinux. https:// github. com/ SELin uxPro ject/ selin

ux. Accessed 09/2021.
 56. Sharif H, Abubakar M, Gehani A, Zaffar F (2018) Trimmer: application

specialization for code debloating. In: Proceedings of the International
Conference on Automated Software Engineering, ACM/IEEE

 57. Song S, Suneja S, Le MV, Tak B (2023) On the value of sequence-based
system call filtering for container security. In: Proceedings of International
Conference on Cloud Computing, IEEE, p 296–307

 58. Song L, Xing X (2018) Fine-grained library customization. In: arXiv pre-
print arXiv: 1810. 11128

 59. Strace Project. Strace - linux syscall tracer. https:// strace. io. Accessed
11/2020.

 60. Sysdig (2016) Falco: Cloud Native Runtime Security. https:// github. com/
falco secur ity/ falco. Accessed 08/2021.

 61. TechTarget (2019) Container vulnerability opens door for supply chain
attacks. https:// www. techt arget. com/ searc hsecu rity/ news/ 25251 4659/
Conta iner- vulne rabil ity- opens- door- for- supply- chain- attac ks. Accessed
04/2021.

 62. The kernel development community. Perf - linux profiling with
performance counters. https:// perf. wiki. kernel. org/ index. php/ Main_
Page. Accessed 03/2021.

https://blog.aquasec.com/supply-chain-threats-using-container-images
https://blog.aquasec.com/supply-chain-threats-using-container-images
https://github.com/aquasecurity/tracee
https://github.com/cri-o/cri-o
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://github.com/kubernetes/kubernetes/tree/v1.21.0
https://github.com/kubernetes/kubernetes/tree/v1.21.0
https://hub.docker.com/_/openjdk
https://hub.docker.com/_/sentry
https://hub.docker.com/_/storm
https://hub.docker.com/_/storm
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://hub.docker.com/
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
https://github.com/moby/moby/tree/v19.03.9
https://github.com/moby/moby/tree/v19.03.9
https://github.com/docker/scan-cli-plugin
https://github.com/docker/scan-cli-plugin
https://ebpf.foundation/what-is-ebpf/
https://ebpf.foundation/what-is-ebpf/
https://www.exploit-db.com/about-exploit-db
https://www.exploit-db.com/about-exploit-db
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
https://gitlab.com/apparmor/apparmor
https://gitlab.com/apparmor/apparmor
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://kubernetes.io
https://kubernetes.io
https://github.com/kubernetes/client-go
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14271
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://nvd.nist.gov/vuln/detail/CVE-2019-5736
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14386
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-14386
https://github.com/cpearce/arm-go
https://github.com/cpearce/arm-go
https://github.com/quay/clair
https://github.com/openshift
https://github.com/SELinuxProject/selinux
https://github.com/SELinuxProject/selinux
http://arxiv.org/abs/1810.11128
https://strace.io
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/falco
https://www.techtarget.com/searchsecurity/news/252514659/Container-vulnerability-opens-door-for-supply-chain-attacks
https://www.techtarget.com/searchsecurity/news/252514659/Container-vulnerability-opens-door-for-supply-chain-attacks
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Page 22 of 22Yang et al. Journal of Cloud Computing (2024) 13:71

 63. The kernel development community (2017) Seccomp BPF. https:// www.
kernel. org/ doc/ html/ v4. 16/ users pace- api/ secco mp_ filter. html. Accessed
03/2021.

 64. The kernel development community. Namespaces. https:// www. kernel.
org/ doc/ html/ latest/ admin- guide/ names paces/ index. html. Accessed
10/2020.

 65. The kernel development community. Cgroups. https:// www. kernel. org/
doc/ Docum entat ion/ cgroup- v2. txt. Accessed 10/2020.

 66. The kernel development community. Capabilities(7) - the linux man-
pages project. https:// man7. org/ linux/ man- pages/ man7/ capab iliti es.7.
html. Accessed 10/2020.

 67. Tunde-Onadele O, He J, Dai T, Gu X (2019) A study on container vulner-
ability exploit detection. In: Proceedings of International Conference on
Cloud Engineering, IEEE

 68. Wan Z, Lo D, Xia X, Cai L (2019) Practical and effective sandboxing for
linux containers. Empir Softw Eng 24(6):4034–4070

 69. Wang X, Shen Q, Luo W, Wu P (2020) Rsds: Getting system call whitelist
for container through dynamic and static analysis. In: Proceedings of the
International Conference on Cloud Computing, IEEE

 70. Wan Z, Lo D, Xia X, Cai L, Li S (2017) Mining sandboxes for linux contain-
ers. In: Proceedings of the International Conference on Software Testing,
Verification and Validation, IEEE

 71. Xing Y, Cao J, Sun K, Yan F, Wan S (2022) The devil is in the detail: generat-
ing system call whitelist for Linux seccomp. Futur Gener Comput Syst
135:105–113

 72. Xing Y, Wang X, Torabi S, Zhang Z, Lei L, Sun K (2023) A hybrid system call
profiling approach for container protection. IEEE Transacions on Depend-
able and Secure Computing p1–p15, PrePrint

 73. Zhang Z, Cheng Y, Nepal S, Liu D, Shen Q, Rabhi F (2018) KASR: a reliable
and practical approach to attack surface reduction of commodity OS
kernels. In: Proceedings of the International Symposium on Research in
Attacks, Intrusions, and Defenses

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/admin-guide/namespaces/index.html
https://www.kernel.org/doc/html/latest/admin-guide/namespaces/index.html
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html

	Optimus: association-based dynamic system call filtering for container attack surface reduction
	Abstract
	Introduction
	Background and motivation
	The state of container security
	Attack surface reduction
	Challenges in attack surface reduction

	Optimus design
	Design considerations
	Overview
	System call monitoring
	System call analysis
	Seccomp profile generation
	Covert container renewal

	Implementation
	Experimental validation
	Effectiveness of association analysis
	System call filtering
	Managing unexplored operations

	Performance evaluation
	Impact on system monitoring
	Impact on container applications

	Related work
	Conclusion
	References

