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Abstract 

Nowadays, the paradigm of mobile computing is evolving from a centralized cloud model towards Mobile Edge 
Computing (MEC). In regions without ground communication infrastructure, incorporating aerial edge computing 
nodes into network emerges as an efficient approach to deliver Artificial Intelligence (AI) services to Ground Devices 
(GDs). The computation offloading and resource allocation problem within a HAP-assisted MEC system is investi-
gated in this paper. Our goal is to minimize the energy consumption. Considering the randomness and dynamism 
of the task arrival of GDs and the quality of wireless communication, stochastic optimization techniques are utilized 
to transform the long-term dynamic optimization problem into a deterministic optimization problem. Subsequently, 
the problem is further decomposed into three sub-problems which can be solved in parallel. An online Energy 
Efficient Dynamic Offloading (EEDO) algorithm is proposed to address these problems. Then, we conduct the theo-
retical performance analysis for EEDO. Finally, we carry out parameter analysis and comparative experiments, demon-
strating that the EEDO algorithm can effectively reduce system energy consumption while maintaining the stability 
of the system.
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Introduction
With the increasing advancement of information tech-
nology and 6G, there has been a rapid increase in the 
number of intelligent terminals and emerging Artificial 
Intelligence (AI) applications [1]. By 2025, it is estimated 
that the number of global intelligent terminal devices 
will exceed 25 billion and will continue to grow rapidly 
in the following decades [2]. Moreover, computing-inten-
sive AI applications such as ultra-high-definition video 

streaming analysis, intelligent driving, augmented real-
ity, and facial recognition are developing swiftly, lead-
ing to a massive demand for computing-intensive tasks 
from devices [3, 4]. However, due to the limited battery 
capacity and computational resources of these devices, it 
becomes challenging or even impossible to process all the 
tasks generated by these AI applications locally [5].

Mobile Cloud Computing has large task processing capa-
bilities. By offloading AI tasks to the cloud, it can effec-
tively reduce the processing burden on end-user devices 
[6]. However, the distance between end-user devices and 
cloud computing infrastructure, along with network capac-
ity constraints, may lead to significant transmission delays 
and energy consumption [7]. Furthermore, offloading 
a large amount of data to the cloud could cause network 
overload and congestion. Mobile Edge Computing (MEC), 
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as an emerging computing paradigm, provides a powerful 
way to solve this problem [8]. By moving cloud computing 
resources and services closer to the AI data generation and 
processing location, MEC can bring numerous benefits to 
users, such as reducing service latency, decreasing network 
congestion, and improving service quality [9].

The base stations of traditional MEC deployed on cellular 
networks are typically fixed to the ground and immovable 
[10]. However, for some remote regions like oceans, wilder-
ness, and deserts, ground-based MEC networks struggle 
to provide coverage [11]. Airborne devices with extensive 
coverage and strong computing capabilities have become a 
research hotspot for overcoming the limitations of ground-
based MEC. High Altitude Platforms (HAPs) with their 
large coverage area and computing capacities, can serve 
as airborne base stations providing services to Ground 
Devices (GDs), thus becoming an important research prob-
lem [12]. HAPs have advantages such as low transmission 
delay, robust computing capability, wide service area, and 
prolonged endurance [13]. Additionally, HAPs can be flex-
ibly deployed according to specific circumstances, offer-
ing better MEC services to GDs. Consequently, the issue 
of computation offloading in MEC systems supported by 
HAP is gaining extensive attention [13].

In this manuscript, we study the online dynamic com-
putation offloading and the allocation of resources among 
multiple users within the HAP-assisted MEC frame-
work. The aim is to optimize energy efficiency alongside 
maintaining system stability. The control variables for 
decision-making are: 1) GD’s local CPU cycle frequency, 
2) the size of computation tasks offloaded by GDs, and 
3) the computational resources allocated by the HAP. 
Based on stochastic optimization techniques, an online 
approach is proposed to tackle these challenges. The 
proposed Energy Efficient Dynamic Offloading (EEDO) 
algorithm is designed to adaptively make the computa-
tion offloading and resource allocation decisions. Exten-
sive experiments including both parameter analysis and 
comparison experiments validate EEDO’s efficacy. The 
main contributions of this study are as follows: 

1 We study the task offloading and resource alloca-
tion problem in a HAP-assisted MEC system, where 
multiple GDs process tasks locally or offload tasks 
to HAP. Our goal is to minimize system energy con-
sumption. The local CPU cycle frequency of GDs, the 
size of computation tasks offloaded by GDs, and the 
resources allocated by the HAP are utilized to opti-
mize system performance while taking into account 
the randomness of task arrival and the uncertainty of 
the communication quality.

2 We employ stochastic optimization techniques to 
transform the original stochastic optimization problem 

into three sub-problems that can be solved in parallel, 
and design the EEDO algorithm to effectively reduce 
system energy consumption without prior statistical 
task arrival or communication information. Through 
theoretical analysis, the gap between the solution of 
algorithm and the optimal solution is proven.

3 We conduct extensive experiments to evaluate the 
EEDO algorithm. Through parameter analysis, it 
is demonstrated that EEDO can achieve a balance 
between energy consumption and performance and 
effectively adapt to various task arrival rates and the 
number of GDs. And comparative experiments illus-
trate the algorithm significantly outperforms the 
comparison algorithms in reducing system energy 
consumption and ensuring system performance.

The remaining sections of this manuscript are structured 
as below: Section 2 builds the system model and formalizes 
the problem. Section 3 presents our algorithm, employing 
stochastic optimization to partition and resolve the original 
optimization problem. Section 4 provides a theoretical anal-
ysis of the EEDO algorithm. Section 5 conducts the parame-
ter and comparison experiments. Section 6 discusses recent 
related works, and Section 7 concludes our works.

System model and problem formulation
System Model
This paper considers a HAP-assisted MEC framework 
including multiple GDs which can offload tasks to the edge 
server deployed on HAP, as shown in Fig.  1. The ground 
layer includes N GDs, denoted by N = {1, 2, ..., i, ...,N } . 
Ascending to the aerial section, a HAP serves as the edge 
server, providing ground devices with computational AI 
services and data processing capabilities. Within our for-
mulated system, time is segmented into discrete intervals as 
time slots, delineated as T = {0, 1, ..., t, ...,T − 1} , with the 
duration of each interval τ . Typically, GDs may have vari-
ous computational demands within each time slot, thereby 
generating a substantial volume of computation-intensive 
tasks. The computational resource requirements of these 
tasks may surpass the processing capabilities of the local 
devices, making it unfeasible for the GDs to handle the 
tasks locally. Specifically, there are Ai(t) tasks that arrive at 
each GD in each time slot t, where the GD can process a 
portion of the tasks locally and offload a portion of the tasks 
to the HAP for processing. Upon receiving the offloaded 
tasks, the HAP allocates computational resources to these 
tasks from multiple GDs based on the backlog of the entire 
system during that time slot t (Table 1).

Communication model
GDs establish communication with the HAP, which is 
stationed at a consistent altitude within the stratosphere. 
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Our analysis incorporates both direct Line-of-Sight (LoS) 
and indirect Non-Line-of-Sight (NLoS) transmission 
models to describe the communication model.

Based on [14], the path loss for communication 
between given GD i and the HAP is:

Here, fc is defined as the carrier frequency utilized 
by the communication system, c represents the con-
stant speed of light, and the variables di along with ri 
respectively denote the vertical and horizontal distance 

(1)

Li = 20 log10

4π fc d2i + r2i

c
+ ρLoS

i ηLoSi + 1− ρLoS
i ηNLoS

i .

between GD i and the HAP. The coefficients ηLoSi  and 
ηNLoS
i  correspond to the path loss metrics for LoS and 

NLoS paths.
Additionally, ρLoS

i  specifies the chance of employing the 
LoS model for transmissions between GD i and the HAP,

where the variables κ1 , κ2 , alongside the path loss param-
eters ηLoSi  and ηNLoS

i  , are determined by the prevailing 
environmental conditions.

Building upon the aforementioned path loss model, 
the channel gain hi(t) between GD i and the HAP dur-
ing slot t is deduced as:

Furthermore, consider the GDs communicate with 
the HAP using Frequency Division Multiple Access 
(FDMA) technology [15]. Therefore, the data rate for 
GD i at given slot t can be represented as:

Here, Wi is the bandwidth spectrum apportioned to GD 
i by the HAP, Pi(t) the signal strength emitted by GD i, and 
σ 2 represents the intensity of the omnipresent Gaussian 
white noise.

(2)ρLoS
i =

1

1+ κ1 exp
{

−κ2

[

tan−1
(

di
ri

)

− κ1

]} ,

(3)hi(t) = 10−
Li
10 .

(4)Ri(t) = Wi log2

(

1+
hi(t)Pi(t)

σ 2

)

.

Fig. 1 The HAP-assised MEC framework

Table 1 Notations and definitions

Notations Definitions

N a set of GDs

τ the length of a prescribed shorter time slot

Ai(t) the tasks arrivals for GD i in time slot t

Di,l(t) the tasks processed locally by GD i in time slot t

Di,o(t) the tasks offloaded to HAP by GD i in time slot t

Qi(t) the queue backlog of GD i in time slot t

Hi(t) the queue backlog of HAP in time slot t

fi(t) the CPU frequency cycles of GD i in time slot t

ξi the efficient switched capacitance of GD i

l1 the energy expenditure by the HAP for each bit 
of data processed
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Task and queue model
In the model, each GD i maintains a task queue 
denoted as Qi(t) to store the tasks that arrive in each 
time slot [16]. GDs effectively allocate computational 
resources to handle tasks by adopting a partial offload-
ing mechanism.

The size of tasks processed on-device by GD i is denoted 
by Di,l(t) , which indicates the size (in bits) of tasks pro-
cessed by GD i itself in the given slot t, and is calculated as:

In this expression, ϕi is the CPU cycles number for GD 
i to process a single bit of data, fi(t) represents the opera-
tional frequency of GD i’s CPU within slot t, constrained by 
0 ≤ fi(t) ≤ f max

i  , with f max
i  defining the upper limit of GD 

i’s CPU frequency.
Additionally, GDs can perform task offloading, with the 

size of tasks offloaded to the HAP represented as:

For each time slot t, the size of newly generated tasks at 
GD i are characterized as Ai(t) . Following this, the evolu-
tion of the task queue for GD i is:

And max{Qi(t)− Di,l(t)− Di,o(t), 0} is used to ensure 
that the server does not process more tasks from GD i dur-
ing time slot t than that already in the queue, in order to 
ensure the stability of the task queue.

In the multi-layer computing architecture we have con-
sidered, the HAP maintains a task queue for each GD to 
store the tasks offloaded from GD i to the HAP, denoted 
as Hi(t) . This queue carries all tasks offloaded from the 
corresponding GD to the HAP, performing centralized 
processing and resource optimization.

At slot t, the size of tasks processed by the HAP for GDi 
is denoted as Ci(t) . The update process of the HAP task 
queue is described as follows:

Energy consumption model
For this HAP-assisted MEC system, our focus is on mini-
mizing the energy consumption, including the on-device 
energy consumption of GDs’ local computing, the energy 
for offloading data transmissions by GDs, and the energy 
required for computations by the HAP.

The energy consumed by the on-device computing of 
GDs is intricately related to the CPU chip design. For GD 
i, the on-device computing energy consumption labeled 
as Ei,l(t) , is formulated as:

(5)Di,l(t) =
fi(t)τ

ϕi
.

(6)Di,o(t) ≤ Ri(t)τ .

(7)Qi(t + 1) = max{Qi(t)− Di,l(t)− Di,o(t), 0} + Ai(t).

(8)Hi(t + 1) = max{Hi(t)− Ci(t), 0} + Di,o(t).

Here, ξi denotes the efficient switched capacitance, fi(t) 
stands for the CPU’s processing frequency, and ϕi corre-
sponds to the requisite CPU cycles for processing each 
data bit [17].

The energy consumed by GDs to offload tasks to the 
HAP is:

Pi(t) characterizes the power for transmission by GD i 
within the slot t.

The energy consumption of the HAP processing tasks 
from GD i is denoted as Ei,h(t) and is elucidated as:

In this equation, l1 denotes the energy expenditure by 
the HAP for each bit of data processed.

The cumulative energy consumption for the system, 
designated as E(t) , aggregates all the three energy con-
sumption parts. The goal is to minimize

Problem formulation
Minimizing energy consumption is crucial as it directly 
affects the system’s operational sustainability and costs. 
Our objective is to devise an online dynamic offloading 
strategy that minimizes the energy consumed by the fol-
lowing control variables: the computational frequencies 
of GDs, the offloading policy, and the resource alloca-
tion of the HAP. The variable set for decision-making is 
depicted as X (t) = {f(t),Do(t),C(t)} . Below is the prob-
lem formulation,

subject to the following constraints:

The problem presented is a stochastic optimization 
problem. Owing to the unpredictable arrival pattern of 
tasks and communication channels, the statistics informa-
tion is difficult to predict. Therefore, we take advantage of 
stochastic optimization theory to solve problem P1.

(9)Ei,l(t) = ξif
2
i (t)ϕiDi,l(t).

(10)Ei,o(t) =
Di,o(t)

Ri(t)
Pi(t).

(11)Ei,h(t) = l1Ci(t).

(12)E(t) =

N
∑

i=1

[Ei,l(t)+ Ei,o(t)+ Ei,h(t)].

(13)P1 : min
X (t)

lim
T→∞

1

T

T−1
∑

t=0

E{E(t)},

C1 : 0 ≤ fi(t) ≤ f max
i ,

C2 : 0 ≤ Di,o(t) ≤ Ri(t)τ ,

C3 : Di,o(t) ≤ Qi(t),

C4 : 0 ≤ Ci(t) ≤ Hi(t).
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Energy efficient dynamic offloading algorithm 
design
Here, we utilize stochastic optimization theory to convert 
the previously formulated problem P1 to a more manage-
able deterministic one. By decomposing the transformed 
problem into several subproblems, the complexity of 
problem-solving is reduced. Subsequently, we design 
the EEDO algorithm to address these issues. Due to the 
inherent nature of stochastic optimization techniques, 
the EEDO algorithm can still obtain asymptotically opti-
mal offloading decisions, even in the absence of future 
statistical information.

Problem transformation
We designate �(t) = [Q(t),H(t)] as the vector repre-
senting the task queue backlog. The Lyapunov function is 
defined to quantify the queue backlog,

To maintain system queue stability, we establish the 
Lyapunov drift function. This function quantifies the 
transition in the system’s state (queue’s state) from a 
given instant t to the subsequent instant t + 1 , expressed 
as

The aim is to reduce the system’s energy expenditure. 
In pursuing this goal, combing both queue length and 
energy consumption, we aim to optimize both the sys-
tem’s energy consumption and queue performance. 
Hence, the drift-plus-penalty function is defined as

(14)L(�(t)) =
1

2

N
∑

i=1

[

Q2
i (t)+H2

i (t)
]

.

(15)�(�(t)) = E{L(�(t + 1))− L(�(t))|�(t)}.

(16)�V (�(t)) = �(�(t))+ VE{E(t)|�(t)},

where V is a penalty weight that trades off system energy 
consumption against queue stability.

Theorem  1 No matter what the queue backlog or the 
task offloading decisions are, Eq. (16) adheres to the subse-
quent relationship:

where Z =
1
2

∑N
i=1

[

(Amax
i )2 + (Cmax

i )2 + (Dmax
i,l + Dmax

i,o )2 + (Dmax
i,o )2

]

 
is a constant.

Proof
By applying ([a− b]+ + c)2 ≤ a2 + b2 + c2 + 2a(c − b) , 
we get

Then, we can derive

Further, we can obtain

(17)

�(�(t))+ VE{E(t)|�(t)} ≤ Z + VE{E(t)|�(t)}

+ E

{

N
∑

i=1

Qi(t)[Ai(t)− Di,l(t)− Di,o(t)]|�(t)

}

+ E

{

N
∑

i=1

Hi(t)[Di,o(t)− Ci(t)]|�(t)

}

,

(18)

Q2
i (t + 1) ≤ Q2

i (t)+ A2
i (t)+ [Di,l(t)+ Di,o(t)]

2

+ 2Qi(t)[Ai(t)− Di,l(t)− Di,o(t)],

(19)H2
i (t + 1) ≤ H2

i (t)+ D2
i,o(t)+ C2

i (t)+ 2Hi(t)[Di,o(t)− Ci(t)].

(20)
1

2

[

Q2
i (t + 1)− Q2

i (t)
]

≤
1

2
A2
i (t)+

1

2

[

Di,l(t)+ Di,o(t)
]2

+ Qi(t)[Ai(t)− Di,l(t)− Di,o(t)],

(21)

1

2
[H2

i (t + 1)−H2
i (t)] ≤

1

2
D2
i,o(t)+

1

2
C2
i (t)+Hi(t)[Di,o(t)− Ci(t)].

(22)

�(�(t))+ VE{E(t)|�(t)} = VE{E(t)|�(t)}

+ E

{

1

2

N
∑

i=1

[

Q2
i (t + 1)− Q2

i (t)
]

|�(t)

}

+ E

{

1

2

N
∑

i=1

[

H2
i (t + 1)−H2

i (t)
]

|�(t)

}

≤ Z + VE{E(t)|�(t)} + E

{

N
∑

i=1

Qi(t)
[

Ai(t)− Di,l(t)− Di,o(t)
]

|�(t)

}

+ E

{

N
∑

i=1

Hi(t)[Di,o(t)− Ci(t)]|�(t)

}

,
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where Z =
1
2

∑N
i=1[(A

max
i )2 + (Cmax

i )2 + (Dmax
i,l + Dmax

i,o )2 + (Dmax
i,o )2] 

is a constant.   �

The original stochastic optimization problem is con-
verted as follows:

subject to the constraints:

Energy efficient dynamic offloading algorithm
This part designs the online Energy Efficient Dynamic 
Offloading (EEDO) algorithm aimed at reducing the ceil-
ing of Eq. (16). We can see that in the transformed prob-
lem, the decisions f(t),Do(t), and C(t) are decoupled. 
Thus, problem P2 can be decoupled into three subprob-
lems. Next, we will describe these subproblems one by 
one and provide their corresponding solutions.

Local CPU frequency allocation for GDs
By extracting the part related to decision f(t) from prob-
lem P2 , we obtain the local CPU frequency allocation 
subproblem for GDs as follows:

subject to:

It is a convex optimization problem. By deducing 
the primary derivative to a null value, we can get 
fi(t) =

√

Qi(t)
3V ξiϕi

 . Consequently, the prime solution for 
the local CPU frequency is:

where f ∗ = min
{

Qi(t)ϕi
τ

, f max
i

}

.

(23)

P2 : min
X (t)

{

N
∑

i=1

[

V ξif
3
i (t)τ −

fi(t)τ

ϕi
Qi(t)

]

+

N
∑

i=1

[

V
Pi(t)

Ri(t)
− Qi(t)+Hi(t)

]

Di,o(t)

+

N
∑

i=1

[Vl1 −Hi(t)]Ci(t)

}

,

C1 : 0 ≤ fi(t) ≤ f max
i ,

C2 : 0 ≤ Di,o(t) ≤ Ri(t)τ ,

C3 : Di,o(t) ≤ Qi(t),

C4 : 0 ≤ Ci(t) ≤ Hi(t).

(24)min
f(t)

N
∑

i=1

[

V ξif
3
i (t)τ −

fi(t)τ

ϕi
Qi(t)

]

,

0 ≤ fi(t) ≤ f max
i .

(25)f ∗i (t) =

{
√

Qi(t)
3V ξiϕi

, if 0 ≤
√

Qi(t)
3V ξiϕi

≤ f ∗,

f ∗, otherwise,

Offloading computation allocation for GDs
By extracting the part related to offloading computa-
tion, we can obtain the following optimization problem:

subject to:

This is a problem of linear programming, and the 
solution for GDs’ offloading computation is as follows:

Computation resource allocation for HAP
By extracting the portion related to decision C(t) from 
problem P2 , we formulate the computation resource 
allocation subproblem for the HAP as follows:

subject to:

This problem is analogous to a knapsack problem, 
with the weight coefficient for Ci(t) being Vl −Hi(t) . 
The capacity of the knapsack is the amount of tasks that 
the HAP can process. Below, we provide the solution 
process for this problem. 

(1) Set the baseline for tasks the HAP can process dur-
ing slot t as Ch =

f max
h τ

ϕh
 . f max

h  denotes the HAP’s 
maximum CPU frequency, and ϕh represents the 
CPU cycle number for the HAP to process a single 
bit of data.

(2) Sort all GDs in ascending order of the weight 
Vl1 −Hi(t) to obtain the order in which computa-
tional resources are allocated.

(3) The HAP allocates computational resources to GDs 
according to the order of sorting, obtaining the 
amount of tasks that the HAP can process for GD i 
as follows: 

(26)min
Do(t)

N
∑

i=1

[

V
Pi(t)

Ri(t)
− Qi(t)+Hi(t)

]

Di,o(t),

0 ≤ Di,o(t) ≤ Ri(t)τ ,

Di,o(t) ≤ Qi(t).

(27)

D∗
i,o(t) =

{

min{Ri(t)τ ,Qi(t)}, if V
Pi(t)
Ri(t)

− Qi(t)+Hi(t) ≤ 0,

0, otherwise.

(28)min
C(t)

N
∑

i=1

[Vl1 −Hi(t)]Ci(t),

0 ≤ Ci(t) ≤ Hi(t).

(29)

C∗
i (t) =

{

min{Hi(t),Ch}, if Vl1 −Hi(t) ≤ 0,
0, otherwise.
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(4) Update the remaining size of tasks that the HAP 
can deal with as: Ch = Ch − Ci(t).

(5) Repeat steps (3) and (4) until there are no tasks left 
for the HAP to deal with in slot t, or no GD requires 
further allocation of computational resources for 
task processing.

Subsequently, we present the detailed EEDO algorithm in 
Algorithm 1.

Algorithm 1 Energy Efficient Dynamic Offloading (EEDO) Algorithm

Analysis of the energy efficient dynamic offloading 
algorithm
Here, we examine the EEDO algorithm’s efficacy from 
a mathematical perspective. Lemma 1 is presented as 
follows.

Lemma 1 For any change in the task arrival rate � , we 
can obtain an offloading decision π∗ , which is independ-
ent of the current task queue and satisfies

where E∗(�) symbolizes the minimum total energy 
consumption.

Proof
Caratheodory’s theorem [18] is utilized to derive Lemma 
1. Similar to related works and for the sake of brevity, the 
details of the proof have been omitted here.   �

(30)

E{Ēπ∗

(t)} ≤E∗(�),

E{Aπ∗

i (t)} ≤E{Dπ∗

i,l (t)+ Dπ∗

i,o (t)},

E{Dπ∗

i,o (t)} ≤E{Cπ∗

i (t)},

It is noteworthy that the task arrival rate is finite, 
which indicates that the system’s energy consumption is 
also finite. Thus, we denote the upper and lower bounds 
of the system’s energy consumption as Ê and Ě , respec-
tively. Subsequently, we define the average queue length 
as J̄ = lim

T→∞

1
T

∑N
i=1[Qi(t)+Hi(t)] . Building on Lemma 

1, we establish the upper bounds of the system’s energy 
consumption and queue dimensions in Theorem 2.

Theorem  2 For any trade-off coefficient V and task 
arrival rate �+ ǫ , the upper bounds on system energy con-
sumption and queue dimensions satisfy

Proof
With Lemma 1, for any arbitrary stochastic offloading 
decision π and task arrival rate �+ ǫ , we have:

For any offloading decision π , we can derive:

By substituting Eq. (33) into Eq. (34) and summing over 
all time slots, the following is derived:

Since ǫ,Qi(t) , and Hi(t) are all non-negative, we can 
deduce:

When Eq. (36) is divided by VT and as ǫ → 0,T → ∞ , 
Eq. (31) is proven.

(31)EEEDO ≤ E∗ +
Z

V
.

(32)J̄ ≤
Z + V (Ê − Ě)

ǫ
.

(33)
E{Ēπ (t)} ≤ E∗(�+ ǫ),

E{Aπ
i (t)} + ǫ ≤ E{Dπ

i,l(t)− Dπ
i,o(t)},

E{Dπ
i,o(t)} + ǫ ≤ E{Cπ

i (t)}.

(34)

�V (�(t)) ≤ Z + VE{E(t)|�(t)}

+ E{

N
∑

i=1

Qi(t)[A
π
i (t)− Dπ

i,l(t)− Dπ
i,o(t)]|�(t)}

+ E{

N
∑

i=1

Hi(t)[D
π
i,o(t)− Cπ

i (t)]|�(t)}.

(35)

V

T−1
∑

t=0

E(E(t)) ≤ ZT + VTE∗(�+ ǫ)− ǫ

T−1
∑

t=0

N
∑

i=1

E{Qi(t)+Hi(t)}.

(36)V

T−1
∑

t=0

E(E(t)) ≤ ZT + VTE∗(�+ ǫ).
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Furthermore, with Eq. (35), we also get:

Given the non-negativity of E(E(t)) , the equation sim-
plifies to:

By dividing both sides of Eq. (38) by ǫT  , and as T → ∞ , 
Eq. (32) is proven.   �

Evaluation
Experiment settings
In this part, extensive experiments are done to evaluate 
the efficacy of the EEDO algorithm. A HAP is deployed 
to serve GDs across a 1km× 1km remote zone. GDs are 
distributed randomly in this area, while the HAP remains 
static at a predetermined elevation. The size of tasks 
arriving Ai(t) adheres to a uniform distribution rang-
ing from [0, 1.8] × 106 bits. GDs operate at a CPU cycle 
frequency 1GHz , with transmission power described by 
a distribution P(t) ∼ [0.01, 0.2] W [12]. The HAP has a 
maximum CPU cycle frequency of 20GHz . The aggre-
gate bandwidth available for communication between 
GDs and the HAP is 100MHz . Additionally, ξi = 10−27 , 
σ 2 = 10−13 W, and ϕi = 1000 cycles/bit [14]. The key 
parameter configurations are enumerated in Table 2.

Parameter analysis
Impact of parameter V
We select a set of different V values for analysis to vali-
date the impact on the system’s energy consumed and 
mean queue length. The change in energy consumed 
and queue length in response to varying V are depicted 
in Figs. 2 and 3. Figure 2 illustrates a decreasing trend in 
the system’s energy consumed correlating with ascend-
ing V values. This is because a larger control parameter 
V indicates the system’s tendency to prioritize energy 

(37)

ǫ

T−1
∑

t=0

N
∑

i=1

E{Qi(t)+Hi(t)} ≤ ZT + VTE∗(�+ ǫ)− V

T−1
∑

t=0

E(E(t)).

(38)ǫ

T−1
∑

t=0

N
∑

i=1

E{Qi(t)+Hi(t)} ≤ ZT + VT (Ê − Ě).

optimization, which aligns with the results in Eq.  (31). 
Figure  3 illustrates an increase in the queue length as 
V increases. This phenomenon can be ascribed to the 
bounded processing and data transmission capacities of 
GDs, which are capable of handling only a finite amount 
of tasks, consequently resulting in an accumulation of 
pending tasks. Such findings are in alignment with the 
results of Eq. (32). Therefore, the EEDO proves effective 
in reducing the energy consumption of the system whilst 
preserving the equilibrium of the task queue.

Impact of task arrival rate
Figures  4 and 5 illustrate the variations in the system’s 
energy consumed and the mean queue length corre-
sponding to diverse arrival rates of the task. Here, the 
arrival rate of the task is denoted by αAi(t) , and α = 0.6 , 
0.8, and 1.0. It is observed in Fig. 4 that the consumption 
of energy within the system rises with the rising arrival 
rate of the task. In a similar vein, Fig. 5 reveals a direct 

Table 2 Parameter settings

Parameters Value

Height of HAP 20 Km

Carrier frequency 0.1 GHz

Link loss ηLoSi  and ηNLoSi
0.1, 21

Environment parameter κ1,κ2 4.88, 0.43

Energy consumption for HAP

processing 1 bit data 1× 10−4 J/bit

The length of the time slot 1 s

Fig. 2 Energy consumption v.s. V

Fig. 3 Queue length v.s. V
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correlation between the arrival rate of the task and the 
average queue length. Nonetheless, it is observed that in 
a short time period, both energy consumption and queue 
length attain a state of equilibrium. Thus, the EEDO algo-
rithm can dynamically adjust offloading decisions, allow-
ing the system to quickly stabilize.

Impact of GDs number
Figures  6 and 7 illustrate the influence of varying num-
bers of GDs on the system’s energy consumed and mean 
queue length. Figure  6 reveals an increasing trend in 
energy consumed as the GD number increases. In con-
trast, Fig.  7 exhibits the continuous increase in mean 
queue length with more GDs, due to the HAP’s finite 
processing capacities. As the number of GDs increases, 
some tasks cannot be processed timely, resulting in a 
continuous increase in queue length.

Comparison experiment
Herein, we analyze the EEDO algorithm’s efficiency via 
comparative experiments. We compare the EEDO algo-
rithm with three other algorithms, which are described 
as follows:

• Local-only algorithm: Each GD processes all newly 
arrived tasks by itself.

• Offload-only algorithm: Each GD offloads all newly 
arrived tasks to the HAP for processing.

• GTCO-21 algorithm: Each GD adopts the greedy 
approach extended from [19] to perform task offloading.

Fig. 4 Energy consumption v.s. Task arrival rate

Fig. 5 Queue length v.s. Task arrival rate

Fig. 6 Energy consumption v.s. GDs Number
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Figures  8 and 9 illustrate the system’s energy consumed 
and queue length with these algorithms. Compared to 
the Offload-only and GTCO-21 algorithms, our EEDO 
algorithm can reduce system energy consumption while 
maintaining queue stability. With the Offload-only algo-
rithm, the HAP’s finite computational capacity leads to 
unprocessed task accumulation and a continuous increase 
in queue length. For the GTCO-21 algorithm, since all 
GDs want to offload as many tasks as possible to the HAP 
to alleviate their burden, the excessive number of tasks 
exceeds the processing limit of the HAP, causing the queue 
length to keep increasing. Nevertheless, when compared 
with the Local-only approach, EEDO not only sustains 
task queue constancy but also reduces energy consumed. 
Collectively, the EEDO performs well in reducing energy 
consumed while maintaining task queue constancy.

Related work
The computational capacity limitations and battery energy 
constraints of GDs pose significant challenges in processing 
high-demand computational tasks. MEC has emerged as 
an innovative solution to these issues. Through proper off-
loading of computation tasks and allocation of resources, 
these issues can be effectively resolved [20].

Tang et  al. [21] studied the offloading of indivisible and 
delay-sensitive computational tasks in MEC systems. They 
designed a distributed offloading algorithm to reduce task 
drop rate and average latency. Wu et al. [22] focused on task 
offloading within a decentralized and heterogeneous IoT 
network, augmented by blockchain technology. They pre-
sented an algorithm for real-time decision-making on task 
offloading to enhance offloading efficiency. Guo et al. [23] 
investigated the task offloading process within densely pop-
ulated IoT environments, proposing a cyclical search mech-
anism to optimize CPU cycle frequency and transmission 
power. Tang et al. [24] drew on the idea of Intent-based Net-
working (IBN) and proposed a Service Intent-aware Task 
Scheduling (SIaTS) framework for CPNs. Nahum et al. [25] 
proposed an intent-aware reinforcement learning method 
to perform the RRS function in a RAN slicing scenario. Liao 
et al. [26] developed a novel task offloading framework for 
air-ground integrated vehicular edge computing (AGI-VEC) 
which could enabled a user vehicle to learn the long-term 
optimal task offloading strategy while satisfying the long-
term ultra-reliable low-latency communication.

Moreover, many works have concentrated on partial 
task offloading. Tong et  al. [27] explored minimizing 
the energy cost of the MEC system in a cooperative sce-
nario. They established an online dynamic computational 
offloading algorithm to reduce additional overheads. 
Xia et  al. [28] developed a model for a MEC offloading 
scheme powered by energy collection, employing a col-
laborative online optimization approach based on the 

Fig. 7 Queue length v.s. GDs Number

Fig. 8 Energy consumption v.s. Different algorithms

Fig. 9 Queue length v.s. Different algorithms
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game and stochastic theories. Hu et al. [29] contemplated 
the equilibrium between power efficiency and service 
latency within extensive MEC networks, proposing a 
dynamic offloading and resource management protocol.

However, when ground communication facilities are 
damaged or lacking, HAP-assisted aerial MEC networks 
become an alternative solution. Waqar et  al. [14] inves-
tigated offloading problems within MEC-augmented 
vehicular networks, designing a decentralized strat-
egy utilizing reinforcement learning. Wang et  al. [30] 
researched energy efficiency in airborne MEC networks, 
and put forward an offloading strategy based on col-
lective learning paradigms. Ren et  al. [31] investigated 
caching and computational offloading issues with HAP 
assistance. They presented an algorithm based on the 
Lagrangian method.

Although many efforts have been made in the field of 
offloading and resource allocation, and some studies have 
also investigated issues related to HAP offloading, the 
offloading problem in the HAP-assisted MEC scenario 
is still challenging. This paper studies the task offloading 
and resource allocation problem in a HAP-assisted MEC 
system and designs the EEDO algorithm to reduce the 
consumption of system while considering the random-
ness of task arrival and the uncertainty of communica-
tion quality.

Conclusion
In our work, we study the dynamic multi-user computa-
tion offloading and resource allocation problem within 
a HAP-assisted MEC system. The problem is modeled 
as a stochastic optimization problem with objectives set 
on reducing energy consumption of the system, whilst 
preserving queue stability and adhering to resource con-
straints. By applying stochastic optimization techniques, 
we recast the initial stochastic problem into a determin-
istic problem. This reformulated problem is then stra-
tegically split into three distinct subproblems. Then, we 
design the online EEDO algorithm to solve these three 
subproblems, which require no prior statistical infor-
mation on tasks. Our theoretical analysis proves that 
the EEDO algorithm maintains an equilibrium between 
energy consumed and queue stability within the system. 
Then, we conduct experimental analysis. The results from 
these experiments validate the EEDO algorithm’s effec-
tiveness in reducing the system’s energy consumed while 
concurrently maintaining queue stability.
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