
He et al. Journal of Cloud Computing (2024) 13:72
https://doi.org/10.1186/s13677-024-00642-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Accurate and fast congestion feedback
in MEC‑enabled RDMA datacenters
Xin He1, Feifan Liang1, Weibei Fan1, Junchang Wang1, Lei Han1, Fu Xiao1* and Wanchun Dou2 

Abstract 

Mobile edge computing (MEC) is a novel computing paradigm that pushes computation and storage resources
to the edge of the network. The interconnection of edge servers forms small-scale data centers, enabling MEC
to provide low-latency network services for mobile users. Nowadays, Remote Direct Memory Access (RDMA) has been
widely deployed in such data centers to reduce CPU overhead and network latency. Plenty of congestion control
mechanisms have been proposed for RDMA data centers, aiming to provide low-latency data delivery and high
throughput network services. However, our fine-grained experimental analysis reveals that existing congestion
control mechanisms still have performance limitations due to inappropriate congestion notifications and the long
congestion feedback cycle. In this paper, we propose Mercury, which is an accurate and fast congestion feedback
mechanism. Mercury comprises two key components: (1) the state-driven congestion detection and (2) the win-
dow-based congestion notification. Specifically, the state-driven congestion detection monitors the queue length
and the number of packets received at the switch egress port when the PFC is triggered. It determines the states
of egress ports and identifies flows that really contribute to congestion. Then, window-based congestion notifica-
tion calculates the window sizes for congested flows and rapidly returns Congestion Notification Packets (CNPs)
with the window information to the sender. It facilitates the rate adjustment of congested flows. Mercury is compat-
ible with existing RDMA CC mechanisms and can be easily implemented in switches. We employ real-world data sets
and conduct both micro-benchmark and large-scale simulations to evaluate the performance of Mercury. The results
indicate that, thanks to the accurate and fast congestion feedback, Mercury achieves a reduction in the 99th tail flow
completion time by up to 45.1%, 41.8%, 38.7%, 30.9%, and 37.9% compared with Timely, DCQCN, DCQCN+TCD, PACC,
and HPCC, respectively.

Keywords  Congestion feedback, Congestion detection, MEC-enabled RDMA datacenters

Introduction
Mobile edge computing (MEC) is a novel computing
paradigm that pushes computation and storage resources
to the edge of the network [1–3]. The interconnection
of edge servers forms small-scale data centers. These
data centers are required to support increasingly diverse

applications, such as federated learning, data analysis,
and parallel computing [4–6]. These applications have
stringent performance requirements (e.g., high through-
put and low latency [7, 8]), which places enormous pres-
sure on the data center. The traditional TCP/IP stacks
are no longer suitable since their high CPU overhead and
long processing latency [9]. As a consequence, Remote
Direct Memory Access (RDMA) which enables kernel-
bypass and zero-copy data transport, has become an
attractive option for MEC-enabled data centers [10, 11].

RDMA over Converged Ethernet v2 (RoCEv2) is
the de-facto standard to deploy RDMA in the data
center [10]. RoCEv2 is compatible with IP/Ethernet and

*Correspondence:
Fu Xiao
xiaof@njupt.edu.cn
1 School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210023, Jiangsu, China
2 Department of Computer Science and Technology, Nanjing University,
Nanjing 210023, Jiangsu, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00642-8&domain=pdf

Page 2 of 15He et al. Journal of Cloud Computing (2024) 13:72

adopts Priority Flow Control (PFC) to achieve lossless
data transmission in RMDA data centers [12]. How-
ever, PFC is a coarse-grained flow control mechanism.
To avoid packet drops, PFC roughly pauses/resumes the
egress port of the switch, leading to several potential
problems, e.g., Head-of-Line (HOL) blocking, PFC dead-
lock, and PAUSE storm [13, 14], which damage the per-
formance of the network. Therefore, in recent years, the
congestion control (CC) algorithms for RDMA data cent-
ers that can reduce the activation of PFC have attracted
much attention.

The CC mechanisms for RDMA data centers can be
broadly classified into two categories: (1) end-to-end
CC mechanisms and (2) switch-driven CC mechanisms.
The end-to-end CC mechanisms adopt different sig-
nals such as Explicit Congestion Notification (ECN) [10,
15], Round-Trip Time (RTT) [11, 16] and In-Network
Telemetry (INT) [17] to mark in-network congestion.
However, the control loop of end-to-end CC mecha-
nisms is long. Sluggish congestion reaction aggravates
the queue accumulation of congested switches, thus
prolonging the flow completion time (FCT). Besides, as
network bandwidth continues to increase (from 1Gbps
to 40Gbps/100Gbps/400Gbps) [10], an increasing num-
ber of flows can complete their transmission within one
RTT [18]. It is hard for the end-to-end CC mechanisms
to control such flows effectively. The switch-driven CC
mechanisms [19, 20] leverage the in-network switch to
measure congestion closely and feedback congestion con-
trol information to the sender directly. As a consequence,
the switch-driven CC provides fast congestion feedback
by reducing the congestion loop. However, most of the
switch-driven CCs rely on the Proportional Integral (PI)
controller to calculate the congestion control informa-
tion [19–21]. The PI controller needs well-tuned control
parameters, thus bringing implementation challenges in
modern programmable switches [22, 23].

The congestion detection is a cornerstone of the
CC mechanisms, which determines when and where
the CC mechanisms take effect [24, 25]. The exist-
ing RDMA CC mechanisms still have limitations in

congestion detection. For example, the typical CC
mechanism DCQCN [10] marks flows as congested
flows when the switch queue accumulates and exceeds
the specified threshold.However, such a congestion
detection mechanism is inaccurate since the PFC also
incurs queue accumulation.As shown in Fig. 1a, the
PFC enables the downstream switch to pause the data
transmission of the upstream switch when its queue
length exceeds the PFC pause threshold Xoff  , and then
the queue of the upstream switch builds up. There-
fore, the existing RDMA CC mechanisms may mislabel
flows as congested flows if the real congested flow and
uncongested flows (i.e., victim flows) share a paused
queue. Namely, the existing RDMA CC mechanisms
cannot accurately determine which flow is the culprit of
congestion. Although the newly proposed TCD [26] has
attempted to distinguish the congested flows and victim
flows, it determines the state of each flow after a pre-
configured parameter max(Ton) expires, which cannot
rapidly take effect in high-speed data center networks.

To solve the problem mentioned above, we present
Mercury, which aims to provide accurate and fast con-
gestion feedback to the sender. The sender receives the
congestion feedback and rapidly adjusts its sending rate
to eliminate the congestion. Mercury designs two key
components to achieve our goals:

(1) State-driven congestion detection: Mercury lev-
erages the switch, which is directly relative to in-net-
work congestion, to detect the congestion closely. To
identify which flows are the real culprits of congestion,
Mercury first defines the states of the switch egress
ports. Then, Mercury monitors both the queue length
and the number of packets received at the egress port
when the PFC is triggered. According to the above sta-
tistical information, Mercury determines whether the
port is a congested port. Flows passing through the
congested port are the ones that actually cause the con-
gestion. With the state-driven congestion detection,
Mercury identifies congested flows accurately and only
feedbacks Congestion Notification Packets (CNPs) of
the congested flows.

Fig. 1  PFC mechanism

Page 3 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

(2) Window-based congestion notification: To rap-
idly adjust the sending rate of congested flows, the
window-based congestion notification calculates the
window sizes of each congested flow to limit the number
of inflight packets. The window sizes can be carried in
CNPs and sent back to the sender to limit the number of
inflight packets. At the sender, the window information
can be integrated with existing congestion control mech-
anisms to efficiently detect and feedback network con-
gestion without any modifications in network hardware.

In summary, this paper has the following contributions:

•	 We reveal that existing RDMA CC mechanisms still
have performance limitations due to inappropri-
ate congestion notifications and the long congestion
feedback through fine-grained experiments.

•	 We present Mercury, which develops the state-driven
congestion detection to identify flows that really con-
tribute to congestion. For the real congested flows,
Mercury leverages the window-based congestion
notification to adjust their sending rates to eliminate
congestion rapidly.

•	 We conduct comprehensive experiments to evalu-
ate Mercury. The results show that Mercury reduces
the 99th tail FCT by up to 45.1%, 41.8%, 38.7%,
30.9%, and 37.9% compared with Timely, DCQCN,
DCQCN+TCD, PACC, and HPCC, respectively.

The rest of the paper is organized as follows. “Back-
ground and motivating” section illustrates the relative
background and the motivation to design Mercury. “Mer-
cury design” section introduces the design of Mercury in
detail. “Performance evaluation” section evaluates the
performance of Mercury. “Related work” section intro-
duces the related work. “Conclusion” section concludes
this paper.

Background and motivating
RDMA data centers
Nowadays, the link bandwidth of data centers is grow-
ing rapidly, and applications are imposing more strin-
gent requirements on network performance. Traditional
TCP protocol has become a bottleneck of modern data
centers. More and more data centers are adopting the
RDMA to replace TCP [10]. With the kernel-bypass and
zero-copy data transport, RDMA achieves high through-
put and low latency network performance. RoCEv2 is
the standardized protocol for deploying RDMA over
Ethernet. It relies on PFC to achieve the lossless data
transmission.

Figure 1 shows the details of the PFC mechanism.
PFC is a hop-by-hop flow control mechanism that ena-
bles the downstream port to send a pause/resume frame

to control the traffic transmission of the upstream port.
Specifically, PFC defines two thresholds Xoff and Xon
for a queue of the ingress port. As shown in Fig. 1a,
the downstream port sends a PFC pause frame to stop
data transmission of the upstream port when the queue
length exceeds Xoff  . Triggering PFC causes the link uti-
lization between the upstream port and the downstream
port to drop to zero, and packets are accumulated in the
upstream queue. As shown in Fig. 1b, the downstream
port sends a PFC resume frame when the queue length
decreases to Xon , and the upstream port resumes data
transmission. In this way, PFC can rapidly react to con-
gestion and ensure lossless data delivery.

Existing congestion control schemes are insufficient
In the RDMA data centers, the existing CC schemes [10,
15, 17, 20] are insufficient in congestion feedback accu-
racy and speed, which affects the network performance.

Firstly, the congestion notifications of the existing
CC schemes are inaccurate. They determine the con-
gested flows based on whether the switch queue length
exceeds the specified congestion threshold. When a flow
is marked as congested, the switch sends a congestion
notification to the receiver or the sender to guide the
data transmission behavior in different ways. However,
as we mentioned before, the PFC mechanism also leads
to queue buildup, and the queue length may also exceed
the congestion threshold. Therefore, detecting conges-
tion only based on queue length cannot precisely identify
which flow is a criminal of congestion, leading to inaccu-
rate congestion notification and incorrect rate increment.

We conduct an experiment in the NS3 simulator [27] to
illustrate this problem. We adopt a widely used fat-tree
topology shown in Fig. 2. We set the bandwidth of H1-S1
and H2-S1 to 20 Gbps. The remaining link bandwidth is
set to 40 Gbps. The propagation delay between switches
is 4 µ s. We adopt DCQCN [10] as the default congestion
control scheme and set the Xon/Xoff of PFC to 318/320
KB. We first generate two long-lived flows F1 and F2 at
time T0. At time T1 (i.e., 3ms after T0), we send 8 con-
current burst flows to R2, lasting for about 500 µ s. Ide-
ally, port P3 of switch S3 experiences congestion due to
the bursty traffic. F2 passing through the congested port
will be marked with the congested flow, and the sender
will slow down the rate of F2. Since F1 does not pass
through the congested port P3, the rate of F1 will not be
affected.

Figure 3 shows the experimental result. As shown in
Fig. 3, the rates of F2 and F1 decrease consecutively. The
fundamental reason is that the congestion on port P3 has
spread to ports P2 and P1. Specifically, when switch S3
triggers PFC, the data transmission of port P2 is paused,
resulting in the queue accumulation on port P2. Similarly,

Page 4 of 15He et al. Journal of Cloud Computing (2024) 13:72

the PFC pause frame spreads to port P1 of S1, and the
queue of P1 builds up. When the queue length of P2 and
P1 exceeds the congestion threshold, both F2 and F1 are
marked with Explicit Congestion Notification (ECN) and
treated as congested flows. Then, senders receive the
congestion notifications and decrease the rates of F2 and
F1. Although P1 and P2 are not congested ports and F1
is not a flow that really contributes to congestion, F1 is

still mistakenly marked with ECN and experienced the
rate reduction. F1 becomes a victim flow. Therefore, the
existing RDMA congestion control mechanisms can-
not effectively identify the congested flow and the vic-
tim flow, thereby failing to generate accurate congestion
notifications.

Secondly, the congestion feedback of the existing
CC schemes are slow. Most of the RDMA CC mecha-
nisms leverage different signals (e.g., ECN [10], RTT [11]
and INT [17]) to detect congestion, and then adjust the
data transmission rate based on the end-to-end control
signal. However, the long control loop fails to provide fast
congestion feedback when the congestion occurs, result-
ing in queue accumulation and increasing the FCT.

We also conduct an NS3 simulation to verify this
problem. We adopt a topology similar to Fig. 2 and
configure 9 hosts (i.e., H1∼H9) to connect to switch
S1. The link bandwidth of the network is set to 40
Gbps, and the link propagation delay remains 4 µ s.
Initially, H1 generates a long-lived flow and transmits
it to R1. After 600 µ s, H2-H9 concurrent send flows
with 120 KB to R1.

Figure 4 shows the queue length of S1 and the through-
put of the long-lived flow. As shown in Fig. 4a, since the

Fig. 2  Motivation topology

Fig. 3  Performance of congested flow and victim flow

Fig. 4  Performance of different congestion control mechanisms

Page 5 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

end-to-end congestion control signals cannot feedback
congestion rapidly, the maximum queue accumula-
tion produced by DCQCN [10], Timely [11], HPCC [17]
exceeds 1000 KB. It incurs the long queueing delay, which
greatly impacts short latency-sensitive flow. Moreover,
the existing CC algorithms continuously reduce the send-
ing rate or decrease the number of inflight packets until
the queue length drops to a specified congestion thresh-
old.The more the queue length exceeds the specified

congestion threshold, the more congestion feedback sig-
nals are produced. As shown in Fig. 4b, in order to han-
dle burst traffic, DCQCN [10], Timely [11], HPCC [17]
almost decrease the throughput of the long throughput-
sensitive flow to zero during a period of time. In contrast,
a fast congestion feedback mechanism, i.e., Mercury,
ensures the minimum throughput exceeding 6 Gbps.
When the accumulated packet is below the congestion
threshold, the throughput recoveries. Figure 4b reveals

Fig. 5  Overview of Mercury

Fig. 6  States of egress ports

Page 6 of 15He et al. Journal of Cloud Computing (2024) 13:72

that the fast congestion feedback not only reduces the
decline in throughput but also offers rapid throughput
recovers.

Mercury design
In this section, we introduce Mercury. Specifically, we
first exhibit the overview of Mercury. Then, we define dif-
ferent states of the switch egress ports to assist in identi-
fying the flows that actually causing congestion. Finally,
we introduce the design details of Mercury.

Mercury overview
The key insight of Mercury is to achieve accurate con-
gestion detection and fast congestion feedback. Figure 5
shows the overview of Mercury. The traditional end-to-
end congestion control mechanisms DCQCN [10] specify
the behavior of three entities: Reaction Point (RP) at the

sender to adjust the sending rate, Congestion Point (CP)
at the switch to detect congestion, and Notification Point
(NP) at the receiver to notify congestion to the sender. To
get the fast congestion feedback, Mercury integrates CP
and NP into the switch, i.e., the switch detects conges-
tion and feeds back CNPs immediately when congestion
occurs. It is widely used in data centers [20]. To accu-
rately identify the real congestion flows and rapidly adjust
its sending rate, Mercury presents port state determi-
nation, flow identification, and window calculation and
adds them to the existing CP and NP modules. Specifi-
cally, triggering PFC causes queue accumulation, which
affects the congestion detection. To accurately identify
which ports are genuinely congested and which ones are
affected by PFC, Mercury monitors the queue length and
maintains a flow table to record the number of packets
received at the egress port of the switch when the PFC is
triggered. With the queue length and packet information,

Fig. 7  Algorithm flowchart of Mercury

Page 7 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

the port state determination module determines the state
of each egress port, and then the flow identification mod-
ule recognizes flows that really contribute to congestion.
For the congestion flows, the window calculation module
calculates their sending windows and explicitly assigns a
window size to each congestion flow. The window infor-
mation is carried back to the sender by a CNP. In the
sender, Mercury does not require modifications to the RP
algorithm of DCQCN [10], it only needs to add a sending
window to the rate adjustment module to limit the num-
ber of inflight packets, which speeds up congestion elimi-
nation. Mercury is easy to deploy and compatible with
the existing CC mechanisms.

State definition of egress ports
In order to distinguish the real congested flows and vic-
tim flows, Mercury divides the state of the egress port
into the following two categories:

Determined state: The port being in the determined
state indicates that the relationship between the incom-
ing rate of the port and the link capacity is unequivocal.
As shown in Fig. 6a, the link capacity is fully utilized and
packets are accumulated in the egress queue. It indicates
that the incoming rate of the upstream port exceeds the
link capacity persistently. At this point, the port is in a
determined congestion state. In contrast, when the link
capacity is underutilized and the egress queue is empty
as shown in Fig. 6b, it indicates that the incoming rate
of the upstream port is under the link capacity. At this
point, the port is in a determined non-congestion state.
For flows passing through ports with determined conges-
tion states, the sender can reduce their sending rates to
alleviate the queue buildup. In contrast, for flows passing
through ports with determined non-congestion states,
the sender can increase their sending rates to improve
link utilization. In summary, for the flow passing through
the port with the determined state, the rate regulation
mode is also determined.

Undetermined state: The port being in the undeter-
mined state indicates that the relationship between the
incoming rate of the port and the link capacity is ambigu-
ous. Figure 6c shows the port in the undetermined state.
For the port with the undetermined state, there is queue
accumulation despite the link being underutilized. The
reason is that when receiving PFC pause and resume
frames, the data transmission of the port switches
between ON and OFF. Therefore, it is unknown whether
the incoming rate of packets exceeds the link capac-
ity or not. The corresponding rate regulation mode is
also undetermined. To avoid the victim flows, we do not
adjust the rate of flow passing through the undetermined
state port until the corresponding port changes to the
determined state.

Design details
Mercury comprises two key components: (1) the state-
driven congestion detection and (2) the window-based
congestion notification. Figure 7 shows the process of
Mercury. Parameter Last_State denotes the current port
state. Parameter rxByte denotes bytes that arrived at the
egress queue when the port is paused by PFC. Tpause is
the duration for which PFC pauses the port. Q_Length
and C is the link bandwidth. Now, we illustrate the state-
driven congestion detection and the window-based con-
gestion notification in detail.

The state-driven congestion detection. Since the net-
work is highly dynamic, the state of the port may shift
frequently. The key insight of state-driven congestion
detection is to determine the state of each port rapidly
and identify which flow is the congestion flow accurately.

Algorithm 1 Mercury

At the beginning, all ports are in the Determined states
and there is no victim flow. When PFC is triggered, the
port enters the Undetermined state. We need to deter-
mine whether the port affected by PFC is a real congested
port or not. In this way, we can identify congestion flows
and victim flows. Algorithm 1 shows the details of port
state determination and flow identification.

When receiving a PFC pause frame, the port pauses
data transmission. Mercury records the time when data
transmission is paused and initialize rxByte to 0 (lines
2-3). During the pause period, the switch updates
rxByte when the egress queue of the port receives a
packet (lines 4-5).When receiving a PFC resume frame,
Mercury calculates the pause duration Tpause (line 7),

Page 8 of 15He et al. Journal of Cloud Computing (2024) 13:72

and checks the current queue length Q_Length . If
Q_Length exceeds the congestion threshold, Mer-
cury further judge the state of the port based on the
relationship between the receiving rate and sending
rate of the port (lines 8,9). We adopt rxRate = rxByte

Tpause
 to

represent the average receiving rate during the PFC
pause period. When there is a queue accumulation, the
port sends data at line speed, i.e., the link capacity C.
For ease of implementation, we convert the relationship
between the receiving and sending rates into whether
the received packets rxByte can be drained out within
Tpause at the line rate C.If rxRate ≤ C , it indicates that
the queue buildup will be alleviated when the port
resumes the data transmission. Therefore, the port is
not a real congestion port and the temporary data accu-
mulation is caused by PFC. Mercury configures the
port as an Undetermined port (line 10). Conversely, if
rxByte > C × Tpause , it demonstrates that although the
port resumes data transfer, the queue length will con-
tinue to increase. Therefore, the port is a congestion
port and the state of the port is Determined (line 12).
For the condition where Q_Length below the congestion
threshold, the port is the non-congestion port and the
state of the port is also configured as Determined (lines
13-14).

Since the Undetermined state is temporary. Mer-
cury set a timer T and periodically checks Q_Length to
determine whether to change the port from the Unde-
termined state to the Determined state (lines 15-20).
Specifically, when a packet dequeues from the Unde-
termined port and T expires, Mercury checks the cur-
rent queue length and the evolution of the queue length
during T. If the current queue length exceeds the con-
gestion threshold and the queue length decreases dur-
ing T, it indicates that the port is still affected by PFC.
Therefore, the port remains in the Undetermined state.
Otherwise, the port swifts to the Determined state.

The different port states enable Mercury to distin-
guish ports affected by PFC and ports that actually
experience congestion. The flow_identification function
identifies congested flows, i.e., flows passing through
the congestion port. Then, the window_calculation
function calculates the sending window of the con-
gestion flow. Mercury only sends a CNP with window
information to enable the sender to adjust the rates
of congestion flows, thus avoiding mistakenly slowing
down the rate of victim flows.

The window-based congestion notification. The
key insight of window-based congestion notification is
calculating the sending window for congestion flow and
carrying it back to the sender by the CNP. Similar to
the sending window adopted in the TCP, the function
of the sending window is to limit the number of packets

that are already sent but have not yet been received by
the receiver. Algorithm 2 illustrates the window-based
congestion notification.

Algorithm 2 Compute Window

Initially, the window sizes are uniformly set to
C × baseRTT to fully utilize the link bandwidth, where
baseRTT​ is the base propagation RTT. For the specified
network topology, baseRTT​ can be known in
advance [17]. Mercury maintains a flow table to record
the packets of each flow and the total packets on the con-
gested port. Mercury uses the source address and desti-
nation address as flow identifier (FID), and uses the
combination of the flow’s egress port and the hash of FID
to index the table entry. The flow table is updated when
the switch receives a packet or sends a packet (lines 1-6).
When the flow size of the flow table is zero, the switch
deletes the corresponding entry to save memory space
(lines 7-8). When congestion occurs, Mercury calls the
Window_calculation function to calculate the window
size of the congestion flows (lines 10-13). Specifically,
Rate[sip, dip] = C ×

port.flowTable[sip,dip].data
Sum(port.flowTable.data)

 obtains the
upper bound of the flow rate that will not cause conges-
tion in the switch. Since the topology in data centers is
regular and the baseRTT is usually known in
advance [17], we can obtain the sending window of each
congestion flow according to the equation
Win[sip, dip] = Rate[sip, dip] × baseRTT  . Mercury uses
the 32-bit reserved segment in CNP to carry the window
information, which is compatible with the CNP packet in
RoCEv2 [24]. Then, Mercury sends CNP to the sender.

When the sender receives a CNP, it reduces its sending
rate based on the existing congestion control scheme (we

Page 9 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

adopt DCQCN by default). Meanwhile, the sender parses
the CNP and updates its congestion window cwnd (lines
15-17). When the number of inflight packets exceeds the
window size, the sender stops packet transmission imme-
diately. It allows the congestion switch to drain out its
egress queue quickly. When congestion disappears, the
sender no longer receives CNP and gradually recovers
the sending rate. At this point, the window size will be
set to the initial value (i.e., C × baseRTT  ) to enable the
sender to recover its sending rate rapidly (lines 18-20).

Discussions
In this section, we discuss the implementation of Mer-
cury in the real environment.

Mercury is mainly implemented in programmable
switches and is compatible with the existing CC mecha-
nisms. Mercury can inherit the rate control scheme of the
existing CC mechanisms at the sender without any modi-
fication. It only requires an additional register to store
the window information received from CNP to limit the
number of flight packets. In order to achieve accurate and
fast congestion feedback, Mercury needs a register at the
switch to record the port state (i.e., Last_State). Besides,
Mercury also needs registers to track packets that arrive
at the egress queue when the port is paused by PFC and
record the PFC duration. In commercial switches, regis-
ters are abundant to achieve the above operations. Mer-
cury also maintains a flow table to record the number
of packets of each flow received at the egress port when
the PFC is triggered. With the above information, Mer-
cury can obtain the sending rate of each flow. To get the
window size, we need to further determine baseRTT. Due
to the regularity of the topology, the RTT between server
pairs in the data center is very close which makes it pos-
sible for all flows to use the same baseRTT [17]. There-
fore, if the network topology is determined, baseRTT can
be pre-configured as a known parameter in switches. The
switch sends a CNP with the window information to the
sender if the switch is congested. The CNPs can be gener-
ated on the control plane of the programmable switches,
which has already been achieved in [28].

Performance evaluation
In this section, we conduct both small-scale experiments
and large-scale experiments based on the NS3 simulator
to evaluate the performance of Mercury. We adopt the
widely-used congestion control algorithm DCQCN [10]
as the default congestion control algorithm of Mer-
cury. In fact, Mercury can also be compatible with other
RDMA congestion control schemes. We adopt the open-
source code [29] to implement Mercury.

Experiment settings
Topology: In the large-scale simulation, we adopt a fat-
tree topology [30], which includes 20 ToR switches, 20
aggregation switches, and 16 core switches. Each ToR
switch is connected to 16 servers, and the link bandwidth
between the ToR switch and the server is 100 Gbps. The
rest of the link bandwidth is set to 400 Gbps. We set the
propagation delay of each link to 1 us, thus the maximum
base RTT is 12 us. The whole network is a single RDMA
domain.

Benchmarks: We compare Mercury with several
RDMA CC mechanisms, i.e., Timely [11], DCQCN [10],
PACC [20], and HPCC [17], where Timely [11],
DCQCN [10], and HPCC [17] are common used end-
to-end CC mechanisms and PACC [20] is the state-
of-the-art switch-driven CC mechanism. Besides,
we combine the state-of-the-art congestion detec-
tion algorithm TCD [26] with DCQCN [10] and treat
DCQCN+TCD as one of the comparison algorithms. All
of the benchmarks are implemented based on the open-
source code [29].

Parameter settings: We set all experiments to enable
PFC. In the small-scale experiments, we set the PFC
thresholds Xoff to 320 KB and Xon to 318 KB. In the large-
scale experiments, we set Xoff to 620 KB and Xon to 618
KB. Mercury needs to check the queue length and update
the port status periodically. We set the corresponding
period T to 10us. For the benchmarks, unless otherwise
specified, we employ the parameter settings recom-
mended in their papers [10, 11, 17, 20, 26].

Workloads: We adopt four widely-used realistic
workloads, i.e., Hadoop [31], WebServer [31], CacheFol-
lower [32], WebSearch [33] to analyze the performance
of Mercury. The flow distributions of the four workloads
are shown in Fig. 8. In the Hadoop cluster, about 60% of
flows are smaller than 1 KB, and in the web server cluster,
about 80% of flows are less than 10 KB. Compared with
Hadoop and Websearch, WebSearch and CacheFollower
have more long flows. In each workload, we generate
flows following a Poisson arrival process.

Performance Metrics: We verify the performance of
Mercury from the following four aspects: (1) throughput,
(2) buffer usage, (3) average FCT, (4) 99th tail FCT.

Small‑scale simulations
We first conduct small-scale experiments. We still adopt
the topology shown in Fig. 2. We maintain the parameter
settings and traffic generation model in “Existing conges-
tion control schemes are insufficient” section, i.e., there
are two long-lived flows F1 and F2, and 8 concurrent
burst flows in the network. The size of each burst flow is
50KB, and the duration is 500 µ s. Since the size of the

Page 10 of 15He et al. Journal of Cloud Computing (2024) 13:72

burst flow is smaller than the Bandwidth Delay Product
(BDP), it is impossible for the congestion control mecha-
nisms to adjust the rate of the burst flow. In this case, the
queue is building up on port P3 of S3. Then, S3 triggers
PFC to pause the data transmission and the pause may
spread to port P1 of S1. As we illustrate in “Existing con-
gestion control schemes are insufficient” section, F2 is a
congestion flow and F1 is a victim flow.

Figure 9 shows the throughput of the congestion flow
F2 and the victim flow F1. Figure 9a shows that all of the
algorithms slow down the congestion flow. Compared
with several benchmarks, Mercury can quickly adjust
the sending rate of the congestion flow when the conges-
tion occurs or disappears. It benefits from the fact that
Mercury can respond to congestion at the nearby switch
and the window carried in CNP further controls the
number of packets sent by the source. Figure 9b shows
that both Timely, DCQCN, DCQCN+TCD, HPCC, and
PACC reduce the rate of the victim flow, while Mer-
cury keeps the rate of victim flow unchanged. Timely,
DCQCN, HPCC, and PACC do not have the ability to
identify the congested flow and victim flow when PFC is

triggered, so they regard the victim flow as the congested
flow and thus sharply slow it down. It increases the FCT
of the victim flow and incurs throughput loss. Although
DCQCN+TCD can identify victim flows, the rate of the
victim flow still decreases to 5 Gbps in our simulation. It
indicates that DCQCN+TCD may misjudge the victim
flow when congestion is severe. As a comparison, Mer-
cury identifies the victim flow accurately and only adjusts
the rate of the congestion flow.

Afterward, we still use the topology shown in Fig. 1
and set all of the link rates to 40Gpbs. We set H1 and
H2 as senders, and R1 and R2 as receivers. We gener-
ate 80% Hadoop workload and observe the performance
of Mercury. The results are shown in Fig. 10b. Com-
pared to other algorithms, Mercury reduces the 99th tail
FCT by about 16.1%∼25.5%, and reduces the maximum
queue occupancy of the switch by about 20.9%∼39.2%.
The reason is that congestion mainly occurs in the first
hop switch. Mercury can detect the congestion at the
switch rapidly and return CNPs with the sending window
directly, which eliminates congestion quickly.

Large‑scale simulations
We also conduct large-scale simulations to compre-
hensively evaluate the performance of Mercury. As
mentioned in “Experiment settings” section, we adopt
a fat-tree topology with 320 servers. We analyze Mer-
cury under different workloads and traffic loads.

Figures 11 and 12 show the average and 99th tail
FCT under the four workloads. The results show that
the average and 99th tail FCT increase as the traffic
load increases. We note that even Mercury can always
provide the lowest average FCT and 99th tail FCT
compared with other algorithms under different traf-
fic patterns. Specifically, Mercury reduces the overall
average FCT of by 21.1%∼38.5% compared with other
algorithms in CacheFollwer workload. In Hadoop work-
load, the overall average FCT reduction is 11.2%∼36.1%.

Fig. 8  Flow distribution of typical workloads

Fig. 9  Throughput in small-scale simulation

Page 11 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

Similarly, Mercury reduces the overall average FCT
by up to 21.9% in WebSearch workload and 32.6% in
WebServer workload. The results of the 99th tail FCT
maintain similar trends. The reason is that Mercury can
identify which flow is the culprit of congestion and only
reduce the rate of the congestion flows. The throughput
of the victim flow is not affected, thus reducing the FCT
of the victim flow. Besides, Mercury enables the switch
to send the sending window of each congestion flow
rapidly, the FCT of the congestion flows will be reduced
accordingly.

To further verify the performance of Mercury for dif-
ferent sizes of flows, we decomposed the FCT in the
workloads by flow size. Since the performance trends
of different workloads are similar, we only present the
results on the CacheFollower and WebSearch workloads
as shown in Figs. 13 and 14.

Figures 13a∼ b and 14a∼ b show the average FCT and
99th tai FCT for short flows. The FCT of Mercury for
short flows is lower than that of Timely, DCQCN,
DCQCN+TCD, and PACC, and the average FCT is only
slightly higher than that of HPCC. Specifically, in the

Fig. 10  Performance on Hadoop workload

Fig. 11  Average FCT

Page 12 of 15He et al. Journal of Cloud Computing (2024) 13:72

Hadoop workload, Mercury decreases at most 64.7% aver-
age FCT and 58.7% tail FCT for short flows compared
with Timely, DCQCN, DCQCN+TCD, and PACC. In
the Webserver workload, the average and 99th tail FCT
reduction are at most 81.1% and 80.6%, respectively. Fig-
ures 13c∼ d and 14c∼ d show the average FCT and 99th tai
FCT for long flows. The results show that Mercury out-
performs other algorithms in both the average FCT and
99th tail FCT. Specifically, under the Hadoop workload,
Mercury decreases the average FCT by up to 26.5%, 26.3%,
21.8%, 19.7% and 27.1% and tail FCT by up to 45.1%,
41.8%, 38.7%, 30.9% and 37.9% compared with Timely,
DCQCN, DCQCN+TCD, PACC, and HPCC, respectively.
For the WebServer workload, we observed a similar trend.
Mercury reduces the average FCT and tail FCT by up to
56.2% and 68.6% compared to other schemes.

The reasons for the above results are as follows.
Timely and DCQCN rely on end-to-end congestion
control signals. They cannot control the rate of short
flows that are less than 1 RTT. Therefore, packets accu-
mulate in the network when congestion occurs, pro-
longing the FCT of short flows and long flows. PACC
inherits the rate control of DCQCN. It detects con-
gestion at the switch and assigns CNPs through the
PI controller. Although PACC reduces FCT in most

scenarios compared to DCQCN, it needs to wait for
a period of time (80 µ s by default) to update the flow
table and send CNPs, which is not timely for 40/100
Gbps data centers. Therefore, PACC also suffers from
long FCTs. HPCC adopts the sending window to con-
trol the number of inflight packets. With the send-
ing window, HPCC avoids data accumulation in the
switch and maintains near-zero in-network queues. As
shown in Figs. 13a∼ b and 14a∼ b, HPCC provides ultra-
low latency for short flows. However, HPCC needs to
adjust the window size so that the inflight bytes pass-
ing through the bottleneck link are slightly less than the
product of bandwidth and base RTT. It may cause the
bandwidth underutilization. As shown in Figs. 13c∼ d
and 14c∼ d, HPCC increases the FCT of long flows.
Besides, both Timely, DCQCN, PACC, and HPCC do
not identify the victim flows, which may improperly
slow down the rate of the victim flow, thus affecting the
FCT of the victim flow. Although DCQCN+TCD pro-
vides a method to detect victim flows and reduce the
FCT compared with DCQCN, TCD is still possible to
misjudge victim flows as congestion flows when con-
gestion is severe. Besides, TCD determines the state of
each flow after a pre-configured parameter max(Ton)
expires, which increases the congestion notification

Fig. 12  99th tail FCT

Page 13 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

delay. As a comparison, Mercury improves the network
performance under different workloads, and the effect
is more obvious in the WebServer workload. It benefits
from the fact that Mercury can detect and identify the
congestion rapidly at the in-network switch. The sender
receives the congestion notification timely and adjusts
the rate of congestion flow to avoid queue accumula-
tion. The window calculated by Mercury limits the
number of inflight packets, which further speeds up
the queue emptying. Besides, Mercury keeps the rate of
victim flow unchanged, which ensures the throughput
and reduces the FCT of victim flows.

Related work
Congestion control is an enduring topic in data centers.
In the last few years, several novel congestion control
methods have been proposed to improve network perfor-
mance [34, 35]. In this section, we will briefly introduce
some closely related work from the following aspects.

End-to-end congestion control: DCTCP [33] is the
first congestion control mechanism that leverages Explicit
Congestion Notification (ECN) to detect and respond to
network congestion. In RDMA data center, QCN [36]
provides end-to-end congestion control based on the
network feedback (e.g., ECN) at Layer 2. However, QCN
cannot be implemented in IP routing networks, which is

not suitable for large-scale data centers. DCQCN [10] is
designed based on DCTCP and QCN. It uses the ECN
and PFC to achieve rate-based congestion control and
lossless data transmission. DCQCN is the most widely
used congestion control algorithm in RDMA data cent-
ers, and has been integrated into RDMA NIC(RNIC) as
the default mechanism. Timely [11] and Swift [16] are
RTT-based RDMA congestion control solutions that
monitor network congestion by measuring RTT and then
converting RTT signals into target transmission rates.
HPCC [17] adopts In Network Telemetry (INT) to moni-
tor the traffic load on each link and control the number
of inflight bytes passing through bottleneck links. Since
HPCC cannot avoid triggering PFC [37], it also faces the
issue of incorrectly identifying flows that really contrib-
ute to congestion. Besides, as RDMA link bandwidth and
burst traffic continue to increase, end-to-end congestion
control mechanisms struggle to respond to network con-
gestion rapidly due to their inherent long control cycles.
As a supplement to existing end-to-end congestion con-
trol algorithms, Mercury can accurately identify con-
gested flows and provide rapid congestion feedback.

Switch-driven congestion control: XCP [38] and
RCP [39] require the switch to calculate the window size
and a fair-shared rate per link, and then feedback conges-
tion on the switch. However, the control signals of XCP [38]

Fig. 13  Overall Performance in Hadoop workload

Page 14 of 15He et al. Journal of Cloud Computing (2024) 13:72

and RCP [39] still experience end-to-end propagation delay.
TFC [40] counts the number of active flows within a fixed
time interval and adopts a token-based bandwidth alloca-
tion scheme to alleviate congestion. Instead of generating
tokens, RoCC [28] detects the queue length of the switch
as the input of the PI controller to compute the fair flow
rate. Similar to RoCC [28], PACC [20] also proposes a PI
controller-based method to generate CNPs in proportion
to the number of congested packets. However, the above
congestion control mechanisms overlook the queue accu-
mulation caused by PFC, making it difficult to detect the
real congested flows. Therefore, they are unable to provide
accurate congestion feedback.

Congestion feedback: Congestion feedback is a critical
component of congestion control. It determines when and
where the congestion control takes effect. Recently, several
research works [24, 26] have begun to investigate conges-
tion feedback in RDMA data centers. They aim to design
effective mechanisms to distinguish congestion flows
and victim flows accurately, and then provide the conges-
tion feedback for congested flows. PCN [24] presents the
RDMA congestion management method to detect and
identify congested flows according to the link utilization.
Then, PCN [24] adopts the end-to-end congestion control
signal to only regulate the rate of congested flows. On this
basis, TCD [26] detects the congested port based on the

ternary states, thereby accurately identifying the conges-
tion. However, TCD determines the egress port states only
after a pre-configured parameter max(Ton) expires. It may
prolong the congestion feedback time and mislabel flows
when the PFC is triggered frequently. Therefore, the exist-
ing RDMA congestion feedback mechanisms still have lim-
itations in terms of detection accuracy and feedback speed.

Conclusion
This paper presents Mercury, an accurate and fast conges-
tion feedback mechanism for MEC-enabled RDMA data
centers. By leveraging the switch queue length and port
sending rate, Mercury can accurately identify flows that
really contribute to the congestion. For the real congested
flows, Mercury calculates the sending windows and ena-
bles the switch to send CNPs with the window information,
thereby achieving the fast rate adjustment to eliminate con-
gestion. The micro-benchmark and large-scale simulation
show that Mercury can significantly improve the through-
put and reduce the FCT under realistic workloads.

Authors’ contributions
Xin He wrote the main manuscript and performed the experimental design.
Feifan Liang conducted experiments. Weibei Fan and Junchang Wang pre-
pared figures. Lei Han, Fu Xiao, and Wanchun Dou supervised the experimen-
tal design. All authors reviewed the manuscript.

Fig. 14  Overall Performance in WebServer workload

Page 15 of 15He et al. Journal of Cloud Computing (2024) 13:72 	

Funding
This work was supported in part by the Natural Science Foundation of
China under Grant No. 62202237, the Natural Science Foundation of Jiangsu
Province under Grant No. BK20220389, the Natural Science Foundation
of the Higher Education Institutions of Jiangsu Province under Grant No.
22KJB520005, the State Key Lab. for Novel Software Technology under Grant
No. KFKT2022B04, the Natural Science Research Start-up Foundation of
Recruiting Talents of Nanjing University of Posts and Telecommunications
under Grant No. NY222016.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 26 January 2024 Accepted: 19 March 2024

References
	1.	 Xu Z, Zhang Y, Li H, Yang W, Qi Q (2020) Dynamic resource provisioning

for cyber-physical systems in cloud-fog-edge computing. J Cloud Com-
put 9(1):1–16

	2.	 Zhang M, Wang S, Gao Q (2020) A joint optimization scheme of content
caching and resource allocation for internet of vehicles in mobile edge
computing. J Cloud Comput 9:1–12

	3.	 Chen H, Qin W, Wang L (2022) Task partitioning and offloading in IoT cloud-
edge collaborative computing framework: a survey. J Cloud Comput 11(1):86

	4.	 (2015) Amazon Web Services. https://​aws.​amazon.​com/​s3/
	5.	 (2018) Google Cloud Platform. https://​cloud.​google.​com
	6.	 (2015) Microsoft Azure. https://​azure.​micro​soft.​com
	7.	 Song CH, Khooi XZ, Joshi R, Choi I, Li J, Chan MC (2023) Network load

balancing with in-network reordering support for rdma. In: Proceedings
of the ACM SIGCOMM 2023, ACM, New York, p 816–831

	8.	 Wang W, Moshref M, Li Y, Kumar G, Ng TSE, Cardwell N, Dukkipati N (2023)
Poseidon: Efficient, robust, and practical datacenter CC via deployable
INT. In: Proceedings of the USENIX NSDI 2023, USENIX Association, Bos-
ton, p 255–274

	9.	 Marinos I, Watson RNM, Handley M (2014) Network stack specialization
for performance. In: Proceedings of the ACM SIGCOMM 2014, ACM,
Chicago, p 175–186

	10.	 Zhu Y, Eran H, Firestone D, Guo C, Lipshteyn M, Liron Y, Padhye J, Raindel
S, Yahia MH, Zhang M (2015) Congestion control for large-scale rdma
deployments. ACM SIGCOMM Comput Commun Rev 45(4):523–536

	11.	 Mittal R, Lam VT, Dukkipati N, Blem E, Wassel H, Ghobadi M, Vahdat A,
Wang Y, Wetherall D, Zats D (2015) Timely: Rtt-based congestion control
for the datacenter. ACM SIGCOMM Comput Commun Rev 45(4):537–550

	12.	 (2021) IEEE 802.1 Qbb - Priority-based Flow Control. http://​www.​ieee8​02.​
org/1/​pages/​802.​1bb.​html

	13.	 Guo C, Wu H, Deng Z, Soni G, Ye J, Padhye J, Lipshteyn M (2016) Rdma
over commodity ethernet at scale. In: Proceedings of the ACM SIGCOMM
2016, ACM, Florianópolis p 202–215

	14.	 Zhu Y, Ghobadi M, Misra V, Padhye J (2016) Ecn or delay: Lessons learnt
from analysis of dcqcn and timely. In: Proceedings of the ACM CoNEXT
2016, ACM, California p 313–327

	15.	 Gao Y, Yang Y, Chen T, Zheng J, Mao B, Chen G (2018) Dcqcn+: Tam ing
large-scale incast congestion in rdma over ethernet networks. In: Pro-
ceedings of the IEEE ICNP 2018, IEEE, Cambridge p 110–120

	16.	 Kumar G, Dukkipati N, Jang K, Wassel HMG, Wu X, Montazeri B, Wang Y,
Springborn K, Alfeld C, Ryan M, Wetherall D, Vahdat A (2020) Swift: Delay is
simple and effective for congestion control in the datacenter. In: Proceed-
ings of the ACM SIGCOMM 2020, ACM, p 514–528. Online Conference

	17.	 Li Y, Miao R, Liu HH, Zhuang Y, Feng F, Tang L, Cao Z, Zhang M, Kelly F,
Alizadeh M, Yu M (2019) Hpcc: high precision congestion control. In:
Proceedings of the ACM SIGCOMM 2019, ACM, Beijing p 44–58

	18.	 Shan D, Liu Y, Zhang T, Liu Y, Tang Y, Li H, Zhang P (2023) Less is more:
Dynamic and shared headroom allocation in pfc-enabled datacenter
networks. In: IEEE International Conference on Distributed Computing
Systems (ICDCS), IEEE, p 591–602

	19.	 Taheri P, Menikkumbura D, Vanini E, Fahmy S, Eugster P, Edsall T (2020)
Rocc: robust congestion control for rdma. In: Proceedings of the ACM
CoNEXT 2020, ACM, Barcelona p 17–30

	20.	 Zhong X, Zhang J, Zhang Y, Guan Z, Wan Z (2022) Pacc: Proactive and
accurate congestion feedback for rdma congestion control. In: Proceed-
ings of the IEEE INFOCOM 2022, IEEE, London, p 2228–2237

	21.	 Menikkumbura D, Taheri P, Vanini E, Fahmy S, Eugster P, Edsall T (2023)
Congestion control for datacenter networks: A control-theoretic
approach. IEEE Trans Parallel Distrib Syst 34(5):1682–1696

	22.	 Bosshart P, Daly D, Gibb G, Izzard M, McKeown N, Rexford J, Schlesinger C,
Talayco D, Vahdat A, Varghese G et al (2014) P4: Programming protocol-
independent packet processors. ACM SIGCOMM Comput Commun Rev
44(3):87–95

	23.	 (2020) Barefoot tofino. https://​baref​ootne​tworks.​com/​produ​cts/​brief​tofino/
	24.	 Cheng W, Qian K, Jiang W, Zhang T, Ren F (2020) Re-architecting conges-

tion management in lossless ethernet. In: Proceedings of the USENIX
NSDI 2020, USENIX Association, Santa Clara, p 19–36

	25.	 Zhang Y, Meng Q, Liu Y, Ren F (2003) Revisiting congestion detection in
lossless networks. IEEE/ACM Transactions on Networking 31(5):2361-75

	26.	 Zhang Y, Liu Y, Meng Q, Ren F (2021) Congestion detection in lossless
networks. In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
SIGCOMM ’21, ACM, p 370–383. Online Conference

	27.	 (2023) Network simulator 3. https://​www.​nsnam.​org/
	28.	 Menikkumbura D, Taheri P, Vanini E, Fahmy S, Eugster P, Edsall T (2023)

Congestion control for datacenter networks: A control-theoretic
approach. IEEE Trans Parallel Distrib Syst 34(5):1682–1696

	29.	 (2019) Alibaba. 2019. HPCC simulator. https://​github.​com/​aliba​ba-​edu/​
High-​Preci​sion-​Conge​stion-​Contr​ol

	30.	 Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center
network architecture. ACM SIGCOMM Comput Commun Rev 38(4):63–74

	31.	 Roy A, Zeng H, Bagga J, Porter G, Snoeren AC (2015) Inside the social
network’s (datacenter) network. In: Proceedings of the ACM SIGCOMM
2015, ACM, London, p 123–137

	32.	 Montazeri B, Li Y, Alizadeh M, Ousterhout J (2018) Homa: a receiver-driven
lowlatency transport protocol using network priorities. In: Proceedings of
the ACM SIGCOMM 2018, ACM, Budapest, p 221–235

	33.	 Alizadeh M, Greenberg A, Maltz DA, Padhye J, Patel P, Prabhakar B, Sen-
gupta S, Sridharan M (2010) Data center tcp (dctcp). In: Proceedings of
the ACM SIGCOMM 2010, ACM, New Delhi, p 63–74

	34.	 Huang J, Li W, Li Q, Zhang T, Dong P, Wang J (2020) Tuning high flow
concurrency for mptcp in data center networks. J Cloud Comput 9:1–15

	35.	 Sun X, Wang Z, Wu Y, Che H, Jiang H (2021) A price-aware congestion
control protocol for cloud services. J Cloud Comput 10:1–15

	36.	 Pan R, Prabhakar B, Laxmikantha A (2007) QCN: Quantized congestion
notification. IEEE802 1:52–83

	37.	 Li W, Zeng C, Hu J, Chen K (2023) Towards fine-grained and practical flow
control for datacenter networks. In: Proceedings of the IEEE ICNP 2023,
IEEE, Reykjavik, p 1–11

	38.	 Katabi D, Handley M, Rohrs C (2002) Congestion control for high band-
width delay product networks. In: Proceedings of the ACM SIGCOMM
2002, ACM, Pittsburgh Pennsylvania, p 89–102

	39.	 Dukkipati N, McKeown N (2006) Why flow-completion time is the right
metric for congestion control. ACM SIGCOMM Comput Commun Rev
36(1):59–62

	40.	 Zhang J, Ren F, Shu R, Cheng P (2016) Tfc: token flow control in data
center networks. In: Proceedings of the ACM EuroSys 2016, ACM, London

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://aws.amazon.com/s3/
https://cloud.google.com
https://azure.microsoft.com
http://www.ieee802.org/1/pages/802.1bb.html
http://www.ieee802.org/1/pages/802.1bb.html
https://barefootnetworks.com/products/brieftofino/
https://www.nsnam.org/
https://github.com/alibaba-edu/High-Precision-Congestion-Control
https://github.com/alibaba-edu/High-Precision-Congestion-Control

	Accurate and fast congestion feedback in MEC-enabled RDMA datacenters
	Abstract
	Introduction
	Background and motivating
	RDMA data centers
	Existing congestion control schemes are insufficient

	Mercury design
	Mercury overview
	State definition of egress ports
	Design details
	Discussions

	Performance evaluation
	Experiment settings
	Small-scale simulations
	Large-scale simulations

	Related work
	Conclusion
	References

