
Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11
http://www.journalofcloudcomputing.com/content/2/1/11

RESEARCH Open Access

Cloud-Based Code Execution Framework for
scientific problem solving environments
Thomas Ludescher1*, Thomas Feilhauer1 and Peter Brezany2

Abstract

In this paper we present a novel Code Execution Framework that can execute code of different problem solving
environments (PSE), such as MATLAB, R and Octave, in parallel. In many e-Science domains different specialists are
working together and need to share data or even execute calculations using programs created by other persons. Each
specialist may use a different problem solving environment and therefore the collaboration can become quite
difficult. Our framework supports different cloud platforms, such as Amazon Elastic Compute Cloud (EC2) and
Eucalyptus. Therefore it is possible to use hybrid cloud infrastructures, e.g. a private cloud based on Eucalyptus for
general base-level computations using the available local resources and additionally a public Amazon EC2 for peaks
and time-dependent calculations. Our approach is to provide a secure platform that supports multiple problem
solving environments, execute code in parallel with different parameter sets using multiple cores or machines in a
cloud environment, and support researchers in executing code, even if the required problem solving environment is
not installed locally. Additionally, existing parallel resources can easily be utilized for ongoing scientific calculations.
The framework has been validated by and used in our real project addressing large-scale breath analysis research. Its
research-prototype version is available as a PaaS cloud service model. In the future researchers will be able to install
this framework on their own cloud infrastructures.

Introduction
The project we are working on is driven by the
breath research domain [1,2] but can be used for sim-
ilar structured research area as well. In many scien-
tific domains several different specialists (e.g. physician,
mathematicians, chemists, computer scientists, etc.)
are working together and executing long running CPU-
intensive computations.
Figure 1 shows the common workflow of a scientific

study with probands. Proband is a term used most often
in medical fields to denote a particular subject (person
or animal) being studied or reported on. Several different
specialists, such as physician, medical researchers, tech-
nician, chemists and mathematicians could be involved in
a single study. In this example, sample data of a proband
are collected and used for further analysis (e.g. breath

*Correspondence: thomas.ludescher@fhv.at
1Fachhochschule Vorarlberg, University of Applied Sciences,
Hochschulstrasse 1, 6850 Dornbirn, Austria
Full list of author information is available at the end of the article

sample, electrocardiogram data). At step (1), a physi-
cian takes the sample of a proband and collects addi-
tional information (e.g. smoker/non smoker). At step (2),
the chemist measures the sample with several different
sensors; each sensor device type generates its own raw
data format. The chemist mostly uses a problem-solving
environment, such as MATLAB, to pre-process the raw
data (3). The mathematician uses the pre-processed
data to create/adapt/improve/maintain new mathemati-
cal algorithms (4). Depending on the goal of the study,
different mathematical algorithms are performed (e.g.
classification, pattern recognition, clustering, generate
mathematical models). The mathematician must be able
to recalculate the pre-processed data if required, even if
the specific PSE is not installed locally. In our test example
his/her results are the output of one single study.
The proposed Code Execution Framework (CEF) will

support scientists to work together on the same study
during all data preparation and data analysis steps, which
could be executed recursively.
The following list outlines some challenges that we

handle within this effort.

© 2013 Ludescher et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 2 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

study resultDB's

additional data
(e.g. food, proband laboratory values)

1. collect sample

Physician

Chemist Mathematician

Proband

DB's
DB's

Data collection Data preparation and analysis

sensor device RAW
DB

3. pre-process raw data 4. analyze data

4. measure sample

Figure 1 Commonworkflow of a breath study.

• All involved specialists will iteratively improve this
workflow during the development phase. To increase
these iterative steps, each researcher should be able
to use his/her favorite problem solving environment.
At the moment MATLAB [3], Octave [4] and R [5]
are supported. The CEF has been implemented in an
ongoing project with the breath analysis community.
In this domain the researcher mostly uses MATLAB
for pre-processing the data and R or MATLAB for all
further mathematical analysis.

• Different specialists use different PSEs for their
calculations and provide their results to other
scientists for further analysis, probably with another
PSE. For example a chemist uses MATLAB to
prepare the input data of a mass-spectrometry to
identify the required substances and a statistician
uses this data to generate statistical analysis in R.
That means that two different PSEs must work
together within a single study.

• Each scientist must be able to execute different
problem solving environment source files out of
his/her favorite PSE, without having the other PSE
installed. This is especially important for non open
source or free PSEs, such as MATLAB. The CEF
provides a solution to execute MATLAB code
without having MATLAB installed.

• Long running calculations block the computer of the
scientists and in terms of a failure (e.g. no disk space)
the whole calculation may fail. If the scientist uses the
CEF it will manage the failure recovery and invoke
the calculation at a new machine again. Additionally,
the client computer is free for
other uses.

• Nowadays most desktop computers have multiple
cores or even multiple processors. MATLAB already
supports multi-threaded computation for a number
of functions [6]. Some problem solving environments
(e.g. Octave and R) are generally single-thread
applications. However, these PSEs use existing
numeric libraries that can take advantage of parallel
execution. R and Octave provide different toolboxes
to support multiple cores or the scientist must start
the PSE several times for different calculations.
Within the CEF, the user specifies the specific
method that should be executed in the cloud with
different parameter sets in parallel. The results will be
merged together and returned back to the
client.

The goal of the proposed CEF is to support multi-
ple different problem solving environments and to exe-
cute long running CPU-intensive calculations in parallel
in a cloud infrastructure. Depending on the require-
ments of the user, specific calculations must be fin-
ished within a certain amount of time. The system
can be configured to use a local Eucalyptus instal-
lation meeting the demand for base level computa-
tions; if required, Amazon EC2 instances can be con-
nected to speed up (bursting) the calculations (hybrid
cloud). This can have advantages in terms of time and
costs.
The main contributions of this paper include: (a) exe-

cuting PSE code (R, Octave and MATLAB) in parallel in
a cloud platform (preliminary, for Amazon EC2 and Euca-
lytpus), (b) supporting researchers in PSE code execution,

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 3 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

even if the required problem solving environment is not
installed locally, (c) allowing the CEF-clients to use the
research prototype as a Platform as a Service (PaaS) solu-
tion, and (d) in the future, the whole CEF will be offered
for a local installation using an own cloud platform.
The rest of the paper is organized as follows.

Section ‘Background and related work’ gives some
background information about problem solving envi-
ronments, parallel execution services, cloud environ-
ments, and workflow management systems. The usage
of the CEF can be seen in Section ‘Usage of the
Code Execution Framework within different PSEs’. In
Section ‘Code Exe- cution Framework (CEF) con-
cept’ the CEF is specified and all involved compo-
nents are defined. Section ‘Implementation’ describes
the the prototype implementation. Section ‘Performance
tests’ contains the performance results. At the end
the open problems and our future work are described
in Section ‘Open problems and future work’.

Background and related work
Cloud computing [7] provides computation, software,
data access, and storage resources without requiring
cloud users to know the location and other details of
the computing infrastructure. In general, the amount
of data is growing rapidly and the systems process-
ing this data must deal with several data management
challenges. Moshe Rappoport [8] outlines the chal-
lenges as the four V’s: the Volume, Variety, Velocity
and Veracity. This big amount of data must be analyzed
with innovated technologies to discover new knowledge.
The book [9] presents the most up-to-date opportu-
nities and challenges emerging in knowledge discov-
ery in big data, helping readers develop the technical
skills to design and develop data-intensive methods and
processes.
According to the applied deployment model, the cloud

infrastructure can be divided into public clouds, com-
munity clouds, private clouds, and hybrid clouds [10].
The difference between these groups are the location,
owner, payment, and user. Several different cloud plat-
forms exist, such as Amazon Web Service (AWS) [11],
Eucalyptus [12], and so on. Each cloud infrastructure
uses its own storage resources. At AWS it is called
S3 [13], at Eucalyptus they use Walrus. Walrus is an
open source implementation of S3 and provides the
same interface. Different types of service models can
be accessed on a cloud computing platform - the most
favorite types include Infrastructure as a service (IaaS),
Platform as a Service (PaaS) and Software as a Service
(SaaS).
A Problem Solving Environment (PSE) is a specialized

computer application for solving mathematical or statisti-
cal problems, mostly with a graphical user interface [14].

Many scientific research groups use PSEs, such as MAT-
LAB [3], Octave [4] and R [5] for their calculations. For
example, in [15] several different applications ofMATLAB
in science and engineering are shown.
Considering parallel execution services, there are sev-

eral frameworks described in the literature, such as
ParallelR [16], NetWorkSpace for R [17], RevoDeployR
[18], and Elastic-R [19] for executing R code in paral-
lel. There are packages and extensions for MATLAB and
Octave including Parallel-Octave [20], Multicore [21], and
MatlabMPI [22].
There exists already some Web/cloud based tools to

remotely communicate with PSEs. There are two differ-
ent approaches to use MATLAB within the Cloud. The
first approach was developed by MathWorks and uses
concrete licenses (e.g. MATLAB Distributed Comput-
ing Server license). The latter one uses the Component
Runtime (MCR) of MATLAB, which does not require
licenses for each node. The white paper [23] describes the
MathWorks approach in detail. This white paper walks
you through the steps of installation, configuration, and
setting up clustered environments using these licensed
products from MathWorks on Amazon EC2. This license
based approach is very expensive, depending on the num-
ber of nodes. The advantage of using the Parallel Toolbox
is to be able to execute even a for-loop in parallel on
different nodes. It is possible to use Red Cloud [24] as
a Cloud Service (IaaS) to execute MATLAB code with
the MATLAB Distributed Computing Server. With the
MCR-approach it is possible to develop a WebService
without any costs for licenses. In the paper [25] exactly
this approach was addressed within the Grid infrastruc-
ture. As further work, the author mentioned that they
would like to find out how GridMate behaves on Cloud
resources.
With Octave and R, which are developed under the

GNU license, all license problems are solved. There
already exists a possibility to use Octave as a Cloud Ser-
vice [26]. With the R-Cloud workbench [27] it is possible
to execute R code in parallel in a provided cloud infras-
tructure (R-Cloud). For R there are solutions to execute R
in the Amazon EC2 Cloud [28].
The above mentioned parallel or cloud based execu-

tion frameworks have great potential allowing to man-
age parallel/cloud based code execution for a single PSE.
However, the challenge the scientists are facing, e.g. in
our ABA-project [29], is dealing with code of differ-
ent PSEs, sometimes within a single study. Therefore, an
infrastructure is needed that provides services to exe-
cute own PSE code in the cloud independent from the
PSE type or without the need to have a particular PSE
installed. Most existing parallel execution services sup-
port homogeneous parallelization (execute code in par-
allel within one PSE type), while our CEF can be used

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 4 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

in a heterogeneous environment, as well. For exam-
ple, it is possible to execute R code within an Octave
code execution.
Workflow engines, such as Taverna [30], Kepler [31],

ClowdFlows [32], and ADAMS [33], can be used to
orchestrate analysis tasks in a workflow. A user of a
workflow management system is able to define its own
workflows and execute it. A workflow can consist of
data services, calculation services, and other services. Our
system does not directly include any workflow engine.
However, with our CEF it is possible to execute arbitrary
R/Octave and MATLAB code in the cloud. The frame-
work provides a Web service interface that can be used
within a complex workflow to execute PSE code in paral-
lel. We have already implemented a Taverna activity that
is based on these CEFWeb services.
In many domains, personal data (e.g. patient data)

is involved and therefore privacy and security are very
important. The proposed CEF uses a Kerberos based
security concept. In [34] we discussed several challenges
and their solution, including how to (a) use client authen-
tication through all levels of the system, (b) guarantee
secured execution of time consuming cloud based anal-
ysis, and (c) inject security credentials into dynamically
created virtual machine instances.

Usage of the Code Execution Framework within
different PSEs
In this section, we will demonstrate how the CEF can
be used to execute MATLAB or R code in parallel
in the cloud. The corresponding Octave code can be
implemented in a similar way. To illustrate the usage
of the framework, we calculate PI with a Monte-Carlo
method [35] as an example for a compute intensive
job that can easily be parallelized. This example will be
used in Section ‘Performance tests’ for the performance
evaluation.
To execute theMonte-Carlomethod in parallel, we put a

grid over the unit circle (Figure 2) and calculate the num-
ber of points in the circle and the total number. PI can be
calculated with the following formula

� = 4 ·
∑

number_of_points_in_circle
∑

total_number

First of all the provided MATLAB or R Code Execution
Library must be installed. Secondly we must implement
the MATLAB function that should be executed in paral-
lel, as described above. This function uses one array as
parameter with 3 values. The first value contains ymin,
the second value ymax, and the last value is the step size.
The code iterates from ymin to ymax and from 0 to 1
(x-coordinate) with the given step size and calculates the
number of values inside the unit circle (numCircle) and
the total number (numAll).

Figure 2 Area selection of the unit circle.

The ymin and ymax parameters are used to select a spe-
cific area of the unit circle. Figure 3 shows the calcPi code
that calculates the numbers of points inside the unit circle
(numCircle) and the total number (numAll).
Figure 4 shows the codes (MATLAB and R) to (a) gener-

ate the parameter sets, (b) make a connection to the Code
Execution Controller (CEC), (c) execute the calcPi func-
tion, and (d) load the calculated result from the CEC.With
the three parameters of the CodeExecution constructor
you are able to specify whether you would like to execute
the calculation in the cloud or locally (1st parameter), the
domain name and the port of the used CEC, and whether
you would like to use the GUI login or the console login.
During the development phase the scientist is able to test
her/his method at her/his local machine (the required
PSE must be installed). By adopting the first parameter,
the whole code will be executed at the cloud based Code
Execution Infrastructure.
At the executeCalculation method the scientist must

provide the different parameter sets, the method name
that should be executed in parallel, and whether this
method should be blocked (synchronous) until the parallel
execution in the cloud is finished.
To execute PSE code within another PSE (e.g. execute

Octave code within R) the scientist can (a) download an
existing one by using our PSE, (b) download an existing
code by using the Web portal [36], or (c) create a zip file
with the new code and a specific property (codeExecu-
tion.properties) file. The property file must contain the
methodName and the PSE type (e.g. methodName=calcPi,
PSE=R). Figure 5 shows how to download PSE code from
an already executed calculation and execute the existing
code with your favorite PSE and a new parameter set. This
can be done even within a remotely executing calculation
(recursive). All othermethods (described in Section ‘Code

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 5 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

MATLAB code R code

f u n c t i o n [r e s u l t] = c a l cP i (param)
y min = param (1) ;
y max = param (2) ;
s t ep = param (3) ;

numCircle = 0 ;
numAll = 0 ;

% i t e r a t e s from y min to y max
% and from 0 to 1 (x − coo rd i n a t e) with
% the g iven s t ep s i z e
nSteps = round ((y max − y min) / s t ep +1);
f o r y = l i n s p a c e (y min , y max , nSteps)

f o r x = l i n s p a c e (0 , 1 , 1 / s t ep +1)
numAll = numAll+1;
i f ((yˆ2 + x ˆ2) < =1)

numCircle = numCircle +1;
end

end
end

% c r e a t e and r e t u rn r e s u l t
r e s u l t = [numCircle , numAll] ;

end

c a l cP i <− fun c t i o n (y min , y max , s t ep) {

numCircle <− 0
numAll <− 0 ;

i t e r a t e s from y min to y max
and from 0 to 1 (x− coo rd i n a t e) with
the g iven s t ep s i z e
f o r (y in seq (y min , y max , s t ep)) {

f o r (x in seq (0 , 1 , s t ep)) {
numAll <− numAll+1
i f ((yˆ2 + x ˆ2) < =1) {

numCircle <− numCircle+1
}

}
}

c r e a t e and r e t u rn r e s u l t
r e t u rn (

data . frame (
’ numCircle ’ = numCircle ,
’ numAll ’ = numAll

)
)

}

Figure 3 R andMATLAB codes of the calcPi method, that will be executed in parallel.

MATLAB code R code

% max num o f sub − c a l c u l a t i o n s
numCalc = 20

% s tep width
s t ep = 0 . 0 0005 ;

% c r e a t e params (f i r s t quadrant)
tmp = l i n s p a c e (0 , 1 , numCalc+1);
params = [] ;
f o r num = 1 : numCalc

params (num , :) = [
tmp(num)+step ,
tmp(num+1) ,
tmp

] ;
end
params (1 , 1) = 0 ;

% i n i t i a l i z e Code Execut ion Con t r o l l e r
ce = CodeExecution (

t rue , % use CEF
’DNS:PORT’ % URL o f Con t r o l l e r
t r ue % use l o g i n GUI

) ;

% execu te c a l c u l a t i o n
c a l c = ce . e x e cu t eCa l c u l a t i o n (

params , % parameters
’ ca l cP i ’ , % method name
t rue % block c a l c u l a t i o n

) ;

% load r e s u l t s
r e s u l t s = ce . g e tC a l c u l a t i o nRe s u l t s (c a l c) ;

max num o f sub − c a l c u l a t i o n s
numCalc <− 20

s t ep width
s t ep <− 0 .00005

#c r e a t e param (f i r s t quadrant)
tmpArray <− seq (0 , 1 , 1 / numCalc)
params <− rb ind ()
f o r (num in 1 : numCalc) {

params <− rb ind (params ,
c (tmpArray [num]+ step ,

tmpArray [num+1] , s t ep
)

)
}
params [1 , 1] <− 0

i n i t i a l i z e Code Execut ion Con t r o l l e r
ce <− in i tCodeExecu t ion (

TRUE, # use CEF
DNS:PORT” # URL o f Con t r o l l e r
TRUE # use l o g i n GUI

)

execu te c a l c u l a t i o n
c a l c <− exe cu t eCa l c u l a t i o n (

ce , # CE connec t i on
params , # parameters
’ ca l cP i ’ , # method name
TRUE # block c a l c u l a t i o n

)

load r e s u l t s
r e s u l t <− g e tCa l c u l a t i o nRe s u l t s (ce , c a l c)

Figure 4 How the CEF can be used with R andMATLAB codes.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 6 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

MATLAB code R code

% i n i t i a l i z e Code Execut ion Con t r o l l e r
ce = CodeExecution (TRUE, ’DNS:PORT’) ;

% download e x i s t i n g PSE code
ce . loadCa lcu la t ionCode (

1234 , % c a l c u l a t i o n ID
’ code . z ip ’ % output f i l e n ame

)

% i n i t params , as a l r e ady shown
. . .

% execu te c a l c u l a t i o n with z i p f i l e
c a l c = ce . execu teCa lcu la t ionFromZip (

params , % parameters
’ code . z ip ’ , % input f i l e n ame
t rue % block c a l c u l a t i o n

)

% load r e s u l t s , as a l r e ady shown
. . .

i n i t i a l i z e Code Execut ion Con t r o l l e r
ce <− in i tCodeExecu t ion (TRUE, ”DNS:PORT”)

download e x i s t i n g PSE code
loadCa lcu la t ionCode (

ce , # CE connec t i on
1234 , # c a l c u l a t i o n ID
’ code . z ip ’ # output f i l e n ame

)

i n i t params , as a l r e ady shown
. . .

execu te c a l c u l a t i o n with z i p f i l e
c a l c <− execu teCalcu la t ionFromZip (

ce , # CE connec t i on
params , # parameters
’ code . z ip ’ , # inpu t f i l e n ame
TRUE # block c a l c u l a t i o n

)

load r e s u l t s , as a l r e ady shown
. . .

Figure 5 R and MATLAB codes to download already executed calculations and recalculate it.

Execution Framework (CEF) concept’), can be used in the
same way as executeCalculation or getCalculationResults.

Code Execution Framework (CEF) concept
In the following sections, the concept of the CEF will be
described. We start with describing how the CEF access
activation is selected by the specific system parameter
useCEF accepting the values FALSE and TRUE. If the
value useCEF is FALSE, the whole calculation will be
executed in the PSE on the local machine separately.
The scientist is able to use all features of the PSE, such
as debugging, printing, but must wait until the calcula-
tion is completely finished. Without parallel extensions a
PSE uses only one core. Depending on the power of the
computer used, long running calculations can take a while.
If the scientist sets useCEF to TRUE, the CEF will be used.
The Code Execution Controller starts the required
amount of VMs, transmits the calculation to VMs, exe-
cutes the calculations, and generates the combined result.
The administrator of the CEF must define which cloud
platforms (e.g. Amazon EC2, Eucalyptus) are used. For
each cloud platform he/she must set (a) what machines
types should be used (e.g. m1.small, m1.xlarge), (b) how
many instances can be started simultaneously, (c) the
shut down behavior (e.g. shut down immediately after
all waiting calculations are finished or just before the
researcher has to pay for another hour for this idle
machine), and (d) the total available daily/monthly budget
for this cloud platform. The Code Execution Controller
(CEC) is able to call the WorkerNodeStatus Web ser-
vice from each VM to request the number of available
cores, core usage, total and available memory. At the

moment the CEC starts the maximum available amount
of virtual machines if required, the maximum cost bound-
ary is not yet implemented. The CEC stores all started
VMs in a queue. If a calculation is waiting, the first
free VM will be used for this execution. In terms of
security, the worker node (VM) only accepts requests of
the CEC that started the VM. When the calculation at
a worker node is finished or failed, the result and log
information will be sent to the CEC and afterwards all
files from this calculation will be deleted immediately.
In the future, the CEC will send sub-calculations from
one user to a worker node at the same time, even if
multiple cores are available. Therefore it is impossible to
spy out data of other users by executing dangerous PSE
code.
The advantages for the scientists are (a) the result will

be available much faster than running locally, (b) the sci-
entists can use the client computer for other purposes, (c)
the scientist can look up the status of the calculation at the
CEF-Portal, (d) the scientist is able to download the result
to another computer, and (e) the scientist is able to execute
other PSE code, even if the required PSE is not installed
locally.
Figure 6 shows an overview of the whole CEF. It pro-

vides a framework for executing code from different PSEs,
including MATLAB, R, and Octave. The system con-
sists of four main parts. That is (a) the Code Execution
Controller (CEC) Web application, (b) the different client
libraries, (c) the Cloud infrastructure, and (d) the required
Code Execution Framework virtual machine. Compo-
nents depicted in color represent third party libraries that
are being reused.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 7 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Figure 6 Code Execution Framework overview.

Components description
In the section we describe the components in detail.

Code Execution Controller (CEC)
The CEC consists of the Code Execution Java Library,
two different Web service groups (client and worker node
services), and a MySQL database to store all calculations
and sub-calculations. The Java library is at the heart of
the CEF. It provides methods to produce sub-calculations,
start and stop virtual machines, to copy the code to be
executed into S3 (AWS) or Walrus (Eucalyptus), as well
as to monitor running calculations and virtual machines.
The CEF supports parallel code execution on the level
of executing methods in parallel with different parameter
sets.
The client Web services support online execution of

functions, methods, and scripts written in different PSEs
(e.g. MATLAB, R, Octave, etc.). The user of the system
communicates with the client Web services while worker
node services are used only internally. In the following
these two groups of services are described.

• Client services - These services must be invoked by
one of the clients (e.g. Octave, MATLAB, R, Liferay
and Taverna). They include

– Execute Calculation - this service can be used
to start a new calculation. In order to execute
a new calculation, all parameters for
parallelization needed in the code are passed

as comma-separated values to the service. At
the beginning, this service generates parallel
executable sub-calculations (same method
with different parameters). Afterwards the
PSE code will be stored at S3/Walrus to
reduce time and data transfer for parallel
execution. Finally, the sub-calculations will be
transmitted to a free worker node virtual
machine (VM) to be executed.

– Calculation Status - this service allows for the
monitoring of the code execution by
requesting the current status, which can
either be compiling, waiting, running,
finished, or error. The status can be requested
either for the entire calculation or for each
sub-calculation.

– Load Calculation Results - this service loads
the results from either the entire calculation
or from each sub-calculation.

– Load Calculation Logs - this service loads the
logs from sub-calculations. This includes all
output on the console from the used PSE.

– Load Calculation Code - this service can be
used to download already executed code from
the CEC. This code contains the source code
and, in case of MATLAB code, the compiled
code as well. This compressed zip file can be
used as code for additional code executions
with different parameter sets. If the code
contains an already compiled MATLAB code

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 8 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

the execution with the same parameter set
will be faster than without the compiled code.
The CEC recognizes the compiled code and
skips the compilation step, depending on the
amount of code this can last from some
seconds up to a couple of minutes.

– Load All Available Calculations - this service
returns all accessible calculations of the
authenticated user. The Code Execution
Liferay [37] portlet uses this method to show
an overview on the calculations.

• Worker Node services - These services will be
invoked by the worker node VM. They include

– Calculation Finished - this service informs
about successfully finished sub-calculations
and receives the calculation results and logs
from the VM.

– Calculation Finished with Failure - in case the
calculation finished with errors, then this
service receives the calculation logs from the
VM.

Supported clients
The CEF will be easily accessible from different clients.
Each user is able to communicate with the CEF from
within R/Octave/MATLAB, the workflow engine Tav-
erna, or even from the Web without needing to install
any specific environment. To support Taverna we imple-
mented a Taverna activity, that is able to use the
Web services of the CEF. We provide several differ-
ent R/Octave/Matlab code examples (e.g. PI calculation,
recursive CEF invocation, download code and re-execute
the downloaded code). All Web services described above
can be used with these client libraries, and have been
tested on Windows, Linux, and OS X. Additionally, a
researcher is able to start new calculations or monitor
running calculations within ourWeb portal (Liferay). Each
client/toolbox communicates with the client CEC Web
services.

Cloud infrastructure
The CEF uses the EC2 API to communicate with the
cloud infrastructure. The controller needs to start/stop
instances on the cloud and store data within the data stor-
age (Walrus/S3). All these steps can be donewith theAWS
SDK for Java and the Jets3t library.

Code Execution Framework virtualmachine
We provide a specific worker node virtual machine (Ama-
zon EC2 and Eucalyptus) for the execution of the different
PSE code. On this VM all three PSEs (R, Octave,MATLAB

Component Runtime) are installed and a Tomcat applica-
tion server is running, hosting Code Execution Services of
the CEF.
The worker node Web application provides several dif-

ferent Web services for the CEC. They include:

• Execute Calculation - this service can be used to start
a new calculation at the specific worker node. In
order to execute a new calculation all parameters
needed in the code are passed as comma-separated
values to the service. The worker node downloads the
required PSE code from the Walrus/S3. All
information or error outputs will be stored in files
during the whole calculation. After the calculation is
finished or failed the result and log information will
be sent back to the CEC and all files will be deleted.

• Worker Node status - this service returns
information about the worker node, such as total and
used memory, number of available cores, used cores,
etc. The worker node uses the SIGAR (System
Information Gatherer And Reporter) Java library to
request the required values from the machine.

• Load Calculation status - this service returns
information about one specific sub-calculation, such
as used memory, used CPU, etc.

• Load Calculation Logs - this service returns the log of
a running calculation.

Execution sketches
In this section we walk through a complete execution
sketch.
Figure 7 shows more details of the whole calculation

process. The arrows show the direction of the
communication between the involved systems. At the
moment, the CEF can exchange CSV data. To be more
generically usable in the future, we are planning to
support HDF5 [38] as well. The whole code execution
workflow can be started within a supported PSE, Tav-
erna or the Web. Each client has to prepare the code
and parameter data. At the first step the client converts
the parameter set (e.g. in MATLAB cells or arrays) to a
CSV string and zips the required code files (step 1). The
maximum number of parallel executable sub-calculations
is the number of rows of the parameter set. At the
moment, the CEC starts one sub-calculation per row on
idle VMs. In the future, the CEC is able to execute several
sub-calculations with one Web service invocation at one
worker node VM to reduce the transfer and Web service
overhead. The number of starting VMs depends on (a) the
number of available worker nodes, and (b) the duration
of one single sub-calculation. The zip file contains the
PSE code and a text file (java properties file) that includes
information about the PSE used, compilation status,
function name, and their input/output parameters. After

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 9 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Code Execution
Controller

Walrus/S3

Cloud
Controller

Worker Nodes

Client

2. execute calculation

3. prepare calculations
4. start V

Ms

5. start VMs
6. store data

7. execute sub-calculation

8. request data
9. execute code

10. send result

1. prepare data

11. load calculation
results

Figure 7 PSE-code calculation execution sketch.

the data preparation the client invokes the executeCal-
culation Web service at the CEC (step 2). The Code
Execution Controller (a) stores the received data on the
disk, (b) compiles the MATLAB source code, if required
(for further information have a look at Section ‘MAT-
LAB Component Runtime approach’), (c) generates the
sub-calculations, (d) adds all sub-calculations to the cal-
culation queue (step 3), and (e) starts additional Code
Execution VMs, if required (step 4, step 5). A specific
thread processes the calculation queue. For each calcu-
lation the code will be sent once to the Walrus or S3,
depending on the cloud infrastructure used (step 6).
This reduces the amount of transmitted data and the
required time and costs. Afterwards the sub-calculation
will be executed at an idle Code Execution VM(step 7).
The worker node (a) requests the Code from Walrus/S3
(step 8), (b) executes the code in the shell (step 9), (c)
generates the result CSV, (d) sends the result back to the
CEC (step 10), and (e) deletes all generated files. Step
(e) is important to keep a minimal amount of free disk
space, otherwise we have to start a new instance if the
Worker Node has not enough free disk space for further
calculations. Additionally this must be done because of
security reasons. At the end of the execution, the CEC
checks the received data and updates the status informa-
tion of the calculation. The researcher is able to request
the status of the calculation (e.g., running, finished) and
the results. Therefore the client invokes the loadCalcula-
tionResult Web service method with the id to download
the result (step 11). The CEC (a) authorizes the user,
(b) checks if the calculation is finished, and (c) gener-
ates the result CSV. At the end, the client converts the

received CSV result set to the internal data structure of
the corresponding PSE.

MATLAB Component Runtime approach
The MATLAB Component Runtime (MCR) enables a
cloud node to execute compiled MATLABmethods with-
out the need of any costly MATLAB license. In [39]
MathWorks writes “All deployed components and appli-
cations can be distributed free of charge. The deployment
products support the MATLAB language, most MATLAB
toolboxes, and user-developed GUIs.” In order to use the
MCR, the MATLAB method needs to be compiled into
a standalone application, which can then run without
the MATLAB interpreter. The following text segment is
taken from the MATLAB Compile toolbox documenta-
tion, showing clearly the drawback of this approach: “...
the components generated by theMATLABCompiler prod-
uct cannot be moved from platform to platform as is.” In
order to deploy a MATLAB method to a machine with
an operating system different from the machine used to
develop the method, it is necessary to rebuild the program
on the desired targeted platform. To solve this problem
we generated and deployed aMATLAB compilerWeb ser-
vice on another machine with the same operating system
as our worker node VM (Ubuntu 11.04). For this com-
pile service we need a MATLAB license with all required
toolboxes and additionally the MATLAB compiler tool-
box. The administrator of the MATLAB compiler Web
servicemust determinewhich toolboxesmust be installed.
If, nevertheless, a user would like to use a MATLAB tool-
box, that is not installed, the compile step (first step) will
fail and a corresponding error will be reported to the user.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 10 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

At our online test installation no additional toolboxes are
installed. With this step, every user of the CEF is able to
execute MATLAB source files without having to buy a
MATLAB license.

MathWorks products license example
To calculate the license cost with and without CEF,
the following six assumptions are made: (1) the com-
pany is allowed to use the academic price list (2013);
(2) five researchers of the company are using Matlab at
their computers (individual licenses); (3) all researchers
must have all six Computational Finance toolboxes
(financial toolbox, econometrics toolbox, datafeed tool-
box, database toolbox, spreadsheet Link EX, and finan-
cial instruments toolbox); (4) the license for MATLAB
itself costs e 500 (single named user or single com-
puter); (5) all Computational Finance toolboxes cost
e 200 each; (6) the MATLAB Compiler toolbox costs e
500.
With these assumptions without CEF the total license

costs are e 8500 (for each user the MATLAB license costs
and additionally all six Computational Finance toolboxes).
In the best case with CEF the total license costs aree 2200
(one MATLAB license costs for a single machine, all six
Computational Finance toolboxes, and additionally the
MATLABCompiler toolbox). You must take into account,
that without having a valid MATLAB license for each user
the development process is more complicating (e.g. no
debugging, no GUI, no auto completion).

Implementation
In this section, detailed information about the implemen-
tation is given. Each component provides different Web
services as described in Section ‘Code Execution Frame-
work (CEF) concept’. All Web services are implemented

with CXF [40]. The data (PSE source code and CSV
parameters) are streamedwithMTOM[41]. In our project
personal related data is involved and we must implement
a fitting security concept. The whole CEF is implemented
with a Kerberos based security concept which has been
described earlier by us in [34].
Figure 8 gives an overview on our prototype. The figure

depicts all involved components. Server 1 (S1, Ubuntu
11.04) is connected to the Internet with a public IP
address, located at the university of applied sciences in
Dornbirn; this is necessary to be able to use the system
outside of the private institute network. This machine
is used for several different services. The Key Distribu-
tion Center (KDC) and the DNS-Service are used for our
Kerberos based security framework. The CEC manages
and monitors all calculations. The Web-Portal (Liferay)
can be used to monitor calculations without having any
PSE installed. Server 2 (S2, Ubuntu 11.04) has a MAT-
LAB with the Compiler toolbox installed. Additionally
the own-implemented Web Service to compile MAT-
LAB code is running in the Tomcat on this machine. As
Cloud infrastructure, we tested our own Eucalyptus (2.0)
and Amazon EC2. Theoretically, all other EC2 compat-
ible cloud infrastructures should work with our system,
however we have not tested it so far. Most likely, the
VM image must be created for each cloud infrastruc-
ture separately. There exist discrepancies how the assign-
ment of internal IP addresses of the VM must be done.
At the moment, we provide an image for Amazon EC2
and Eucalyptus. All different cloud infrastructures can
be combined to a hybrid system. This can have advan-
tages in terms of speed and costs. The Code Execution
Framework can be used in several different ways. The sci-
entist at the client side has to use one of the provided
interfaces.

Figure 8 Deployment diagram of the prototypical implementation.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 11 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

The VM (Ubuntu 11.04) that is used to execute jobs
from the CEC contains:

• Startup Tool - This tool will be executed after
booting the VM. It (a) requests the required security
information from the CEC, (b) downloads a zip file
from the storage controller that contains additional
files and scripts, (c) downloads the Web application
for the Worker Node from the storage control, and
(d) starts the Web application within the Tomcat
(7.0) application server. Step (b) is used to be able to
change the VM (e.g., install libraries, execute shell
scripts, etc.) without creating a new VM. We use this
feature during our framework development phase.

• Worker Node Web Services - This Web application
only accepts requests from the corresponding CEC
and manages and monitors all running calculations.

• PSEs - To be able to execute R and Octave code,
these libraries with all required toolboxes must be
installed. To execute compiled MATLAB code, the
VM needs to have the MATLAB Compiler Runtime
(MCR) installed.

At the moment, it is possible to test the CEF with your
Web portal [36], the R-Client. You are allowed to use our
test CEF infrastructure with two worker nodes to execute
R, Octave, or already compiled MATLAB code. For more
information have a look to the Online-Demo page at our
Web portal.

Performance tests
The Code Execution VM is provided for both, AWS
and Eucalyptus Cloud platforms. The key performance
characteristics are compute, memory, I/O bound. At the
moment, the breath analysis community uses mostly
CPU intensive calculations and we decided to eval-
uate the overhead for these criteria. Therefore most
relevant performance measures for our application are
number of CPUs, size of memory, and data transfer
rates (while using a hybrid infrastructure). Therefore we
have defined performance evaluations based on these
criteria.
The results of the evaluation represent important infor-

mation aiming to predict the overhead of different infras-
tructures, which is required to generate the best possible
execution plan if multiple cloud platforms are available. To
predict the required execution time, we need to execute at
least one sub-calculation.
During the following performance tests we found sev-

eral important results:

• The execution time for our test calculation mainly
depends on the cloud infrastructure used and the
problem solving environment used.

• MATLAB is the fastest PSE for executing our time
consuming PI calculation, even if we need to compile
the PSE code.

• The boot procedure of a VM depends not only on the
used virtual machine type: The VMmust be
transmitted from the S3/Walrus to the host node, if it
is not already in the cache.

• The transfer speed between CEC and VM cannot be
neglected, especially if the internet connection is
slower and large data sets must be
transmitted (e.g., input data, code, parameter).

In the following paragraphs we provide the detailed
results of our performance tests.
In order to evaluate the first prototype of our Code

Execution Services, we have conducted three different
experiments. In the first experiment we tested the exe-
cution time with CPU intensive MATLAB, Octave, and
R examples in order to measure the VM overhead and
the performance of the whole framework; in the second
test we tried to retrieve the rate for the data transfer,
and in the last experiment we measured the boot time
of the Code Execution VM. A small Eucalyptus private
cloud has been installed at our lab at the University of
Applied Sciences.
We have implemented Monte-Carlo methods [35] cal-

culating PI in MATLAB, R, and Octave as shown in
Section ‘Usage of the Code Execution Framework within
different PSEs’. This PI calculation is CPU intensive and
can easily be parallelized. Calculating PI is one of the
major cloud (MapReduce) evaluation use cases [42,43].
The calculations were executed in different code exe-
cution scenarios: (a) local (1 thread), (b) on a private
Eucalyptus cloud, (c) on Amazon Elastic Compute Cloud
(EC2), and (d) on a hybrid cloud (Eucalyptus and Amazon
Elastic Compute Cloud). All tests have been executed 50
times and the results are arranged in the following tables
showing the arithmetic means and standard deviation of
the measured values.

Evaluation of the VM overhead
To measure the virtual machine overhead we tested the
same calculation at (a) Intel core i7 16 GB RAM, Ubuntu
11.04 locally (not in a VM), (b) two different Eucalyptus
machines (m1.small = 1GB RAM,m1.xlarge = 2GBRAM,
worker node has an I7 CPU and 16 GB RAM), Ubuntu
11.04, and (c) two different Amazon EC2 machines
(m1.large, c1.xlarge), Ubuntu 11.04. The PI example is
CPU intensive and does not need much data or RAM,
therefore it depends mainly on the processor used. Table 1
shows the results of the R, Octave, and MATLAB tests.
All MATLAB tests have used already compiled MAT-
LAB code. For the same calculation, MATLAB (269.6 s)
needs less than half the time required by R (794.7 s)

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 12 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Table 1 Evaluation of the VM overhead

Cores R Octave MATLAB

Local (16GB RAM, I7) 1 794.7 s± 9.7 868.1 s± 15.2 269.6 s± 1.8

Direct Eucalyptus (m1.small) 1 808.4 s± 9.6 852.4 s± 1.6 270.8 s± 2.2

Direct Eucalyptus (m1.xlarge) 1 788.1 s± 3.0 851.7 s± 1.4 257.4 s± 2.7

Direct EC2 (m1.large) 1 2099.9 s± 22.6 2171.0 s± 7.5 710.7 s± 0.9

Direct EC2 (c1.xlarge) 1 1562.1 s± 6.7 1612.9 s± 3.3 537.5 s± 0.8

The values are given as mean± standard deviation.

or Octave (868.1 s). This should be taken into account for
choosing the appropriate PSE for a specific calculation.
The overhead of the local machine (i7) and the Euca-

lyptus VM (m1.small) is minimal (for R about 1.5%, for
MATLAB about 0.5%). Therefore the VM overhead can
be ignored for our further performance analysis. It is
interesting to see that the Amazon calculation (m1.large)
takes up to 2.6 times longer than the Eucalyptus or even
the local execution (compute intensive and non-memory
bound). To verify this overhead we decided to use another
CPU intensive test example as shown in [44]. For this
test we used the command time for i in 0..10000; do for
j in 0..1000; do :; done; done in the terminal. At the local
machine, the execution takes 19 seconds, in EC2 with the
m1.large 47 sec and with c1.xlarge 37 seconds. With this
test, the EC2 (m1.large) takes about 2.5 times longer than
the local execution, which means approximately the same
performance overhead as with the CEF. In [45] Amazon
describes EC2 compute units: “In order to make it easy
for developers to directly compare CPU capacity between
different instance types, we have defined an Amazon EC2
Compute Unit. The amount of CPU that is allocated to
a particular instance is expressed in terms of these EC2
Compute Units. We use several benchmarks and tests to
manage the consistency and predictability of the perfor-
mance of an EC2 Compute Unit. One EC2 Compute Unit
provides the equivalent CPU capacity of a 1.0–1.2 GHz
2007 Opteron or 2007 Xeon processor.” That is the reason
why it is not possible to compare one EC2 instance with a
local machine with a specific CPU.

Table 2 R performance evaluation

Cores Seconds Speed-up

3× Eucalyptus (m1.small) 3 301.1 s± 3.2 2.64

2× Eucalyptus (m1.xlarge) 4 242.8 s± 5.3 3.27

3× AWS (m1.large) 6 342.2 s± 4.7 2.32

1× AWS (c1.xlarge) 8 285.3 s± 4.6 2.79

2× Eucalyptus (m1.xlarge) 12 140.5 s± 15.8 5.66

and 1× AWS (c1.xlarge)

The values are given as mean± standard deviation.

Code Execution Framework performance analysis
Table 2 shows the R performance evaluation, Table 3 the
Octave performance evaluation, and Table 4 the MAT-
LAB performance evaluation. In the last column we show
the speed-up of the CEF execution in comparison to the
local usage. With R and Octave, the theoretically opti-
mal values can almost be reached. With three Eucalyptus
VMs (3x m1.small - 3 cores), the theoretical speed-up
is 3, while our measured values are 2.64 (R) and 2.71
(Octave). The overhead of the CEF, including the nec-
essary data transfer, is therefore approx. 10%. With two
Eucalytpus VMs (2x m1.xlarge - 4 cores), the speed-up is
3.27 (R) and 3.37 (Octave). At Amazon Elastic Compute
Cloud, the speed-up of the CEF execution in compari-
son to the local usage is not able to reach the theoretical
value (e.g. 2.32 instead of 6). You must take in account,
that, for example, using R, the single execution in EC2
(m1.large: 2099.9 s) takes much longer than the local
one (794.7 s).
The reasons why we could never reach exactly the theo-

retically optimal value are (a) different CPU types in EC2
and AWS, (b) overhead for splitting calculations into sub-
calculations, (c) overhead for distributing sub-calculations
to free worker nodes, (d) overhead for converting the
transmitted CSV-parameters to internal data structures
of the used PSE, (e) data transfer time for the parameter
and the code, and (f) number of sub-calculations cannot
be divided by the number of cores without there being
a remainder of tasks. Issue (f) is especially important for
tests with several cores (e.g. 6, 8, or 12).

Table 3 Octave performance evaluation

Cores Seconds Speed-up

3× Eucalyptus (m1.small) 3 320.2 s± 4.1 2.71

2× Eucalyptus (m1.xlarge) 4 257.6 s± 9.6 3.37

3× AWS (m1.large) 6 449.7 s± 6.5 1.93

1× AWS (c1.xlarge) 8 265.0 s± 3.0 3.28

2× Eucalyptus (m1.xlarge) 12 177.1 s± 2.0 4.90

and 1× AWS (c1.xlarge)

The values are given as mean± standard deviation.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 13 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Table 4 MATLAB performance evaluation

Cores Seconds Speed-up

3× Eucalyptus (m1.small) 3 144.3 s± 3.1 1.87

2× Eucalyptus (m1.xlarge) 4 124.1 s± 4.8 2.17

3× AWS (m1.large) 6 168.4 s± 4.8 1.60

1× AWS (c1.xlarge) 8 131.8 s± 5.5 2.05

2× Eucalyptus (m1.xlarge) 12 74.0 s± 4.5 3.64

and 1× AWS (c1.xlarge)

The values are given as mean± standard deviation.

Table 4 shows the measured results of the execution of
the compiled MATLAB code. By increasing the number
of cores, the calculation time is reduced, but the theoret-
ical speed-up value cannot be reached (e.g. 1.87 instead
of 3). The reason for this is that the worker node needs a
certain amount of time to start the MATLAB Component
Runtime Environment (MCR). To reduce the MCR over-
head and the Web service, overhead each sub-calculation
should be a long running calculation. If a sub-calculation
is completed fast enough, it is possible to send multiple
sub-calculations within one Web service call.
The compilation of our test MATLAB code takes in

average 39.1 seconds. This contains (a) the Web service
invocation, (b) transfer of source code to the MATLAB
compiler Web service, (c) compilation of the source code,
and (e) transfer of the compiled code back to the CEC.
These approx. 40 seconds must be taken into account
if we need to compile the MATLAB code. Additionally
we tested the same code execution within the MATLAB
environment (304.3 seconds) and as a Compiled MAT-
LAB Code with the MCR (293.3 seconds). In our case
the improvement while using the MCR is eleven sec-
onds (almost 4% of the complete time). Depending on the
calculation, this could be an important speed-up.
When using Amazon EC2, the type of VM (m1.large

or c1.xlarge) is very important. It is most likely that
the c1.xlarge instance ($0.744 per hour) is the better
choice than a corresponding amount of m1.large instances
($0.360 per hour). For example: One VM of type c1.xlarge
(eight cores) costs in total $0.744 per hour. The execu-
tion of the test example with R takes 285.3 seconds. If you
are using three machines of type m1.large (sum 6 cores)
instead, the total costs are higher ($1.08 per hour) but the
same R code execution takes longer (342.2 seconds). At all
other PSE types (Octave and MATLAB) you can see the
same result.

Evaluation of transfer constants
Additionally, we have conducted some data transfer tests
which are important to consider with the Code Execu-
tion Services presented in this paper. The different data
transfer rates must be taken into account while choosing

a cloud infrastructure (Eucalyptus or EC2) for execu-
tion or predicting the calculation time. The data transfer
rate evaluation consists of (a) client to CEC, (b) CEC to
Walrus/S3, and (c) Walrus/S3 to worker node VM. We
implemented a tool that evaluates all different transfer
rates of the involved components ten times with multi-
ple different file sizes (10 MB up to 1 GB) and calculate
the mean value. The transfer rate from the client to the
CEC does not have any influence on the CEC and there-
fore will not be further investigated. The only influence
between the client and the CEC is the Internet connection
of these two participants. The transfer rate from the CEC
to our localWalrus is about 10.5MB/s, independent of the
file size. The transfer rate from our institute to Amazon
S3 (Ireland) varied from 4 MB/s to 10 MB/s. The transfer
rate from our local Walrus to the Worker Node VM var-
ied from 10 MB/s to 60 MB/s. The transfer speed from
Amazon S3 to the EC2 Worker Node VM is maximal 40
MB/s. For test purposes we installed the CEC at a place
with a slower Internet connection (approx. 4 Mbit/s). In
this case the transfer rate from the CEC to the Amazon
S3 was much lower (250 KB/s) than within our institute.
Especially for places with a slower Internet connection the
transfer speed must be considered.
In our model for predicting the calculation we must

consider the transfer rate of the different cloud infrastruc-
tures and locations. The transfer rates depend mostly on
the Internet connection of the CEC and from the con-
nection between the controller and the different cloud
infrastructures (e.g., Amazon EC2, Eucalyptus).

Booting time
For this performance evaluation it is important to know
that the VM-images are already in the cache of the host
system. Eucalyptus and EC2 need approx. 20 seconds to
copy the image (8 GB) from the cache to the tempo-
rary directory. The boot-time depends on the number
of cores of the VM and takes between 45 and 55 sec-
onds. These numbers must be considered when new
instances must be started. If the host system does not
have the required VM in the cache, it takes more than
2 minutes to copy the image from Walrus/S3/EBS to
the host system. For development reasons we added the
possibility to inject code (download from Walrus/S3) to
be able to change the VM without generating a new
instance. At the moment we installed (a) all R and Octave
Code Execution Client libraries, and (b) the worker
node Web application. Depending on this overhead, the
boot time can increase several seconds. Tomcat needs
from a minimal of about 50 seconds up to a maxi-
mum of 450 seconds for the whole startup process. At
the moment we are not sure where this time difference
results from. This will be investigated as part of our
ongoing work.

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 14 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Open problems and future work
At the moment the CEF supports only parameters spec-
ified in the CSV format. Because of that constraint
only CSV compatible data structures can be transmitted
between the CEC and the worker nodes. We plan to sup-
port HDF5 [38] for parameter exchange in the future, as
well. It is very important to enable transfer of all differ-
ent kinds of parameters. Load balancing is another feature
which is not yet implemented. We currently simply start
one calculation at each available core. In the future we
will use CPU- and RAM-usage to enable monitoring vir-
tual machines and start additional calculations if possible.
Additionally, it is possible to reduce the transfer or Web
service overhead by sending multiple sub-calculations to
a worker node VM, depending on the available VMs or
the execution time of a single sub-calculation. We plan
to use this information to generate an execution plan
that matches the required boundary conditions (e.g. costs,
time) as good as possible. To be able to use the CEF
with different prioritized users, we need to add a prior-
ity to each calculation/user. The administrator must be
able to set a maximum boundary for the costs. This is
very important, especially for Amazon usage (VM per
hour, data transfer, etc.). In the future we will test the CEF
not only with CPU-intensive calculations, but also with a
data-intensive calculation.

Conclusions
In this paper we have presented a novel Code Execution
Framework (CEF) that is able to execute problem solv-
ing environment (PSE) source code in parallel, using a
cloud infrastructure. With this framework the scientists
are enabled to use different client applications to commu-
nicate with our system, (a) out of his/her problem solving
environment, (b) Taverna workflow engine, and (c) from
our Liferay Web portal. In the future we will implement
different other clients (e.g. Galaxy Project), depending on
the requests of the CEF users. Additionally, the scien-
tist is able to execute different PSE source code without
having the required PSE installed locally. This can be
very important for closed source PSEs (e.g., MATLAB) to
reduce the license costs. Depending on the cloud infras-
tructure used, the Code Execution Framework influences
the total cost of ownership [46] (e.g., maintenance and
ownership costs), as well. When using a self-owned cloud
infrastructure, the hardware, maintenance and the energy
costs are increasing, whereas when using Amazon Elastic
Compute Cloud (EC2), the machines used must be paid
per hour. The whole discussed design concept has been
implemented in our first prototype. We implemented the
framework for the breath analysis domain, however the
system is independent of the underlying scientific field
and thus can be used for different domains without any
adoptions.

The performance test shows the time improvements
while executing a CPU-intensive mathematical calcula-
tion. The transfer overheadmainly depends on the infras-
tructure used (e.g., local Eucalyptus or Amazon EC2),
the processing speed depends on the VM-type used (e.g.,
CPU and available memory). If a given calculation can
be parallelized by invoking the same method with dif-
ferent parameter sets, the provided easy to use Code
Execution Framework will reduce the total execution time
rapidly.
As the next step we will define and implement algo-

rithms to predict the required execution time and
to generate the best possible execution plan that ful-
fills the required conditions (e.g. costs, time). In addi-
tion to that we will continue our efforts to inte-
grate our system in a workflow environment that can
be extended to support our Kerberos based security
concept.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TL, TF and PB have all contributed to the Code Execution Framework concept.
They designed the paper structure and gave their feedbacks to all its versions.
TL has designed the architecture of the described system and was responsible
for implementation and testing. PB and TF are the co-leaders of the Breath
analysis project, in the context of which the solution presented in the paper
was developed. All authors read and approved the final manuscript.

Authors’ information

Thomas Ludescher
Thomas Ludescher is working at the university of applied sciences in
Vorarlberg, Austria. He holds a M.Sc. in computer science from the university of
applied sciences in Vorarlberg, Austria. Currently he is writing his Ph.D. at the
university of Vienna in the field of high productivity e-Science frameworks. He
worked several years as a computer scientist for the international breath
research community in the context of the European BAMOD-project. His main
duties there were to set up a novel database for volatile organic compounds
and to develop tools for their automatize access within PSEs. His research
interests include in cloud technologies, distributing time consuming problem
solving environment calculations, and all aspects related to security
frameworks in e-Science infrastructures.

Thomas Feilhauer
Thomas Feilhauer is a professor for Computer Science at the Fachhochschule
Vorarlberg University of applied sciences in Dornbirn, Austria. He has been
involved in the set-up of the diplom-program iTec, the bachelor-program
Informatik (ITB), and the master-program Informatik (ITM). To extend his
research activities, he became a founding member of the Research Center
“Process and Product Engineering”. His research interests are in areas of
Distributed Systems, Grid & Cloud computing. Selected Project Experience: (a)
Partner in the Austrian Grid project, funded by the Austrian Federal Ministry of
Education, Science and Cultural Affairs; (b) SWOP (Semantic Web-based Open
engineering Platform) - co-funded by the European Commission under FP6;
(c) OptimUns - Josef Ressel-Lab, funded by FFG (Österreichische
Forschungsförderungsgesellschaft).

Peter Brezany
Dr. Peter Brezany is a professor of Computer Science in the University of
Vienna Faculty of Informatics. He received his Doctor of Philosophy in

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 15 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

Computer Science from the Slovak Technical University in Bratislava in 1980.
He is known for his work in the areas of high performance programming
languages and their implementation for input/output intensive scientific
applications. Now his primary research interests focus on large-scale,
high-productive data analytics. He leads the GridMiner project that developed
the first full-fledged data mining system operating on data streams and data
repositories connected to grids and clouds; the system is being used und
further developed in other research projects. He published one book
monograph, five book chapters and over one hundred papers.

Acknowledgements
The funding of the ABA-Project (Project No. TRP 77-N13) by the Austrian
Federal Ministry for Transport, Innovation and Technology and the Austrian
Science Fund is key to bringing the partners together and to undertaking the
research. The entire research team contributed to the discussions that led to
this paper and provided the environment in which the ideas could be
implemented and evaluated. We thank all reviewers, whose comments and
suggestions greatly helped to improve this paper.

Author details
1Fachhochschule Vorarlberg, University of Applied Sciences,
Hochschulstrasse 1, 6850 Dornbirn, Austria. 2Research Group Scientific
Computing, Faculty of Computer Science, University of Vienna, Waehringer
StraSSe 29, A-1090 Vienna, Austria.

Received: 7 December 2012 Accepted: 5 April 2013
Published: 10 May 2013

References
1. IABR (2012) International Association for Breath Research.

http://iabr.voc-research.at. Accessed Dec 2012
2. IOPscience (2012) Journal of, Breath Research. http://iopscience.iop.org/

1752-7163. Accessed Dec 2012
3. The MathWorks (2012) Matlab - The Language Of Technical Computing.

http://www.mathworks.com/products/matlab.
Accessed Dec 2012

4. Eato JW (2012) Octave. http://www.gnu.org/software/octave.
Accessed Dec 2012

5. The R Project for StatisticalComputing (2012). http://www.r-project.org.
Accessed Dec 2012

6. The MathWorks (2012) Which MATLAB function benefit from
multithreaded computations. http://www.mathworks.de/support/
solutions/en/data/1-4PG4AN.
Accessed Mar 2013

7. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G,
Patterson DA, Rabkin A, Stoica I, Zaharia M (2009) Above the clouds: a
Berkeley view of cloud computing In: Tech. Rep. UCB/EECS-2009-28. EECS
Department, University of California, Berkeley. http://www.eecs.berkeley.
edu/Pubs/TechRpts/2009/EECS-2009-28.html

8. IBM Research (2012) Global Technology Outlook 2012. http://www.
research.ibm.com/files/pdfs/gto_booklet_executive_review_march_12.
pdf. Accessed Dec 2012

9. Atkinson M (2013) The data bonanza: improving knowledge discovery in
science, engineering, and business. Wiley Series on Parallel and
Distributed Computing

10. Mell P, Grance T (2011) The NIST definition of cloud computing. National
Institute of Standards and Technology. http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf

11. Amazon (2012) Amazon Web Services. http://aws.amazon.com.
Accessed Dec 2012

12. Eucalyptus Systems (2012) Open Source Private and Hybrid Clouds from
Eucalyptus. http://www.eucalyptus.com. Accessed Dec 2012

13. Amazon (2012) Amazon simple storage service (Amazon S3).
http://aws.amazon.com/s3. Accessed Dec 2012

14. Gallopoulos E, Houstis E, Rice J (1994) Computer as thinker/doer:
problem-solving environments for computational science. Comput Sci,
Eng, IEEE 1(2): 11–23

15. Michalowski T (2011) Applications of MATLAB in science and engineering.
InTech. http://www.intechopen.com/books/applications-of-matlab-in-
science-and-engineering

16. Scientific Computing (2009) ParallelR version 1.2. http://www.
scientificcomputing.com/product-hpc-ParallelR-Version-1.2-031009.
aspx. Accessed Apr 2012

17. Scientific Computing Associates Inc (2007) NetWorkSpacs for R user
guide. http://nws-r.sourceforge.net/doc/nwsR-1.5.0.pdf.
Accessed Dec 2012

18. Rickert JB (2010) R for Web-Services with RevoDeployR. http://info.
revolutionanalytics.com/RevoDeployR-Whitepaper.html.
Accessed Dec 2012

19. Chine K (2011) Elastic-R: A virtual collaborative environment for scientific
computing and data analysis in the cloud. http://www.elasticr.net/doc/
ElasticR-SC10-Tutorial.pdf. Accessed Dec 2012

20. Parallel Octave (2003). http://www.aoki.ecei.tohoku.ac.jp/octave.
Accessed Feb 2013

21. Buehren M (2009) The ‘multicore’ package. http://octave.sourceforge.net/
multicore. Accessed Feb 2013

22. Kepner DJ (2013) MIT Lincoln Laboratory: MatlabMPI. http://www.ll.mit.
edu/mission/isr/matlabmpi/matlabmpi.html. Accessed Feb 2013

23. The MathWorks (2009) Parallel computing with MATLAB on amazon
elastic compute cloud. Parallel Comput: 1–24. http://www.mathworks.
com/programs/techkits/ec2_paper.html. Accessed Feb 2012

24. Cornell University Center for Advanced Computing (CAC) (2012) Red
cloud. http://www.cac.cornell.edu/redcloud. Accessed Apr 2012

25. Jejkal T (2010) GridMate — The Grid Matlab Extension. In: Lin SC, Yen E
(eds) Managed Grids and Cloud Systems in the Asia-Pacific Research
Communit. Springer, US, pp 325–339. http://dx.doi.org/10.1007/978-1-
4419-6469-4_24.

26. Geeknet Inc (2013) Octave as a cloud service. http://octaveoncloud.
sourceforge.net. Accessed Mar 2013

27. EMBL-EBI (2013) R Cloud Workbench. http://www.ebi.ac.uk/Tools/rcloud.
Accessed Mar 2013

28. Revolutions (2009) Running R in the cloud with Amazon EC2. http://blog.
revolutionanalytics.com/2009/05/running-r-in-the-cloud-with-amazon-
ec2.html. Accessed Mar 2013

29. University of Vienna (2013) Advanced Breath Analysis - ABA.
http://aba.cloudminer.org. Accessed Feb 2013

30. Taverna (2012) Taverna - open source and domain independent Workflow
Management System. http://www.taverna.org.uk. Accessed Dec 2012

31. National Science Foundation (2012) The kepler project.
https://kepler-project.org. Accessed Dec 2012

32. Kranjc J (2012) ClowdFlows - A data mining workflow platform.
http://clowdflows.org. Accessed Mar 2013

33. University of Waikato (2013) ADAMS - The Advanced Data Mining And
Machine learning System. https://adams.cms.waikato.ac.nz.
Accessed Mar 2013

34. Ludescher T, Feilhauer T, Brezany P (2012) Security concept and
implementation for a cloud based e-Science infrastructure: pp.280-285.
2012 Seventh International Conference on Availability, Reliability and
Security

35. Doucet A, De Freitas N, Gordon N (eds) (2010) Sequential Monte Carlo
methods in practice (information science and statistics). Springer, US.
[http://www.springer.com/statistics/physical-%26-information-science/
book/978-0-387-95146-1]

36. Fachhochschule Vorarlberg - University of AppliedSciences (2012) ABA
Community. http://aba.hostingcenter.uclv.net. Accessed Mar 2013

37. Liferay Inc (2013) Liferay. http://www.liferay.com. Accessed Feb 2013
38. The HDF Group (2012) ADF Group -HDF5. http://www.hdfgroup.org/

HDF5. Accessed Dec 2012
39. The MathWorks (2012) How can I distribute an application that is

developed using MATLAB. http://www.mathworks.de/support/solutions/
en/data/1-GQC9MB. Accessed Feb 2013

40. Apache (2012) Apache CXF. http://cxf.apache.org. Accessed Dec 2012
41. CROSS CHECK networks (2012) Introduction to MTOM. http://www.

crosschecknet.com/intro_to_mtom.php. Accessed Dec 2012
42. Yeung JHC, Tsang CC, Tsoi KH, Kwan BSH, Cheung CCC, Chan APC, Leong

PHW (2008) Map-reduce as a programming model for custom
computing machines. In: Proceedings of the2008 16th International
Symposium on Field-Programmable Custom Computing Machines,

http://iabr.voc-research.at
http://iopscience.iop.org/1752-7163
http://iopscience.iop.org/1752-7163
http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave
http://www.r-project.org
http://www.mathworks.de/support/solutions/en/data/1-4PG4AN
http://www.mathworks.de/support/solutions/en/data/1-4PG4AN
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.research.ibm.com/files/pdfs/gto_booklet_executive_review_march_12.pdf
http://www.research.ibm.com/files/pdfs/gto_booklet_executive_review_march_12.pdf
http://www.research.ibm.com/files/pdfs/gto_booklet_executive_review_march_12.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://aws.amazon.com
http://www.eucalyptus.com
http://aws.amazon.com/s3
http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering
http://www.intechopen.com/books/applications-of-matlab-in-science-and-engineering
http://www.scientificcomputing.com/product-hpc-ParallelR-Version-1.2-031009.aspx
http://www.scientificcomputing.com/product-hpc-ParallelR-Version-1.2-031009.aspx
http://www.scientificcomputing.com/product-hpc-ParallelR-Version-1.2-031009.aspx
http://nws-r.sourceforge.net/doc/nwsR-1.5.0.pdf
http://info.revolutionanalytics.com/RevoDeployR-Whitepaper.html
http://info.revolutionanalytics.com/RevoDeployR-Whitepaper.html
http://www.elasticr.net/doc/ElasticR-SC10-Tutorial.pdf
http://www.elasticr.net/doc/ElasticR-SC10-Tutorial.pdf
http://www.aoki.ecei.tohoku.ac.jp/octave
http://octave.sourceforge.net/multicore
http://octave.sourceforge.net/multicore
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html
http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html
http://www.mathworks.com/programs/techkits/ec2_paper.html
http://www.mathworks.com/programs/techkits/ec2_paper.html
http://www.cac.cornell.edu/redcloud
http://dx.doi.org/10.1007/978-1-4419-6469-4_24
http://dx.doi.org/10.1007/978-1-4419-6469-4_24
http://octaveoncloud.sourceforge.net
http://octaveoncloud.sourceforge.net
http://www.ebi.ac.uk/Tools/rcloud
http://blog.revolutionanalytics.com/2009/05/running-r-in-the-cloud-with-amazon-ec2.html
http://blog.revolutionanalytics.com/2009/05/running-r-in-the-cloud-with-amazon-ec2.html
http://blog.revolutionanalytics.com/2009/05/running-r-in-the-cloud-with-amazon-ec2.html
http://aba.cloudminer.org
http://www.taverna.org.uk
https://kepler-project.org
http://clowdflows.org
https://adams.cms.waikato.ac.nz
http://www.springer.com/statistics/physical-%26-information-science/book/978-0-387-95146-1
http://www.springer.com/statistics/physical-%26-information-science/book/978-0-387-95146-1
http://aba.hostingcenter.uclv.net
http://www.liferay.com
http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.mathworks.de/support/solutions/en/data/1-GQC9MB
http://www.mathworks.de/support/solutions/en/data/1-GQC9MB
http://cxf.apache.org
http://www.crosschecknet.com/intro_to_mtom.php
http://www.crosschecknet.com/intro_to_mtom.php

Ludescher et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:11 Page 16 of 16
http://www.journalofcloudcomputing.com/content/2/1/11

FCCM ’08. IEEE Computer Society, Washington, pp 149–159.
http://dx.doi.org/10.1109/FCCM.2008.19

43. Yahoo! Inc (2013) Hadoop tutorial. http://developer.yahoo.com/hadoop/
tutorial/module3.html. Accessed Feb 2013

44. Liss J (2011) EC2 CPU benchmark: Fastest instance type
(serial performance). http://www.opinionatedprogrammer.com/2011/07/
ec2-cpu-benchmark-fastest-instance-type-for-build-servers.
Accessed Feb 2013

45. Amazon (2013) Amazon EC2 instance types. http://aws.amazon.com/ec2/
instance-types. Accessed Feb 2013

46. Agarwal S, McCabe L (2010) The TCO advantages of SaaS-Based
budgeting, forecasting & reporting. www.hurwitz.com . [http://www.
adaptiveplanning.co.uk/uploads/docs/
Hurwitz_TCO_of_SaaS_CPM_Solutions.pdf]

doi:10.1186/2192-113X-2-11
Cite this article as: Ludescher et al.: Cloud-Based Code Execution Frame-
work for scientific problem solving environments. Journal of Cloud Comput-
ing: Advances, Systems and Applications 2013 2:11.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://developer.yahoo.com/hadoop/tutorial/module3.html
http://developer.yahoo.com/hadoop/tutorial/module3.html
http://www.opinionatedprogrammer.com/2011/07/ec2-cpu-benchmark-fastest-instance-type-for-build-servers
http://www.opinionatedprogrammer.com/2011/07/ec2-cpu-benchmark-fastest-instance-type-for-build-servers
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/instance-types
http://www.adaptiveplanning.co.uk/uploads/docs/Hurwitz_TCO_of_SaaS_CPM_Solutions.pdf
http://www.adaptiveplanning.co.uk/uploads/docs/Hurwitz_TCO_of_SaaS_CPM_Solutions.pdf
http://www.adaptiveplanning.co.uk/uploads/docs/Hurwitz_TCO_of_SaaS_CPM_Solutions.pdf

	Abstract
	Introduction
	Background and related work
	Usage of the Code Execution Framework within different PSEs
	Code Execution Framework (CEF) concept
	Components description
	Code Execution Controller (CEC)
	Supported clients
	Cloud infrastructure
	Code Execution Framework virtual machine

	Execution sketches
	MATLAB Component Runtime approach
	MathWorks products license example

	Implementation
	Performance tests
	Evaluation of the VM overhead
	Code Execution Framework performance analysis
	Evaluation of transfer constants
	Booting time

	Open problems and future work
	Conclusions
	Competing interests
	Authors' contributions
	Authors' information
	Thomas Ludescher
	Thomas Feilhauer
	Peter Brezany
	Acknowledgements
	Author details
	References

