
Auliya et al. Journal of Cloud Computing (2024) 13:80
https://doi.org/10.1186/s13677-024-00646-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Analysis and prediction of virtual
machine boot time on virtualized computing
environments
Ridlo Sayyidina Auliya1, Yen‑Lin Lee1, Chia‑Ching Chen1, Deron Liang1 and Wei‑Jen Wang1*

Abstract

Starting a virtual machine (VM) is a common operation in cloud computing platforms. In order to achieve better
management of resource provisioning, a cloud platform needs to accurately estimate the VM boot time. In this paper,
we have conducted several experiments to analyze the factors that could affect VM boot time in a computer cluster
with shared storage. We also implemented four models for VM boot time prediction and evaluated the performance
of the four models based on the datasets of four hosts and seven hosts in our environment, where the four models
are the rule‑based model, the regression tree model, the random forest regression model, and the linear regression
model. According to our analysis, we found that host capability and maximal network bandwidth are two main fac‑
tors that can influence VM boot time. We also found that VM boot time becomes harder to predict when booting
VMs at different hosts concurrently due to competition between hosts to obtain resources. According to the experi‑
mental results, the proposed random forest regression is the best model for VM boot time prediction with an aver‑
age accuracy of 94.76% and 96.59% in predicting VM boot time in two clusters with four and seven compute hosts,
respectively.

Keywords Virtual machine, Boot time prediction, Virtual machine placement, Cloud computing

Introduction
Virtual Machine (VM) is a crucial component that serves
as a virtualized computing resource to offer accessible
services in cloud computing environments [1]. Virtual-
ization technology enables multiple VMs to operate on a
single physical server, thereby enhancing the cost-effec-
tiveness and efficiency of resource utilization [2, 3]. VMs
and virtualization technologies have been widely used in
cloud computing. For example, many public cloud plat-
forms, such as Amazon Elastic Compute Cloud (EC2) [4]
and Microsoft Azure [5], allow users to rent VMs that

host user applications. Many users also use several vir-
tualization tools, such as KVM [6] and VMware vSphere
[7], to build their private cloud platforms. In response to
the computing requests from users, cloud platforms may
need to provision VMs at runtime (VM provisioning)
[8–11]. VM provisioning involves co-locating VMs in
the same physical host to optimize resource utilization
[12, 13]. Therefore, an efficient VM provisioning mech-
anism is crucial for cloud platforms to achieve optimal
resource utilization.

VM boot time prediction plays a pivotal role in VM
provisioning on cloud platforms. Each cloud platform
needs to guarantee a certain quality of service (QoS), as
stated in Service-Level Agreements (SLA) [14–16]. The
violation of SLAs could have a serious impact on the
cloud platform. Thus, ensuring the performance of the
cloud environment and improving the quality of the pro-
vided services is essential [17–20]. Inaccurate VM boot

*Correspondence:
Wei‑Jen Wang
wjwang@csie.ncu.edu.tw
1 Department of Computer Science and Information Engineering,
National Central University, Zhongda Road, Zhongli District, Taoyuan
City 320, Taiwan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00646-4&domain=pdf

Page 2 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

time prediction can have severe consequences in several
cases, as follows:

• VM Failover [1]: Inaccurate VM boot time prediction
can result in choosing the wrong hosts to boot the
VMs, which leads to long VM boot times and con-
sequently, adds more delay to the failover process.
Delay in the failover process can be very dangerous in
certain cases where high availability becomes a prior-
ity, such as in time-critical applications [21].

• Cloud Simulation Tools [22]: Inaccurate VM boot
time prediction can affect the makespan in cloud
scheduling.

In summary, inaccurate VM boot time prediction can
have several adverse consequences, such as reducing
the effectiveness and efficiency of resource manage-
ment, increasing costs, and decreasing the performance
of cloud platforms. Therefore, organizations should
invest in more accurate prediction models for VM
booting times to address these consequences. Despite
its importance, VM boot time prediction has rarely
been explored in literature, and only a few studies have
focused on it [23].

Conventionally, VM boot time is assumed to be con-
stant [24]. VM start-up process generally includes three
stages: placement of VMs on physical machines, trans-
mission of VM images for booting, and VM booting [24].
These stages typically take tens of seconds. However, the

exact start-up duration can be affected by several factors
[25–27]. VM boot time is measured as the duration to
boot a VM on a selected host until the VM is ready for
execution. While VM boot time is assumed to be con-
stant and often ignored, the booting process consumes
resources. Therefore, the previous assumption is incor-
rect. VM boot time can be affected by many factors, and
these factors have been discussed in a study by Nguyen
et al. [24], who found that co-located VMs could compete
with CPU and I/O resources, resulting in varying VM
boot times. Similarly, Nitu et al. [22] pointed out that VM
boot times can be long and vary depending on the num-
ber of VMs that started.

There are two popular ways to boot VMs: from a VM
image or a bootable volume [28, 29]. The boot-from-
image approach transfers a VM image from the storage
host to the compute host. Meanwhile, the boot-from-
volume approach uses a bootable volume, the block stor-
age created from a VM image containing the bootable
operating system. The volume can be stored in a remote
shared storage host and does not need to be transferred
to a compute host. An illustration of the boot-from-vol-
ume approach for shared storage is presented in Fig. 1.

In this study, all VMs in our computer cluster are
booted from the volumes. The bootable volume is cre-
ated based on a VM image and stored in a shared storage
host (Fig. 1). Then, these volumes are used to boot a VM
instance on a compute host. In terms of VM boot time
prediction, the boot-from-volume approach allows the

Fig. 1 Boot‑from‑volume approach in a shared storage host

Page 3 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

second stage of the VM start-up process which transfers
the VM image from the storage host to the compute host,
to be ignored [24]. Thus, this approach can enhance the
efficiency of VM boot time prediction by shortening the
start-up process and directly focusing on measuring VM
boot time. Moreover, the boot-from-volume approach
also provides the ability to boot a VM from a remotely
attached volume and improves the management and
recovery in a computer cluster [30].

There are two types of VM boot time prediction mod-
els: Nguyen et al.’s rule-based model [24] and Govin-
daraju et al.’s Machine Learning (ML)-based model [1].
Nguyen et al. [24] identified several factors affecting VM
boot times, such as I/O throughput and CPU capacity,
and then proposed a rule-based VM boot time predic-
tion model. They claimed the model can reproduce VM
boot times under different resource contention. However,
the model’s major limitation is that it does not consider
host competition for VM boot time or the number of
CPU cores. Govindaraju et al. [1] proposed an ML-based
VM boot time prediction model using a regression tree
algorithm. Their model uses several features such as VM
image size, CPU utilization, memory utilization, net-
work utilization, and number of concurrent VM creation
requests. The proposed model has two limitations. First,
the model is only used to predict VM start-up time in an
OpenStack platform and does not provide a factor anal-
ysis of the selected features. Second, the model is only
used in a small-scale cluster of only four hosts. In sum-
mary, a more accurate VM boot time prediction model
is necessary to address the limitations of the existing pre-
diction models.

In this study, we aim to find a more accurate VM boot
time prediction model in a computing platform with
shared storage. We collected and analyzed experimental
data to identify the factors that influence the boot time
of a VM. Then, we built four prediction models: Nguyen
et al.’s model [24], a regression tree model inspired by
Govindaraju et al. [1], a random forest regression model,
and a linear regression model. Notice that, to the best
of our knowledge, the random forest regression and lin-
ear regression models have not been used for VM boot
time prediction in the literature. In addition, we adopted
the heterogeneous cloud computing architecture in our
experiments. The heterogeneous architecture has been
widely implemented [31–33], especially by data centers
because VMs and hardware heterogeneity could serve
varied customers [34]. We designed two experiments
in two computer clusters with four and seven compute
hosts to evaluate the performance of each model. Our
experimental results show that the random forest regres-
sion outperformed the other models in both computer
clusters, regardless of the training dataset size. In the

second experiment, the model achieved an average accu-
racy of 94.76% and 96.59% in predicting VM boot times
outside the range of known values, using 75% of the data-
set for training.

This study has two major contributions as follows:

• We discovered that the number of CPU cores, num-
ber of VMs on a host, and concurrent booting of
VMs on another host can affect the average boot
time of the host. We found that VM boot time can
be hard to predict due to the contention among
physical hosts. This phenomenon only occurs in the
shared-VM-image-storage environment and has not
yet been discussed in previous studies. By focusing
on the previous three factors, we can improve the
VM boot time prediction accuracy. In addition, we
released our experimental data for other researchers
interested in VM boot time prediction.

• We propose to use random forest regression for VM
boot time prediction. Random forest regression per-
forms well in predicting VM boot times using the
data within and outside the known dataset range.
In addition, we have discovered that a small train-
ing dataset is sufficient to build an efficient predic-
tion model with high accuracy. In our experiments,
the proposed model can achieve the average accuracy
of 94.76% and 96.59% in predicting VM boot time in
two clusters with four and seven compute hosts by
using only 1% case coverage.

The remainder of this paper is organized as follows.
Related work section introduces the existing approaches
in VM boot time prediction. VM boot time analysis sec-
tion discusses the experiments designed to identify the
factors determining the VM boot time. Data collection
and model building section describes the data collection
and prediction models’ training. Performance evalua-
tion section discusses the performance comparison of
the existing VM boot time prediction models. Finally,
this study’s conclusion and future research directions are
presented in Conclusions and future work section.

Related work
This section discusses related research on VM boot time
predictions. First, we introduce the VM start-up process
and the factors affecting the VM boot time. Then, we dis-
cuss the existing VM boot time prediction models, which
can be divided into the rule-based model and the ML-
based model.

Virtual machine start‑up process and the influencing
factors
VM start-up process generally includes three stages [24]:

Page 4 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

1. The cloud/cluster scheduler determines an appropri-
ate physical machine to place the VM based on the
resource requirements and the optimization goals.

2. The VM image is transferred from the storage host
to the compute host, and a disk for the VM is created
from the image.

3. The VM is booted on the compute host.

The duration of each start-up stage can be different due
to the influence of many factors. For example, the dura-
tion of the first stage was typically short. However, sev-
eral factors such as user requests, the distribution of
available computing resources, and the purpose of the
scheduling algorithm (for example, to shorten the VM
boot time, reduce network traffic, or ensure the quality of
service) can determine the duration of the first stage [24].

VM image size and maximal network bandwidth are
the main factors affecting the second stage’s duration
[24]. Researchers usually consider that the duration of
the second stage accounts for most of the VM start-up
time. Therefore, various acceleration methods [35, 36]
have been proposed for this stage. However, the duration
of this stage may be negligible in certain cases. For exam-
ple, when a user boots a VM from a volume [37] in an
OpenStack [38] environment, transferring the VM image
is unnecessary because OpenStack allows users to create
a bootable volume on shared storage and uses this vol-
ume to boot the VM.

In the third stage, the hypervisor boots the VM on the
selected host until it is ready for execution. The duration
of this stage is called the VM boot time [24]. VM boot
time is essential for the start-up process and cannot be
ignored. In the literature, many researchers and cloud
simulation tools, such as CloudSim [39, 40], assume that
the VM boot time is constant [24]. They assumed that the
booting process consumes few resources based on the
assumption that the environment for booting the VM is
ready, and therefore, the VM boot time can be ignored.
However, the fact is that the VM boot time is long and
can be affected by many factors, as pointed out by several
studies [22, 24].

A study by Nitu et al. [22] pointed out that the VM
boot time is very long, and depends on the number of
VMs that are booting. Moreover, server consolidation
makes the workload on each host different, making it dif-
ficult to predict the VM boot time accurately. Nguyen
et al. [24] confirmed the influence of various factors on
VM boot time, such as CPU usage, memory usage, net-
work pressure, and I/O throughput. Their experimental
results found that CPU usage and I/O throughput were
key factors affecting VM boot time. In summary, VM
boot time is not constant and can be affected by various

hardware specifications and configuration factors. Thus,
regarding their influence, these factors should be consid-
ered in measuring VM boot time.

Research on VM boot time prediction models
VM boot time is different from the actual physical
machine boot time since in the virtualized environment,
the physical machines are usually assumed to be ready for
running a VM at any time. Two types of VM boot time
prediction models exist in the literature: Nguyen et al.’s
rule-based model [24] and Govindaraju et al.’s ML-based
[1] models. Both prediction models are discussed in the
following subsections.

Rule‑based prediction models
The rule-based prediction models are built using the
expertise of researchers to create and maintain rules.
In a study by Nguyen et al. [24], they identified several
primary factors that affect VM boot times, such as I/O
throughput and CPU capacity. Then, they proposed a
rule-based VM boot time prediction model based on the
identified factors. A VM boot time should integrate the
I/O and CPU dimensions. Therefore, the idea of the pro-
posed model can be written in Eq. 1, then rewritten in
Eq. 2 as follows:

Each variable of Eqs. (1) and (2) can be described in
Table 1 as follows:

According to their experimental results, their proposed
rule-based model can reproduce VM boot time under
different resource contentions. However, because the
rule-based model relies on human experts to create and
maintain rules, these rules may work differently in dif-
ferent configurations. Thus, further experimentation is
required to validate the accuracy of the proposed model
for different configurations. However, the major limita-
tion of this study is that it does not consider host com-
petition for VM boot time or the number of CPU cores.

Machine learning (ML)‑based prediction models
The ML-based prediction models were built using ML
techniques. Govindaraju et al. [1] proposed a model
for predicting the average, minimum, and maximum
VM start-up times using a regression tree algorithm.
They collected the data for their model in a private
OpenStack environment with one controller host and
four compute hosts. They proposed three regression

(1)boot_time = timeI/O + timeCPU

(2)boot_time =
ex × α

1− x
+

β

1− y

Page 5 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

tree-based prediction models for predicting average,
minimum, and maximum VM start-up times. The pre-
dictive analysis workflow included (1) dataset prepa-
ration, (2) regression tree model training, (3) doing a
pruning process, (4) testing the trained model, and (5)
using the trained model for prediction. According to
their experimental results, the proposed regression tree
model achieved an accuracy of 91.51%. The advantage
of the proposed model is the graphical representation
that helps to understand the phenomenon modeled.
However, the model has not been implemented to pre-
dict VM boot time. Moreover, the prediction model did
not provide a factor analysis of the selected features.
This study also used a small scale consisting of only four
hosts.

Several ML-based prediction models, such as linear
regression and random forest regression, were used in
the study by Li et al. [41]. In their study, they used two
ML-based models to predict the workload of a virtual
machine. According to their experimental results, ran-
dom forest regression has proven to be the best model
for VM workload prediction. Other ML-based predic-
tion models, such as Support Vector Machine (SVM)
[42, 43], also have been implemented to predict VM
workload for VM provisioning. Although the exist-
ing studies have proven that the ML-based method

provides good prediction performance, these studies
have not been implemented to predict the VM boot
time. Thus, there exists an opportunity to observe the
performance of ML-based models for VM boot time
prediction.

Summary
In summary, according to studies by Nitu et al. [22],
and Nguyen et al. [24], VM boot time is not constant.
VM boot time can be affected by many factors, such as
CPU usage, memory usage, network pressure, and I/O
throughput. There are two prediction models for VM
boot time prediction, which can be seen in Table 2.

There exist two types of VM boot time prediction
models: Nguyen et al.’s rule-based [24] and Govindaraju
et al.’s ML-based models [1], using a regression tree
algorithm. The major limitation of Nguyen et al.’s rule-
based model [24] is that it does not consider host com-
petition for VM boot time or the number of CPU cores.
Meanwhile, the existing ML-based model of Govin-
daraju et al. [1] has not been implemented to predict
VM boot time. Moreover, the prediction model did not
provide a factor analysis of the selected features. This
study also used a small-scale cluster consisting of only
four hosts. In summary, a more accurate VM boot time

Table 1 Attributes of Nguyen et al.’s rule‑based model

Variables Description

boot_time The time from the execution of the VM boot instruction to the completion of the ini‑
tialization of the VM

timeI/O the total time required by a VM to perform I/O operations during the booting process

timeCPU the total time required by the CPU to run boot operations without resource contention

x utilization percentage of the total I I/O throughput

y utilization percentage of the CPU resources

α the total time required by a VM to perform I/O operations during the booting process

β the total time required by the CPU to run boot operations without resource contention

Table 2 Summary of the related work

Attributes VM Boot Time Prediction Models

Rule‑based ML‑based

Prediction Methods Nguyen et al. [24] Regression Tree (Govindaraju et al. [1])

Overview Use the expertise of researchers to create rules based on several
features, including CPU time and I/O time to build a prediction
model

Use several features, including VM image size, memory
utilization, and network utilization to build prediction
models

Advantages 1) easy to interpret 1) provide higher accuracy

2) fast processing time 2) provide a better understanding of data and features

Limitations 1) does not consider competition between hosts 1) have not been applied for VM boot time prediction

2) does not consider the number of CPU cores 2) only applied for a small‑scale cluster of four hosts

3) does not provide feature analysis

Page 6 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

prediction model is necessary to address the limitations
of the existing prediction models.

VM boot time analysis
In order to understand the factors that could affect VM
boot time, we have performed several experiments on a
cluster consisting of four compute hosts. In this section,
we first explain the experimental protocol of those exper-
iments and then analyze the following three experiment
scenarios:

• The impact of the number of host CPU cores on the
VM boot time.

• The impact of the number of VMs on the VM boot
time.

• The impact between different hosts.

Experimental protocol
In this study, we used KVM to build a computing envi-
ronment and start the VM from the volume. The KVM-
based environment, such as OpenStack is widely used in
cloud computing [44]. In addition, since heterogeneous
cloud computing architecture has been widely imple-
mented [31–33], we adopted the heterogeneous cloud
computing architecture in this study. In other words, the
specifications of the hosts used to construct the com-
puting environment, such as the number of CPU cores,
memory size, and hard disk capacity, are different. The
architecture of the computing environment is shown in
Fig. 2, and the specifications of the compute hosts are
shown in Table 3.

Four compute hosts (Compute 1 to Compute 4)
are responsible for running VMs, one controller
host is responsible for managing all hosts and VMs
in the environment, and one storage host with SSD

Fig. 2 Computing architecture for the experiments

Table 3 The specifications of each host of the computer cluster

Host role CPU Memory Disks Operation System

Compute 1 Intel i7‑6700 (Quad‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 2 Intel i5‑8500 (Hex‑core) 32 GB 512 GB HDD Ubuntu 16.04 Server

Compute 3 Intel i7‑9700 (Octa‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 4 AMD A6‑3670K (Quad‑core) 32 GB 512 GB HDD Ubuntu 16.04 Server

Controller Intel i7‑6700 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server

Storage Intel i7‑3770 (Quad‑core) 12 GB 1024 GB HDD & 480 GB SSD Ubuntu 16.04 Server

Page 7 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

is responsible for storing VM images and volumes.
Each host and switch/router are connected by 1 Giga-
bit Ethernet. In addition, we set up all VMs with one
vCPU and 1 GB of memory and used Ubuntu 16.04
as the host operating system. In the experiments, we
did not consider the impact of changes in VM speci-
fications on the VM boot time. An early study [27]
showed that the capacity of a VM does not affect the
VM boot time, which means that a VM with one core
and 1 GB of memory and a VM with four cores and 16
GB of memory requires the same boot time. We col-
lected VM boot time data from compute hosts 1, 2,
3, and 4 and analyzed the factors affecting VM boot
time. Compute 4 is not used here because it is used for
prediction accuracy in the next section (Performance
evaluation section). The VM is launched by the libvirt
API [45] on the specified host, and then booted from
the volume stored in the storage host.

We use two types of VMs in our experiments: work-
load VMs (wVMs) and experimental VMs (eVMs).
wVM is a VM that runs stress tests to compete for
computing resources, especially CPU resources, to
simulate a running VM in an actual cloud. eVM is a
VM that is ready to be started and will not perform
any load after booting, and its boot time is measured
and analyzed in this study. The VM boot time is the
time from the execution of the VM boot instruction to
the completion of the initialization of the Getty service
[46] in the eVM.

Impact of the number of CPU cores on the host
To understand how the number of physical CPU cores
affects the VM boot time, we evaluated the following
three factors in the experiments: (i) the number of eVMs
(from 1 to 6), (ii) the number of wVMs (from 0 to 12),
and (iii) the number of CPU cores (quad-core (Compute
1 and 4), hex-core (Compute 2), and octa-core (Compute
3)). The experiments included all the combinations of
the above three factors, and each combination was per-
formed at least 30 times. We run several wVMs on the
compute host first, then boot several eVMs simultane-
ously. The experimental results are shown in Fig. 3 and
are available in our git repository [47].

According to our experimental results, we found that
the VM boot time is affected by the number of physical
CPU cores. In Fig. 3, the VM boot time values in (b), (c),
and (d) are almost the same when the total numbers of
wVMs and eVMs are less than the number of CPU cores.
However, in Fig. 3, the VM boot time values in (b), (c),
and (d) become different when the total number of wVM
and eVM approaches a multiple of the number of CPU
cores. For example, the VM boot time in Fig. 3b signifi-
cantly increases when the number of wVM changes from
two to three, and the number of eVM is 1. This is because
Compute 1 is a host with a quad-core CPU that can sup-
port four VMs.

Similarly, the VM boot time in Fig. 3a increases sig-
nificantly at the same point because Compute 4 is also a
host with a quad-core CPU. This situation may be related
to the process scheduling of the host operating system.

Fig. 3 Average VM boot time in different test cases on Compute 1, 2, 3, and 4 with 1G network

Page 8 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

When the total numbers of wVM and eVM are less than
the number of CPU cores, the host scheduler tends to
allocate a separate CPU core to each VM; therefore, there
is no CPU contention. However, when the total number
of wVM and eVM approaches the number of CPU cores,
the host scheduler must determine which process (VM)
can use the CPU resources. In this case, the VM boot
time increases significantly due to the CPU contention.
According to our observations, the growth curve of VM
boot time has a stair-like shape. Furthermore, as the total
number of wVM and eVM increases, the VM boot time
growth trend becomes slower (Fig. 3c and d).

Impact of the number of VMs on the host
In this section, we discuss the impact of factors related
to the number of VMs, such as network transmission
delay, number of eVMs, and number of wVMs, on the
average VM boot time. Because all VM volumes are
stored in the storage host, and the host needs to access
the VM volumes to boot up a VM, the booting process
should inevitably increase the network workload and
encounter transmission delays. To verify this idea, we
conducted experiments by changing the network card
of each host from 1G to 10G. However, due to the lack
of 10G switches, we use network cables to connect the
compute and storage hosts to simulate the 10G network
environment. We then performed the same experiments
described in Impact of the number of CPU cores on the
host section, and the experimental results are shown in

Fig. 4. Experimental results are available in our git reposi-
tory [47].

Comparing the results in Figs. 3 and 4, we find that
when the total numbers of wVMs and eVMs on the same
host are small, the VM boot time remains the same. How-
ever, as the total number of wVM and eVM increases, the
VM boot time in a 10G network environment is shorter
than in a 1G network environment. In addition, by
observing the network traffic when booting an eVM on
Compute 1 in a 1G network environment, we found that
the eVM usually transmits a large amount of data in a
short period, which can easily cause resource contention
and increase transmission delays. In summary, the trans-
mission delay of the network affects the VM boot time,
and as the total number of wVMs and eVMs increases,
the delay becomes more significant.

In addition, in both Figs. 3 and 4, if the number of
wVMs is fixed, it can be observed that the VM boot
time increases as the number of eVMs increases. How-
ever, if the number of eVMs is fixed, the VM boot time
also increases as the number of wVMs increases. This is
because the resource contention on the host becomes
more frequent as the number of eVMs or wVMs
increases.

Impact between hosts
Because all VM volumes are stored in the storage host,
the average boot time in a host can be affected by the VM
boot time in another host. Therefore, this experiment
aimed to measure the impact of VMs (wVMs and eVMs)

Fig. 4 Average VM boot time in different test cases on Compute 1, 2, 3, and 4 with 10G network

Page 9 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

on other hosts during VM boot time. This experiment
has two scenarios: First, we run 0 to 5 wVMs on Compute
3, then boot 1 to 3 eVMs on Compute 1 one minute later,
and measure the VM boot time. Second, we booted 0 to
6 eVMs simultaneously on two of the three hosts (Com-
pute 1, Compute 2, and Compute 3) and measured the
VM boot time on the target host (one of the two). There
were 18 cases in the first scenario and 252 in the second

scenario. Each case was performed five times to measure
the VM boot time. The experimental results of the above
two scenarios are shown in Figs. 5 and 6, respectively,
where the unit of VM boot time is seconds.

Figure 5 shows that the wVMs on other hosts do not
affect the measured VM boot time. This is because wVM
mainly competes for CPU resources on the compute host
rather than for resources on the storage host. Figure 6

Fig. 5 Average boot time (in seconds) of 1 to 3 eVMs on Compute 1 when Compute 3 has 0 to 5 wVMs

Fig. 6 a,d Average boot time of 1 to 6 eVMs on Compute 1 when booting 0 to 6 eVMs on Compute 2 and Compute 3, respectively. b,e Average
boot time of 1 to 6 eVMs on Compute 2 when booting 0 to 6 eVMs on Compute 1 and Compute 3, respectively. c,f Average boot time of 1 to 6
eVMs on Compute 3 when booting 0 to 6 eVMs on Compute 1 and Compute 2, respectively

Page 10 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

shows the effect of eVMs on other hosts during VM boot
time in two situations, as follows:

• Case 1: The average VM boot time could increase
as the number of the remote eVMs increases, such
as starting up 4 to 6 eVMs at Compute 1 and 0-6
eVMs at Compute 2 (the 4, 5, 6 eVMs lines in Fig. 6a).
This could be because network contention from the
remote host increases and consequently delays VM
booting.

• Case 2: As the number of remote eVMs increases,
the average VM boot time can increase and sud-
denly either stop increasing or decrease at some
turning point. For example, starting up one eVM at
Compute 2 and 0-6 eVMs at Compute 1 (the 1 eVM
line in Fig. 6c) has a turning point of three eVMs at
Compute 1. We believe that the network contention
ability of a host does not always increase as the num-
ber of eVMs increases. The number of physical CPU
cores could limit the contention ability.

Summary
Based on our observations, host capability (workload)
and maximal network bandwidth are the main factors
affecting the VM boot time. The number of VMs can
introduce the workload in a host. Meanwhile, the num-
ber of CPU cores represents the host’s capability to han-
dle the workload. The analysis of the factors affecting the
average VM boot time can be summarized as follows:

• The Number of CPU Cores on a Host

– There is no CPU competition in a host when the
total number of VMs is less than the number of
host CPU cores because each VM can use a sepa-
rate CPU core.

– In a host, the VM boot time of a VM could be
delayed when the total number of VMs is greater
than or equal to the number of CPU cores in that
host.

• The Number of VMs on a Host
– If the maximal network bandwidth is sufficient, the

VM boot time of a VM becomes shorter, and the
network competition has less impact on the VM
boot time.

• The Impact Between Hosts

– In a host, the VM boot time of a VM could be
delayed due to the influence of network and I/O
competition from other co-located VMs.

– The average VM boot time could increase as the
number of remote booting VMs increases. As the
number of remote booting VMs increases, the aver-
age VM boot time could increase and then sud-
denly either stop increasing or decrease at some
turning points.

Data collection and model building
This section discusses the data collection and model
training of the four VM boot time prediction models. The
prediction models to be used are a rule-based model by
Nguyen et al. [24] and three ML-based prediction mod-
els: the regression tree model by Govindaraju et al. [1],
linear regression model, and random forest regression
model. Notice that, to the best of our knowledge, random
forest regression and linear regression models have not
been used for VM boot time prediction in the literature.

Environment setup
In our experiments, we used two types of VMs, which are
eVMs and wVMs, as follows:

• eVM: the experimental VM (eVM) is the VM whose
boot time is the prediction target.

• wVM: the workload VM (wVM) is the VM that emu-
lates the VM running on the environment.

Those VMs used to demonstrate different VM booting
situations and generate VM boot time datasets to be used
in this study. The VM boot time prediction steps in this
study can be described as follows (Fig. 7):

1. Data Collection and Preprocessing

• Data Collection: VM boot times were collected by
measuring the time from the execution of the VM
boot instruction to the completion of the initiali-
zation of the VM. The collected data had several
attributes based on the identified factors that can
influence VM boot time prediction, including the
number of CPU cores on a host, the number of
booting VMs on a host, and the impact between
hosts.

• Data Cleansing: This step was performed after
VM boot times were collected. The data cleans-
ing step consists of cleansing and preprocessing by
handling outliers, missing values, and inconsisten-
cies.

• Data Splitting: After the collected data were
cleansed and preprocessed, the datasets were split
into training and testing datasets. These datasets

Page 11 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

were used to train and evaluate the ML models,
including random forest regression.

2. Model Development

• Model Initialization: The random forest regres-
sion model was initialized using the preferred
machine learning library. We used the “Statistics
and Machine Learning Toolbox” of MATLAB.

• Model Training: After the random forest regres-
sion model was initialized, we trained the random
forest regression model using the training datasets.
At this stage, we also tuned some hyperparam-
eters, including the number of trees, tree depth,
and minimum samples per leaf. In this study, we
tuned the number of trees using “ n_estimators ”
hyperparameter and set its value to 1000.

3. Model Evaluation

• Model Testing: After the training phase was com-
pleted, the prediction models were tested with the
test dataset.

• Accuracy Measurement: The accuracy was meas-
ured as the percentage of prediction difference
divided by the actual time. After completing the
training and testing steps, we measured the accu-
racy of the four prediction models.

• Significance Test: A statistical significance test
can be performed to measure the significance of
prediction models’ accuracy values. In this case,
we can use several methods, such as the Wilcoxon
test.

Data collection and preprocessing
The data was collected on two clusters, each consisting of
four and seven hosts, respectively. We measured the time
from the execution of the VM boot instruction to the
completion of the initialization of the VM. In addition,
we did not consider any criteria for selecting a host for
data collection. The hosts are selected based on each VM
placement case, and each case is randomly chosen from
all cases. For the cluster of four hosts, we used Compute
1, Compute 2, Compute 3, and Compute 4 to collect the
data and calculate the average VM boot of 1 to 6 eVMs
on a host (Compute 1 to Compute 4) when there are 0 to
12 wVMs on that host. For the cluster with seven hosts,
we used Compute 1 to 7 to collect data.

There are two types of data to be collected as follows:

1. Single‑Host: the average VM boot time of 1 to 6
eVMs on a host (Compute 1 to Compute 7) when
there are 0 to 12 wVMs on the host.

Fig. 7 VM boot time prediction with random forest regression

Page 12 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

2. Multi‑Host: the average VM boot time of the eVMs
on each host (Compute 1 to Compute 3, and Com-
pute 5 to Compute 7) where each host supposes 0 to
6 eVMs and when the eVMs are booted concurrently.

In the cluster with four hosts, the first experiment had
312 cases and the second experiment had 7200 cases,
with 18 cases in the two experiments being the same. In
other words, the dataset consists of 7494 cases. In the
cluster with seven hosts, the single-host dataset had 78
cases per host, and the multi-host dataset had 823,542
cases per host. The data collection process required a
lot of time due to a large number of cases. There were
823,542 cases, each of which took 3 minutes and 30
seconds to collect. Because it takes thousands of days
to collect all of them, it needs too much time and cost.
Therefore, we used 1% of the overall cases, which is 8,235
cases. For the 8,235 cases, approximately 28 days were
required for data collection.

Each record is the average result of each case per-
formed at least five times, and each record consists of
seven attributes selected based on the summary in VM
boot time analysis section. The attributes can be seen
in Table 5. In addition, we performed data cleansing to
guarantee the accuracy of the data. The data cleansing
was performed by discovering the cases in which the boot
time was longer than the median VM boot time. Then,
we re-measured the boot time on those cases. It is worth
mentioning, that most of the data are clean. Data cleans-
ing was performed only for data obtained from host fail-
ures and delayed executions of VM boot commands.

Configuration of Nguyen et al.’s model
Nguyen et al. [24] use Eq. (1) as a rule-based model to
predict the VM boot time on a host. For each host, Eq.
(1) coefficients must be measured and calculated. To do
this, we need the I/O time, denoted by α , and CPU time,
denoted by β . To calculate the value of α and β , we need
the I/O throughput percentage, denoted by x, and the
value of CPU resources utilization percentage, denoted
by y. The value of y can be obtained from the monitoring
process. However, the model only considers local storage;
meanwhile, in this study, we use shared storage. There-
fore, we calculate the value of α and β without the I/O
throughput percentage, and the value of x is set to 0.

For this model, we use the single-host dataset of four
hosts, as mentioned in Environment setup section. Using
x and y, we calculate the coefficients α and β of the model
for the single-host dataset. The coefficients are presented
in Table 4. Finally, using the coefficient in Table 2 and the
environment setup in Environment setup section, the
model’s accuracy is calculated.

Training and testing of ML‑based models
This study used three ML-based prediction models:
the regression tree model proposed by Govindaraju
et al. [1], the random forest regression model, and the
linear regression model. The linear regression model
is implemented with the “sklearn” library of Python.
Meanwhile, the regression tree model is implemented
with the well-known “Statistics and Machine Learning
Toolbox” of MATLAB.

Subsequently, the datasets were split into training
and test datasets. The three ML-based prediction mod-
els were trained using the same datasets and attributes
during the training phase. The datasets used were the
single-host dataset of four hosts, the single-host data-
set of seven hosts, and the multi-host dataset of seven
hosts. The datasets’ attributes and their descriptions
are listed in Table 5. These datasets are available in our
git repository [47].

Although the three ML-based prediction mod-
els were trained using the same datasets and attrib-
utes during the training process, the linear regression
model did not use the “core” attribute. Meanwhile, we
used the “ train_test_split ” function of the “sklearn”
library to split the dataset for the random forest regres-
sion model. We did not normalize or scale the data
because the random forest regression and regression
tree are non-parametric methods. In addition, we did
not perform any transformations of the collected data.
For the random forest regression, we set the param-
eter n_estimators to 1000 and the random state to 42.
n_estimators is the number of trees built by the random
forest regression, and the random_state is the bootstrap
randomness of the samples used when building trees.
To observe the relationship between the training data-
set size and model performance, we designed 19 cases
in which the ratio of the training dataset to the original
dataset increased every 5% from 5% to 95%.

The time complexity of random forest regression is
measured in two ways: the overall time complexity for

Table 4 The I/O time (α) and CPU time (β) of Nguyen et al.’s
model

compute Host i αi (sec) β i (sec)

Compute 1 2.82 7.75

Compute 2 3 8.43

Compute 3 2.98 8.28

Compute 4 2.4 8.23

Compute 5 1.56 7.60

Compute 6 1.46 8.02

Compute 7 1.46 7.99

Page 13 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

training a random forest regression tree, and the time
complexity for prediction. The time complexity is pri-
marily determined by three factors: (1) the number of
training instances, (2) the number of features, and (3)
the average depth of the decision tree. The overall time
complexity for training a random forest regression is
O(n_estimators ∗m ∗ log(n)) , where n_estimators is the
number of trees in the forest, m is the number of fea-
tures, and log(n) is the average depth of the decision
tree. In this study, we set the value of n_estimators to
1000. Meanwhile, the prediction time complexity is
O(n_estimators ∗ log(n)) as we apply each new data
point to all trees in the forest.

After the training phase, the models were tested with
the test dataset (the remaining data). The accuracy of
each prediction model is calculated using the following

Eq. (3). The percentage of the prediction difference is
divided by the actual time. As an example, the accuracy
calculation for the random forest regression can be
seen in Fig. 8.

Figure 8 shows the random forest regression model
performance (accuracy) in each case, where the ran-
dom forest regression accuracy increased with an
increase in the training dataset size. When the training
dataset size was 35% of the original dataset, the model
accuracy reached 95%. These datasets are available in
our git repository [47].

(3)

accuracy = (1−
|actual time − pred time|

actual time
) ∗ 100%

Table 5 Attributes of the dataset

Attributes Description

eVM the boot time of the experimental VM (eVM) is the prediction target

wVM the workload VM (wVM) runs a stress test to compete for computing resources

ci,CPU The number of CPU cores available on host i

αi I/O and network latency time spent during the boot process of an eVM when there is no resource contention
on the selected host i

βi CPU time spent during the boot process of an eVM when there is no resource contention on the selected host i

Qi The number of wVMs on host i

Ri The number of eVMs on host i

ovm The sum of the minimum values of Rj and cj,CPU − 1 for all other hosts j

ovm′ The sum of the maximum values of 0 and Rj − cj,CPU + 1 for all other hosts j

boot_time Average VM boot time on host i

Fig. 8 RF model accuracy for each case, with training dataset sizes ranging from 5% to 95% of the original dataset (in 5% increments)

Page 14 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

Performance evaluation
To verify the scalability and performance of the VM boot
time prediction models, including a rule-based model
and three ML-based models, we performed two sets of
experiments in two clusters of different scales with four
and seven computing hosts based on the computing
architecture shown in Fig. 2. The experimental design in
the two clusters is shown in Figs. 9 and 10, as follows:

For each cluster, we performed two sets of experiments.
The first experiment, called the single-host experiment,
aimed to validate the prediction accuracy with known
training dataset values. In the first experiment, we com-
pared the average accuracy of ML-based models using
different training dataset sizes. We used the datasets col-
lected as explained in Environment setup section and
used 1%, 3%, 5%, 20%, 40%, 60%, and 80% of the dataset
as the training datasets and the rest as the test datasets,
respectively.

In the second experiment, the average accuracy of each
model outside the range of known values was compared.
In the second experiment, also called the multi-host

experiment, the prediction target was the VM boot time
of Compute 4, which was not included in the dataset. By
removing the host (Compute 4), new data may be availa-
ble on the new machine. Therefore, in the second experi-
ment, we aimed to determine whether the model could
predict the boot time on Compute 4. Each ML-based
model was trained by using 75% of the dataset. Mean-
while, for the rule-based model by Nguyen et al. [24], we
only used the coefficient, as shown in Table 4. All experi-
ments followed the experimental protocol described in
Experimental protocol section.

Experiments using four compute hosts
In this experiment, we used clusters with four com-
pute hosts (Compute 1, 2, 3, and 4). The dataset used is
described in Environment setup section. Additionally,
the multi-host experiment in this cluster included cases
with 0-6 eVMs on each other host (Compute 1, 2, and 3)
and 1-6 eVMs on Compute 4, for a total of 2058 cases.
The accuracy of each VM boot time prediction model in
the cluster with four compute hosts is shown in Fig. 11.

Fig. 9 Experiments in the cluster with four hosts, where Compute 4 is the prediction target for the multi‑host evaluation

Fig. 10 Experiments in the cluster with seven hosts, where Compute 4 is the prediction target for the multi‑host evaluation

Page 15 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

In addition, the actual VM boot times for the cases in the
multi-host experiment are available in our git repository
[47].

Figure 11 presents the accuracy comparison among
ML-based prediction models in the first experiment.
This shows that the proposed random forest regression
outperforms the linear regression and regression tree
models. Random forest regression required only a small
amount of data (1% of the dataset) to achieve an average
accuracy of 91.55%. Furthermore, random forest regres-
sion can achieve an average accuracy of 95.32% using 80%
of the training dataset.

Experiments using seven compute hosts
In this experiment, we added three new compute hosts
(Compute 5, 6, and 7) to the computing architecture
described in Experiments using four compute hosts sec-
tion. The specifications of these new hosts are listed in
Table 6. We limited each host to a maximum of six eVMs.
In this cluster, we also have two situations for the experi-
ment: single-host and multi-host experiments with the
settings mentioned in Environment setup section.

Similar to the results shown in Experiments using four
compute hosts section (Fig. 11), Fig. 12 shows that the

random forest regression can still outperform all ML-
based prediction models in the cluster with seven hosts
regardless of the size of the training dataset. Random for-
est regression can achieve an average accuracy of 95.16%
and 96.57% using datasets of 1% and 80%, respectively.

Discussion
Experimental results summary
In this study, we performed comparative experiments on
the performance of four prediction models in clusters of
four and seven hosts. The experimental results are sum-
marized in Fig. 13 and Table 7.

Table 7 and Fig. 13 show the performance comparison
of four prediction models in clusters of four and seven
compute hosts. While the size of the data in a cluster
grows as the number of hosts increases, our experiment
results indicate that the number of hosts has a minimal
impact on the prediction accuracy of random forest
regression. The proposed random forest regression has
the highest accuracy in the experiment with two clus-
ters of four and seven compute hosts. The random for-
est regression achieves 94.76% and 96.59% accuracy in
four and seven host clusters, respectively. The other two
ML-based models, which are regression tree and linear

Fig. 11 The average accuracy of ML‑based models on the cluster with four compute hosts. (RF: the proposed random forest regression model, LR:
the multiple linear regression model, and RT: the regression tree model)

Table 6 The specifications of the new hosts in the second cluster

Host role CPU Memory Disks Operation System

Compute 5 Intel i7‑6700 (Quad‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 6 Intel E3‑1220v6 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 7 Intel E3‑1220v6 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server

Page 16 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

Fig. 12 The average accuracy of each ML‑based model in the first experiment on the cluster with seven compute hosts. (RF: the proposed random
forest regression model, LR: the multiple linear regression model, and RT: the regression tree model)

Fig. 13 Average accuracy comparison of four prediction models on the clusters with four and seven hosts. (RF: the proposed random forest
regression model, LR: the multiple linear regression model, and RT: the regression tree model)

Table 7 The accuracy of each VM boot time prediction model in clusters with four and seven hosts

Cluster Experiment Accuracy (%)

Rule‑based (Nguyen
et al.’s)

Random Forest Regression Tree Linear
Regression

4 Hosts Multi‑Host 48.73 94.76 94.25 87.51

7 Hosts Multi‑Host 37.15 96.59 96.29 87.25

Page 17 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

regression, also perform well in both clusters. The regres-
sion tree is the second best, which achieves 94.25% and
96.29% accuracy in four and seven clusters, respectively.
Nguyen et al.’s model performs well in the single-host
experiment in both clusters with four and seven hosts.
However, in the multi-host experiment, the accuracy of
Nguyen et al.’s model decreased from 48.73% to 37.15%.

The differences in the accuracy of Nguyen et al.’s model
in single-host and multi-host experiments can be attrib-
uted to the following reasons. First, Nguyen et al.’s model
uses local storage to store VM images. Therefore, the
effects of host competition were not considered in the
model. Meanwhile, different hosts compete for resources
on shared storage, which affects VM boot time. Second,
Nguyen et al.’s model does not consider the number of
CPU cores of the host. VM boot times are affected if
the number of processes is equal to the number of CPU
cores.

Based on the values in Table 7, each model’s range of
accuracy values is presented in Table 8. Table 8 presents
the minimum and maximum accuracy values for each
model. In the cluster with four hosts, the rule-based
model has the lowest minimum and maximum accu-
racy of 29.85% and 97.50%, respectively. Meanwhile,
the proposed random forest regression has the highest
minimum and maximum accuracy of 68.66% and 100%,
respectively. The regression tree has a similar perfor-
mance to the random forest regression but with a lower
minimum accuracy of 50.19%. Linear regression has a
relatively good performance with a slight difference in
accuracy values compared to the random forest regres-
sion and regression tree. It has the minimum and maxi-
mum accuracy of 49.61% and 99.99%. In the cluster with
seven hosts, the minimum accuracy of Nguyen et al.’s
model decreases from 29.85% to 22.39%. The minimum
accuracy of linear regression decreases from 49.61% to
15.61%. Meanwhile, it has similar maximum accuracy
with regression tree and random forest regression of
100%.

We have conducted the Wilcoxon test to test whether
the random forest regression has a significant accuracy
difference from other prediction models on the four
and seven-host clusters. This test is commonly used in
cloud computing research to determine whether there
is a significant difference between the means of the two
populations [48–50]. The significance test results are
presented in Table 9. As seen in Table 9, the p-values
in the test for the multi-host experiment in the clusters
with four and seven hosts are <0.05. It indicates a sig-
nificant difference between the proposed random forest
regression and all other compared algorithms.

Random forest regression outperforms the other pre-
diction models for the following reasons:

1. First, random forest regression uses an ensemble
learning method that combines multiple decision
trees. Its ensembled decision trees decrease over-
fitting by reducing the risk of individual tree bias.
Moreover, the ensembled decision tree can capture
complex relationships to provide high accuracy.

2. Second, random forest regression assesses the
importance of valuable features for feature selec-
tion. This mechanism provides a deeper understand-
ing of the impact of different features and increases
the ability of random forest regression to handle the
complex relationship of data.

Table 8 The range of accuracy values for four prediction models

Cluster Data Range Accuracy of Each VM Boot Time Prediction Model (%)

Rule‑based (Nguyen
et al.’s)

Random Forest Regression
(RF)

Regression Tree (RT) Linear
Regression
(LR)

4 Hosts Min 29.85% 68.66% 50.19% 49.61%

Max 97.50% 100% 100% 99.99%

Avg 48.73% 94.76% 94.25% 87.51%

7 Hosts Min 22.39% 79.69% 76.91% 15.61%

Max 88.08% 100% 100% 100%0

Avg 37.15% 96.59% 96.29% 87.25%

Table 9 P‑values in the Wilcoxon test corresponding to the
average boot time of different models

Cluster Experiment p‑Values of Each VM Boot Time Prediction
Model

Rule‑based
(Nguyen
et al.’s)

Regression
Tree

Linear
Regression

4 Hosts Multi‑Host < 1× 10
−5

1.43× 10
−5 < 1× 10

−5

7 Hosts Multi‑Host < 1× 10
−29

9.06× 10
−29 < 1× 10

−29

Page 18 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

3. Third, random forest regression offers robustness
over noisy data and outliers, making it suitable for
real-world datasets that may have imperfections.

Limitations
Despite its superior performance, the proposed random
forest regression model has several limitations:

• Experiment on a Small‑Scale Cluster: In this study,
we used a small-scale cluster for the experimental
environment. Meanwhile, a real-world cloud envi-
ronment typically has a larger scale. Data collection
in such an environment is more time-consuming and
difficult. For the seven-host cluster, the data collec-
tion process requires a lot of time due to many VM
placement cases. In total, there are 823,542 cases,
each of which takes 3 minutes and 30 seconds to col-
lect, and thus, it takes thousands of days to collect
all of the data. Therefore, we used 1% of the over-
all cases, which is 8,235 cases. For the 8,235 cases,
approximately 28 days were required for data collec-
tion. For such case coverage, the proposed random
forest regression model could still perform well when
the cluster scale was increased from four to seven
hosts. However, the case coverage should be vali-
dated to prove its effectiveness in a larger cluster.

• Clean Workload: We use compute hosts with clean
or low background workloads. We assume that this
factor can contribute to VM boot time prediction for
the experiment.

• Impact of Different Cloud Architecture: The ML-
based models must be retrained at different cloud
architectures. Some features in the proposed model
may have different weights on prediction accuracy.
For example, host competition may not be an impor-
tant factor in a cloud architecture that does not use a
shared storage system for VM booting.

Several strategies can be implemented to address the
limitations:

• Ensemble Techniques: The ensemble technique
combines multiple decision trees. Each decision tree
is trained on a bootstrap subset of the data (bagging)
and uses a random subset of features for each split
(feature bagging) to make a prediction. New data will
be passed through each tree in the forest, and the
predictions from each tree are combined to produce
the final prediction with better accuracy.

• Hyperparameters Tuning: The hyperparameters of
random forest regression can be tuned to improve
predictive ability and processing speed [51]. The

number of trees built by the algorithm before taking
the average of the predictions should be increased
to increase the predictive ability of random for-
est regression. Then, the bootstrap randomness of
the samples used to build the tree can be tuned to
increase prediction speed. However, as the predictive
ability increases, it consumes more resources and
slows down the computation. Therefore, these hyper-
parameters should be carefully tuned.

• Data Sampling Technique: To handle a large dataset,
we can use a small subset of data during model devel-
opment and testing (data sampling). This technique
can decrease the time required for model training
[52]. However, the data sample should be ensured
that it is representative to provide good accuracy.

• Parallel Processing: A large amount of data can
result in lengthy and difficult model training. One
of the preferable solutions is to process large data-
sets in parallel across multiple machines. By utilizing
multiple machines, the processing time speed can be
increased [53, 54].

• Use More Complex Algorithms: A combination of
machine learning algorithms [55] or more complex
prediction models that can handle large datasets
more effectively may be necessary in certain cases.
For example, Reinforcement Learning (RL) methods
or Deep Learning (DL) models, such as Recurrent
Neural Network (RNN) or Convolutional Neural
Networks (CNN) [55–58], can be considered for VM
boot time prediction.

Applicability to real‑world environment
The applicability of random forest regression can be
described as follows:

• Scalability: Regarding data size, random forest
regression is a suitable option for predicting VM
boot time in real-world cloud environments because
of its scalability for handling both small and large
datasets. Our experimental results show that random
forest regression can provide an average accuracy
of 96.59% using a smaller dataset size using only 1%
case coverage of 823,542 of the total cases. However,
it is crucial to maintain efficient case coverage as the
cluster size increases. Therefore, validating the case
coverage and performance of random forest regres-
sion in a larger cluster is necessary.

• Computational Overhead: The random forest
regression ensembles decision trees; therefore, model
training can be computationally expensive when
dealing with many decision trees. In our experi-
ments, the training time was still tens of seconds, and

Page 19 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

the inference time was approximately 1 ms. How-
ever, random forest regression may not be as effi-
cient as rule-based models in terms of inference time,
because the inference time is only the time to cal-
culate the equation for the rule-based model. If the
rule-based method can improve its accuracy, it can
be a better VM boot time prediction solution. How-
ever, its accuracy is too low.

In conclusion, random forest regression is generally
applicable in a real cloud environment, especially for VM
boot time prediction. Its scalability, ensemble nature, and
ability to handle various data types make it a preferable
model for VM boot time prediction. However, the com-
putational overhead should be considered, especially dur-
ing model training. The training time can be prolonged,
which leads to high computational costs. Moreover, stor-
ing such a large dataset requires a significant amount of
memory.

Conclusions and future work
Accurate VM boot time prediction is essential to increase
the effectiveness and efficiency of resource management,
decrease costs, and increase the performance of a cloud
platform. In this study, we analyzed several factors that
influence VM boot time prediction: the number of CPU
cores of a host, the number of VMs, and the competition
between hosts. We used these factors to build a random
forest regression model for VM boot time prediction. We
then compared its performance to a rule-based predic-
tion model and two ML-based regression models, linear
regression and regression tree. We performed two sets
of experiments in clusters with four and seven hosts.
According to the experimental results, random forest
regression outperformed the other prediction models by
providing an average accuracy of 94.76% and 96.59% in
four and seven host clusters by using only a small case
coverage of 1%. Our findings have several practical impli-
cations as follows:

• Using the most important factors to predict VM boot
time accurately, we can guarantee the resource, cost,
and energy allocation effectiveness. For example,
in high availability (HA), an accurate VM boot time
prediction allows us to choose the least VM boot
time to evacuate failed VMs on a cluster.

• By providing insight into the performance of differ-
ent models, users can choose the best model for VM
boot time prediction. Implementing better predic-
tion models can help maintain resource efficiency,
cost-effectiveness, and overall performance of cloud
platforms.

The VM boot time can vary significantly depending
on a specific configuration and environment. Further
research can address this issue and propose potential
solutions for improving VM boot time prediction.

• Consideration of Different Prediction Models:
Reinforcement Learning (RL) methods and popu-
lar Deep Learning (DL) models, such as Recurrent
Neural Network (RNN) and Convolutional Neural
Network (CNN), can be considered in VM boot
time prediction. Currently, these models have been
implemented for predictions in many cloud-com-
puting-related studies to obtain refined prediction
models [55–58].

– RL uses agents to make decisions by interacting
with the environment and then receives feedback
through rewards or penalties [58]. It has several
advantages, such as flexibility in decision-making
in a dynamic and complex environment where
explicit programming or rules may be challeng-
ing. RL agents are also suitable for tasks where
optimal strategy may evolve since they learn
from experience and can adapt to environmental
change. However, RL can be challenging to set up
because the accuracy depends on the state, action,
and gain functions. Moreover, training RL models
can be more computationally expensive than ML-
based models [58].

– DL is inspired by the structure and function of
the human brain, and it learns patterns and rep-
resentations using an artificial neural network. DL
has several advantages, including adaptability and
performance on large datasets [59]. However, DL
can be computationally expensive and complex
during training and inference, making it unsuit-
able for resource-constrained environments or
real-time requirements. Furthermore, DL typi-
cally requires a large amount of data, and its per-
formance may suffer when the available data is
limited [59].

• Implementing Different Virtualization Technolo‑
gies and Environments: Different virtualization
technologies, such as deduplication and boot-from-
snapshots, can be considered in future studies. In
addition, the arrangement of network components,
such as switches and routers, is also related to VM
boot time prediction. Moreover, a larger-scale envi-
ronment could be considered to validate whether the
proposed approach is scalable. Therefore, exploring
those aspects of VM boot time prediction can be a
potential future direction.

Page 20 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

Authors’ contributions
Ridlo Sayyidina Auliya was responsible for paper writing, validation, paper
survey, and experiments; Yen‑Lin Lee was responsible for paper writing, algo‑
rithm implementation, paper survey, and experiments; Chia‑Ching Chen was
responsible for conceptualization and validation; Deron Liang was responsible
for problem definition and project supervision; Wei‑Jen Wang was responsible
for conceptualization and paper editing.

Funding
This study was supported by the National Science and Technology Council of
Taiwan, under grants 111‑2221‑E‑008‑061‑ and 111‑2221‑E‑008‑059‑, and the
Software Research Center, National Central University.

Availability of data and materials
The datasets used in this manuscript are available on our GitHub repository [47].

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 16 August 2023 Accepted: 23 March 2024

References
 1. Govindaraju Y, Duran‑Limon HA, Mezura‑Montes E (2021) A regres‑

sion tree predictive model for virtual machine startup time in IaaS
clouds. Cluster Comput 24:1217–1233. https:// doi. org/ 10. 1007/
s10586‑ 020‑ 03169‑0

 2. García‑Valls M, Cucinotta T, Lu C (2014) Challenges in real‑time virtualiza‑
tion and predictable cloud computing. J Syst Archit 60(9):726–740.
https:// doi. org/ 10. 1016/j. sysarc. 2014. 07. 004

 3. Alhazmi K, Sharkh MA, Shami A (2018) Drawing the cloud map: Virtual
network provisioning in distributed cloud computing data centers. IEEE
Syst J 12(2):1480–1491. https:// doi. org/ 10. 1109/ JSYST. 2015. 24842 98

 4. Amazon (2023) Amazon EC2. https:// aws. amazon. com/ ec2/. Accessed
May 2022

 5. Microsoft (2023) Microsoft Azure. https:// azure. micro soft. com/ en‑ us.
Accessed May 2022

 6. Linux (2023) Kernel Virtual Machine. https:// www. linux‑ kvm. org/ page/
Docum ents. Accessed Aug 2023

 7. VMWare vSphere (2023) VMWare vSphere. https:// docs. vmware. com/ en/
VMware‑ vSphe re/ index. html. Accessed Aug 2023

 8. da Rosa Righi R, Rodrigues VF, Da Costa CA, Galante G, De Bona LCE,
Ferreto T (2015) Autoelastic: Automatic resource elasticity for high per‑
formance applications in the cloud. IEEE Trans Cloud Comput 4(1):6–19.
https:// doi. org/ 10. 1109/ TCC. 2015. 24248 76

 9. Ghobaei‑Arani M, Souri A, Baker T, Hussien A (2019) ControCity: An
autonomous approach for controlling elasticity using buffer management
in cloud computing environment. IEEE Access Pract Innov Open Solutions
7:106912–106924. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29324 62

 10. Lee YC, Zomaya AY (2012) Energy efficient utilization of resources in cloud
computing systems. J Supercomput 60:268–280. https:// doi. org/ 10. 1007/
s11227‑ 010‑ 0421‑3

 11. Zhang F, Liu G, Fu X, Yahyapour R (2018) A survey on virtual machine
migration: Challenges, techniques, and open issues. IEEE Commun Surv
Tutorials 20(2):1206–1243. https:// doi. org/ 10. 1109/ COMST. 2018. 27948 81

 12. Kim MH, Lee JY, Raza Shah SA, Kim TH, Noh SY (2021) Min‑max
exclusive virtual machine placement in cloud computing for scientific
data environment. J Cloud Comput 10:2. https:// doi. org/ 10. 1186/
s13677‑ 020‑ 00221‑7

 13. Çağlar İ, Altılar DT (2022) Look‑ahead energy efficient VM allocation
approach for data centers. J Cloud Comput 11:11. https:// doi. org/ 10.
1186/ s13677‑ 022‑ 00281‑x

 14. Javadpour A, Nafei A, Ja’fari F, Pinto P, Zhang W, Sangaiah K (2023) An
intelligent energy‑efficient approach for managing IoE tasks in cloud
platforms. J Ambient Intell Human Comput 14:3963–3979. https:// doi.
org/ 10. 1007/ s12652‑ 022‑ 04464‑x

 15. Javadpour A, Sangaiah AK, Pinto P, Ja’fari F, Zhang W, Abadi AMH, Ahmadi
H (2023) An energy‑optimized embedded load balancing using DVFS
computing in cloud data centers. Comput Commun 197:255–266.
https:// doi. org/ 10. 1016/j. comcom. 2022. 10. 019

 16. Javadpour A, Wang G, Rezaei S (2020) Resource Management in a
Peer‑to‑Peer Cloud Network for IoT. Wirel Pers Commun 115:2471–2488.
https:// doi. org/ 10. 1007/ s11277‑ 020‑ 07691‑7

 17. Zhou Z, Shojafar M, Alazab M, Abawajy J, Li F (2021) AFED‑EF: An energy‑
efficient VM allocation algorithm for IoT applications in a cloud data
center. IEEE Trans Green Commun Netw 5(2):658–669. https:// doi. org/ 10.
1109/ TGCN. 2021. 30673 09

 18. Zhou Z, Li F, Zhu H, Xie H, Abawajy JH, Chowdhury M (2020) An improved
genetic algorithm using greedy strategy toward task scheduling opti‑
mization in cloud environments. Neural Comput Appl 32:1531–1541.
https:// doi. org/ 10. 1007/ s00521‑ 019‑ 04119‑7

 19. Zhou Z, Abawajy J, Chowdhury M, Hu Z, Li K, Cheng H, Alelaiwi AA, Li F
(2018) Minimizing SLA violation and power consumption in Cloud data
centers using adaptive energy‑aware algorithms. Futur Gener Comput
Syst 86:836–850. https:// doi. org/ 10. 1016/j. future. 2017. 07. 048

 20. Zhou Z, Shojafar M, Abawajy J, Yin H, Lu H (2021) ECMS: An edge intelligent
energy efficient model in mobile edge computing. IEEE Trans Green Com‑
mun Netw 6(1):238–247. https:// doi. org/ 10. 1109/ TGCN. 2021. 31219 61

 21. Kampa T, El‑Ankah A, Grossmann D (2023) High Availability for virtualized
Programmable Logic Controllers with Hard Real‑Time Requirements on
Cloud Infrastructures. In: 2023 IEEE 21st International Conference on
Industrial Informatics (INDIN), Lemgo, Germany, 2023. pp. 1‑8. https:// doi.
org/ 10. 1109/ INDIN 51400. 2023. 10218 014

 22. Nitu V, Olivier P, Tchana A, Chiba D, Barbalace A, Hagimont D, Ravindran B
(2017) Swift birth and quick death: Enabling fast parallel guest boot and
destruction in the xen hypervisor. ACM SIGPLAN Not 52(7):1–14. https://
doi. org/ 10. 1145/ 31406 07. 30507 58

 23. Costache S, Parlavantzas N, Morin C, Kortas S (2013) On the use of a
proportional‑share market for application slo support in clouds. In: Euro‑Par
2013 Parallel Processing: 19th International Conference, Aachen, Germany,
August 26‑30, 2013. Proceedings 19. Springer Berlin Heidelberg, pp 341–352.
https:// www. hal. inserm. fr/ INRIA/ hal‑ 00821 558. Accessed Aug 2023

 24. Nguyen TL, Lebre A (2017) Virtual machine boot time model. In: 2017 25th
Euromicro International Conference on Parallel, Distributed and Network‑
Based Processing (PDP). Presented at the 2017 25th Euromicro Interna‑
tional Conference on Parallel, Distributed and Network‑based Processing
(PDP), St. Petersburg, Russia. https:// doi. org/ 10. 1109/ PDP. 2017. 58

 25. Abrita SI, Sarker M, Abrar F, Adnan MA (2019) Benchmarking vm startup
time in the cloud. In: Benchmarking, Measuring, and Optimizing: First
BenchCouncil International Symposium, Bench 2018, Seattle, WA, USA,
December 10‑13, 2018, Revised Selected Papers 1. Springer International
Publishing, pp 53–64. https:// doi. org/ 10. 1007/ 978‑3‑ 030‑ 32813‑9_6

 26. Mao M, Humphrey M (2012) A performance study on the VM Startup
time in the cloud. In: 2012 IEEE Fifth International Conference on Cloud
Computing. Presented at the 2012 IEEE 5th International Conference on
Cloud Computing (CLOUD), Honolulu, HI, USA. https:// doi. org/ 10. 1109/
CLOUD. 2012. 103

 27. Wu H, Ren S, Garzoglio G, Timm S, Bernabeu G, Chadwick K, Noh SY
(2016) A reference model for virtual machine launching overhead. IEEE
Trans Cloud Comput 4(3):250–264. https:// doi. org/ 10. 1109/ TCC. 2014.
23694 39

 28. IBM (2023) Boot from Volume. https:// www. ibm. com/ docs/ es/ cic/1. 1.1?
topic= plann ing‑ boot‑ from‑ volume. Accessed Oct 2023

 29. OpenStack (2023) Images and Instances. https:// docs. opens tack. org/
glance/ train/ admin/ troub lesho oting. html. Accessed Oct 2023

 30. Block87 (2021) Booting ISO’s in OpenStack Environments https:// blog.
andys erver. com/ 2021/ 06/ booti ng‑ iso‑ in‑ opens tack‑ envir onmen ts/.
Accessed Oct 2023

 31. Crago SP, Dunn K, Eads P, Hochstein L, Kang DI, Kang M, Walters JP (2011)
Heterogeneous cloud computing. In: 2011 IEEE International Conference
on Cluster Computing. Presented at the 2011 IEEE International Confer‑
ence on Cluster Computing (CLUSTER), Austin, TX, USA. https:// doi. org/
10. 1109/ CLUST ER. 2011. 49

https://doi.org/10.1007/s10586-020-03169-0
https://doi.org/10.1007/s10586-020-03169-0
https://doi.org/10.1016/j.sysarc.2014.07.004
https://doi.org/10.1109/JSYST.2015.2484298
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us
https://www.linux-kvm.org/page/Documents
https://www.linux-kvm.org/page/Documents
https://docs.vmware.com/en/VMware-vSphere/index.html
https://docs.vmware.com/en/VMware-vSphere/index.html
https://doi.org/10.1109/TCC.2015.2424876
https://doi.org/10.1109/ACCESS.2019.2932462
https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1007/s11227-010-0421-3
https://doi.org/10.1109/COMST.2018.2794881
https://doi.org/10.1186/s13677-020-00221-7
https://doi.org/10.1186/s13677-020-00221-7
https://doi.org/10.1186/s13677-022-00281-x
https://doi.org/10.1186/s13677-022-00281-x
https://doi.org/10.1007/s12652-022-04464-x
https://doi.org/10.1007/s12652-022-04464-x
https://doi.org/10.1016/j.comcom.2022.10.019
https://doi.org/10.1007/s11277-020-07691-7
https://doi.org/10.1109/TGCN.2021.3067309
https://doi.org/10.1109/TGCN.2021.3067309
https://doi.org/10.1007/s00521-019-04119-7
https://doi.org/10.1016/j.future.2017.07.048
https://doi.org/10.1109/TGCN.2021.3121961
https://doi.org/10.1109/INDIN51400.2023.10218014
https://doi.org/10.1109/INDIN51400.2023.10218014
https://doi.org/10.1145/3140607.3050758
https://doi.org/10.1145/3140607.3050758
https://www.hal.inserm.fr/INRIA/hal-00821558
https://doi.org/10.1109/PDP.2017.58
https://doi.org/10.1007/978-3-030-32813-9_6
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/CLOUD.2012.103
https://doi.org/10.1109/TCC.2014.2369439
https://doi.org/10.1109/TCC.2014.2369439
https://www.ibm.com/docs/es/cic/1.1.1?topic=planning-boot-from-volume
https://www.ibm.com/docs/es/cic/1.1.1?topic=planning-boot-from-volume
https://docs.openstack.org/glance/train/admin/troubleshooting.html
https://docs.openstack.org/glance/train/admin/troubleshooting.html
https://blog.andyserver.com/2021/06/booting-iso-in-openstack-environments/
https://blog.andyserver.com/2021/06/booting-iso-in-openstack-environments/
https://doi.org/10.1109/CLUSTER.2011.49
https://doi.org/10.1109/CLUSTER.2011.49

Page 21 of 21Auliya et al. Journal of Cloud Computing (2024) 13:80

 32. Zahran M (2016) Heterogeneous computing: Here to stay. Queue
14:31–42. https:// doi. org/ 10. 1145/ 30286 87. 30388 73

 33. Crago SP, Walters JP (2015) Heterogeneous cloud computing: The way
forward. Computer 48(1):59–61

 34. Parthasarathi R (2018) Warehouse‑Scale Computers in Computer
Architecture: Engineering and Technology. https:// www. cs. umd. edu/
~meesh/ 411/ CA‑ online/ chapt er/ wareh ouse‑ scale‑ compu ters/ index.
html. Accessed May 2022

 35. Razavi K, Razorea LM, Kielmann T (2014) Reducing VM Startup Time and
Storage Costs by VM Image Content Consolidation. In: Euro‑Par 2013:
Parallel Processing Workshops. Euro‑Par 2013. Lecture Notes in Computer
Science, vol 8374. Springer, Berlin, Heidelberg. https:// comsec. ethz. ch/
wp‑ conte nt/ files/ dihc13. pdf. Accessed Aug 2023

 36. Schmidt M, Fallenbeck N, Smith M, Freisleben B (2010) Efficient distribu‑
tion of virtual machines for cloud computing. In: 2010 18th Euromicro
International Conference on Parallel, Distributed and Network‑Based
Processing (PDP), Pisa, Italy. https:// doi. org/ 10. 1109/ PDP. 2010. 39

 37. OpenStack (2023) Launch an instance from a volume.https:// docs. opens
tack. org/ nova/ zed/ user/ launch‑ insta nce‑ from‑ volume. html. Accessed
May 2022

 38. OpenStack (2023) OpenStack Documentation. https:// docs. opens tack.
org/ zed/. Accessed May 2022

 39. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R (2011)
CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw
Pract Exper 41:23–50. https:// doi. org/ 10. 1002/ spe. 995

 40. Saxena D, Gupta R, Singh AK, Vasilakos AV (2023) Emerging VM Threat
Prediction and Dynamic Workload Estimation for Secure Resource Man‑
agement in Industrial Clouds. IEEE Trans Autom Sci Eng. https:// doi. org/
10. 1109/ TASE. 2023. 33193 73

 41. Li Y, Ou D, Jiang C, Shen J, Guo S, Liu Y, Tang L (2020) Virtual machine
performance analysis and prediction. In: 2020 International Conference
on Communications, Computing, Cybersecurity, and Informatics (CCCI),
Sharjah, United Arab Emirates. https:// doi. org/ 10. 1109/ CCCI4 9893. 2020.
92565 18

 42. Gao J, Wang H, Shen H (2020) Machine learning based workload predic‑
tion in cloud computing. In: 2020 29th international conference on
computer communications and networks (ICCCN). IEEE, pp 1–9. https://
doi. org/ 10. 1109/ ICCCN 49398. 2020. 92097 30

 43. Moreno‑Vozmediano R, Montero RS, Huedo E, Llorente IM (2019) Efficient
resource provisioning for elastic cloud services based on machine
learning techniques. J Cloud Comput 8(1):1–18. https:// doi. org/ 10. 1186/
s13677‑ 019‑ 0128‑9

 44. RightScale (2017) RightScale 2017 State of the Cloud Report Uncovers
Cloud Adoption Trends. https:// www. globe newsw ire. com/ news‑ relea se/
2017/ 02/ 15/ 12081 94/0/ en/ Right Scale‑ 2017‑ State‑ of‑ the‑ Cloud‑ Report‑
Uncov ers‑ Cloud‑ Adopt ion‑ Trends. html. Accessed May 2022

 45. Bolte M, Sievers M, Birkenheuer G, Niehorster O, Brinkmann A (2010)
Non‑intrusive virtualization management using libvirt. In: 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), Dres‑
den. https:// doi. org/ 10. 1109/ DATE. 2010. 54571 42

 46. Both D (2020) Linux Boot and Startup. In: Using and Administering Linux,
vol 1. Apress, Berkeley, pp 451–490. https:// link. sprin ger. com/ book/ 10.
1007/ 978‑1‑ 4842‑ 5049‑5

 47. Lee YL (2022) Repository for experimental data related to average VM
boot time. https:// github. com/ Ncu‑ softw are‑ resea rch‑ center/ NCU‑
VMDat aset. Accessed Aug 2023

 48. Bezdan T, Zivkovic M, Bacanin N, Strumberger I, Tuba E, Tuba M (2022)
Multi‑objective task scheduling in cloud computing environment by
hybridized bat algorithm. J Intell Fuzzy Syst 42(1):411–423. https:// doi.
org/ 10. 3233/ JIFS‑ 219200

 49. Putrada AG, Abdurohman M, Perdana D, Nuha HH (2023) EdgeSL: Edge‑
Computing Architecture on Smart Lighting Control with Distilled KNN for
Optimum Processing Time. IEEE Access. https:// doi. org/ 10. 1109/ ACCESS.
2023. 32884 25

 50. Thakur A, Goraya MS (2022) RAFL: A hybrid metaheuristic based resource
allocation framework for load balancing in cloud computing environ‑
ment. Simul Model Pract Theory 116:102485. https:// doi. org/ 10. 1016/j.
simpat. 2021. 102485

 51. Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and tuning
strategies for random forest. Wiley Interdiscip Rev Data Min Knowl Disc
9(3):e1301. https:// doi. org/ 10. 1002/ widm. 1301

 52. Paing MP, Pintavirooj C, Tungjitkusolmun S, Choomchuay S, Hamamoto K
(2018) Comparison of sampling methods for imbalanced data classifica‑
tion in random forest. In: 2018 11th Biomedical Engineering International
Conference (BMEiCON). IEEE, pp 1–5. https:// doi. org/ 10. 1109/ BMEiC ON.
2018. 86099 46

 53. Chen J, Li K, Tang Z, Bilal K, Yu S, Weng C, Li K (2016) A parallel random for‑
est algorithm for big data in a spark cloud computing environment. IEEE
Trans Parallel Distrib Syst 28(4):919–933. https:// doi. org/ 10. 1109/ TPDS.
2016. 26035 11

 54. Genuer R, Poggi JM, Tuleau‑Malot C, Villa‑Vialaneix N (2017) Random
forests for big data. Big Data Res 9:28–46. https:// doi. org/ 10. 1016/j. bdr.
2017. 07. 003

 55. Zhou Z, Shojafar M, Alazab M, Li F (2022) IECL: an intelligent energy
consumption model for cloud manufacturing. IEEE Trans Ind Inform
18(12):8967–8976. https:// doi. org/ 10. 1109/ TII. 2022. 31650 85

 56. Leka HL, Fengli Z, Kenea AT, Hundera NW, Tohye TG, Tegene AT (2023)
PSO‑Based Ensemble Meta‑Learning Approach for Cloud Virtual Machine
Resource Usage Prediction. Symmetry 15(3):613. https:// doi. org/ 10. 3390/
sym15 030613

 57. Nam S, Yoo JH, Hong, JWK (2022) VM Failure Prediction with Log Analysis
using BERT‑CNN Model. In 2022 18th International Conference on
Network and Service Management (CNSM). IEEE, pp 331–337. https:// doi.
org/ 10. 23919/ CNSM5 5787. 2022. 99651 87

 58. Nian R, Liu J, Huang B (2020) A review on reinforcement learning: Intro‑
duction and applications in industrial process control. Comput Chem
Eng 139:106886. https:// doi. org/ 10. 1016/j. compc hemeng. 2020. 106886

 59. Jauro F, Chiroma H, Gital AY, Almutairi M, Shafi’i MA, Abawajy JH (2020)
Deep learning architectures in emerging cloud computing architectures:
Recent development, challenges and next research trend. Appl Soft
Comput 96:106582. https:// doi. org/ 10. 1016/j. asoc. 2020. 106582

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1145/3028687.3038873
https://www.cs.umd.edu/%7emeesh/411/CA-online/chapter/warehouse-scale-computers/index.html
https://www.cs.umd.edu/%7emeesh/411/CA-online/chapter/warehouse-scale-computers/index.html
https://www.cs.umd.edu/%7emeesh/411/CA-online/chapter/warehouse-scale-computers/index.html
https://comsec.ethz.ch/wp-content/files/dihc13.pdf
https://comsec.ethz.ch/wp-content/files/dihc13.pdf
https://doi.org/10.1109/PDP.2010.39
https://docs.openstack.org/nova/zed/user/launch-instance-from-volume.html
https://docs.openstack.org/nova/zed/user/launch-instance-from-volume.html
https://docs.openstack.org/zed/
https://docs.openstack.org/zed/
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/TASE.2023.3319373
https://doi.org/10.1109/TASE.2023.3319373
https://doi.org/10.1109/CCCI49893.2020.9256518
https://doi.org/10.1109/CCCI49893.2020.9256518
https://doi.org/10.1109/ICCCN49398.2020.9209730
https://doi.org/10.1109/ICCCN49398.2020.9209730
https://doi.org/10.1186/s13677-019-0128-9
https://doi.org/10.1186/s13677-019-0128-9
https://www.globenewswire.com/news-release/2017/02/15/1208194/0/en/RightScale-2017-State-of-the-Cloud-Report-Uncovers-Cloud-Adoption-Trends.html
https://www.globenewswire.com/news-release/2017/02/15/1208194/0/en/RightScale-2017-State-of-the-Cloud-Report-Uncovers-Cloud-Adoption-Trends.html
https://www.globenewswire.com/news-release/2017/02/15/1208194/0/en/RightScale-2017-State-of-the-Cloud-Report-Uncovers-Cloud-Adoption-Trends.html
https://doi.org/10.1109/DATE.2010.5457142
https://link.springer.com/book/10.1007/978-1-4842-5049-5
https://link.springer.com/book/10.1007/978-1-4842-5049-5
https://github.com/Ncu-software-research-center/NCU-VMDataset
https://github.com/Ncu-software-research-center/NCU-VMDataset
https://doi.org/10.3233/JIFS-219200
https://doi.org/10.3233/JIFS-219200
https://doi.org/10.1109/ACCESS.2023.3288425
https://doi.org/10.1109/ACCESS.2023.3288425
https://doi.org/10.1016/j.simpat.2021.102485
https://doi.org/10.1016/j.simpat.2021.102485
https://doi.org/10.1002/widm.1301
https://doi.org/10.1109/BMEiCON.2018.8609946
https://doi.org/10.1109/BMEiCON.2018.8609946
https://doi.org/10.1109/TPDS.2016.2603511
https://doi.org/10.1109/TPDS.2016.2603511
https://doi.org/10.1016/j.bdr.2017.07.003
https://doi.org/10.1016/j.bdr.2017.07.003
https://doi.org/10.1109/TII.2022.3165085
https://doi.org/10.3390/sym15030613
https://doi.org/10.3390/sym15030613
https://doi.org/10.23919/CNSM55787.2022.9965187
https://doi.org/10.23919/CNSM55787.2022.9965187
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1016/j.asoc.2020.106582

	Analysis and prediction of virtual machine boot time on virtualized computing environments
	Abstract
	Introduction
	Related work
	Virtual machine start-up process and the influencing factors
	Research on VM boot time prediction models
	Rule-based prediction models
	Machine learning (ML)-based prediction models

	Summary

	VM boot time analysis
	Experimental protocol
	Impact of the number of CPU cores on the host
	Impact of the number of VMs on the host
	Impact between hosts
	Summary

	Data collection and model building
	Environment setup
	Data collection and preprocessing
	Configuration of Nguyen et al.’s model
	Training and testing of ML-based models

	Performance evaluation
	Experiments using four compute hosts
	Experiments using seven compute hosts
	Discussion
	Experimental results summary
	Limitations
	Applicability to real-world environment

	Conclusions and future work
	References

