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Abstract 

Starting a virtual machine (VM) is a common operation in cloud computing platforms. In order to achieve better 
management of resource provisioning, a cloud platform needs to accurately estimate the VM boot time. In this paper, 
we have conducted several experiments to analyze the factors that could affect VM boot time in a computer cluster 
with shared storage. We also implemented four models for VM boot time prediction and evaluated the performance 
of the four models based on the datasets of four hosts and seven hosts in our environment, where the four models 
are the rule‑based model, the regression tree model, the random forest regression model, and the linear regression 
model. According to our analysis, we found that host capability and maximal network bandwidth are two main fac‑
tors that can influence VM boot time. We also found that VM boot time becomes harder to predict when booting 
VMs at different hosts concurrently due to competition between hosts to obtain resources. According to the experi‑
mental results, the proposed random forest regression is the best model for VM boot time prediction with an aver‑
age accuracy of 94.76% and 96.59% in predicting VM boot time in two clusters with four and seven compute hosts, 
respectively.
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Introduction
Virtual Machine (VM) is a crucial component that serves 
as a virtualized computing resource to offer accessible 
services in cloud computing environments [1]. Virtual-
ization technology enables multiple VMs to operate on a 
single physical server, thereby enhancing the cost-effec-
tiveness and efficiency of resource utilization [2, 3]. VMs 
and virtualization technologies have been widely used in 
cloud computing. For example, many public cloud plat-
forms, such as Amazon Elastic Compute Cloud (EC2) [4] 
and Microsoft Azure [5], allow users to rent VMs that 

host user applications. Many users also use several vir-
tualization tools, such as KVM [6] and VMware vSphere 
[7], to build their private cloud platforms. In response to 
the computing requests from users, cloud platforms may 
need to provision VMs at runtime (VM provisioning) 
[8–11]. VM provisioning involves co-locating VMs in 
the same physical host to optimize resource utilization 
[12, 13]. Therefore, an efficient VM provisioning mech-
anism is crucial for cloud platforms to achieve optimal 
resource utilization.

VM boot time prediction plays a pivotal role in VM 
provisioning on cloud platforms. Each cloud platform 
needs to guarantee a certain quality of service (QoS), as 
stated in Service-Level Agreements (SLA) [14–16]. The 
violation of SLAs could have a serious impact on the 
cloud platform. Thus, ensuring the performance of the 
cloud environment and improving the quality of the pro-
vided services is essential [17–20]. Inaccurate VM boot 
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time prediction can have severe consequences in several 
cases, as follows:

• VM Failover [1]: Inaccurate VM boot time prediction 
can result in choosing the wrong hosts to boot the 
VMs, which leads to long VM boot times and con-
sequently, adds more delay to the failover process. 
Delay in the failover process can be very dangerous in 
certain cases where high availability becomes a prior-
ity, such as in time-critical applications [21].

• Cloud Simulation Tools [22]: Inaccurate VM boot 
time prediction can affect the makespan in cloud 
scheduling.

In summary, inaccurate VM boot time prediction can 
have several adverse consequences, such as reducing 
the effectiveness and efficiency of resource manage-
ment, increasing costs, and decreasing the performance 
of cloud platforms. Therefore, organizations should 
invest in more accurate prediction models for VM 
booting times to address these consequences. Despite 
its importance, VM boot time prediction has rarely 
been explored in literature, and only a few studies have 
focused on it [23].

Conventionally, VM boot time is assumed to be con-
stant [24]. VM start-up process generally includes three 
stages: placement of VMs on physical machines, trans-
mission of VM images for booting, and VM booting [24]. 
These stages typically take tens of seconds. However, the 

exact start-up duration can be affected by several factors 
[25–27]. VM boot time is measured as the duration to 
boot a VM on a selected host until the VM is ready for 
execution. While VM boot time is assumed to be con-
stant and often ignored, the booting process consumes 
resources. Therefore, the previous assumption is incor-
rect. VM boot time can be affected by many factors, and 
these factors have been discussed in a study by Nguyen 
et al. [24], who found that co-located VMs could compete 
with CPU and I/O resources, resulting in varying VM 
boot times. Similarly, Nitu et al. [22] pointed out that VM 
boot times can be long and vary depending on the num-
ber of VMs that started.

There are two popular ways to boot VMs: from a VM 
image or a bootable volume [28, 29]. The boot-from-
image approach transfers a VM image from the storage 
host to the compute host. Meanwhile, the boot-from-
volume approach uses a bootable volume, the block stor-
age created from a VM image containing the bootable 
operating system. The volume can be stored in a remote 
shared storage host and does not need to be transferred 
to a compute host. An illustration of the boot-from-vol-
ume approach for shared storage is presented in Fig. 1.

In this study, all VMs in our computer cluster are 
booted from the volumes. The bootable volume is cre-
ated based on a VM image and stored in a shared storage 
host (Fig. 1). Then, these volumes are used to boot a VM 
instance on a compute host. In terms of VM boot time 
prediction, the boot-from-volume approach allows the 

Fig. 1 Boot‑from‑volume approach in a shared storage host
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second stage of the VM start-up process which transfers 
the VM image from the storage host to the compute host, 
to be ignored [24]. Thus, this approach can enhance the 
efficiency of VM boot time prediction by shortening the 
start-up process and directly focusing on measuring VM 
boot time. Moreover, the boot-from-volume approach 
also provides the ability to boot a VM from a remotely 
attached volume and improves the management and 
recovery in a computer cluster [30].

There are two types of VM boot time prediction mod-
els: Nguyen et  al.’s rule-based model [24] and Govin-
daraju et  al.’s Machine Learning (ML)-based model [1]. 
Nguyen et al. [24] identified several factors affecting VM 
boot times, such as I/O throughput and CPU capacity, 
and then proposed a rule-based VM boot time predic-
tion model. They claimed the model can reproduce VM 
boot times under different resource contention. However, 
the model’s major limitation is that it does not consider 
host competition for VM boot time or the number of 
CPU cores. Govindaraju et al. [1] proposed an ML-based 
VM boot time prediction model using a regression tree 
algorithm. Their model uses several features such as VM 
image size, CPU utilization, memory utilization, net-
work utilization, and number of concurrent VM creation 
requests. The proposed model has two limitations. First, 
the model is only used to predict VM start-up time in an 
OpenStack platform and does not provide a factor anal-
ysis of the selected features. Second, the model is only 
used in a small-scale cluster of only four hosts. In sum-
mary, a more accurate VM boot time prediction model 
is necessary to address the limitations of the existing pre-
diction models.

In this study, we aim to find a more accurate VM boot 
time prediction model in a computing platform with 
shared storage. We collected and analyzed experimental 
data to identify the factors that influence the boot time 
of a VM. Then, we built four prediction models: Nguyen 
et  al.’s model [24], a regression tree model inspired by 
Govindaraju et al. [1], a random forest regression model, 
and a linear regression model. Notice that, to the best 
of our knowledge, the random forest regression and lin-
ear regression models have not been used for VM boot 
time prediction in the literature. In addition, we adopted 
the heterogeneous cloud computing architecture in our 
experiments. The heterogeneous architecture has been 
widely implemented [31–33], especially by data centers 
because VMs and hardware heterogeneity could serve 
varied customers [34]. We designed two experiments 
in two computer clusters with four and seven compute 
hosts to evaluate the performance of each model. Our 
experimental results show that the random forest regres-
sion outperformed the other models in both computer 
clusters, regardless of the training dataset size. In the 

second experiment, the model achieved an average accu-
racy of 94.76% and 96.59% in predicting VM boot times 
outside the range of known values, using 75% of the data-
set for training.

This study has two major contributions as follows:

• We discovered that the number of CPU cores, num-
ber of VMs on a host, and concurrent booting of 
VMs on another host can affect the average boot 
time of the host. We found that VM boot time can 
be hard to predict due to the contention among 
physical hosts. This phenomenon only occurs in the 
shared-VM-image-storage environment and has not 
yet been discussed in previous studies. By focusing 
on the previous three factors, we can improve the 
VM boot time prediction accuracy. In addition, we 
released our experimental data for other researchers 
interested in VM boot time prediction.

• We propose to use random forest regression for VM 
boot time prediction. Random forest regression per-
forms well in predicting VM boot times using the 
data within and outside the known dataset range. 
In addition, we have discovered that a small train-
ing dataset is sufficient to build an efficient predic-
tion model with high accuracy. In our experiments, 
the proposed model can achieve the average accuracy 
of 94.76% and 96.59% in predicting VM boot time in 
two clusters with four and seven compute hosts by 
using only 1% case coverage.

The remainder of this paper is organized as follows. 
Related work section introduces the existing approaches 
in VM boot time prediction. VM boot time analysis sec-
tion discusses the experiments designed to identify the 
factors determining the VM boot time. Data collection 
and model building section describes the data collection 
and prediction models’ training. Performance evalua-
tion  section discusses the performance comparison of 
the existing VM boot time prediction models. Finally, 
this study’s conclusion and future research directions are 
presented in Conclusions and future work section.

Related work
This section discusses related research on VM boot time 
predictions. First, we introduce the VM start-up process 
and the factors affecting the VM boot time. Then, we dis-
cuss the existing VM boot time prediction models, which 
can be divided into the rule-based model and the ML-
based model.

Virtual machine start‑up process and the influencing 
factors
VM start-up process generally includes three stages [24]: 
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1. The cloud/cluster scheduler determines an appropri-
ate physical machine to place the VM based on the 
resource requirements and the optimization goals.

2. The VM image is transferred from the storage host 
to the compute host, and a disk for the VM is created 
from the image.

3. The VM is booted on the compute host.

The duration of each start-up stage can be different due 
to the influence of many factors. For example, the dura-
tion of the first stage was typically short. However, sev-
eral factors such as user requests, the distribution of 
available computing resources, and the purpose of the 
scheduling algorithm (for example, to shorten the VM 
boot time, reduce network traffic, or ensure the quality of 
service) can determine the duration of the first stage [24].

VM image size and maximal network bandwidth are 
the main factors affecting the second stage’s duration 
[24]. Researchers usually consider that the duration of 
the second stage accounts for most of the VM start-up 
time. Therefore, various acceleration methods [35, 36] 
have been proposed for this stage. However, the duration 
of this stage may be negligible in certain cases. For exam-
ple, when a user boots a VM from a volume [37] in an 
OpenStack [38] environment, transferring the VM image 
is unnecessary because OpenStack allows users to create 
a bootable volume on shared storage and uses this vol-
ume to boot the VM.

In the third stage, the hypervisor boots the VM on the 
selected host until it is ready for execution. The duration 
of this stage is called the VM boot time [24]. VM boot 
time is essential for the start-up process and cannot be 
ignored. In the literature, many researchers and cloud 
simulation tools, such as CloudSim [39, 40], assume that 
the VM boot time is constant [24]. They assumed that the 
booting process consumes few resources based on the 
assumption that the environment for booting the VM is 
ready, and therefore, the VM boot time can be ignored. 
However, the fact is that the VM boot time is long and 
can be affected by many factors, as pointed out by several 
studies [22, 24].

A study by Nitu et  al. [22] pointed out that the VM 
boot time is very long, and depends on the number of 
VMs that are booting. Moreover, server consolidation 
makes the workload on each host different, making it dif-
ficult to predict the VM boot time accurately. Nguyen 
et  al. [24] confirmed the influence of various factors on 
VM boot time, such as CPU usage, memory usage, net-
work pressure, and I/O throughput. Their experimental 
results found that CPU usage and I/O throughput were 
key factors affecting VM boot time. In summary, VM 
boot time is not constant and can be affected by various 

hardware specifications and configuration factors. Thus, 
regarding their influence, these factors should be consid-
ered in measuring VM boot time.

Research on VM boot time prediction models
VM boot time is different from the actual physical 
machine boot time since in the virtualized environment, 
the physical machines are usually assumed to be ready for 
running a VM at any time. Two types of VM boot time 
prediction models exist in the literature: Nguyen et  al.’s 
rule-based model [24] and Govindaraju et al.’s ML-based 
[1] models. Both prediction models are discussed in the 
following subsections.

Rule‑based prediction models
The rule-based prediction models are built using the 
expertise of researchers to create and maintain rules. 
In a study by Nguyen et  al. [24], they identified several 
primary factors that affect VM boot times, such as I/O 
throughput and CPU capacity. Then, they proposed a 
rule-based VM boot time prediction model based on the 
identified factors. A VM boot time should integrate the 
I/O and CPU dimensions. Therefore, the idea of the pro-
posed model can be written in Eq.  1, then rewritten in 
Eq. 2 as follows:

Each variable of Eqs. (1) and (2) can be described in 
Table 1 as follows:

According to their experimental results, their proposed 
rule-based model can reproduce VM boot time under 
different resource contentions. However, because the 
rule-based model relies on human experts to create and 
maintain rules, these rules may work differently in dif-
ferent configurations. Thus, further experimentation is 
required to validate the accuracy of the proposed model 
for different configurations. However, the major limita-
tion of this study is that it does not consider host com-
petition for VM boot time or the number of CPU cores.

Machine learning (ML)‑based prediction models
The ML-based prediction models were built using ML 
techniques. Govindaraju et  al. [1] proposed a model 
for predicting the average, minimum, and maximum 
VM start-up times using a regression tree algorithm. 
They collected the data for their model in a private 
OpenStack environment with one controller host and 
four compute hosts. They proposed three regression 

(1)boot_time = timeI/O + timeCPU

(2)boot_time =
ex × α

1− x
+

β

1− y
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tree-based prediction models for predicting average, 
minimum, and maximum VM start-up times. The pre-
dictive analysis workflow included (1) dataset prepa-
ration, (2) regression tree model training, (3) doing a 
pruning process, (4) testing the trained model, and (5) 
using the trained model for prediction. According to 
their experimental results, the proposed regression tree 
model achieved an accuracy of 91.51%. The advantage 
of the proposed model is the graphical representation 
that helps to understand the phenomenon modeled. 
However, the model has not been implemented to pre-
dict VM boot time. Moreover, the prediction model did 
not provide a factor analysis of the selected features. 
This study also used a small scale consisting of only four 
hosts.

Several ML-based prediction models, such as linear 
regression and random forest regression, were used in 
the study by Li et al. [41]. In their study, they used two 
ML-based models to predict the workload of a virtual 
machine. According to their experimental results, ran-
dom forest regression has proven to be the best model 
for VM workload prediction. Other ML-based predic-
tion models, such as Support Vector Machine (SVM) 
[42, 43], also have been implemented to predict VM 
workload for VM provisioning. Although the exist-
ing studies have proven that the ML-based method 

provides good prediction performance, these studies 
have not been implemented to predict the VM boot 
time. Thus, there exists an opportunity to observe the 
performance of ML-based models for VM boot time 
prediction.

Summary
In summary, according to studies by Nitu et  al. [22], 
and Nguyen et al. [24], VM boot time is not constant. 
VM boot time can be affected by many factors, such as 
CPU usage, memory usage, network pressure, and I/O 
throughput. There are two prediction models for VM 
boot time prediction, which can be seen in Table 2.

There exist two types of VM boot time prediction 
models: Nguyen et al.’s rule-based [24] and Govindaraju 
et  al.’s ML-based models [1], using a regression tree 
algorithm. The major limitation of Nguyen et al.’s rule-
based model [24] is that it does not consider host com-
petition for VM boot time or the number of CPU cores. 
Meanwhile, the existing ML-based model of Govin-
daraju et  al. [1] has not been implemented to predict 
VM boot time. Moreover, the prediction model did not 
provide a factor analysis of the selected features. This 
study also used a small-scale cluster consisting of only 
four hosts. In summary, a more accurate VM boot time 

Table 1 Attributes of Nguyen et al.’s rule‑based model

Variables Description

boot_time The time from the execution of the VM boot instruction to the completion of the ini‑
tialization of the VM

timeI/O the total time required by a VM to perform I/O operations during the booting process

timeCPU the total time required by the CPU to run boot operations without resource contention

x utilization percentage of the total I I/O throughput

y utilization percentage of the CPU resources

α the total time required by a VM to perform I/O operations during the booting process

β the total time required by the CPU to run boot operations without resource contention

Table 2 Summary of the related work

Attributes VM Boot Time Prediction Models

Rule‑based ML‑based

Prediction Methods Nguyen et al. [24] Regression Tree (Govindaraju et al. [1])

Overview Use the expertise of researchers to create rules based on several 
features, including CPU time and I/O time to build a prediction 
model

Use several features, including VM image size, memory 
utilization, and network utilization to build prediction 
models

Advantages 1) easy to interpret 1) provide higher accuracy

2) fast processing time 2) provide a better understanding of data and features

Limitations 1) does not consider competition between hosts 1) have not been applied for VM boot time prediction

2) does not consider the number of CPU cores 2) only applied for a small‑scale cluster of four hosts

3) does not provide feature analysis
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prediction model is necessary to address the limitations 
of the existing prediction models.

VM boot time analysis
In order to understand the factors that could affect VM 
boot time, we have performed several experiments on a 
cluster consisting of four compute hosts. In this section, 
we first explain the experimental protocol of those exper-
iments and then analyze the following three experiment 
scenarios:

• The impact of the number of host CPU cores on the 
VM boot time.

• The impact of the number of VMs on the VM boot 
time.

• The impact between different hosts.

Experimental protocol
In this study, we used KVM to build a computing envi-
ronment and start the VM from the volume. The KVM-
based environment, such as OpenStack is widely used in 
cloud computing [44]. In addition, since heterogeneous 
cloud computing architecture has been widely imple-
mented [31–33], we adopted the heterogeneous cloud 
computing architecture in this study. In other words, the 
specifications of the hosts used to construct the com-
puting environment, such as the number of CPU cores, 
memory size, and hard disk capacity, are different. The 
architecture of the computing environment is shown in 
Fig.  2, and the specifications of the compute hosts are 
shown in Table 3.

Four compute hosts (Compute 1 to Compute 4) 
are responsible for running VMs, one controller 
host is responsible for managing all hosts and VMs 
in the environment, and one storage host with SSD 

Fig. 2 Computing architecture for the experiments

Table 3 The specifications of each host of the computer cluster

Host role CPU Memory Disks Operation System

Compute 1 Intel i7‑6700 (Quad‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 2 Intel i5‑8500 (Hex‑core) 32 GB 512 GB HDD Ubuntu 16.04 Server

Compute 3 Intel i7‑9700 (Octa‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 4 AMD A6‑3670K (Quad‑core) 32 GB 512 GB HDD Ubuntu 16.04 Server

Controller Intel i7‑6700 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server

Storage Intel i7‑3770 (Quad‑core) 12 GB 1024 GB HDD & 480 GB SSD Ubuntu 16.04 Server
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is responsible for storing VM images and volumes. 
Each host and switch/router are connected by 1 Giga-
bit Ethernet. In addition, we set up all VMs with one 
vCPU and 1 GB of memory and used Ubuntu 16.04 
as the host operating system. In the experiments, we 
did not consider the impact of changes in VM speci-
fications on the VM boot time. An early study [27] 
showed that the capacity of a VM does not affect the 
VM boot time, which means that a VM with one core 
and 1 GB of memory and a VM with four cores and 16 
GB of memory requires the same boot time. We col-
lected VM boot time data from compute hosts 1, 2, 
3, and 4 and analyzed the factors affecting VM boot 
time. Compute 4 is not used here because it is used for 
prediction accuracy in the next section (Performance 
evaluation section). The VM is launched by the libvirt 
API [45] on the specified host, and then booted from 
the volume stored in the storage host.

We use two types of VMs in our experiments: work-
load VMs (wVMs) and experimental VMs (eVMs). 
wVM is a VM that runs stress tests to compete for 
computing resources, especially CPU resources, to 
simulate a running VM in an actual cloud. eVM is a 
VM that is ready to be started and will not perform 
any load after booting, and its boot time is measured 
and analyzed in this study. The VM boot time is the 
time from the execution of the VM boot instruction to 
the completion of the initialization of the Getty service 
[46] in the eVM.

Impact of the number of CPU cores on the host
To understand how the number of physical CPU cores 
affects the VM boot time, we evaluated the following 
three factors in the experiments: (i) the number of eVMs 
(from 1 to 6), (ii) the number of wVMs (from 0 to 12), 
and (iii) the number of CPU cores (quad-core (Compute 
1 and 4), hex-core (Compute 2), and octa-core (Compute 
3)). The experiments included all the combinations of 
the above three factors, and each combination was per-
formed at least 30 times. We run several wVMs on the 
compute host first, then boot several eVMs simultane-
ously. The experimental results are shown in Fig.  3 and 
are available in our git repository [47].

According to our experimental results, we found that 
the VM boot time is affected by the number of physical 
CPU cores. In Fig. 3, the VM boot time values in (b), (c), 
and (d) are almost the same when the total numbers of 
wVMs and eVMs are less than the number of CPU cores. 
However, in Fig.  3, the VM boot time values in (b), (c), 
and (d) become different when the total number of wVM 
and eVM approaches a multiple of the number of CPU 
cores. For example, the VM boot time in Fig. 3b signifi-
cantly increases when the number of wVM changes from 
two to three, and the number of eVM is 1. This is because 
Compute 1 is a host with a quad-core CPU that can sup-
port four VMs.

Similarly, the VM boot time in Fig.  3a increases sig-
nificantly at the same point because Compute 4 is also a 
host with a quad-core CPU. This situation may be related 
to the process scheduling of the host operating system. 

Fig. 3 Average VM boot time in different test cases on Compute 1, 2, 3, and 4 with 1G network
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When the total numbers of wVM and eVM are less than 
the number of CPU cores, the host scheduler tends to 
allocate a separate CPU core to each VM; therefore, there 
is no CPU contention. However, when the total number 
of wVM and eVM approaches the number of CPU cores, 
the host scheduler must determine which process (VM) 
can use the CPU resources. In this case, the VM boot 
time increases significantly due to the CPU contention. 
According to our observations, the growth curve of VM 
boot time has a stair-like shape. Furthermore, as the total 
number of wVM and eVM increases, the VM boot time 
growth trend becomes slower (Fig. 3c and d).

Impact of the number of VMs on the host
In this section, we discuss the impact of factors related 
to the number of VMs, such as network transmission 
delay, number of eVMs, and number of wVMs, on the 
average VM boot time. Because all VM volumes are 
stored in the storage host, and the host needs to access 
the VM volumes to boot up a VM, the booting process 
should inevitably increase the network workload and 
encounter transmission delays. To verify this idea, we 
conducted experiments by changing the network card 
of each host from 1G to 10G. However, due to the lack 
of 10G switches, we use network cables to connect the 
compute and storage hosts to simulate the 10G network 
environment. We then performed the same experiments 
described in Impact of the number of CPU cores on the 
host  section, and the experimental results are shown in 

Fig. 4. Experimental results are available in our git reposi-
tory [47].

Comparing the results in Figs.  3 and 4, we find that 
when the total numbers of wVMs and eVMs on the same 
host are small, the VM boot time remains the same. How-
ever, as the total number of wVM and eVM increases, the 
VM boot time in a 10G network environment is shorter 
than in a 1G network environment. In addition, by 
observing the network traffic when booting an eVM on 
Compute 1 in a 1G network environment, we found that 
the eVM usually transmits a large amount of data in a 
short period, which can easily cause resource contention 
and increase transmission delays. In summary, the trans-
mission delay of the network affects the VM boot time, 
and as the total number of wVMs and eVMs increases, 
the delay becomes more significant.

In addition, in both Figs.  3 and 4, if the number of 
wVMs is fixed, it can be observed that the VM boot 
time increases as the number of eVMs increases. How-
ever, if the number of eVMs is fixed, the VM boot time 
also increases as the number of wVMs increases. This is 
because the resource contention on the host becomes 
more frequent as the number of eVMs or wVMs 
increases.

Impact between hosts
Because all VM volumes are stored in the storage host, 
the average boot time in a host can be affected by the VM 
boot time in another host. Therefore, this experiment 
aimed to measure the impact of VMs (wVMs and eVMs) 

Fig. 4 Average VM boot time in different test cases on Compute 1, 2, 3, and 4 with 10G network
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on other hosts during VM boot time. This experiment 
has two scenarios: First, we run 0 to 5 wVMs on Compute 
3, then boot 1 to 3 eVMs on Compute 1 one minute later, 
and measure the VM boot time. Second, we booted 0 to 
6 eVMs simultaneously on two of the three hosts (Com-
pute 1, Compute 2, and Compute 3) and measured the 
VM boot time on the target host (one of the two). There 
were 18 cases in the first scenario and 252 in the second 

scenario. Each case was performed five times to measure 
the VM boot time. The experimental results of the above 
two scenarios are shown in Figs.  5 and 6, respectively, 
where the unit of VM boot time is seconds.

Figure  5 shows that the wVMs on other hosts do not 
affect the measured VM boot time. This is because wVM 
mainly competes for CPU resources on the compute host 
rather than for resources on the storage host. Figure  6 

Fig. 5 Average boot time (in seconds) of 1 to 3 eVMs on Compute 1 when Compute 3 has 0 to 5 wVMs

Fig. 6 a,d Average boot time of 1 to 6 eVMs on Compute 1 when booting 0 to 6 eVMs on Compute 2 and Compute 3, respectively. b,e Average 
boot time of 1 to 6 eVMs on Compute 2 when booting 0 to 6 eVMs on Compute 1 and Compute 3, respectively. c,f Average boot time of 1 to 6 
eVMs on Compute 3 when booting 0 to 6 eVMs on Compute 1 and Compute 2, respectively
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shows the effect of eVMs on other hosts during VM boot 
time in two situations, as follows:

• Case 1: The average VM boot time could increase 
as the number of the remote eVMs increases, such 
as starting up 4 to 6 eVMs at Compute 1 and 0-6 
eVMs at Compute 2 (the 4, 5, 6 eVMs lines in Fig. 6a). 
This could be because network contention from the 
remote host increases and consequently delays VM 
booting.

• Case 2: As the number of remote eVMs increases, 
the average VM boot time can increase and sud-
denly either stop increasing or decrease at some 
turning point. For example, starting up one eVM at 
Compute 2 and 0-6 eVMs at Compute 1 (the 1 eVM 
line in Fig. 6c) has a turning point of three eVMs at 
Compute 1. We believe that the network contention 
ability of a host does not always increase as the num-
ber of eVMs increases. The number of physical CPU 
cores could limit the contention ability.

Summary
Based on our observations, host capability (workload) 
and maximal network bandwidth are the main factors 
affecting the VM boot time. The number of VMs can 
introduce the workload in a host. Meanwhile, the num-
ber of CPU cores represents the host’s capability to han-
dle the workload. The analysis of the factors affecting the 
average VM boot time can be summarized as follows:

• The Number of CPU Cores on a Host

– There is no CPU competition in a host when the 
total number of VMs is less than the number of 
host CPU cores because each VM can use a sepa-
rate CPU core.

– In a host, the VM boot time of a VM could be 
delayed when the total number of VMs is greater 
than or equal to the number of CPU cores in that 
host.

• The Number of VMs on a Host
– If the maximal network bandwidth is sufficient, the 

VM boot time of a VM becomes shorter, and the 
network competition has less impact on the VM 
boot time.

• The Impact Between Hosts

– In a host, the VM boot time of a VM could be 
delayed due to the influence of network and I/O 
competition from other co-located VMs.

– The average VM boot time could increase as the 
number of remote booting VMs increases. As the 
number of remote booting VMs increases, the aver-
age VM boot time could increase and then sud-
denly either stop increasing or decrease at some 
turning points.

Data collection and model building
This section discusses the data collection and model 
training of the four VM boot time prediction models. The 
prediction models to be used are a rule-based model by 
Nguyen et al. [24] and three ML-based prediction mod-
els: the regression tree model by Govindaraju et  al. [1], 
linear regression model, and random forest regression 
model. Notice that, to the best of our knowledge, random 
forest regression and linear regression models have not 
been used for VM boot time prediction in the literature.

Environment setup
In our experiments, we used two types of VMs, which are 
eVMs and wVMs, as follows:

• eVM: the experimental VM (eVM) is the VM whose 
boot time is the prediction target.

• wVM: the workload VM (wVM) is the VM that emu-
lates the VM running on the environment.

Those VMs used to demonstrate different VM booting 
situations and generate VM boot time datasets to be used 
in this study. The VM boot time prediction steps in this 
study can be described as follows (Fig. 7): 

1. Data Collection and Preprocessing

• Data Collection: VM boot times were collected by 
measuring the time from the execution of the VM 
boot instruction to the completion of the initiali-
zation of the VM. The collected data had several 
attributes based on the identified factors that can 
influence VM boot time prediction, including the 
number of CPU cores on a host, the number of 
booting VMs on a host, and the impact between 
hosts.

• Data Cleansing: This step was performed after 
VM boot times were collected. The data cleans-
ing step consists of cleansing and preprocessing by 
handling outliers, missing values, and inconsisten-
cies.

• Data Splitting: After the collected data were 
cleansed and preprocessed, the datasets were split 
into training and testing datasets. These datasets 
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were used to train and evaluate the ML models, 
including random forest regression.

2. Model Development

• Model Initialization: The random forest regres-
sion model was initialized using the preferred 
machine learning library. We used the “Statistics 
and Machine Learning Toolbox” of MATLAB.

• Model Training: After the random forest regres-
sion model was initialized, we trained the random 
forest regression model using the training datasets. 
At this stage, we also tuned some hyperparam-
eters, including the number of trees, tree depth, 
and minimum samples per leaf. In this study, we 
tuned the number of trees using “ n_estimators ” 
hyperparameter and set its value to 1000.

3. Model Evaluation

• Model Testing: After the training phase was com-
pleted, the prediction models were tested with the 
test dataset.

• Accuracy Measurement: The accuracy was meas-
ured as the percentage of prediction difference 
divided by the actual time. After completing the 
training and testing steps, we measured the accu-
racy of the four prediction models.

• Significance Test: A statistical significance test 
can be performed to measure the significance of 
prediction models’ accuracy values. In this case, 
we can use several methods, such as the Wilcoxon 
test.

Data collection and preprocessing
The data was collected on two clusters, each consisting of 
four and seven hosts, respectively. We measured the time 
from the execution of the VM boot instruction to the 
completion of the initialization of the VM. In addition, 
we did not consider any criteria for selecting a host for 
data collection. The hosts are selected based on each VM 
placement case, and each case is randomly chosen from 
all cases. For the cluster of four hosts, we used Compute 
1, Compute 2, Compute 3, and Compute 4 to collect the 
data and calculate the average VM boot of 1 to 6 eVMs 
on a host (Compute 1 to Compute 4) when there are 0 to 
12 wVMs on that host. For the cluster with seven hosts, 
we used Compute 1 to 7 to collect data.

There are two types of data to be collected as follows: 

1. Single‑Host: the average VM boot time of 1 to 6 
eVMs on a host (Compute 1 to Compute 7) when 
there are 0 to 12 wVMs on the host.

Fig. 7 VM boot time prediction with random forest regression
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2. Multi‑Host: the average VM boot time of the eVMs 
on each host (Compute 1 to Compute 3, and Com-
pute 5 to Compute 7) where each host supposes 0 to 
6 eVMs and when the eVMs are booted concurrently.

In the cluster with four hosts, the first experiment had 
312 cases and the second experiment had 7200 cases, 
with 18 cases in the two experiments being the same. In 
other words, the dataset consists of 7494 cases. In the 
cluster with seven hosts, the single-host dataset had 78 
cases per host, and the multi-host dataset had 823,542 
cases per host. The data collection process required a 
lot of time due to a large number of cases. There were 
823,542 cases, each of which took 3 minutes and 30 
seconds to collect. Because it takes thousands of days 
to collect all of them, it needs too much time and cost. 
Therefore, we used 1% of the overall cases, which is 8,235 
cases. For the 8,235 cases, approximately 28 days were 
required for data collection.

Each record is the average result of each case per-
formed at least five times, and each record consists of 
seven attributes selected based on the summary in VM 
boot time analysis section. The attributes can be seen 
in Table  5. In addition, we performed data cleansing to 
guarantee the accuracy of the data. The data cleansing 
was performed by discovering the cases in which the boot 
time was longer than the median VM boot time. Then, 
we re-measured the boot time on those cases. It is worth 
mentioning, that most of the data are clean. Data cleans-
ing was performed only for data obtained from host fail-
ures and delayed executions of VM boot commands.

Configuration of Nguyen et al.’s model
Nguyen et  al. [24] use Eq. (1) as a rule-based model to 
predict the VM boot time on a host. For each host, Eq. 
(1) coefficients must be measured and calculated. To do 
this, we need the I/O time, denoted by α , and CPU time, 
denoted by β . To calculate the value of α and β , we need 
the I/O throughput percentage, denoted by x, and the 
value of CPU resources utilization percentage, denoted 
by y. The value of y can be obtained from the monitoring 
process. However, the model only considers local storage; 
meanwhile, in this study, we use shared storage. There-
fore, we calculate the value of α and β without the I/O 
throughput percentage, and the value of x is set to 0.

For this model, we use the single-host dataset of four 
hosts, as mentioned in Environment setup section. Using 
x and y, we calculate the coefficients α and β of the model 
for the single-host dataset. The coefficients are presented 
in Table 4. Finally, using the coefficient in Table 2 and the 
environment setup in Environment setup  section, the 
model’s accuracy is calculated.

Training and testing of ML‑based models
This study used three ML-based prediction models: 
the regression tree model proposed by Govindaraju 
et al. [1], the random forest regression model, and the 
linear regression model. The linear regression model 
is implemented with the “sklearn” library of Python. 
Meanwhile, the regression tree model is implemented 
with the well-known “Statistics and Machine Learning 
Toolbox” of MATLAB.

Subsequently, the datasets were split into training 
and test datasets. The three ML-based prediction mod-
els were trained using the same datasets and attributes 
during the training phase. The datasets used were the 
single-host dataset of four hosts, the single-host data-
set of seven hosts, and the multi-host dataset of seven 
hosts. The datasets’ attributes and their descriptions 
are listed in Table 5. These datasets are available in our 
git repository [47].

Although the three ML-based prediction mod-
els were trained using the same datasets and attrib-
utes during the training process, the linear regression 
model did not use the “core” attribute. Meanwhile, we 
used the “ train_test_split ” function of the “sklearn” 
library to split the dataset for the random forest regres-
sion model. We did not normalize or scale the data 
because the random forest regression and regression 
tree are non-parametric methods. In addition, we did 
not perform any transformations of the collected data. 
For the random forest regression, we set the param-
eter n_estimators to 1000 and the random state to 42. 
n_estimators is the number of trees built by the random 
forest regression, and the random_state is the bootstrap 
randomness of the samples used when building trees. 
To observe the relationship between the training data-
set size and model performance, we designed 19 cases 
in which the ratio of the training dataset to the original 
dataset increased every 5% from 5% to 95%.

The time complexity of random forest regression is 
measured in two ways: the overall time complexity for 

Table 4 The I/O time ( α ) and CPU time ( β ) of Nguyen et al.’s 
model

compute Host i αi (sec) β i (sec)

Compute 1 2.82 7.75

Compute 2 3 8.43

Compute 3 2.98 8.28

Compute 4 2.4 8.23

Compute 5 1.56 7.60

Compute 6 1.46 8.02

Compute 7 1.46 7.99
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training a random forest regression tree, and the time 
complexity for prediction. The time complexity is pri-
marily determined by three factors: (1) the number of 
training instances, (2) the number of features, and (3) 
the average depth of the decision tree. The overall time 
complexity for training a random forest regression is 
O(n_estimators ∗m ∗ log(n)) , where n_estimators is the 
number of trees in the forest, m is the number of fea-
tures, and log(n) is the average depth of the decision 
tree. In this study, we set the value of n_estimators to 
1000. Meanwhile, the prediction time complexity is 
O(n_estimators ∗ log(n)) as we apply each new data 
point to all trees in the forest.

After the training phase, the models were tested with 
the test dataset (the remaining data). The accuracy of 
each prediction model is calculated using the following 

Eq. (3). The percentage of the prediction difference is 
divided by the actual time. As an example, the accuracy 
calculation for the random forest regression can be 
seen in Fig. 8.

Figure  8 shows the random forest regression model 
performance (accuracy) in each case, where the ran-
dom forest regression accuracy increased with an 
increase in the training dataset size. When the training 
dataset size was 35% of the original dataset, the model 
accuracy reached 95%. These datasets are available in 
our git repository [47].

(3)

accuracy = (1−
|actual time − pred time|

actual time
) ∗ 100%

Table 5 Attributes of the dataset

Attributes Description

eVM the boot time of the experimental VM (eVM) is the prediction target

wVM the workload VM (wVM) runs a stress test to compete for computing resources

ci,CPU The number of CPU cores available on host i

αi I/O and network latency time spent during the boot process of an eVM when there is no resource contention 
on the selected host i

βi CPU time spent during the boot process of an eVM when there is no resource contention on the selected host i

Qi The number of wVMs on host i

Ri The number of eVMs on host i

ovm The sum of the minimum values of Rj and cj,CPU − 1 for all other hosts j

ovm′ The sum of the maximum values of 0 and Rj − cj,CPU + 1 for all other hosts j

boot_time Average VM boot time on host i

Fig. 8 RF model accuracy for each case, with training dataset sizes ranging from 5% to 95% of the original dataset (in 5% increments)
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Performance evaluation
To verify the scalability and performance of the VM boot 
time prediction models, including a rule-based model 
and three ML-based models, we performed two sets of 
experiments in two clusters of different scales with four 
and seven computing hosts based on the computing 
architecture shown in Fig. 2. The experimental design in 
the two clusters is shown in Figs. 9 and 10, as follows:

For each cluster, we performed two sets of experiments. 
The first experiment, called the single-host experiment, 
aimed to validate the prediction accuracy with known 
training dataset values. In the first experiment, we com-
pared the average accuracy of ML-based models using 
different training dataset sizes. We used the datasets col-
lected as explained in Environment setup  section and 
used 1%, 3%, 5%, 20%, 40%, 60%, and 80% of the dataset 
as the training datasets and the rest as the test datasets, 
respectively.

In the second experiment, the average accuracy of each 
model outside the range of known values was compared. 
In the second experiment, also called the multi-host 

experiment, the prediction target was the VM boot time 
of Compute 4, which was not included in the dataset. By 
removing the host (Compute 4), new data may be availa-
ble on the new machine. Therefore, in the second experi-
ment, we aimed to determine whether the model could 
predict the boot time on Compute 4. Each ML-based 
model was trained by using 75% of the dataset. Mean-
while, for the rule-based model by Nguyen et al. [24], we 
only used the coefficient, as shown in Table 4. All experi-
ments followed the experimental protocol described in 
Experimental protocol section.

Experiments using four compute hosts
In this experiment, we used clusters with four com-
pute hosts (Compute 1, 2, 3, and 4). The dataset used is 
described in Environment setup  section. Additionally, 
the multi-host experiment in this cluster included cases 
with 0-6 eVMs on each other host (Compute 1, 2, and 3) 
and 1-6 eVMs on Compute 4, for a total of 2058 cases. 
The accuracy of each VM boot time prediction model in 
the cluster with four compute hosts is shown in Fig. 11. 

Fig. 9 Experiments in the cluster with four hosts, where Compute 4 is the prediction target for the multi‑host evaluation

Fig. 10 Experiments in the cluster with seven hosts, where Compute 4 is the prediction target for the multi‑host evaluation
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In addition, the actual VM boot times for the cases in the 
multi-host experiment are available in our git repository 
[47].

Figure  11 presents the accuracy comparison among 
ML-based prediction models in the first experiment. 
This shows that the proposed random forest regression 
outperforms the linear regression and regression tree 
models. Random forest regression required only a small 
amount of data (1% of the dataset) to achieve an average 
accuracy of 91.55%. Furthermore, random forest regres-
sion can achieve an average accuracy of 95.32% using 80% 
of the training dataset.

Experiments using seven compute hosts
In this experiment, we added three new compute hosts 
(Compute 5, 6, and 7) to the computing architecture 
described in Experiments using four compute hosts sec-
tion. The specifications of these new hosts are listed in 
Table 6. We limited each host to a maximum of six eVMs. 
In this cluster, we also have two situations for the experi-
ment: single-host and multi-host experiments with the 
settings mentioned in Environment setup section.

Similar to the results shown in Experiments using four 
compute hosts  section (Fig.  11), Fig.  12 shows that the 

random forest regression can still outperform all ML-
based prediction models in the cluster with seven hosts 
regardless of the size of the training dataset. Random for-
est regression can achieve an average accuracy of 95.16% 
and 96.57% using datasets of 1% and 80%, respectively.

Discussion
Experimental results summary
In this study, we performed comparative experiments on 
the performance of four prediction models in clusters of 
four and seven hosts. The experimental results are sum-
marized in Fig. 13 and Table 7.

Table 7 and Fig. 13 show the performance comparison 
of four prediction models in clusters of four and seven 
compute hosts. While the size of the data in a cluster 
grows as the number of hosts increases, our experiment 
results indicate that the number of hosts has a minimal 
impact on the prediction accuracy of random forest 
regression. The proposed random forest regression has 
the highest accuracy in the experiment with two clus-
ters of four and seven compute hosts. The random for-
est regression achieves 94.76% and 96.59% accuracy in 
four and seven host clusters, respectively. The other two 
ML-based models, which are regression tree and linear 

Fig. 11 The average accuracy of ML‑based models on the cluster with four compute hosts. (RF: the proposed random forest regression model, LR: 
the multiple linear regression model, and RT: the regression tree model)

Table 6 The specifications of the new hosts in the second cluster

Host role CPU Memory Disks Operation System

Compute 5 Intel i7‑6700 (Quad‑core) 32 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 6 Intel E3‑1220v6 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server

Compute 7 Intel E3‑1220v6 (Quad‑core) 16 GB 1024 GB HDD Ubuntu 16.04 Server
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Fig. 12 The average accuracy of each ML‑based model in the first experiment on the cluster with seven compute hosts. (RF: the proposed random 
forest regression model, LR: the multiple linear regression model, and RT: the regression tree model)

Fig. 13 Average accuracy comparison of four prediction models on the clusters with four and seven hosts. (RF: the proposed random forest 
regression model, LR: the multiple linear regression model, and RT: the regression tree model)

Table 7 The accuracy of each VM boot time prediction model in clusters with four and seven hosts

Cluster Experiment Accuracy (%)

Rule‑based (Nguyen 
et al.’s)

Random Forest Regression Tree Linear 
Regression

4 Hosts Multi‑Host 48.73 94.76 94.25 87.51

7 Hosts Multi‑Host 37.15 96.59 96.29 87.25
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regression, also perform well in both clusters. The regres-
sion tree is the second best, which achieves 94.25% and 
96.29% accuracy in four and seven clusters, respectively. 
Nguyen et  al.’s model performs well in the single-host 
experiment in both clusters with four and seven hosts. 
However, in the multi-host experiment, the accuracy of 
Nguyen et al.’s model decreased from 48.73% to 37.15%.

The differences in the accuracy of Nguyen et al.’s model 
in single-host and multi-host experiments can be attrib-
uted to the following reasons. First, Nguyen et al.’s model 
uses local storage to store VM images. Therefore, the 
effects of host competition were not considered in the 
model. Meanwhile, different hosts compete for resources 
on shared storage, which affects VM boot time. Second, 
Nguyen et  al.’s model does not consider the number of 
CPU cores of the host. VM boot times are affected if 
the number of processes is equal to the number of CPU 
cores.

Based on the values in Table 7, each model’s range of 
accuracy values is presented in Table 8. Table 8 presents 
the minimum and maximum accuracy values for each 
model. In the cluster with four hosts, the rule-based 
model has the lowest minimum and maximum accu-
racy of 29.85% and 97.50%, respectively. Meanwhile, 
the proposed random forest regression has the highest 
minimum and maximum accuracy of 68.66% and 100%, 
respectively. The regression tree has a similar perfor-
mance to the random forest regression but with a lower 
minimum accuracy of 50.19%. Linear regression has a 
relatively good performance with a slight difference in 
accuracy values compared to the random forest regres-
sion and regression tree. It has the minimum and maxi-
mum accuracy of 49.61% and 99.99%. In the cluster with 
seven hosts, the minimum accuracy of Nguyen et  al.’s 
model decreases from 29.85% to 22.39%. The minimum 
accuracy of linear regression decreases from 49.61% to 
15.61%. Meanwhile, it has similar maximum accuracy 
with regression tree and random forest regression of 
100%.

We have conducted the Wilcoxon test to test whether 
the random forest regression has a significant accuracy 
difference from other prediction models on the four 
and seven-host clusters. This test is commonly used in 
cloud computing research to determine whether there 
is a significant difference between the means of the two 
populations [48–50]. The significance test results are 
presented in Table  9. As seen in Table  9, the p-values 
in the test for the multi-host experiment in the clusters 
with four and seven hosts are <0.05. It indicates a sig-
nificant difference between the proposed random forest 
regression and all other compared algorithms.

Random forest regression outperforms the other pre-
diction models for the following reasons: 

1. First, random forest regression uses an ensemble 
learning method that combines multiple decision 
trees. Its ensembled decision trees decrease over-
fitting by reducing the risk of individual tree bias. 
Moreover, the ensembled decision tree can capture 
complex relationships to provide high accuracy.

2. Second, random forest regression assesses the 
importance of valuable features for feature selec-
tion. This mechanism provides a deeper understand-
ing of the impact of different features and increases 
the ability of random forest regression to handle the 
complex relationship of data.

Table 8 The range of accuracy values for four prediction models

Cluster Data Range Accuracy of Each VM Boot Time Prediction Model (%)

Rule‑based (Nguyen 
et al.’s)

Random Forest Regression 
(RF)

Regression Tree (RT) Linear 
Regression 
(LR)

4 Hosts Min 29.85% 68.66% 50.19% 49.61%

Max 97.50% 100% 100% 99.99%

Avg 48.73% 94.76% 94.25% 87.51%

7 Hosts Min 22.39% 79.69% 76.91% 15.61%

Max 88.08% 100% 100% 100%0

Avg 37.15% 96.59% 96.29% 87.25%

Table 9 P‑values in the Wilcoxon test corresponding to the 
average boot time of different models

Cluster Experiment p‑Values of Each VM Boot Time Prediction 
Model

Rule‑based 
(Nguyen 
et al.’s)

Regression 
Tree

Linear 
Regression

4 Hosts Multi‑Host < 1× 10
−5

1.43× 10
−5 < 1× 10

−5

7 Hosts Multi‑Host < 1× 10
−29

9.06× 10
−29 < 1× 10

−29
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3. Third, random forest regression offers robustness 
over noisy data and outliers, making it suitable for 
real-world datasets that may have imperfections.

Limitations
Despite its superior performance, the proposed random 
forest regression model has several limitations:

• Experiment on a Small‑Scale Cluster: In this study, 
we used a small-scale cluster for the experimental 
environment. Meanwhile, a real-world cloud envi-
ronment typically has a larger scale. Data collection 
in such an environment is more time-consuming and 
difficult. For the seven-host cluster, the data collec-
tion process requires a lot of time due to many VM 
placement cases. In total, there are 823,542 cases, 
each of which takes 3 minutes and 30 seconds to col-
lect, and thus, it takes thousands of days to collect 
all of the data. Therefore, we used 1% of the over-
all cases, which is 8,235 cases. For the 8,235 cases, 
approximately 28 days were required for data collec-
tion. For such case coverage, the proposed random 
forest regression model could still perform well when 
the cluster scale was increased from four to seven 
hosts. However, the case coverage should be vali-
dated to prove its effectiveness in a larger cluster.

• Clean Workload: We use compute hosts with clean 
or low background workloads. We assume that this 
factor can contribute to VM boot time prediction for 
the experiment.

• Impact of Different Cloud Architecture: The ML-
based models must be retrained at different cloud 
architectures. Some features in the proposed model 
may have different weights on prediction accuracy. 
For example, host competition may not be an impor-
tant factor in a cloud architecture that does not use a 
shared storage system for VM booting.

Several strategies can be implemented to address the 
limitations:

• Ensemble Techniques: The ensemble technique 
combines multiple decision trees. Each decision tree 
is trained on a bootstrap subset of the data (bagging) 
and uses a random subset of features for each split 
(feature bagging) to make a prediction. New data will 
be passed through each tree in the forest, and the 
predictions from each tree are combined to produce 
the final prediction with better accuracy.

• Hyperparameters Tuning: The hyperparameters of 
random forest regression can be tuned to improve 
predictive ability and processing speed [51]. The 

number of trees built by the algorithm before taking 
the average of the predictions should be increased 
to increase the predictive ability of random for-
est regression. Then, the bootstrap randomness of 
the samples used to build the tree can be tuned to 
increase prediction speed. However, as the predictive 
ability increases, it consumes more resources and 
slows down the computation. Therefore, these hyper-
parameters should be carefully tuned.

• Data Sampling Technique: To handle a large dataset, 
we can use a small subset of data during model devel-
opment and testing (data sampling). This technique 
can decrease the time required for model training 
[52]. However, the data sample should be ensured 
that it is representative to provide good accuracy.

• Parallel Processing: A large amount of data can 
result in lengthy and difficult model training. One 
of the preferable solutions is to process large data-
sets in parallel across multiple machines. By utilizing 
multiple machines, the processing time speed can be 
increased [53, 54].

• Use More Complex Algorithms: A combination of 
machine learning algorithms [55] or more complex 
prediction models that can handle large datasets 
more effectively may be necessary in certain cases. 
For example, Reinforcement Learning (RL) methods 
or Deep Learning (DL) models, such as Recurrent 
Neural Network (RNN) or Convolutional Neural 
Networks (CNN) [55–58], can be considered for VM 
boot time prediction.

Applicability to real‑world environment
The applicability of random forest regression can be 
described as follows:

• Scalability: Regarding data size, random forest 
regression is a suitable option for predicting VM 
boot time in real-world cloud environments because 
of its scalability for handling both small and large 
datasets. Our experimental results show that random 
forest regression can provide an average accuracy 
of 96.59% using a smaller dataset size using only 1% 
case coverage of 823,542 of the total cases. However, 
it is crucial to maintain efficient case coverage as the 
cluster size increases. Therefore, validating the case 
coverage and performance of random forest regres-
sion in a larger cluster is necessary.

• Computational Overhead: The random forest 
regression ensembles decision trees; therefore, model 
training can be computationally expensive when 
dealing with many decision trees. In our experi-
ments, the training time was still tens of seconds, and 
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the inference time was approximately 1 ms. How-
ever, random forest regression may not be as effi-
cient as rule-based models in terms of inference time, 
because the inference time is only the time to cal-
culate the equation for the rule-based model. If the 
rule-based method can improve its accuracy, it can 
be a better VM boot time prediction solution. How-
ever, its accuracy is too low.

In conclusion, random forest regression is generally 
applicable in a real cloud environment, especially for VM 
boot time prediction. Its scalability, ensemble nature, and 
ability to handle various data types make it a preferable 
model for VM boot time prediction. However, the com-
putational overhead should be considered, especially dur-
ing model training. The training time can be prolonged, 
which leads to high computational costs. Moreover, stor-
ing such a large dataset requires a significant amount of 
memory.

Conclusions and future work
Accurate VM boot time prediction is essential to increase 
the effectiveness and efficiency of resource management, 
decrease costs, and increase the performance of a cloud 
platform. In this study, we analyzed several factors that 
influence VM boot time prediction: the number of CPU 
cores of a host, the number of VMs, and the competition 
between hosts. We used these factors to build a random 
forest regression model for VM boot time prediction. We 
then compared its performance to a rule-based predic-
tion model and two ML-based regression models, linear 
regression and regression tree. We performed two sets 
of experiments in clusters with four and seven hosts. 
According to the experimental results, random forest 
regression outperformed the other prediction models by 
providing an average accuracy of 94.76% and 96.59% in 
four and seven host clusters by using only a small case 
coverage of 1%. Our findings have several practical impli-
cations as follows:

• Using the most important factors to predict VM boot 
time accurately, we can guarantee the resource, cost, 
and energy allocation effectiveness. For example, 
in high availability (HA), an accurate VM boot time 
prediction allows us to choose the least VM boot 
time to evacuate failed VMs on a cluster.

• By providing insight into the performance of differ-
ent models, users can choose the best model for VM 
boot time prediction. Implementing better predic-
tion models can help maintain resource efficiency, 
cost-effectiveness, and overall performance of cloud 
platforms.

The VM boot time can vary significantly depending 
on a specific configuration and environment. Further 
research can address this issue and propose potential 
solutions for improving VM boot time prediction.

• Consideration of Different Prediction Models: 
Reinforcement Learning (RL) methods and popu-
lar Deep Learning (DL) models, such as Recurrent 
Neural Network (RNN) and Convolutional Neural 
Network (CNN), can be considered in VM boot 
time prediction. Currently, these models have been 
implemented for predictions in many cloud-com-
puting-related studies to obtain refined prediction 
models [55–58].

– RL uses agents to make decisions by interacting 
with the environment and then receives feedback 
through rewards or penalties [58]. It has several 
advantages, such as flexibility in decision-making 
in a dynamic and complex environment where 
explicit programming or rules may be challeng-
ing. RL agents are also suitable for tasks where 
optimal strategy may evolve since they learn 
from experience and can adapt to environmental 
change. However, RL can be challenging to set up 
because the accuracy depends on the state, action, 
and gain functions. Moreover, training RL models 
can be more computationally expensive than ML-
based models [58].

– DL is inspired by the structure and function of 
the human brain, and it learns patterns and rep-
resentations using an artificial neural network. DL 
has several advantages, including adaptability and 
performance on large datasets [59]. However, DL 
can be computationally expensive and complex 
during training and inference, making it unsuit-
able for resource-constrained environments or 
real-time requirements. Furthermore, DL typi-
cally requires a large amount of data, and its per-
formance may suffer when the available data is 
limited [59].

• Implementing Different Virtualization Technolo‑
gies and Environments: Different virtualization 
technologies, such as deduplication and boot-from-
snapshots, can be considered in future studies. In 
addition, the arrangement of network components, 
such as switches and routers, is also related to VM 
boot time prediction. Moreover, a larger-scale envi-
ronment could be considered to validate whether the 
proposed approach is scalable. Therefore, exploring 
those aspects of VM boot time prediction can be a 
potential future direction.
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