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Abstract 

While container adoption has witnessed significant growth in facilitating the operation of large-scale applications, this 
increased attention has also attracted adversaries who exploit numerous vulnerabilities present in contemporary con-
tainers. Unfortunately, existing security solutions largely overlooked the need to restrict container access to the shared 
host kernel, particularly exhibiting critical limitations in enforcing the least privilege for containers during runtime. 
Hence, we propose Optimus, an automated and comprehensive system that confines container operations and gov-
erns their interactions with the host kernel using an association-based system call filtering. Optimus efficiently identi-
fies the essential system calls required by containers and enhances their security posture by dynamically enforcing 
the minimal set of system calls for each container during runtime. This is achieved through (1) lightweight system call 
monitoring leveraging eBPF, (2) system call validation via association analysis, and (3) dynamic system call filtering 
by adopting covert container renewal. Our evaluation shows that Optimus effectively minimizes the necessary system 
calls for containers while maintaining their serviceability and operational efficiency during runtime.

Keywords Container security, Association analysis, System call, eBPF, Seccomp

Introduction
These days, containers have gained significant traction to 
operate large-scale applications comprised of microser-
vices effectively. Their widespread adoption by the indus-
try, as evident from the recent survey [13], has solidified 
their significance in modern computing environments. 
Container orchestration platforms (e.g., Kubernetes [36] 
and OpenShift  [54]) have further accelerated this trend, 
enabling seamless automation and scalability of container 
workloads.

However, the shared kernel-resource model that con-
tainers rely on presents significant security challenges, 
regarding maintaining strong isolation [15] between con-
tainers. These concerns are exacerbated by vulnerabilities 
within legitimate container images  [42, 67], providing 
opportunities for adversaries to exploit weaknesses to 
breach container isolation. Consequently, unauthorized 
access to other containers and even the underlying host 
system becomes possible, posing substantial risks to the 
overall security posture.

To counter such threats, today’s security solutions 
focus primarily on three aspects: (1) inspecting known 
vulnerabilities in container images before deploy-
ment  [24, 53], (2) detecting runtime policy violations 
within containers [7, 60], and (3) implementing resource 
restrictions to reduce attack surfaces  [34, 55]. However, 
these solutions often neglect the vital aspect of container 
interaction with the underlying Linux kernel and leave 
container environments vulnerable to significant damage, 
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highlighting the pressing need for a comprehensive secu-
rity framework that adequately addresses the critical 
nature of container-to-kernel interactions.

Several studies  [19, 30, 68, 70] have explored leverag-
ing Linux’s secure computing mode (Seccomp)  [63] to 
accomplish this need by restricting both container-to-
kernel interactions and container behavior (filtering 
invoked system calls). Unfortunately, these approaches 
also face critical security limitations. First, extracting 
the minimal sets of system calls required for containers 
can result in sets that are either too permissive, failing to 
adequately minimize attack surfaces, or overly restric-
tive, hindering proper container functionality. Second, 
the absence of system call validation leaves room for the 
potential invocation of unauthorized system calls due to 
adversarial intervention. Lastly, applying the extracted 
system calls to containers during runtime requires modi-
fications to containerized applications and the underlying 
host system due to the limitations of Seccomp.

To effectively tackle the security challenges, we pro-
pose Optimus, an automated and comprehensive system 
that performs sustainable identification of the neces-
sary system calls for containers in parallel and continu-
ously enforces the minimal set of required system calls 
at runtime, ensuring the hardening of containers. Unlike 
previous approaches that generate a fixed set of allowed 
system calls for each container, Optimus dynamically 
adapts to the evolving requirements of containers, main-
taining their serviceability while significantly mitigating 
potential security risks in containers.

Optimus consists of three components: the container 
manager, the system call monitor, and the profile gen-
erator. The container manager oversees the lifecycles of 
containers and detects any changes in container config-
urations. The system call monitor tracks all system calls 
invoked from active containers and accurately segregates 
the system calls associated with each container by map-
ping container metadata with relevant system metadata. 
The profile generator utilizes association analysis on 
the monitored system calls to generate a tailored set of 
essential system calls specific to each container, eliminat-
ing any ambiguities or uncertain system calls. Finally, the 
container manager enforces the newly generated system 
call sets onto the respective containers using covert con-
tainer renewal. This iterative process ensures comprehen-
sive coverage and support for the operations unexplored 
within the containers, enhancing the overall security and 
stability of the containerized environment.

We implement a prototype of Optimus by leverag-
ing the Extended Berkeley Packet Filter (eBPF) and con-
duct an evaluation using a diverse set of 71 container 
images obtained from Docker Hub  [21]. The results are 
highly promising: Optimus not only surpasses static 

analysis-based solutions by effectively filtering out an 
additional 25% of system calls but also demonstrates 
impressive resilience, trailing just 1.76% behind dynamic 
analysis-based solutions. Regarding serviceability, Opti-
mus’s covert container renewal leads to only a minimal 
1.07% increase in response time, contrasting sharply with 
Kubernetes’s rolling update, which experiences a signifi-
cant 722% spike in response time when enforcing newly 
identified system call sets onto containers. Optimus 
successfully identifies unexplored operations that the 
dynamic analysis-based solutions fail to capture, high-
lighting its robustness in detecting previously unknown 
system call behaviors.

In summary, our contributions include the following:

• Design and implementation of Optimus, an innova-
tive and unified system that continuously monitors 
system calls invoked from containers and dynami-
cally restricts the available system calls to minimize 
attack surfaces.

• Development of a novel association-based dynamic 
system call filtering that validates system calls 
invoked from containers by analyzing their relation-
ships and filtering out lower-relevance system calls.

• Demonstration of Optimus’s capability to reduce the 
attack surface using real-world container images, 
along with the identification of system calls for unex-
plored operations and their dynamic enforcement 
onto containers at runtime with high serviceability 
and minimal overhead.

The remainder of this paper is structured as follows: 
“Background and motivation”  section discusses the 
security challenges in prior work related to attack sur-
face reduction in container security. “Optimus design” 
and “Implementation”  sections introduce our associ-
ation-based dynamic system call filtering system. The 
results of security and performance evaluations are pre-
sented in “Experimental validation” and “Performance 
evaluation” sections respectively. “Related work” section 
reviews related studies, and finally, “Conclusion” section 
provides the concluding remarks for the paper.

Background and motivation
This section focuses on the key Linux primitives that 
deliver resource isolation and access control for contain-
ers, as well as the security challenges outlined in prior 
research concerning the reduction of the kernel’s attack 
surface.

The state of container security
Containerization is an operating-system-level virtual-
ization technology that harnesses the powerful isolation 
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primitives available in the Linux kernel, such as names-
paces  [64], control groups (cgroups)  [65], and capabili-
ties  [66]. By leveraging these primitives, containerized 
applications can operate in virtual environments (i.e., 
containers) with distinct process trees, file systems, and 
networking stacks, the illusion of independent and iso-
lated systems, granting applications restricted access to 
system resources and facilitating highly secure and effi-
cient runtime environments.

Despite the inherent isolation provided by contain-
ers, containerized applications are not immune to secu-
rity vulnerabilities and remain susceptible to targeted 
attacks  [15, 67]. In fact, according to Cloud Native Sur-
vey  [13], 92% of organizations have employed contain-
ers in production, marking a remarkable 300% increase 
since 2016. However, container security has remained a 
common area of oversight. The Cloud-Native Security 
Survey by Aqua Security [5] starkly highlights the lack of 
awareness among 97% of respondents regarding critical 
container security principles, leading to misconceptions 
surrounding default security attributes. These findings 
emphasize the urgent need to address container security 
challenges and proactively implement effective measures 
to reduce attack surfaces.

Containerized applications are legacy applications 
packaged with containerization techniques, meaning that 
there is no difference between legacy applications and 
containerized applications. Any vulnerabilities in legacy 
applications can exist in the corresponding containers. 
Lin et al. [42] present that about 56% of the application 
exploits (e.g., remote code execution and privilege escala-
tion) collected from the Exploit Database [26] are feasi-
ble in today’s container environments. Furthermore, such 
vulnerabilities become particularly exploitable within the 
context of the shared kernel-resource model, which car-
ries profound security implications. These implications 
are especially acute regarding the capacity of the host 
OS to sustain isolation when a single container is com-
promised. For example, container escape attacks [45–48] 
exploit vulnerabilities in containerized applications to 
breach the boundaries of container isolation, effectively 
gaining unauthorized access to the host system.

Attack surface reduction
To protect containers from such attacks, several security 
solutions have been devised to mitigate the attack sur-
faces associated with containers. Initial lines of defense 
include security scanning solutions such as Clair [53] and 
Docker Scan [24], which proactively scrutinize container 
images for known vulnerabilities using CVE databases, 
thus empowering operators to preempt potential threats 
before container deployment. Complementing this, runt-
ime threat detection solutions (e.g., Tracee [7] and Falco 

[60]) observe container behavior, identify policy viola-
tions during runtime, and conduct anomaly detection, 
enabling real-time threat mitigation. Additionally, Linux 
security modules (e.g., AppArmor [34] and SELinux [55]) 
are deployed to impose further restrictions on contain-
ers, managing process executions and file access within 
containers to fortify container isolation.

However, it is critical to note that these solutions pre-
dominantly focus on safeguarding individual containers 
from a userspace perspective, thereby inadvertently leav-
ing interactions with the host kernel less secured – an 
aspect capable of causing more comprehensive damage 
in container environments. Thus, this work emphasizes 
a crucial yet under-explored aspect of container secu-
rity: minimizing the attack surface during interactions 
with the Linux kernel, aiming to contribute towards a 
more comprehensive security paradigm for containerized 
environments.

Challenges in attack surface reduction
To diminish attack surfaces, the Linux Secure Computing 
Mode (Seccomp) [63] emerges as one of the most potent 
mechanisms widely employed. Seccomp curtails the 
system calls that applications can initiate, significantly 
reducing potential attack vectors. The recent Linux ker-
nel offers a vast suite of system calls (approximately 400 
syscalls), each capable of becoming an attack vector. 
However, most applications only engage with a small 
subset of these system calls. Detecting any unused system 
calls being invoked could signal a potential compromise, 
prompting proactive measures to block such actions.

Despite the restrictive power of Seccomp, it necessi-
tates a pre-determined set of system calls that the appli-
cation is expected to use. In effect, this requires operators 
to undertake a detailed analysis of the applications, fol-
lowed by the extraction of the necessary system calls for 
each, a process that is both intricate and time-consum-
ing. While numerous studies [19, 30, 41] have sought to 
automate the extraction of system calls, they persistently 
grapple with substantial limitations in the realm of con-
tainer security.

False Inference of Necessary System Calls: While 
extracting necessary system calls to execute container-
ized applications, a significant challenge presents itself 
in the form of the false inference problem. The system 
calls derived from the applications could either prove to 
be too coarse-grained, thereby not minimizing the attack 
surfaces of applications as effectively as possible, or too 
restrictive, potentially hindering the optimal functioning 
of the applications.

In general, two methodologies can be employed to 
extract system calls needed for application execution: 
static analysis and dynamic analysis. Static analysis-based 
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approaches [19, 30] examine the source code or binaries 
of applications, along with all dependencies on external 
libraries. This allows the collection of all possible system 
calls that applications might invoke. However, many of 
these identified system calls may remain unnecessary and 
unused during runtime, creating potential attack vec-
tors that adversaries can exploit to target the applications 
and the host kernel. In addition, static analysis does not 
take into account the specific characteristics of container 
environments. In particular, it does not adequately cover 
the process of container creation and initialization before 
the execution of containerized applications.

On the other hand, dynamic analysis-based approaches 
[68, 70] identify necessary system calls by monitoring those 
actually invoked during the rule mining phase, resulting in a 
significantly reduced set of required system calls for the entire 
process of container creation, initialization, and execution 
of applications within containers. However, a potential limi-
tation of dynamic analysis is its dependence on the specific 
workloads used in the rule mining phase, which may not fully 
represent the diverse scenarios encountered in a production 
environment during runtime. Consequently, this approach 
risks missing critical system calls essential for proper appli-
cation operation, potentially leading to application failures. 
Striking the right balance between the advantages of static 
and dynamic analysis methods is, therefore, a complex and 
crucial challenge to ensure accurate and reliable system call 
extraction for containerized environments.

No Validation of Identified System Calls: Another 
concern arises from the inadvertent detection of unex-
pected system calls during the extraction of necessary 
system calls due to the absence of stringent validation 
measures. This deficiency can result in potentially inse-
cure or unnecessary system calls in the final set, com-
promising the overall security posture of containerized 
environments. Adversaries could exploit such vulnerabil-
ities to launch attacks or gain unauthorized access. Thus, 
it is imperative to implement rigorous validation during 
the system call extraction.

However, previous studies  [19, 30, 68, 70] in sys-
tem call extraction often lack a comprehensive security 
mechanism to verify the validity of the identified sys-
tem calls. This limitation opens the door for adversar-
ies to maliciously manipulate the system call sets to suit 
their malevolent intentions. For instance, through supply 
chain attacks [6, 61], attackers could tamper with devel-
opment environments, coercing developers into using 
compromised applications or container images. Conse-
quently, when developers seek to identify the necessary 
system calls for their applications, they may uninten-
tionally include system calls used in container attacks, 
such as privilege escalation or remote code execution. 
Moreover, adversaries could directly intervene during 

the identification phase by deliberately invoking specific 
system calls necessary for container attacks, as current 
solutions tend to extract all system calls within contain-
ers indiscriminately, regardless of the triggering process. 
Thus, these malicious system calls could be classified 
as essential, as the lack of proper validation hinders the 
accurate identification and exclusion of potentially harm-
ful system calls.

Limitation of Seccomp in profile update: To mini-
mize potential attack surfaces exposed from container-
ized applications, the initial step involves the application 
of Seccomp profiles (i.e., the sets of allowable system 
calls) during container creation. However, a significant 
challenge arises from the lack of support for modifying 
and removing already-applied Seccomp profiles during 
runtime, limiting the adaptability of Seccomp according 
to evolving security demands.

There are two primary reasons for needing to update 
existing Seccomp profiles: further restriction and cover-
age adjustment. When further restriction is required, 
applications can layer multiple Seccomp profiles, but 
once attached, these profiles cannot be removed during 
runtime. Ghavamnia et  al. [31] address this limitation 
by injecting code into applications to stack a new profile 
on top of the initial one during runtime, achieving the 
effect of updating the initial profile while imposing addi-
tional restrictions on allowable system calls. However, 
this approach demands access to the application’s source 
code not available in production. Also, it cannot be easily 
extended to container environments since the modifica-
tions of container platforms are not feasible.

On the other hand, when coverage adjustment is 
needed, Seccomp’s inability to modify existing pro-
files during runtime becomes problematic. Speaker [41] 
addresses this limitation by introducing a new kernel 
module into the host kernel, allowing for the replace-
ment of existing Seccomp profiles with updated ones. 
While effective, this approach requires full privileges on 
the host system, making it unsuitable for cloud environ-
ments with limited privileges. In addition, it may neces-
sitate multiple kernel modules to support heterogeneous 
host systems, adding complexity to the implementation. 
As a result, finding a solution that addresses both further 
restriction and coverage adjustment of Seccomp profiles 
while considering the constraints of commercial applica-
tions and cloud environments remains an ongoing chal-
lenge in the pursuit of container security.

Optimus design
This section presents an advanced and automated sys-
tem, Optimus, for comprehensive container attack sur-
face reduction. In addition, it discusses how Optimus 
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effectively addresses the limitations outlined in “Chal-
lenges in attack surface reduction” section.

Design considerations
To bolster container security and mitigate poten-
tial risks as discussed in “Challenges in attack surface 
reduction”  section, three essential requirements have 
been identified as follows:

R1: Minimizing attack surfaces in container-to-
kernel interactions while not breaking availability. A 
system should meticulously determine the necessary 
system calls for each container, specifically those uti-
lized by the containerized applications, rather than 
including all possible functionalities. Also, a system 
should continuously update the set of system calls for 
each container during runtime to promptly detect any 
previously undiscovered system calls and maintain an 
accurate and up-to-date list of essential system calls.

R2: Validating identified system calls. To minimize 
the risk of security breaches, a system should consider 
the possibility of compromised containerized appli-
cations containing unintended system calls and the 
potential for adversaries to trigger unintended system 
calls within containers. In the same context, a system 
should verify the legitimacy of identified system calls.

R3: Getting through Seccomp limitations. A system 
should effectively apply up-to-date Seccomp profiles 
to containers without requiring container or host sys-
tem modifications. Also, a system should ensure the 
stability and availability of containers from the users’ 
perspective while bolstering their security with up-to-
date security policies.

Overview
This section presents the overall design of Optimus, an 
automated and cohesive system aimed at identifying the 
necessary system calls essential for the seamless opera-
tion of each container, including containerized appli-
cations. Optimus also enforces a hardened container 
environment by ensuring a minimal set of required sys-
tem calls during runtime, all while guaranteeing continu-
ous container serviceability. While Optimus is primarily 
designed for Kubernetes with Docker as the container 
runtime, it is not limited to this specific environment. Its 
design can be applied to various container environments, 
such as OpenShift  [54] with CRI-O  [12], expanding its 
applicability to a broader range of container platforms 
without compromising effectiveness.

Figure  1 depicts the overall architecture of Optimus, 
comprising three main components: the container man-
ager, system call monitor, and profile generator. The 
container manager is responsible for monitoring con-
tainer-related events, such as creation and removal, and 
promptly responds by creating or cleaning up corre-
sponding entities in Optimus storage (trace table). Each 
entity records the system calls associated with a new 
container, ensuring that all relevant information is effi-
ciently captured. The system call monitor comprises two 
modules, one in the kernel space and the other in the 
user space. (1) The kernel-space monitor tracks all system 
calls triggered from containers, while (2) the user-space 
monitor periodically fetches these records from the ker-
nel space and stores them in Optimus storage, contex-
tualized with the respective containers. (3) The profile 
generator then performs an association analysis on the 
identified system calls for each container and filters out 

Fig. 1 Overall architecture of Optimus with three main components: the container manager, system call monitor, and profile generator
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any abnormal calls that could potentially result from 
adversarial interventions, ensuring the validation of iden-
tified system calls (R2). (4) Upon successful validation, 
the profile generator generates a new Seccomp profile 
containing an up-to-date set of system calls for the con-
tainer. (5) The container manager subsequently enforces 
this new profile to the container, leveraging covert con-
tainer renewal without requiring modifications to the 
given containers and host systems (R3). To ensure com-
prehensive system call identification, Optimus repeats 
the steps outlined above (1-5) to handle potential unex-
plored system calls (R1). The combined operation of 
these components empowers Optimus to identify neces-
sary system calls sustainably for containerized applica-
tions, fortify the container environment with minimal 
system calls, and maintain container serviceability.

System call monitoring
To accurately identify the essential system calls required 
by containerized applications (R1), rather than including 
unnecessary functionalities, Optimus’s system call moni-
tor takes on the crucial task of collecting all system calls 
triggered from containers and classifying them according 
to their respective containers in real-time while ensur-
ing no loss of system calls invoked from them. For this, 
the system call monitor introduces two pivotal features: 
lightweight system call monitoring, which prevents any 
loss of system calls triggered by multiple containers, and 
container awareness, effectively bridging the gap between 
system-level and container-level metadata.

Lightweight System Call Monitoring: When it comes 
to system call monitoring, strace[59] and perf[62] are 
popular choices due to their user-friendly interfaces and 
versatility, particularly in common scenarios such as 
application debugging. Nevertheless, these tools carry 
a significant performance overhead as they require fre-
quent transitions between the kernel and user spaces 
to decode the context of each triggered system call. 
This inherent drawback makes them less than ideal 
for continuous monitoring, which represents a fun-
damental requirement of Optimus (R1). In contrast, 
Optimus embraces the Extended Berkeley Packet Filter 
(eBPF) [25], a powerful framework enabling the monitor-
ing and tracking of various kernel space activities, includ-
ing system calls. By harnessing eBPF, Optimus efficiently 
and continuously traces all system calls without imposing 
significant performance overhead, thus ensuring seam-
less and effective system call monitoring within the con-
tainerized environment.

To identify the system calls triggered by containers, 
Optimus first employs an eBPF program by attaching 
it at the raw_syscall tracepoint, where the control flow 
of all system calls originates. Then, the eBPF program 

intercepts and captures all system calls, allowing for the 
extraction of relevant context from the container pro-
cesses invoking these system calls. As containers are iso-
lated using Linux namespaces, each container process 
possesses unique IDs within its namespace. Conversely, 
host processes have a predefined (static) namespace 
ID (i.e., PROC_PID_INIT_INO). When a system call is 
invoked, the eBPF program captures the event. It then 
acquires the process context (i.e., PID namespace ID and 
Process ID) associated with the system call by referencing 
the task_struct structure of the processes, along with the 
System Call ID. The program then uses the PID names-
pace ID to determine whether the process invoking the 
system call belongs to a container. If the system call is 
not triggered within a container, the program promptly 
skips further processing for that specific system call. 
This efficient filtering mechanism ensures that Optimus 
solely focuses on monitoring and analyzing system calls 
originating from containers, thus minimizing unneces-
sary overhead and enhancing the accuracy of system call 
identification.

As Optimus endeavors to identify a minimal set of nec-
essary system calls essential for container operations, it 
is crucial to monitor all system calls from the inception 
of container creation. However, for containers that might 
already be running before the execution of Optimus, 
it skips the monitoring of the system calls triggered by 
those containers since it can only identify a subset of sys-
tem calls for them. When a new container is created, it 
undergoes a transition from the default PID namespace 
to a new PID namespace, resulting in the PID of the ini-
tial process becoming 1. Recognizing this characteristic, 
Optimus utilizes the PID of a process being 1 as a trigger 
point to commence tracing system calls for new contain-
ers. This approach ensures that Optimus efficiently moni-
tors the system calls from newly created containers while 
avoiding redundant monitoring for existing containers, 
thereby maintaining the focus on acquiring the complete 
set of necessary system calls for each container.

Figure  2 illustrates the systematic workflow of Opti-
mus in tracing all system calls for containers. When the 
initial process (with PID = 1) of a container is launched 
and invokes a system call, the eBPF program initiates the 
process by registering the PID namespace ID of the con-
tainer in the pid_ns map. Subsequently, whenever a sys-
tem call is invoked, the eBPF program checks the pid_ns 
map to verify if the PID namespace ID associated with 
the system call exists. If the PID namespace ID is found 
in the map, indicating that the system call originated 
from within a container, the eBPF program proceeds to 
record the system call, along with its respective process 
context, in the shared buffer. This buffer resides between 
the eBPF program and the system call monitor in the 
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user space. Conversely, if the PID namespace ID is not 
found in the pid_ns map, signifying that a container did 
not trigger the system call, the eBPF program bypasses 
monitoring the system call. This approach efficiently 
ensures that Optimus exclusively traces and captures 
system calls relevant to containers, not the processes 
running on the host.

Container Awareness: While the system call monitor 
can detect system calls made by all container processes, 
it still has a limited view of which source containers are 
making these system calls, primarily because container 
metadata such as Container ID and Container Labels are 
user-defined and lack inherent context within the host 

system. This gap between system metadata, including 
PID namespace ID and Process ID, and container meta-
data necessitates an additional step to establish a link 
between the two, effectively bridging this gap and ena-
bling accurate identification and association of system 
calls with their respective containers.

To bridge the gap between system-level and container-
level metadata, as depicted in Fig. 3, the container man-
ager actively monitors container changes within the 
container platform, maintaining entities for system call 
records in Optimus’s trace table, including context infor-
mation such as Container ID and Container Label for 
all active containers. Also, when Optimus detects a new 

Fig. 2 Overall workflow of lightweight system call monitoring. (1) The system call monitor checks if containers trigger any invoked system calls. (2) 
It verifies if the invoked system calls need to be monitored based on predefined criteria. (3) The monitor selectively records the required system calls 
and notifies the update to the user-space monitor

Fig. 3 Overview of container-aware system call recording. (1) The container manager maintains Optimus’s trace and container mapping tables 
by extracting container context from the container platform. (2) The system call monitor updates system call records in the trace table using 
information obtained from the container mapping table
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container, it takes proactive measures to identify the cor-
responding PID namespace ID for each container by ref-
erencing the proc file system (specifically, /proc/the PID 
of the initial process for a container/ns/pid). Then, to 
effectively associate the system metadata with container 
metadata, Optimus maintains a container mapping table, 
which correlates PID namespace IDs with container IDs. 
Subsequently, when the system call monitor pulls system 
call records from the shared buffer, it references the con-
tainer mapping table to find the mapped container IDs 
associated with the specific PID namespace IDs. This 
process enables the system call monitor to update the 
monitored set of system calls accurately for each con-
tainer in the trace table with the identified system calls, 
allowing precise profiling of system call activities within 
individual containers.

Performance Optimization: When monitoring system 
calls for specific processes, the information on each sys-
tem call is typically received on a per-system-call basis, 
as immediate actions or tasks may be required for each 
call. However, in the containerized environment where 
numerous containers run on the same host system, there 
is a significantly higher volume of system calls gener-
ated by multiple container processes, even within a short 
period. Consequently, the communication channel can 
quickly become overloaded when transferring the infor-
mation for invoked system calls from the kernel space to 
the user space through the shared buffer. This can lead to 
the loss of some system calls due to the lack of space in 
the shared buffer.

Optimus implements a batch mode to efficiently han-
dle heavy system call invocations while pulling a col-
lection of system call records from the kernel space. As 
Optimus explicitly requires a set of system calls invoked 
from each container, it does not need to retain all the 
information for each system call. By eliminating dupli-
cated system call events already recorded in the shared 
buffer, Optimus substantially reduces the number of 
records that need to be transferred to the user space. 
This intelligent batching approach allows Optimus to 
pull only a small number of essential system call records 
and update the trace table without sacrificing the accu-
racy or completeness of the system call monitoring. The 
performance benefits of this batch mode and how Opti-
mus effectively resolves the performance issue under 
heavy system call invocations are elaborated in “Impact 
on system monitoring” section (Table 3).

System call analysis
As discussed in “Challenges in attack surface reduc-
tion”  section, the possibility of adversaries intervening 
in the system call identification process by compromis-
ing container images or development environments 

should be appropriately considered. However, this 
aspect has received relatively less attention in previous 
research. Furthermore, determining which system calls 
should be included or excluded without the context of 
running containers poses significant challenges, par-
ticularly in the containerized environment where mul-
tiple tenants deploy diverse container types together. 
To address the security concerns related to the valida-
tion of identified system calls (R2), Optimus proposes 
the implementation of an association-based system call 
filtering mechanism. This approach is designed to dis-
cern and filter out less confident system calls identified 
within each container, thereby minimizing the potential 
impact of adversarial interference.

Association Analysis: The primary objective of 
association analysis  [8, 27] is to discover meaning-
ful relationships within given datasets. In the context 
of Optimus, these relationships manifest as frequent 
item sets or association rules, representing collec-
tions of system calls that frequently co-occur. To vali-
date the relevance of identified system calls for each 
container independently, Optimus leverages associa-
tion analysis to uncover relationships among the sys-
tem calls. By doing so, it identifies patterns of system 
calls that commonly appear together within the data-
set. Subsequently, Optimus filters out system calls that 
exhibit lower relevance compared to other system calls, 
effectively reducing the likelihood of including poten-
tially irrelevant or less essential system calls in the final 
set of necessary system calls. This association-based 
approach allows Optimus to assess the significance of 
individual system calls within the context of their co-
occurrence patterns, contributing to a more accurate 
and context-aware system call filtering process.

Association Rule Mining: To uncover relationships 
among system calls, as illustrated in Fig.  4, the initial 
step involves establishing association rules for the sys-
tem calls using the top 100 publicly available container 
images from Docker Hub  [21], deploying them and 
meticulously collecting the set of system calls invoked by 
each container process within these deployed containers. 
Subsequently, the FP-Growth algorithm is employed, a 
well-known and efficient algorithm  [3, 33, 50] for asso-
ciation rule mining that demonstrates effectiveness on 
large datasets owing to its compact data structure. The 
generation of association rules is a one-time task, and 
Optimus leverages the produced rules in the system call 
filtering process for all containers. By employing this 
approach, Optimus can effectively discover meaningful 
relationships among system calls, enabling it to filter out 
less relevant calls based on their co-occurrence patterns 
and enhance the accuracy of system call identification for 
individual containers.
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During the process of generating association rules, two 
crucial parameters, support and confidence, need to be 
determined. Support refers to how frequently two system 
calls, X and Y, appear together in the dataset, while con-
fidence indicates the likelihood of system call X appear-
ing when system call Y is present in the dataset. In this 
work, the optimal constraints for support (40%) and con-
fidence (80%) are empirically identified, demonstrating a 
high accuracy score in obtaining sets of highly relevant 
system calls. Here, the accuracy score represents the 
measure of correctly identified cases, encompassing true 
positives and true negatives among all observations. The 
overall process of determining the optimal parameter set 
will be elaborated upon in “Effectiveness of association 
analysis” section, outlining the methodology employed to 
achieve accurate and reliable system call filtering based 
on their associations.

The process of generating association rules based on 
combinations of items in the dataset can lead to a signifi-
cant increase in rule size, particularly when dealing with 
diverse items. In this work, since system calls are used as 
the items for association analysis, in the worst-case sce-
nario, approximately 400 system calls from the recent 
Linux kernel could be involved. Consequently, the result-
ing association rules could become excessively large, 
making it impractical to find relationships among identi-
fied system calls for each container in runtime. To tackle 
this issue, we introduce a novel pruning technique aimed 
at reducing the number of association rules. An investi-
gation into the accuracy score concerning different num-
bers of items reveals that the change in accuracy becomes 
subtle once the number of items exceeds a certain thresh-
old, as depicted in the Fig. 9. Based on this observation, 
association rules containing more than two system calls 

are removed, effectively reducing the number of associa-
tion rules by 94.4%.

Finally, a unique set of system calls included in the 
association rules is generated. Note that it is possible that 
some of the system calls identified from containers may 
not appear in the association rules. In such cases, match-
ing the identified system calls with the association rules 
would be redundant and consume unnecessary system 
resources. To optimize this process, a valid set of system 
calls is created for matching with the association rules, 
allowing Optimus to filter out identified system calls that 
cannot be matched during system call validation. This 
significantly alleviates the workload of profile genera-
tion and ensures that Optimus focuses only on relevant 
and matchable system calls, enhancing the efficiency and 
effectiveness of the system call filtering.

Seccomp profile generation
Figure  5 illustrates the process of how the profile gen-
erator efficiently creates a new Seccomp profile for each 
container. During this procedure, the profile genera-
tor adopts slightly different approaches for the first and 
subsequent iterations. For the initial creation of the Sec-
comp profile, the generator derives valid candidate sys-
tem calls by matching newly monitored system calls with 
candidates extracted through association analysis. These 
valid candidates are then combined with the previously 
allowed system calls to form the basis of the new profile. 
In subsequent iterations, the profile generator leverages 
the existing profile and incrementally updates it with 
newly identified system calls from the association anal-
ysis, further refining the profile. This iterative approach 
optimizes the profile creation process and ensures the 

Fig. 4 Procedure to identify highly relevant system calls through association analysis. On the left side, one-time offline processes derive association 
rules from system calls extracted from diverse container processes, and valid system calls are extracted from these rules. On the right side, 
the profile generator component utilizes the association rules to identify candidate system calls that exhibit high confidence with the monitored 
ones
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inclusion of highly relevant and context-aware system 
calls for each container’s specific requirements.

Profile Generation: When operators deploy contain-
ers, the containers are initially created with the default 
Seccomp profile [20], which typically allows most sys-
tem calls. The profile generator’s initial focus lies in the 
removal of redundant system calls, which are allowed in 
the default profile but do not actually appear in the con-
tainer’s operations. As the profile generator does not 
initially possess the system calls required for system call 
validation, it adopts a pragmatic approach. The generator 
simply incorporates the system calls monitored within a 
container into a new Seccomp profile. This strategy effec-
tively reduces the scope of allowed operations for the 
container, enhancing its security posture.

Once a new Seccomp profile is applied to a container, 
Seccomp starts restricting unexpected operations with 
the new profile while allowing most functions necessary 
for the service of the container. However, it is still pos-
sible that certain system calls remain uninvoked until 
the previous profile generation, potentially representing 
unexplored operations for the container’s service. There-
fore, the profile generator shifts its focus to address the 
addition of undiscovered system calls after the initial pro-
file generation.

Whenever Optimus discovers new system calls in a 
container, the profile generator is required to update 
the Seccomp profile applied to the container to accom-
modate the unexplored operations. To achieve this, the 
profile generator initiates a validation process for the 
newly monitored system calls based on the association 
rules. Specifically, it generates combinations of the sys-
tem calls already applied to the container while excluding 
system calls that do not exist in the valid set of system 

calls derived from the association rules. The profile gen-
erator then matches each combination with the associa-
tion rules, identifying candidate system calls present in 
the matched rules but not in the set of already-applied 
system calls. Subsequently, the profile generator checks 
if each newly monitored system call is among the can-
didate system calls. If it is, the profile generator deems 
the newly monitored system call as highly relevant to the 
system calls invoked until the previous profile generation 
and automatically includes it in a new Seccomp profile, 
created with all the system calls previously applied to the 
container.

However, if a newly monitored system call is not among 
the candidate system calls, the profile generator tempo-
rarily blocks the system call, as it may not be invoked for 
the container’s service. In such cases, the profile genera-
tor notifies operators about the unexpected system call 
and seeks their approval. Unless operators permit the 
inclusion of this unexpected system call, the profile gen-
erator continues to exclude it from the new profile. It is 
important to note that making decisions in these situa-
tions may necessitate the involvement of system security 
administrators or third-party entities, such as anomaly 
detection engines. We acknowledge that this aspect goes 
beyond the scope of our current paper.

Considering the unique behavior of each container 
image and the various execution scenarios, predicting 
occurrences of previously unobserved correct executions 
presents a substantial challenge. Consequently, Opti-
mus consistently engages in decision-making and pro-
file update procedures until the container is terminated, 
ensuring the availability of the container’s intended ser-
vice. However, if the association analysis fails to identify 
any candidate system calls with significant associations, 

Fig. 5 Process of how Optimus creates new profiles for containers. The profile generator derives valid candidate system calls by matching newly 
monitored system calls with candidates extracted through association analysis. Combining these valid candidates with previously allowed system 
calls results in a new set of allowed system calls. The essential system calls required for container initialization are added to this set, culminating 
in the creation of a new Seccomp profile tailored to the specific container’s needs
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Optimus ceases the process of profile updates. This 
dynamic and context-aware approach allows the profile 
generator to adaptively update the profile for each con-
tainer, ensuring the inclusion of highly relevant system 
calls while mitigating the potential risks associated with 
unexplored system call operations.

System Calls for Container Initialization: During the 
analysis of when a Seccomp profile is applied to a con-
tainer during the container creation and initialization, 
it has come to our attention that there exists a hidden 
space where a Seccomp profile is applied to a container, 
but the initial process of the container is yet to be exe-
cuted. This situation poses a challenge as Optimus might 
miss certain system calls that are required for the proper 
functioning of running containers. To address this con-
cern and ensure comprehensive coverage, a meticulous 
manual analysis is conducted using the same container 
images utilized for association rule generation in “System 
call analysis” section. This additional analysis allows us to 
thoroughly identify and incorporate any system calls that 
might have been overlooked during the initial Seccomp 
profile generation process, enhancing the accuracy and 
completeness of Optimus’s system call filtering for con-
tainer environments.

Figure  6 illustrates the container spawning process. 
When an operator deploys a new container, the container 
platform initiates the runc process, which serves as a 
low-level container runtime. The runc process configures 
namespaces, cgroups, and capabilities for the container, 
establishing the container’s isolation. Once the container 
isolation is set up, the runc process proceeds to apply a 
given Seccomp profile (e.g., the default Seccomp profile) 
to itself. From this point onwards, all operations (i.e., all 
invoked system calls) within the runc process are subject 

to Seccomp’s control. The runc process then sets up the 
container environment, performing tasks like setting user 
and group IDs, altering the ownership of standard I/O file 
descriptors, and adjusting the working directory. During 
this environment setup phase, Optimus might miss par-
ticular system calls invoked in this context. Finally, the 
runc process executes the entry point of the container, 
fully initializing the container environment.

Through our careful analysis, 22 essential system calls1 
required during the container initialization phase have 
been identified. These essential system calls are funda-
mental for setting up the container environment and 
enabling its proper operation. Thus, the profile generator 
automatically attaches them to the new Seccomp profile 
for each container at the conclusion of the profile gen-
eration process. By including these essential system calls, 
Optimus ensures the completeness and accuracy of sys-
tem call filtering, mitigating any gaps that might have 
arisen during the container initialization.

Covert container renewal
Following the generation of a new Seccomp profile by 
Optimus for a particular container, it encounters a chal-
lenge associated with Seccomp’s runtime profile update 
limitations (R3) for active containers, as detailed in 
“Challenges in attack surface reduction” section. To over-
come this constraint, Optimus employs a streamlined 
approach to dynamically update the Seccomp profile for 
an active container without necessitating modifications 

Fig. 6 Workflow of container creation and initialization. Red words highlight the changes in the cgroup, the PID namespace, and the PID

1 It is observed that a container invokes setgroups, setuid, setgid, capset, 
chdir, getdents64, fstat, newfstatat, fstatfs, fcntl, futex, fchown, execve, get-
ppid, prctl, epoll_ctl, epoll_pwait, openat, read, write, close, and nanosleep 
system calls during the container initialization.
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to either the containers or host systems, thereby mini-
mizing disruptions to the container service. This method 
involves replacing the running container with a new 
identical container, referred to as an alternative con-
tainer, which is fortified with the new Seccomp profile. 
By adopting this approach, Optimus efficiently applies 
the updated profile to the container while maintaining 
continuous service availability. The container manager 
component plays a key role in managing this process, as 
depicted in Fig.  7.

Alternative Container Creation: Unlike typical appli-
cations, containers are designed with scalability in mind, 
allowing multiple containers (replicas) to serve the same 
container service. To update the Seccomp profile of a 
container, Optimus employs an alternative container that 
is identical to the running container. When the container 
manager receives the new Seccomp profile for a specific 
container from the profile generator, it proceeds with 
the update process by first deploying the new Seccomp 
profile into the host systems. Additionally, the container 
manager increases the number of replicas associated with 
the container service.

The container platform automatically creates a new 
container, known as the alternative container, equipped 
with the updated Seccomp profile. By increasing the 
number of replicas, Optimus ensures the availability of 
the container service without any interruptions. This 
approach prevents service downtime that may occur if 
the container were simply recreated with the new profile. 
Without adjusting the number of replicas, the container 
platform might immediately terminate either the original 
container or the alternative container while attempting 

to maintain the specified number of replica containers 
for the container service. This could result in either the 
container service being unsupported or facing a service 
interruption until the new container is fully initialized. 
Therefore, Optimus proactively increases the number of 
replicas to avoid such potential scenarios and ensures 
the seamless update of the Seccomp profile with uninter-
rupted service availability for containers.

Old Container Removal: Upon the readiness of the 
alternative container, the container platform automati-
cally load-balances incoming traffic between the original 
and alternative containers. Typically, container platforms 
group containers based on assigned labels and treat con-
tainers with the same labels as endpoints for the same 
container service.

However, at this stage, it becomes challenging to 
determine the completion of the container service ini-
tialization, as there is no direct context available for the 
container service. To address this, Optimus relies on the 
patterns (variations) of invoked system calls from the 
alternative container. As shown in Fig.  11 (“Managing 
unexplored operations” section), most containers exhibit 
a consistent number of system calls once initialization is 
complete. Conversely, during initialization, the number 
of system calls generated fluctuates. Optimus capital-
izes on this observation by assessing the stability of the 
container service through the differential of the moving 
average in the number of system calls over a specific time 
period. Once Optimus deems the alternative container 
fully initialized and the container service stable, it pro-
ceeds to remove the old container by reducing the num-
ber of replicas.

Fig. 7 Workflow of covert container renewal. The container manager creates an identical alternative container to the existing one. Then, it enforces 
a new Seccomp profile into the alternative container, enhancing its security posture. Lastly, the service proxy seamlessly redirects incoming traffic 
from the old container to the alternative one
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To ensure the efficient termination of the old con-
tainer, Optimus strategically decreases the priority 
(deletion cost) of the old container, making it the first 
selection for termination before modifying the number 
of replicas. Consequently, the container platform grace-
fully terminates the old container, directing all incoming 
traffic to the alternative container, where the updated 
profile is applied to allow previously unsupported opera-
tions. Therefore, Optimus achieves a seamless transition 
from the old container to the alternative one with the 
updated Seccomp profile, preserving continuous service 
availability.

Implementation
The Optimus prototype is implemented using 8.1K lines 
of Go and C code, running on the Linux 5.4 kernel with 
Kubernetes v1.21 [14] and Docker v19.03.9 [23].

Container Manager: Optimus leverages Kubernetes’s 
Client-Go  [37], which enables interaction with the 
Kubernetes API server, to monitor container resources 
across all nodes in the Kubernetes cluster. Using watch 
events for each pod, Optimus can track container crea-
tion, modification, and deletion. In covert container 
renewal, Optimus utilizes labels to categorize containers 
for the same logical stream, as Kubernetes lacks an inher-
ent method to represent the relationship between con-
tainers with different Seccomp profiles.

System Call Monitor: The system call monitor com-
prises two main components: the system monitor in 
the user space and the eBPF program in the kernel 
space. Optimus employs the BPF Compiler Collection 
(BCC) [35] to install and retrieve data from the eBPF pro-
gram in the kernel space. The eBPF program is attached 
to the raw_syscalls tracepoint to monitor all system calls. 
Optimus also utilizes two types of eBPF maps: BPF_
HASH (pid_ns map) to internally store the PID names-
pace IDs for the containers and BPF_ARRAY (shared 
buffer) to store system call records.

Profile Generator: To generate Seccomp profiles for 
containers in the Kubernetes cluster, the profile genera-
tor constructs profiles with three essential fields: syscalls, 
architectures, and defaultAction. It enumerates the set of 
derived system calls into syscalls with the ALLOW return 
action, specifies the corresponding architectures since 
system calls can differ by architecture, and configures 
the defaultAction as BLOCK, indicating a whitelist-based 
Seccomp profile.

Experimental validation
In this section, we assess the effectiveness of Optimus in 
accurately profiling and extracting the minimum neces-
sary system calls for containers while maintaining sup-
port for required operations. The evaluations consist of 

three main types: association analysis validation, attack 
surface reduction, and management of unexplored oper-
ations. For the experiments, three machines were utilized 
to create a Kubernetes cluster with Flannel  [28]. Each 
machine was equipped with an Intel E5-2678 CPU (12 
cores, 2.5GHz) and 16 GB of RAM.

Effectiveness of association analysis
This section presents the accuracy of Optimus in extract-
ing candidate system calls that are highly relevant and 
provides experimental results that showcase the identi-
fication of appropriate association rules to maximize the 
performance of association analysis. Also, it verifies the 
impact of association rules optimized for efficient asso-
ciation analysis.

Optimal Constraints on Association Rule: To attain 
optimal results in extracting highly relevant candidate 
system calls, we conducted a comprehensive evaluation 
of association analysis, employing different metric values 
for support and confidence with the accuracy score as our 
performance measure. The accuracy score allowed us to 
gauge the quality of association rules, assessing the pre-
cise identification of cases, including both true positives 
(where predicted system call occurrences match actual 
appearances) and true negatives (where predicted system 
calls, expected to be absent, do not occur). Ensuring the 
robustness and credibility of our experimental results, 
we systematically tested each generated association rule, 
considering various combinations of constraints, across 
the dataset comprising 71 carefully selected container 
images among the top 100 publicly available container 
images from Docker Hub  [21], repeating the process 10 
times. Note that we excluded 29 container images (e.g., 
OpenJDK [16], Sentry [17], and Apache Storm [18]) from 
this dataset. This decision was made to individually con-
figure container images, ensuring they represented a 
diverse range of workloads independently.

Figure  8 illustrates the accuracy scores of association 
rules generated through the combination of support 
constraints ranging from 30% to 50% and confidence 
constraints from 70% to 90%. Upon examination of the 
generated association rules under the same support con-
straint, it is evident that accuracy scores decline for con-
fidence constraints below 80%, attributable to diminished 
association strength. Interestingly, accuracy scores also 
decrease when the confidence constraint exceeds 80%, 
indicating a reduction in the size of extracted candidate 
system calls. Conversely, under the same confidence con-
straint level, the analysis reveals that the accuracy score 
reaches its peak at a 40% support constraint, indicating 
that the accuracy scores do not exhibit a proportional 
increase as the constraint level escalates, which can be 
attributed to the sparser extraction of candidate rules.
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Performance of Association Analysis: Using the 
optimal set of association rules, a comprehensive experi-
ment was conducted with 71 container images to assess 
the performance of our association analysis model in 
extracting candidate system calls that actually occur dur-
ing the container’s service runtime. The results showed 
that, on average, 10 out of 11 candidate system calls were 
observed to occur, representing true positive obser-
vations. Conversely, out of 325 system calls that were 
excluded from the candidates due to their low relevance, 
265 system calls did not occur as predicted, indicat-
ing true negative observations. This demonstrates that 
Optimus can accurately predict the occurrence and non-
occurrence of system calls with high correlation and low 
correlation, respectively, achieving an accuracy of 81.8%.

Optimization for Association Analysis: To evaluate 
the performance of the filtered association rules, we con-
ducted experiments with various rule sets by pruning the 
original rules based on the number of items in each rule.

Figure 9 shows that as the maximum number of items 
in a rule increases, the file size of the rule set signifi-
cantly increases from 1.8 MB to 339 MB. However, the 

accuracy remains constant at 81.8% for rule sets con-
taining up to 2 items. Notably, the file size of the rule set 
with less than or equal to 2 items is only 19 MB, which is 
a substantial reduction of 94.4% compared to the origi-
nal set’s size of 339 MB, while maintaining the same 
accuracy score. This significant reduction in file size 
greatly alleviates the workload of matching input system 
call combinations to the rules, improving efficiency dur-
ing system call validation.

System call filtering
To evaluate the attack surface reduction achieved by 
Optimus, we measured the number of system calls 
disabled by Optimus. Figure  10 displays the results of 
this assessment for various container images, includ-
ing MySQL, PostgreSQL, MongoDB, and Redis, which 
are widely used in practice. The experiments were con-
ducted on a total of 71 container images; nevertheless, 
the figure exclusively showcases the outcomes for images 
that were mutually selected from those evaluations in 
other works. To enhance the reliability of these experi-
ments, we conducted 10 iterations for all association 

Fig. 8 Accuracy scores of the association rule set extracted under varying support (30% to 50%) and confidence (70% to 90%) constraints

Fig. 9 The accuracy score and rule size of the association rule sets with the different number of items per rule
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rules filtered based on the maximum number of items 
across the 71 selected images.

In the evaluation of attack surface reduction, Optimus 
demonstrated a significant reduction in the number of 
allowable system calls for common container images. 
Specifically, Optimus achieved a system call reduc-
tion rate of 69.4%, which is about 25% higher than Con-
fine  [30], a static analysis-based approach that extracts 
allowable system calls by statically analyzing the library 
functions observed at the beginning of execution. While 
Mining Sandbox [70], a dynamic analysis-based method 
that derives the set of allowable system calls through 
offline training, achieved the highest reduction rate of 
71.16%, Optimus’s result is only 1.76% lower, making it 
a competitive solution for minimizing the attack surface. 
Moreover, Speaker [41], another dynamic analysis-based 
approach, presented the highest reduction rate of 84.12% 
since it removes the system calls, which are only required 
for the booting phase at the start of the running phase. 
However, Optimus provides an essential advantage over 
these dynamic analysis-based approaches by support-
ing the reliable execution of containers even in the case 
of unexplored operations. This is made possible through 
Optimus’s covert container renewal mechanism, which 
allows for seamless updates of Seccomp profiles without 
disrupting container service. Notably, Optimus’s evalua-
tion focuses on container-native environments, differen-
tiating it from static analysis-based approaches designed 
for host-native applications.

To validate the accuracy and reliability of the profiles 
generated by Optimus, we conducted inspections on 
the status of containers and application logs for all 71 
containers that were applied with profiles corrected by 
Optimus. The results revealed that all containers were 
successfully launched without encountering any issues 
or disruptions. This demonstrates that Optimus effec-
tively creates valid profiles that do not interfere with the 

essential functionality required for the normal execution 
of containers. The thorough validation process ensures 
that the profiles derived by Optimus are robust and 
dependable, providing an added layer of confidence in 
the security and stability of containerized applications.

Managing unexplored operations
To evaluate Optimus’s capability in handling unexplored 
operations and exceptional cases, we verified the valid-
ity of the profiles generated by Optimus after correcting 
them to accommodate these intended operations. Addi-
tionally, we analyzed the occurrence patterns of system 
calls to ensure the proper initialization of containerized 
applications.

Unexplored Operation Discovery: Table 1 provides a 
detailed description of the exceptional cases introduced 
to test Optimus’s ability to handle unexplored operations.

• Memory Buffer Bloating. PostgreSQL encountered 
memory buffer problems when subjected to sig-
nificant stress. These issues were traced back to the 
execution of a large number of insert queries using 
the sysbench utility, which was running within the cli-
ent-side container. In response to this situation, Post-
greSQL dynamically increased the memory buffer 
size by making use of the sys_mremap system call to 
extend an existing block of virtual memory.

• Configuration Reload. Nginx performed configura-
tion reloads, typically triggered by rare events such as 
SSL certificate updates, the implementation of redi-
rect rules, or adjustments to rate limits. To assess 
Nginx’s configuration reload process, we initiated 
it by sending a SIGHUP signal. The master process 
conducted checks on the new configuration file’s 
status using the sys_lstat system call. Additionally, it 
employed the sys_umask system call to set file crea-
tion permissions for log files and new sockets. When 

Fig. 10 System call reduction rate achieved by different profiling methods
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replacing the worker process, the master process uti-
lized the sys_getpgrp and sys_kill system calls to send 
a SIGTERM signal.

• Cache Purging. In the case of Nginx, we also con-
ducted an examination of cache content management 
in exceptional scenarios. This involved saturating the 
cache memory by utilizing the ab and curl utilities. 
In cases where the requested content was not found 
in the cache, the cache manager performed a flush 
operation on the most recently accessed cached con-
tent, which in turn triggered the use of the sys_unlink 
system call to remove the cached data.

• Server Reconfiguration. Exploration of server 
reconfiguration, a rarely executed operation by web 
daemons, was also investigated for Apache httpd. A 
graceful reload of Apache Httpd was conducted while 
actively handling traffic generated via the httperf 
utility. Throughout this process, the parent process 
duplicated the file descriptor of the dummy socket 
using the sys_dup2 system call and leveraged the sys_
info system call to assess the current server memory 
statistics. To signal the termination of worker pro-
cesses, the sys_getpgrp, sys_kill, and sys_tgkill system 
calls were employed. These exceptional scenarios 
exemplify potential occurrences during runtime.

To validate the effectiveness of the profiles generated 
by Optimus, we thoroughly examined the status of con-
tainers and the application logs when the containers, 
equipped with the derived profiles, encountered the 
exceptional cases introduced earlier. Remarkably, all 
containers fortified with the corrected profiles exhib-
ited flawless performance without encountering any 
issues or errors during application initialization and 

when dealing with previously unexplored operations. 
Here, we confirm that Optimus adeptly manages the 
occurrence of unexplored operations while effectively 
minimizing the attack surface exposed to the kernel.

System Call Invocation Pattern: To assess the com-
pletion of application initialization, we conducted an 
in-depth analysis of system call invocation patterns on 
71 container images that were subjected to Optimus. 
Figure  11 illustrates the analysis results for the plone 
container, chosen as a representative case. The col-
umn bar graph depicts the number of invoked system 
calls, measured at 500 ms intervals from the begin-
ning of the container deployment. Notably, there were 
significant fluctuations in the number of system calls 
during the first 12 seconds of container deployment. 
After careful examination of the application logs, we 
concluded that the containerized application completes 
its initialization after these fluctuations have subsided. 
A similar pattern was observed across most container 
images where Optimus was applied, where either no 
system calls were issued or a stable number of system 
calls were intermittently repeated after initialization 
was completed. These findings affirm Optimus’s abil-
ity to identify the optimal timing for container renewal, 
ensuring seamless and reliable execution.

To achieve a comprehensive understanding of varia-
tions in the number of system call occurrences during 
application initialization, a moving average approach 
was employed. As observed in Fig.  11, this differential 
value gradually approaches zero after the application’s 
initialization phase. By leveraging moving averages, 
Optimus was able to ascertain the moment when the 
containerized application achieved a stable state, fully 
initialized, and capable of serving traffic.

Table 1 Example cases of unexplored operations that do not belong to normal execution paths. Each case exceptionally appears 
under specific conditions, not simple benchmarks or training. The above system calls are required to perform the required operation 
successfully

Container Image Operation that rarely occurs Required system 
calls

Reason to invoke system calls

PostgreSQL Memory Buffer Bloating mremap To resize memory space for transaction logs and caching

Nginx Configuration Reload lstat To confirm and parsing the new configuration file

umask To open log files and new sockets

getpgrp To obtain the PGID of the old worker processes

kill To send the SIGTERM signal to the old worker processes

Nginx Cache Purging unlink To delete the old cached files

Apache Httpd Server Reconfiguration dup2 To duplicate the file descriptor of the dummy socket

sysinfo To get available memory/swap space size

getpgrp To obtain the PGID of the old worker processes

kill, tgkill To send the SIGTERM signal to the old worker processes



Page 17 of 22Yang et al. Journal of Cloud Computing           (2024) 13:71  

Performance evaluation
Unlike previous studies that rely on offline analysis, 
Optimus continuously monitors system calls while 
the container is running, which may impact the per-
formance of the host system and containerized appli-
cations. To assess the influence of Optimus on the 
performance of the host system, we conducted several 
measurements to evaluate its effect.

Impact on system monitoring
Processing Time by Monitoring Mechanisms: To 
assess the performance degradation caused by the mon-
itoring mechanism utilized by Optimus, we conducted 
a series of measurements to measure the processing 
time for a set of system calls. The measurements were 
performed 30 times for three different scenarios: the 

absence of monitoring (Base), the use of the strace util-
ity, and the application of eBPF. These scenarios were 
chosen to evaluate the suitability and effectiveness of 
Optimus.

As shown in Table  2, the strace utility exhibited a 
22.39% increase in processing time compared to the 
baseline scenario, where no monitoring mechanisms for 
system call invocations were employed. This significant 
increase in processing time is attributed to the need for 
frequent transitions between user and kernel space for 
capturing and decoding system calls. The high number of 
context switches between user and kernel spaces leads to 
considerable performance degradation on the host sys-
tem. On the other hand, the eBPF approach showed only 
a 1.41% increase in processing time, which is a signifi-
cantly more reasonable overhead compared to strace. The 
eBPF mechanism operates within the kernel and facili-
tates interactions with user space through the eBPF map, 
which is accessible from both spaces. As a result, there 
is no need for frequent context switching between spaces 
to trace system calls. Based on the system call process-
ing time measurement results, we conclude that eBPF is 
a suitable and high-performance approach for system call 
monitoring.

Effectiveness of Batch Monitoring: In scenarios 
where the container execution involves a vast number of 
system calls, a new challenge arises in accurately identi-
fying and handling these system calls. This is due to the 
events getting heavily stacked in the eBPF map and the 
non-atomic handling of events. We have devised an opti-
mized batch mode to overcome this issue and reduce the 
performance degradation caused by the basic process of 
the classic eBPF.

We measured the number of (monitored and lost) sys-
tem call events in containers to assess the batch mode’s 
performance benefits. Table  3 displays the results of 
event invocations when the classic and batch modes were 

Fig. 11 Measurements on the number of system call invocations and moving averages for estimating the completion of container initialization

Table 2 Measurements of the elapsed time in handling system 
calls, depending on monitoring schemes: strace and eBPF 

Processing time ( µs) Increment 
rate (%)

Base 15.07 -

Strace 18.45 (+3.38) 22.39

eBPF 15.29 (+0.22) 1.41

Table 3 A performance comparison between classic and batch 
modes of eBPF in monitoring system call events. The total events 
indicate the number of events transferred to the eBPF map, 
whereas the lost events represent what was not processed and 
wasted occurrences

Total events Lost events

Classic Mode 2,579,794 853,583 (33.1%)

Batch Mode 95 0 (0%)
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applied, respectively. The classic eBPF generated 2.5 mil-
lion events that had to be processed in user space. In 
contrast, the batch version of eBPF significantly reduced 
the number of events by 99.99%, resulting in only 95 
events. Moreover, 33.1% of all events in the classic eBPF 
were discarded without processing due to the eBPF map 
being already full of unprocessed events. In contrast, no 
events were lost in the batch mode, thanks to the signifi-
cant reduction in total events. The dramatic reduction in 
the scale of events in user space significantly mitigated 
performance degradation, addressing potential strain on 
host system resources, particularly in environments with 
numerous active containers.

Impact on container applications
To assess the impact of the Covert Container Renewal 
on the containerized application’s service availability, 
we measured the response time and the rate of failed 
requests. The goal was to evaluate whether the renewal 
process has any noticeable effect on the performance and 
reliability of the containerized application’s service.

Response Time on Container Renewal: We deployed 
Apache Httpd with accessible web pages on the server-
side container and used another container as a client 
to send requests using ab  [4]. We then recorded the 
response time while the server-side container was 
replaced with a new one through different container 
alternation approaches. Response time refers to the dura-
tion it takes for a system to process and respond to a cli-
ent’s request, encompassing the round-trip time from 
client to server and back.

Figure 12 shows the response time of requests through 
the respective container alternation approach. When 
there was no container alternation, the average response 
time was 60.83 ms. However, with the Kubernetes-native 
Rolling Update approach, the response time spiked to 
439.14 ms at the start of the container alternation (at 4 

seconds). This increase in latency was due to the abrupt 
termination of the server-side container before the new 
container’s application had fully initialized, leading to 
connection establishment issues and delays in respond-
ing to requests. Additionally, during the period between 5 
and 19 seconds, the requests experienced lower response 
time than the container with no alternation because the 
server-side container was busy with initialization and 
unable to respond promptly.

On the other hand, Optimus’s Covert Container 
Renewal approach yielded an average response time 
of 61.48 ms, only a 1.07% increase compared to the 
container with no alternation, and displayed a similar 
response time pattern. This is because Optimus keeps the 
old container on the server side until the new container’s 
application completes its initialization process, ensuring 
that the service remains available during the renewal pro-
cess, unlike the Kubernetes-native Rolling Update, which 
causes disruptions in service availability during the con-
tainer alternation.

Request Failure Rate: In the evaluation of request fail-
ure rates during container alternation at various request 
concurrency levels, Fig.  13 shows the results for both 
the Kubernetes Rolling Update and Optimus’s Covert 
Container Renewal. In this context, the request failure 
rate denotes the proportion of requests sent to a con-
tainerized application that either lacks a valid response 
or receives an error response. At a concurrency level of 
4,000, the Kubernetes Rolling Update exhibited a loss rate 
of 0.43%, indicating the highest increase of up to 1,076% 
compared to the container without alternations. On aver-
age, the request failure rate during the Kubernetes Roll-
ing Update was 797.69% higher than that of the container 
without alternations.

In contrast, Optimus’s Covert Container Renewal 
displayed a loss rate of 0.05% at the 2,500 concurrency 
level, resulting in a decrease of -27.98% compared to the 

Fig. 12 Time series of response time variations during the Kubernetes-native Rolling Update and Covert Container Renewal
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container without alternations. On average, Optimus 
achieved a slightly lower request failure rate of 5.94% 
compared to the container without alternations. This 
improvement is attributed to the divided burden on the 
server during the coexistence period of the old and alter-
native containers, which helps alleviate the request fail-
ure rate when the server is under heavy load.

With these results, Optimus effectively updates the 
applied profile during container execution while ensur-
ing the high availability of the application within the con-
tainer. The Covert Container Renewal approach mitigates 
the service disruption issues observed in the Kubernetes-
native Rolling Update, allowing for smoother and more 
reliable container alternation without breaking the appli-
cation’s availability.

Related work
Application debloating: One approach to reduce attack 
surfaces is removing the unused parts of code from the 
application memory space. They achieve this through 
techniques such as library specialization  [49, 52], func-
tion call graph analysis [2], data dependency analysis [51, 
58], argument-level specialization [44], and user-defined 
feature analysis  [56]. These approaches reorganize pro-
grams or libraries to minimize the code that is loaded 
and executed, thereby reducing potential attack vectors. 
In contrast, Optimus addresses the security of contain-
erized applications by restricting the interactions with 
the Linux kernel through dynamic and association-based 
system call filtering. Rather than modifying the applica-
tion code itself, Optimus monitors system calls at runt-
ime and dynamically enforces a tailored Seccomp profile 
to limit the available system calls, effectively minimizing 
the exposed attack surface to the Linux kernel.

Kernel debloating: Several works  [1, 32, 38–40, 73] 
have focused on reducing the attack surface of appli-
cations by minimizing kernel memory space. These 

approaches involve tailoring the Linux kernel to specific 
workloads  [40], instrumenting kernel functions to iden-
tify and remove unused code sections [38, 39], generating 
customized kernel profiles for individual applications [32, 
73], and conducting dynamic switching of in-memory 
kernel code based on application profiles [1]. While these 
methods share the goal of minimizing the kernel’s expo-
sure to potential attacks, our approach in this research 
centers on securing interactions with the Linux kernel by 
restricting access to system calls, rather than customizing 
the kernel for individual containers.

System call restriction: Several studies have explored 
the use of system call restriction for reducing the attack 
surface of applications.

Static analysis-based approaches. Sysfilter [19] employs 
static binary analysis to identify necessary system calls 
from library functions that have a dependency on a given 
application, creating a tailored Seccomp profile for sys-
tem call restriction. TAILOR [71] also determines the 
required system calls for applications by conducting 
a thorough static analysis of the standard library at the 
source code level. Saphire [10] identifies API functions 
of the PHP interpreter and captures the system calls 
invoked from these functions to create a restricted pro-
file. While research employing static analysis techniques 
has produced a comprehensive whitelist of system calls, 
Optimus diverges by tracking system calls during actual 
runtime. This approach minimizes potentially risky or 
unnecessary system calls, thus reducing the superfluous 
attack surface.

Dynamic analysis-based approaches. Wan et  al. [68, 
70] utilize test suites to train the execution of contain-
erized applications and dynamically record accessed 
system calls using the sysdig [9] trace logs. DockerSlim 
[22] is a dynamic analysis tool that optimizes contain-
ers by removing unnecessary parts from container 
images and automatically generates a custom Seccomp 

Fig. 13 Request failure variations during container alternation with an increment in concurrent connections
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profile for the container. However, in dynamic analysis-
based research, the generation of system call profiles 
relies on specific workloads, limiting its ability to adapt 
to various scenarios encountered throughout the entire 
execution of a container. In contrast, our system can 
support the additional system calls required by con-
tainer applications during actual runtime through cov-
ert container renewal.

Hybrid approaches. Confine [30] introduces a dynamic 
method to capture executables launched during the ini-
tial configuration time and performs static analysis on 
these captured executables to reduce unnecessary sys-
tem calls. Similarly, RSDS [69] obtains the executed 
ELF files by monitoring events on the host file system 
corresponding to each layer of a container image using 
inotify [43]. Canella et al. [11] employ optional dynamic 
analysis to complement system calls missed from static 
analysis. Nimos [57] utilizes both static and dynamic 
analysis techniques to scrutinize the sequence of system 
call occurrences in kernel exploit codes, utilizing them 
as attack patterns. However, attempts to merge static and 
dynamic analysis methods in such research endeavors 
have encountered pitfalls inherent in each approach, such 
as erroneous inferences about necessary system calls. In 
contrast, our system dynamically alters profiles at runt-
ime, thereby minimizing the exposed attack surface while 
supporting the necessary system calls for the proper exe-
cution of container applications.

Temporal approaches. Some studies use temporal 
separation to apply different policies to applications at 
different times. Ghavamnia et  al. [31] identify distinct 
initialization and serving phases during an application’s 
execution time and enforce different system call poli-
cies for each phase based on static analysis. Speaker [41] 
presents a similar approach but utilizes dynamic analysis 
to identify the required system calls for the initializa-
tion and run-time phases. Similarly, Yunlong et  al. [72] 
propose a methodology for partitioning the container 
execution lifecycle into three distinct phases: booting, 
running, and shutdown. Subsequently, profiles, crafted 
through dynamic analysis, are strategically applied to the 
respective phase. SysXCHG [29] introduces an innova-
tive system call filter model by augmenting the existing 
seccomp-BPF and integrating it into individual ELF bina-
ries. This approach enables the refinement of the permit-
ted syscall set dynamically at runtime, precisely at the 
point of execution of execve. Research utilizing temporal 
separation of profile application, similar to Optimus, has 
innovated new approaches to system call policy enforce-
ment, enabling dynamic replacement with appropriate 
system call policies at runtime. However, inevitable mod-
ifications to the target binaries or kernel pose compatibil-
ity issues with existing operating systems.

Conclusion
In the realm of securing containerized applications, there 
has been a lack of focus on restricting container access to 
the shared kernel of the host system. Existing approaches 
to limit container operations and interactions with the 
host kernel have encountered significant security chal-
lenges. To address this gap, we propose Optimus, an 
automated and unified system that employs association-
based dynamic system call filtering in container envi-
ronments. Optimus utilizes eBPF to monitor all system 
calls invoked from containers at the kernel level, applies 
association analysis to filter out irrelevant system calls 
for each container, and enforces runtime restrictions on 
available system calls. Through evaluations with real-
world container images, we demonstrate that Optimus 
effectively reduces necessary system calls for containers 
during runtime, while ensuring continuous container 
serviceability.
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