
Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18
http://www.journalofcloudcomputing.com/content/2/1/18
RESEARCH Open Access
Efficient parallel spectral clustering algorithm
design for large data sets under cloud computing
environment
Ran Jin1,2*, Chunhai Kou1, Ruijuan Liu1 and Yefeng Li1
Abstract

Spectral clustering algorithm has proved be more effective than most traditional algorithms in finding clusters.
However, its high computational complexity limits its effect in actual application. This paper combines the spectral
clustering with MapReduce, through evaluation of sparse matrix eigenvalue and computation of distributed cluster,
puts forward the improvement ideas and concrete realization, and thus improves the clustering speed of the
distinctive clustering algorithm. According to the experiment, with the processing data scale being enlarged, the
clustering rate is in nearly linear growth, and the proposed parallel spectral clustering algorithm is suitable for large
data mining. The research results provide research basis to better design a clustering partition algorithm in large
data and high efficiency.

Keywords: Large data; Spectral clustering algorithm; Clustering analysis; Parallel Lanczos; K-means
Introduction
The clustering analysis is an important and active re-
search field in data mining, and the research is about the
classification of data objects. In order to conveniently ex-
pound and understand the data objects and extract inher-
ent information or knowledge hidden in the data, it is
necessary to use cluster analysis technology. Its main idea
is to divide the data into several classes or clusters, so as
to make the objects in same cluster become the most
similar while objects in different clusters vary greatly. On
the whole, the algorithm can be divided into partition
method, hierarchical method, density method, and model
method and so on [1]. Generally, the traditional clustering
algorithm has following drawbacks: low efficiency in
clustering, long processing time in large data and difficulty
in meeting the expected effect. For these problems, a popu-
lar research idea is correspondingly formed: combining
clustering analysis, parallel computing and cloud comput-
ing, and designing an efficient parallel clustering algorithm
[2,3]. This paper adopts the classical spectral clustering
* Correspondence: ran.jin@163.com
1College of Information Science and Technology, Donghua University,
Shanghai, P.R.C
2School of Computer Science and Information Technology, Zhejiang Wanli
University, Ningbo, P.R.C

© 2013 Jin et al.; licensee Springer. This is an o
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
algorithm as the research foundation of clustering partition
algorithm as for large-scale data, analyzes how to dig valu-
able, understandable data information out of large data in
a rapid and efficient way and at low costs. Parallel comput-
ing is a process that simultaneously uses various comput-
ing resources to solve calculation problem, which has the
advantages of speeding up program execution and saving
investments. Owing to the clustering, many cheap com-
puters can be used to replace the expensive servers, and
the data mining services under the parallel computing
environment greatly reduces data processing costs. Be-
sides, the cloud computing can provide scalability, reliabil-
ity and stability when operating large-scale application in
virtual computing environment. Based on the charac-
teristics of cloud computing in large application, namely -
distributivity, isomerism and mass data, it is suitable for
data intensive application and processing [3,4].
Clustering analysis has following common problems:

difficulty in handling mass data and distribution data, diffi-
culty in determining parameters, low efficiency and poor
clustering quality. In recent years, some researchers have
been focusing on how to accelerate spectral clustering al-
gorithm [5-12]. Fowlkes et al. propose to use the Nyström
approximation to avoid calculating the whole similarity
matrix. That is to say, they trade accurate similarity values
pen access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:ran.jin@163.com
http://creativecommons.org/licenses/by/2.0

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 2 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
for shortened computational time. Dhillon et al. presup-
posed the availability of the similarity matrix and proposes
a method which does not use eigenvectors. Although these
methods can reduce computational time, they trade clus-
tering accuracy for computational speed gain, and they do
not address the bottleneck of memory use. To get rid of
the memory capacity limit and computational bottleneck,
many people like Yang utilized MPI (Message passing
Interface) to build a distributed environment. Neverthe-
less, MPI mechanism increased the consumption of com-
munication between machines and the network. More
importantly, it is more complex if realization program uses
MPI to deserialize. After all, it requires the whole cluster
communication to be controlled, which is not so conveni-
ent and easy comparing with Hadoop. The Hadoop is bet-
ter in fault tolerance. To make the algorithm work
normally in mass data, researchers like Meng raised the
method of using matrix sparsification - closest method,
and finally used the matrix spared through the nearest
neighbor method to the parallel implementation of spectral
clustering. Finally, by proving the algorithm through learn-
ing experience of documents data, they proved that the al-
gorithm can effectively cope with the problem of mass
data. In this paper, we first calculate the similar matrix and
sparsification according to the data point identification seg-
mentation, then use Lanczos distributed computing and
parallel computing to get the feature vector when we store
the Laplace matrix in the distributed file system HDFS for
calculating the characteristic vector by way of using, finally
get clustering results by efficient parallel K-means cluster-
ing in terms of the transposed matrix of the feature vector.
At each step, different parallel strategies are used in algo-
rithm, and the whole algorithm grows fast.
Paper structure is organized as follows: in Section Rele-

vant concepts and description, the MapReduce paradigm
is briefly introduced and traditional spectral clustering
algorithm is inspected. In Section Parallel spectral clus-
tering algorithm design based on Hadoop, our design
and implementation of PSCA(Parallel Spectral Clustering
Algorithm) are presented. Performance evaluation is
presented in Section The analysis of experiment and result.
In Section Conclusion, conclusion is drawn and future
works are discussed.

Relevant concepts and description
From above analysis, we can know that the parallel algo-
rithm design is based on Hadoop, so the users’ main job is
to design and realize the Map and Reduce functions, in-
cluding input and output the type of < key, value > key
value and specific logic of Map and Reduce functions, etc.

Hadoop platform
With the appearance of Google’s MapReduce distrib-
uted platform, some calculation of high computational
complexity can be completed in acceptable time. Based
on MapReduce’s thought, Apache foundation developed
Hadoop Open Source Project. As an open source pro-
ject, Hadoop’s distributed computing framework can be
used to construct cloud computing environment (dis-
tributed computing). With the help of the computing
power, it can be even distributed to many computing
nodes in the cluster, thus realizing the huge computation
ability about large data. Hadoop has high data through-
put, and realizes the high fault tolerance, high reliability
and scalability. It is composed of two main parts: HDFS
(distributed file system) and MapReduce programming
model. At the same time, by combining spectral cluster-
ing, serial traditional algorithm and MapReduce program-
ming model, it is transplanted into Hadoop platform to
conduct distributed data mining calculation by adopting
corresponding parallel strategy. However, if the Hadoop
platform technology is applied to the data mining algo-
rithms, key problem is how to achieve the parallelization
implementation of traditional data mining algorithm [13].
Among these modes, MapReduce (mapping and specifica-
tion) programming model can make the user conveniently
develop distributed computing program without caring
about details. In the whole operation process, MapReduce
model is always using key value of < key, value > to input
and output about the form. It simplifies the programming
model of parallel computing, and only provides available
interface to upper users. Working processes at each stage
of MapReduce calculation model is as follows:

(1) Input: An application based on the Hadoop platform
and MapReduce framework that often need a pair of
Map and Reduce functions by realizing appropriate
interface or providing abstract class. It should also
specify the locations of both input and output, and
other operating parameters. This stage will divide
big data under the input directory into several
independent data blocks.

(2) Map: MapReduce framework treats the application
input as a group of < key, value > key value pairs. At
this stage, the framework will call the Map function
that user defines to process each < key, value > key
value pairs. At the same time, it will create some
new intermediate < key, value > key value pairs. The
types of the two groups of key value pairs may be
different.

(3) Shuffle: In Shuffle stage, in order to ensure that
Reduce input is output in sequence that Map has
already sequenced, the frame gets all related < key,
value > key value pairs in Map output for each
Reduce through HTTP; according to the key value,
MapReduce framework groups are the input in
Reduce stage (There are maybe same key for
different Map’s outputs).

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 3 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
(4) Reduce: This stage will be full of intermediate data, and
for each unique key, implement the user-defined Reduce
function. The input parameter is“<key, {list of values} >,
and the output is a new < key, value > key value pairs.

(5) Output: This stage will write the result output
from Reduce in the designated location of output
directory. In this way, a typical MapReduce process
is completed.

Traditional spectral clustering algorithm
Spectral clustering algorithm is a dot pair cluster algo-
rithm, and it is first used in computer vision, VLSI de-
sign and other fields, and then it is used in machine
learning, and rapidly becomes research focus in the field
of international machine learning. It has very promising
application prospects for data clustering. The idea of this
algorithm is derived from the spectrogram partition the-
ory. If each data sample is considered as the vertex V in
the chart, give weight value W to edge E between vertex
in accordance with similarity degree between samples,
then the undirected weighted graph G=(V, E) based on
similarity degree can be obtained. So in the graph G, the
clustering problem can be transformed into partition
problem on graph G. The optimal classification criterion
based on graph theory is to make the internal similarity
degree of the two subgraphs the largest, and similarity
degree between subgraphs the smallest.
The standard serial spectral clustering algorithm steps

are as follows:

(1) By computation, obtain the similar matrix S∈ Rn × n

and then sparse it;
(2) Construct diagonal matrix D;
(3) Compute the standard Laplace matrix L;
(4) Compute k minimum eigenvectors of matrix L, and

compose matrix Z∈ Rn × k which contains k
minimum eigenvectors and are regarded as the
columns of the matrix Z;

(5) Standardize it as Y∈ Rn × k

(6) Use K-Means algorithm to cluster the data point yi∈
Rk(i = 1,…, n) into k clusters.

Parallel spectral clustering algorithm design
based on Hadoop
In the standard serial spectral clustering algorithms, we
know that algorithm computational complexity is mainly
presented in the construction of similar matrix, calculation
of k minimum feature vector(s) in Laplace matrix and k-
means the clustering. The parallel design of spectral cluster-
ing algorithm is processed from the above three aspects.

Calculate similar matrixes in parallelized ways
Because the Hadoop MapReduce can provide outstanding
distributed computing framework, we realize our parallel
spectral clustering algorithm in the Hadoop MapReduce.
Firstly, we put the data point x1,…, xn in HBase chart,
which can be accessed by each machine, and the line key
(row key) of each data point xi is set as the subscript i ∈
{1,…, n} of the data point. Then we use a Reduce function
to automatically distribute the similar values between the
calculated data points. For each data point xi with identifi-
cation i, Reduce function will only clear those whose sub-
scripts are equal to or bigger than i with the data point of
xj(j = i,…, n) and the similar value of xi. We can call it “the
similar value calculation of subscript i”. In this way, the
similar value between each pair of data points can be cal-
culated only once. The apparent “similar value calculation
of subscript i” and “similar value calculation of other sub-
scripts” are independent from each other. Therefore, if we
distribute different subscripts to different machines, then
“similar value calculation of subscript i” can be operated
in distributed environment.
Especially, “similar value calculation of subscript i” needs

to calculate the similar value {< xi, xi >, < xi, xi + 1 >,…, < xi,
xn >} of n − i + 1 data point pairs. That is to say, the first
subscript 1 needs to compute similar value of n data point
pairs, and the last subscript n only needs to compute the
similar value of a data point, that itself is < xn, xn >. In order
to balance the calculation of similar value, we put the
“similar value calculation of subscript 1” and “similar value
calculation of subscript n” together, and “similar value cal-
culation of subscript 2” and “similar value calculation of
subscript n − 1” together, and so on (see Figure 1). When
the calculation of similar values is completed, put them
back on HBase table and they will be used to calculate the
Laplace matrix in later steps. The process of parallel con-
struction of similar matrix can be shown in Algorithm 1.

Algorithm 1 parallelized constructing the reduce
function in similarity matrix
Input: <key, value>, key is the subscript index of data
point, and value is supposed as null.
Output:<key’, value’ > = < key,value>

1. index = key, another Index = n-key + 1
2. For i in{index,another Index}

i_content = get Content From HBase(i):
For j = i to n do

j_content = get Content From HBase(j);
sim = compute Similarity(i_content,j_content);
store Similarity(i, j, sim) into HBase table;

End For
End For

3. Output < key,null>
4. End.
Parallel computing k minimum eigenvectors
Lanczos algorithm is an iterative algorithm invented by
Cornelius Lanczos. The algorithm was invented and used

Figure 1 Parallel computing similar matrix on MapReduce.

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 4 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
to compute the eigenvalue and feature vector of square
matrix, or the singular value decomposition of rectangular
matrix [14]. Especially for the very large and sparse matrix,
Lanczos’ algorithm is very effective [15-17]. When calcu-
lating the maximum (or minimum) k feature vector of the
matrix, the Lanczos is more suitable, for it can find out
the k feature vectors by only iterating k times [15,16].
Lanczos transforms the original Laplace matrix L into

a real and symmetric tri-diagonal matrix: Tmm ¼ V �
mL

Vm with the diagonal elements marked as αj = tjj and the
off-diagonal elements as βj = tj − 1j. Notice that Tmm is a
symmetric matrix, so tj − 1j = tjj − 1. Lanczos algorithm is
shown in Algorithm 2:
Notice that (x, y) is the dot product of two vectors,

and after the iteration, we get a tridiagonal matrix com-
posed of αj and βj:

Tmm ¼

α1 β2 0
β2 α2 β3

β3 α3 ⋱
⋱ ⋱ βm−1

βm−1 αm−1 βm
0 βm αm

0
BBBBBB@

1
CCCCCCA

After we get the matrix Tmm, because Tmm is a tridia-
gonal matrix, it is easy to obtain its eigenvalues and fea-
ture vector through other ways (such as QR algorithm).
It can be proved that the eigenvalue (feature vector) is
the similar value to original Laplacian matrix L’s eigen-
value (feature vector).

Algorithm 2 Lanczos algorithm

1. v1← norm is the random vector of 1

v0←0

β1←0
2. Iteration: for j = 1, 2,…,m

wj←Lvj−βjvj−1

αj← wj; vj
� �

wj←wj−αjvj

βjþ1← wj

�� ��

vjþ1←wj=βjþ1

3. Return

From Lanczos’ algorithm, we can see that the multipli-
cation Lvj of matrix and vector is a time-consuming
process. If the matrix is put into memory, then L must
be removed every time when it is multiplied by a vector,
thus consuming a lot of time consumes. The distributed
function provided by Hadoop MapReduce and HDF
adopts an excellent idea: mobile computing to near the
data that is to be operated saves time than to calculation
program. We adopt a similar Distributed Matrix to store
the matrix L that is to be decomposed on HDFS, and
the storage of matrix L on HDFS is according to seg-
mentation. Then Lanczos’ each iteration doesn’t remove
the distributed matrix L on HDFS. On the contrary,
what should be moved is a vector (i.e. mobile comput-
ing). Every time, the vector vj, which is going to multiply
matrix, should be sent to the location that matrix L
stores in HDFS, and then the product of vector vj and
matrix L on each line (see Figure 2) should be calculated
in a parallelized way. The product Lvj between matrix L

Figure 2 Parallelized Lanczos on MapReduce to calculate Laplacian’s feature vector.

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 5 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
and vector vj is the primary time-consuming operation
in Lanczos algorithm. But now with matrix L’s distrib-
uted storage in HDFS, this operation can be completed
by Map/Reduce. If the former k feature vector (s) is
needed, just send the vector for k times to the data stor-
age of matrix for calculation.

Parallelization of K-means clustering
In parallelization of K-means clustering algorithm, a file
including initialization k cluster (s) center is created, and
can be accessed by each machine in the cluster when it
is placed on the HDFS. Obviously, the distance calcula-
tion between a data point and the k center and other
data points and k center is independent of each other.
Therefore, the distance calculation between different
data points and k center can be performed in parallel in
the MapReduce framework. In terms of research on par-
allel K-means clustering algorithm, there are many
achievements, taking literatures [18,19] for instance. In
the paper, our designed parallelized K-means clustering
algorithm mainly consists of Map function and Reduce
function, with Combine operation being added after
Map function.

Map function design
The Map function task is to calculate the distance be-
tween each record and the center point and remark the
focus clustering category. The input is all recorded data
for clustering and iterated clustering center from the
previous round, with the record data form of < key,
value > pairs as < line number, recording line>; each
Map function will read the described file of clustering
center, and the Map function will calculate the nearest
class center to the input recording point and make a
new category marking; the form of output intermediate
result < key, value > is < cluster category ID, record at-
tribute vector >. The pseudo code of Map function is
as follows:

void Map(Writable key, Text point){
The initialization of variable mindis is the possible
maximum value;
for(i = 0;i < k;i++){

if (dis(point, cluster [i]) < mind is){
mindis = dis(point, cluster[i]);
current cluster ID = i;}}

output (current clusterID, point);}

When data is large and those objects of each data
subset after partition are rather approximate, the mid-
dle k value produced in the process of map will be
more likely to be repeated. For example, thousands of
such records < key j, value j > produced in Map process
will be sent through the network to the designated re-
duce function. It certainly wastes valuable network re-
sources, makes the delay increase, and reduces the I/O
performance. Therefore, after the map process is exe-
cuted, an optional Combiner function is added. Com-
biner function will firstly merge the output of map
function at locality and output < key j, list (value j) >
list, and then make use of the partition function hash
(key) mod R, halve the intermediate key/value

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 6 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
produced by Combiner function into R different parti-
tions, and distribute each partition to the designated
reduce function. Figure 3 is the K-means parallel
process.

Reduce function design
The task of Reduce function is to calculate the new clus-
tering center in accordance with the intermediate results
of Map function, and is for next round of MapReduce
Job. The form of input data < key, value > pair is < cluster
category ID, {record attribute vector set} >; all the re-
cords with same key (i.e., records of same category ID)
will receive a Reduce task– accumulate the number of
points with same key and the sum of the records and get
the average value and then a new clustering center de-
scription file; form of the output result < key, value > pair
is < cluster category ID, average vector >. The pseudo
code of Reduce function is as follows:

void Reduce(Writable key, Iterator < Point Writable >
points){
Initialize the variable num, record the total number
of samples distributed to the same cluster, the initial
value is of 0;
While (points. Has Next()){
Fig
Point Writable current point = points. next();
Num + =current point. get num();
ure 3 K-means parallel process based Mapreduce.
for(i = 0;i < dimension;i++){
sum[i] + =current point. point [i];}

for(i = 0;i < dimension;i++)
mean[i] = sum[i]/num;

out(key, mean);}
This iteration continues until each class cluster center
is not changed any more, or the iterated number reaches
a preset value.

Analysis of complexity of algorithm
Parallel computing of similar matrix
Before giving detailed analysis, assume that the time
complexity of computing data points on similar value S
(xi, xj) is O(l), and assume that m is the number of ma-
chines in cluster. It is mentioned that “similar value cal-
culation of subscript i” needs to compute the similar
value of n − i + 1 data points. We can obtain that the
time complexity of “similar value calculation of subscript
1” is O(n), the time complexity of “similar value calcula-
tion of subscript 2” is O(n-1), and the like, the time
complexity of “similar value calculation of subscript n” is
O(l). So the time complexity of computing similar
matrix is O(n + (n ‐ 1)… + 1) =O((n2 + n)/2). Because the
calculation of similar matrix is evenly executed on m
machines, the time complexity of parallel similar matrix
calculation is O((n + (n ‐ 1)… + 1)/m) =O((n2 + n)/(2m)).

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 7 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
Parallel computing of k minimum feature vector(s)
Under the non-parallel condition, the time complexity of
using Lanczos to compute Laplacian L’s k vector(s) of
different characteristics is O(kLop + k2n) [20], in which
Lop is the time that matrix L multiplies vector vj. Be-
cause the matrix L has already been segmented into lines
and stored on HDFS, multiplication of matrix L and vec-
tor vj is distributed and executed on the machines. And
under ideal conditions, the time complexity of each
multiplication is Lop/m, so the time complexity of paral-
lel computation front kfeature vector(s) is O(kLop + k2n).

Parallelization of K-means clustering
New expression form yi of each data point is k-di-
mensional, hence in each iteration, the distance cal-
culation will be executed between itself and k centers.
In this way, the distance computing time complexity
of each data point is O(k2). Therefore, the time com-
plexity of iterating the distance calculation of all
points each time is O(nk2). If the condition is ideal,
then all the distance calculation of data points is
evenly distributed to each machine and in parallel exe-
cution, so the time complexity is reduced to O(nk2/m)
* (numofiterations).

The analysis of experiment and result
Experimental environment
In this experiment, we use 10 computers to set up the
Hadoop cluster. Among them, 8 computers are in dual-
core 2.6 GHZCPU, 4 GB memory and operating system
of Ubuntu10.04; two in quad core 2.8 GHZCPU, 8 GB
memory together with the operating system of Ubuntu10.04.
The Hadoop version is 0.20.2, and each machine uses
gigabit Ethernet card and is connected through switch
machine.
The experiments adopts the classic data set DataSet1

provided by KDD Cup’ 99 to test the correctness of the
proposed parallel spectral clustering algorithm; we use
respectively 10000(Data Set DS1), 50000(Data Set DS2),
100000(Data Set DS3), 1000000(Data Set DS4), 5000000
(Data Set DS5) to verify the superiority of the proposed
Table 1 Comparison of clustering accuracy of stand-alone mo

Type Data
volume

Stand-alone mode

Correct number Wrong num

Normal 18183 17818 365

u2r 267 263 4

Dos 17408 17132 276

R2l 3897 3795 102

Probe 4672 4571 101

Average error rate 1.98%
parallel algorithm, and data samples is the multidimen-
sional data listed in literature [20,21].
In the experiment, both the speedup ration and sca-

leup ration are deemed as evaluation indicators.

Experimental results
Correctness validation
Table 1 shows the clustering results of data set Data-
Set1 in stand-alone and the proposed parallel spectral
clustering algorithm mode. It can be seen from Table 1,
both the proposed parallel spectral clustering algorithm
and the serial algorithm have clustering results of
higher consistency. The error rate of them is less than
2%, they both achieve a better clustering results and ef-
fectiveness, the spectral clustering algorithm proposed
in the paper is correct.

Test of speedup ratio
Speedup ratio is defined by parallel computing to re-
duce the running time and improve the performance.
It is an important indicator to verify the performance
of parallel computing. The greater speedup ratio is,
the less time parallel computing consume relatively,
and the higher parallel efficiency and performance im-
prove. Under changing the number of Hadoop cluster
nodes, respectively use the results of speedup ratio
performance tests according to 10000, 50000, 100000,
1000000, 5000000 pieces of data. Table 2 is the run-
ning time of datasets under different nodes. Figure 4
shows the results.
It can be seen from Table 2 and Figure 4, with the in-

crease scale of data set, the algorithm speed-up ratio
performance is getting better and better. The reasons
are mainly as following: 1) in this paper, the set of < key,
value > pair in the stage of Map and Reduce of the pro-
posed parallel spectral clustering algorithm is rather rea-
sonable; 2) we add Combine operation after the stage
Map, which greatly reduces the communication costs
between the master node and slave nodes. Therefore, as
the data quantity becomes large, the speed-up ratio per-
formance will be substantially enhanced.
de and parallel algorithm mode proposed in the paper

The proposed parallel algorithm by the paper

ber Correct number Wrong number

17892 291

265 2

17221 187

3808 89

4600 72

1.45%

Table 2 Comparison of running time

Data volume Machines Similar matrix (sec) Eigenvector (sec) K-means (sec) Total time (sec)

DS1 (10000) 1 0.386 0.481 0.156 1.023

2 0.532 1.099 3.436 5.067

4 0.186 0.364 1.137 1.687

6 0.096 0.175 0.582 0.853

8 0.038 0.065 0.231 0.334

10 0.025 0.050 0.204 0.279

DS2 (50000) 1 7.251 9.315 2.947 19.513

2 9.814 12.879 4.139 26.832

4 3.162 3.963 1.376 8.501

6 2.299 2.829 1.239 6.367

8 1.477 1.881 0.910 4.268

10 1.218 1.555 0.887 3.660

DS3 (100000) 1 19.228 23.982 8.572 51.782

2 11.234 14.409 4.414 30.057

4 5.736 6.538 2.246 14.520

6 4.007 5.587 1.432 11.026

8 2.965 4.056 0.901 7.922

10 2.359 3.453 0.654 6.466

DS4 (1000000) 1 7671.580 9603.573 3422.564 20697.717

2 37.590 46.058 16.678 100.326

4 19.629 23.755 8.719 53.103

6 10.126 18.473 6.475 35.074

8 8.797 13.532 4.865 27.194

10 6.894 11.415 3.852 22.161

DS5 (5000000) 1 31602.604 39909.984 16630.820 88143.408

2 150.853 191.559 80.850 423.262

4 75.164 98.906 39.213 213.283

6 50.273 70.427 22.087 142.787

8 40.032 53.142 18.521 111.695

10 30.841 42.112 13.940 86.893

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 8 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
When the data volume is less than 50000, because in
the parallel process, the data volume of each node is
not big enough, the speed is smaller than the serial spec-
tral clustering algorithm. However, with the increase
of data volume, the speed of parallel algorithm is grad-
ually increased, especially when the data volume is over
1000000, the speedup ratio grows significantly. The run-
ning time of stand-alone mode is 3.667 times as long as
that of ten computers when dataset volume is 10000.
However, it is 1014.39 times when dataset is 5000000. But,
it can be seen from Figure 4, when the number of nodes
increases to 8 or more, the increasing range of speed-up
will narrow. It can be illustrated that the execution effi-
ciency of the parallel spectral clustering algorithm based
on Hadoop platform is higher than that of conventional
spectral clustering algorithm.
Analysis of scalability
This paper introduces the concept of the efficiency of
parallel algorithms. Efficiency of parallel algorithms rep-
resents the utilization of a cluster during the execution
of parallel algorithms. The formula is n ¼ Sp

�
N , wherein,

Sp represents the speedup ratio, N means the number of
cluster nodes. Figure 5 shows the efficiency of parallel
algorithms proposed in the paper. For a more general,
this paper test the scalability of dataset 100000, 1000000
and 5000000.

Figure 4 Speedup ratio performance test.

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 9 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
It can be seen from Figure 5, their efficiency curve
goes down overall. This is mainly because as the growth
of computing nodes in the cluster, the communication
overhead increased gradually between nodes. As the data
size increases, the efficiency value of parallel algorithm
proposed in this paper is larger, namely the better scal-
ability is, the more stable efficiency curve is. Experimen-
tal results show that the parallel algorithm proposed in
this paper has better scalability in large data sets.
Figure 5 Expansion rate performance test.
Conclusion
Those data on the Internet exist in vast scale and grow
rapidly, so it is urgently required in technology to mine
high-value information from the mass data. As a kind of
unsupervised learning method, clustering algorithm is a
technique commonly used in data statistics and analysis
which contains data mining, machine learning, pattern
recognition, image analysis, and many other areas. The
traditional serial clustering algorithm has two problems

Jin et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:18 Page 10 of 10
http://www.journalofcloudcomputing.com/content/2/1/18
and it is difficult to meet the needs of practical applica-
tions: the first one is that the speed of clustering is not
fast enough and the efficiency is not high; the other one
is that in the face of mass data, subject to the limits of
memory capacity, it often cannot run effectively. This
paper studied the traditional spectral clustering algo-
rithm and designed efficient parallel spectral clustering
algorithm. The strategy of parallel spectral clustering
algorithm is to compute similar matrix and sparse ac-
cording to data points segmentation; when computing
eigenvectors, store the Laplacian matrix on the distrib-
uted file system HDFS, use distributed Lanczos to com-
pute and get the eigenvectors by parallel computation; at
last, in terms of the transposed matrix of eigenvectors,
adopt the improved parallel K-Means cluster to obtain
the clustering results. Through adopting different paral-
lel strategies about each step of the algorithm, the whole
algorithm gets linear growth in speed. The experimental
results show that the proposed parallel spectral cluster-
ing algorithm is suitable for applying in mass data min-
ing. We hope that the research achievements of this
paper can provide inspiration and application value for
subsequent research developers.

Competing interest
The authors of this paper have no competing interest.

Authors’ contributions
The contributions of the paper are twofold: The use of Hadoop to design an
improved parallel spectral clustering algorithm for large data sets. The use of
speedup ratio and scalability to verify the superiority of the parallel
algorithm. All authors read and approved the final manuscript.

Acknowledgement
This work was supported by the Science and Technology Research Program
of Zhejiang Province, under grant No.2011C21036, and by the Shanghai
Natural Science Foundation under grant No.10ZR1400100, and by Projects in
Science and Technique of Ningbo Municipal under grant No. 2012B82003.

Received: 9 April 2013 Accepted: 28 October 2013
Published: 7 November 2013

References
1. Hartigan, JA (1975) Clustering Algorithms. Wiley, USA.
2. Cui J, Li Q, Yang LP (2011) Fast algorithm for mining association rules based

on vertically distributed data in large dense databases. Comput Sci
38:216–220

3. Zheng P, Cui LZ, Wang HY, Xu M (2010) A data placement strategy for
data-intensive applications in cloud. Comput Sci 33:1472–1480

4. Wang P, Meng D, Zhan JF, Tu BB (2010) Review of programming models for
data-intensive computing. J Comput Res Dev 47:1993–2002

5. Fowlkes C, Belongie S, Chung F, Malik (2004) Spectral grouping using the
nyström method. IEEE Trans Pattern Anal Mach Intell 26:214–225

6. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without
eigenvectors: a multilevel approach. IEEE Trans Pattern Anal Mach Intell
29:1944–1957

7. Kumar S, Mohri M, and Talwalkar A (2009) Sampling techniques for the
nyström method [C]. Paper presented at the 12th conference on artificial
intelligence and statistics, University of California, 16–18 April 2009

8. Zhang K, Tsang I, Kwok J (2008) Improve nyström low-rank approximation
and error analysis. Paper presented at the 25th International Conference on
Machine Learning, Helsinki, 5–9 July 2008
9. Yan D, Huang L, Jordan MI (2009) Fast approximate spectral clustering.
Paper presented at the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, 28 June-1 July 2009

10. Gropp E, Skjellum A (1999) Using MPI-2: advanced features of the message-
passing interface. MIT Press, USA

11. Song Y, Chen W, Bai H, Lin C, Chang E (2008) Parallel spectral clustering. In:
European Conference, ECML PKDD. The joint conference on Machine
Learning and Knowledge Discovery in Databases, Belgium, September 2008.
Lecture notes in computer science (Lecture notes in artificial intelligence),
vol 5212. Springer, Heidelberg, p 374

12. Maschhoff K, Sorensen D (1996) A portable implementation of ARPACK for
distributed memory parallel architectures. Paper presented at the 4th Copper
Mountain Conference on Iterative Methods, Colorado, 9–13 April 1996

13. Yang C (2010) The research of data mining based on HADOOP. Dissertation,
Chongqing University

14. Cullum J, Willboughby RA (1985) Lanczos Algorithms for Large Symmetric
Eigenvalue Computations volume l. Birkhauser Boston Inc, USA

15. Golub GH, Loan CFV (1996) Matrix Computations. The Johns Hopkins
University Press, Maryland

16. Cullum J, Willboughby RA (1981) Computing eigenvalues of very large
symmetric matrices: an implementation of a lanczos algorithm with no
reorthogonalization. J Comput Phys 44:329–358

17. Mahadevan S (2008) Fast Spectral Learning Using Lanczos Eigenspace
Projections. The 23th national conference on artificial intelligence, Chicago,
13–17 July

18. Zhao WZ, Ma HF, Fu YX, Shi ZZ (2011) Research on parallel K-means
algorithm design based on hadoop platform. Comput Sci 38:166–176

19. Niu XZ, She K (2012) Study of fast parallel clustering partition algorithm for
large data set. Comput Sci 39:134–151

20. Feng LN (2010) Research on parallel K-Means clustering method in resume
data. Dissertation, Dissertation. Yunnan University

21. Jin R, Kou CH, Liu RJ, Li YF (2013) A Co-optimization routing algorithm in
wireless sensor network. Wireless Pers Comm 70:1977–1991

doi:10.1186/2192-113X-2-18
Cite this article as: Jin et al.: Efficient parallel spectral clustering
algorithm design for large data sets under cloud computing
environment. Journal of Cloud Computing: Advances, Systems and
Applications 2013 2:18.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Introduction
	Relevant concepts and description
	Hadoop platform
	Traditional spectral clustering algorithm

	Parallel spectral clustering algorithm design based on Hadoop
	Calculate similar matrixes in parallelized ways
	Parallel computing k minimum eigenvectors
	Parallelization of K-means clustering
	Map function design
	Reduce function design

	Analysis of complexity of algorithm
	Parallel computing of similar matrix
	Parallel computing of k minimum feature vector(s)
	Parallelization of K-means clustering

	The analysis of experiment and result
	Experimental environment
	Experimental results
	Correctness validation
	Test of speedup ratio
	Analysis of scalability

	Conclusion
	Competing interest
	Authors’ contributions
	Acknowledgement
	References

