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Abstract

With the growing popularity of cloud-based data centres as the enterprise IT platform of choice, there is a need for
effective management strategies capable of maintaining performance within SLA and QoS parameters when
responding to dynamic conditions such as increasing demand. Since current management approaches in the cloud
infrastructure, particularly for data-intensive applications, lack the ability to systematically quantify performance
trends, static approaches are largely employed in the allocations of resources when dealing with volatile demand in
the infrastructure. We present analytical models for characterising cache performance trends at storage cache nodes.
Practical validations of cache performance for derived theoretical trends show close approximations between
modelled characterisations and measurement results for user request patterns involving private datasets and publicly

scalable and resilient service delivery.

available datasets. The models are extended to encompass hybrid scenarios based on concurrent requests of both
private and public content. Our models have potential for guiding (a) efficient resource allocations during initial
deployments of the storage cloud infrastructure and (b) timely interventions during operation in order to achieve
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Introduction

The cloud computing paradigm is emerging as a main-
stream approach in the design and implementation of
enterprise computing solutions [1-3]. The principal fac-
tors favouring the adoption of cloud-based technologies
in business computing environments are: (a) the ease with
which IT infrastructure deployments and expansions can
be achieved when bringing together multiple and hetero-
geneous computing resources, typically scattered across
wide geophysical locations, and (b) the simplified mech-
anisms by which users can access and utilise hosted IT
services.

Based on the specific needs of target user environ-
ments, which cloud based technologies are intended
to serve, business IT service solutions can be crafted
and made available in a variety of offerings, which can
be Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS) or Infrastructure-as-a-Service (IaaS) computing
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capabilities. The adoptions of the SaaS solutions [1,2]
present hosted applications to user environments cus-
tomers as usable service entities for business computing
needs; the PaaS-based solutions [4-7] present for use by
application routines executing at the SaaS level, service
capabilities that are derived from the integration of Oper-
ating System and virtualisation functionalities; the IaaS
solutions [3,8-10] bring together the operational hardware
elements such as data centre equipment, processor and
storage servers, and networking devices into functional
capabilities that can be plugged into and utilised by user
routines executing at both the SaaS and PaaS levels of the
cloud stack.

Depending on the nature of the affinity groups that
are served by cloud-based IT environments, there are
four main categories of clouds - Private, Community,
Public or Hybrid, which can serve user environments
according to their access entitlements. Private clouds
are exclusively for intra-organisational needs; Community
clouds result from federations of resources that serve the
interests of select user groups with common objectives;
Public clouds offer on-demand services to anyone with
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service-provider-authenticated web access over the stan-
dard Internet connection; Hybrid clouds fulfill require-
ments that can only met through services derived from
combinations of in-house and off-premises resources. The
delivery of cloud computing service according to above
mentioned implementations enables reduced setup times
for the deployments of outsourced business computing
solutions, with little or no requirement being imposed on
the customers to understand and manage the underlying
technologies operating in the infrastructure.

Despite the enormous strides that have been achieved
in developing functional capabilities for cloud computing
systems, challenges still remain that present formidable
barriers to the reliable performance and therefore effec-
tive use of cloud-based IT infrastructures. Performance
related issues in the cloud domain encompass a range
of considerations such as how to maintain Key Perfor-
mance Indicators (made up of throughput and response
time metrics), on-demand resource and service availabil-
ity, continuity and scalability of IT services at competitive
SLA and QoS levels that will enable business customers
to meet performance goals. In order for the management-
driven strategies and interventions to meet required levels
of service reliability and availability and, thus maintain
infrastructure operations within specified SLA and QoS
targets, in-depth knowledge is required for establishing
quantitative trends that are associated with principal per-
formance indicators such as throughput rates, response
times and load-scalability as the levels of user requests
being sent to the cloud infrastructure vary. Thus, in quan-
titative terms, the ability to provide SLA and QoS-capable
resource management in cloud-based IT environments
requires accurate characterisations of the load response
patterns, based on the interplay of factors such as the
resource infrastructure’s service capacity, the levels of
applied user workloads and their resource consumption
needs in the cloud service environment.

Given the lack of intimate knowledge that can lead to
mature capabilities for establishing the quantitative rela-
tionships between user requests and performance in pre-
cise detail, the allocations of resources in cloud-based IT
infrastructures are largely conducted in a reactive man-
ner, with the assignment of resource entities being carried
out statically in response to any changes in user demand.
As a result, the fulfilment of SLAs and QoS contracts for
outsourced IT services essentially relies on either excess
provisioning that leads to inefficiencies or, limited alloca-
tion of infrastructure resources that has carries the risk of
SLA violations. Hence, instead of having in place proactive
technical interventions that can immediately respond by
reassigning resources to keep performance levels within
acceptable thresholds, any QoS breaches that occur in
the infrastructure are handled largely by follow up admin
negotiations with a view to settling any business losses
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that may result from service interruptions through com-
pensation. It is therefore worth exploring approaches by
which performance trends in the cloud infrastructure can
be determined with sufficient accuracy to enable proac-
tive resource management for QoS compliant delivery of
IT services. In our work, we isolate for study the resource
utilisation trends of the storage subsystems on server
hardware, an aspect that has not been given sufficient
consideration in the context of supporting SLA-capable
resource management mechanisms in storage clouds.

Proposed strategy for QoS compliance support in storage
clouds

As has been highlighted, the challenge of achieving
SLA-awareness in cloud environments is a multifaceted
research issue with a number of dimensions stemming
from it such as determining the levels of resource avail-
ability, service continuity rates and scalability trends of
performance that will be able to satisfy QoS constraints.
As a starting point towards addressing the vital issues
pertinent to QoS maintenance in storage cloud infrastruc-
tures, this paper focuses on developing characterisations
of cache performance trends, an aspect which we con-
sider to have potential for serving as an important source
of guidance for informed decisions on the provisioning
of scalable data storage services in enterprise IT environ-
ments. Our approach, thus aims to support QoS readiness
in resource allocation management strategies for storage
clouds through accurate modelling of content availability
levels at individual cache entities in the infrastructure, and
the modelled scalability trends can serve as a feed into the
management strategies for storage space provisioning.

In order to establish the validity of the modelled cache
performance, a data centre facility with cloud-based stor-
age elements is used. As a key contribution of this paper,
we present and validate scalability trends of cache per-
formance at individual nodes, and the derived theoretical
models can be a foundation upon which the considera-
tions for infrastructure sizing can proceed and decisions
are made in accord with the applications’ resource needs
and the service capabilities of the resources in enterprise
computing environments on the following: (a) initial sizes
of the storage deployments for cloud-based services, (b)
re-calibration of the scale of storage resource integrations
an ongoing basis in order to preempt SLA violations that
could arise from short-term increases in demand and, (c)
storage capacity upgrades based on anticipated margins of
permanent increases in user demand.

Given that the accuracy of cache performance char-
acterisations is the critical component underpinning the
ability of our proposed strategy to quantify the scale
of resource allocations required to fulfil performance
goals in storage clouds, the next section proceeds with a
detailed consideration of cache performance trends, with
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the focus primarily on the analytical derivations of the
scalability response patterns of content retention rates
at individual storage server nodes in the cloud domain.
In Section “Experimental facility for validations of cache
performance Trends” we describe the key components
of the practical facility used for conducting experimental
validations of the models. Sections “Validations of cache
performance trends for user requests of private data”
and “Validations of cache performance trends for user
requests of public data” respectively feature the sets of
experiments conducted to establish the validity of the
modelled cache performance for private and public data
requests. Section “Performance characterisations for con-
current accesses to private and public content” extends
the analytical models to scenarios that are based on con-
current requests going to private and public data. A brief
evaluation of our cache performance characterisations
is provided in Section “Discussion” through the consid-
eration of the implications of the results on the ability
to provide support for service continuity, scalability and
SLA compliance in the management of storage resources.
Section “Related research” provides a summary review
of other research initiatives that are aimed at developing
SLA support strategies for clouds by addressing aspects
that are adjacent to our area of focus. The ninth section
concludes the paper by highlighting further issues to
be investigated in future work so that viable techniques
are developed for QoS-ready deployments in the storage
cloud infrastructure.

Derivations of cache performance models

We begin our consideration of cache performance trends
in storage clouds by developing theoretical models of data
availability levels based on the scalability response to ris-
ing numbers user of requests for content. In developing
quantitative estimates of cache hit ratios at storage caches,
four principal factors and their impact on cache perfor-
mance are considered. These factors are (a) the respective
sizes of the storage capacities of the local cache and
source storage devices, Cr, and Cs (b) the user loading
levels in terms of the average number and average sizes
of input files to satisfy each received request, Nr and S,
(c) the mean service time period for the execution of the
requests, Ajpp’ during which a cached file is used by a

runtime process at the CPU and (d) the affinities of user
patterns to the individual files that they request in the
cache. Table 1 provides a complete list of the basic input
and output parameters that are used in the derivations of
the cache models and practical experiments.

Cache performance analysis of user requests for private
data

Based on the interplay of these factors, the overall cache
performance in terms of the average cache hit ratio, Py,
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Table 1 Input and output parameters for the local cache
node

Parameter Description Value

Nysers Number Active Users 10-250

(M]W) Application Request exp (2.5)
Inter-repetition Time (sec)

Jimit Transaction Limit for Received Jobs Infinite

Ipolicy Job Instance Limit Policy Queue

Jpriority Priority assigned for Regular 5

(M;PU) Average CPU Service Time (sec) exp (1.5)

Ne Average I/O File Read Count Constant (1)

Sk Average Read File Size (MB) Constant (1)

ScPuMem Average Size of Memory (MB) Uniform (0- 10)

G Capacity of Local Cache (GB) 40- 200

Cs Capacity of Remote Storage (GB) 1000

L Local Cache Capacity (users) 10-50

S Remote Storage Capacity (users) 400

P Overall Local Cache Hit Ratio 0-1

at each local storage can thus be summarized by the basic
expression, P, = f(Cp,Cs, Sr, NF, /\AIW). We make the
assumption that the interplay of these input parameters
impacts the local cache performance by predominantly
generating capacity misses.

The analysis of cache performance that we consider first
applies to application routines that have rigid affinities
between user requests and target files i.e. cases where
User; will always request File; with User, requesting Filey
etc. The criterion of rigid affinity to content is pertinent to
situations where each customer using the business com-
puting infrastructure accesses his own master data [11],
which he can view and edit. Thus, ignoring the impact
of conflict and compulsory misses on cache performance
trends and assuming uniform file sizes, Sr, for cached
content, then the cache hit ratio or the probability, Py,
of satisfying data requests in the local cache, follows the
relationship:

1 if SENFNsers < Cr.

PL - CL (1)
if SENEN, Cr.
SENENJsors I OFINFINUsers = CL

Assuming that the theoretical analysis applies to those
cases where the data request cycles have gone beyond
the point of start up misses, the model derivation shows
that the hit cache ratio remains at 100% before and upon
matching the storage capacity, C;. Whenever the applied
user load given by storage space requirements of the gen-
erated, SENFN{sers, €xceeds the storage capacity of the
local cache, Cj, the cache hits begin falling asymptotically
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toward zero. Conversely, the local cache capacity miss
ratio, My, is described by the relationship:

0 if SFNFNUsers <C
ML - CL (2)
1-— if SENEN, > Cr.
( SeNF NLIsers) FINFIN[]sers L
Next, we consider cache performance in scenarios
where users generate dispersed requests i.e. unrestricted
access is allowed to all the publicly available files that are
kept on the remote storage device of capacity, Cs.

Cache performance analysis of user requests for publicdata
Unrestricted data access patterns apply to publicly hosted
content, which many users will likely have an interest in
obtaining, whether from the public internet or in-house
data sources [11,12]. We make two assumptions for dis-
persed file requests: one that the master storage is at least
equal or greater to the local cache space i.e. Cs > Cj, and
the other that the time period for considering the cache
performance is sufficiently long for the users to cycle their
requests over the entire collection of files kept on the mas-
ter storage device, i.e. SENrNysers > Cs. Since the access
to all the content on the remote storage is unrestricted,
each of the N5 can thus request any of the files at mas-
ter storage device with equal chance so that the probability
of requesting one of the stored gs files becomes g‘“ LI
the start up cache misses are disregarded by taking into
account the gﬁ files that are already in the local cache
node, then the cache hit ratio, P;, which is equivalent to
the probability that a requested file can be found in the
cache node, is equal to % . Thus, regardless of the actual
number of user requests coming onto the IT infrastruc-
ture, the cache performance is given by the relationship:

(gz) ifCL<C5

1 if otherwise.

Py = 3)

Apart from the fact that load levels of input user
requests are irrelevant to cache performance, it also fol-
lows that for scenarios where user requests are uniformly
scattered over the remotely stored files, the trends for
local node cache miss ratios in such cases are given by the
expression:

C
1— (cﬁ) if C; < Cs

0 if otherwise.

My = (4)

The following section provides an introduction to the
setup for the experiments that were conducted to establish
the practical validity of the modelled scalability trends of
the cache hit rates derived for the two cases of data access
patterns considered above.
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Experimental facility for validations of cache
performance Trends

As shown in Figure 1, the practical setup for our exper-
iments employs four Virtual Machines: the User Load
Generator, Application Server, File Manager and Remote
Storage Manager VM, all of which comprise the software
elements for the experiments.

The Load Generator program initiates the operations
in the Application Server, File Manager and Remote Stor-
age VMs in readiness for the start of measurements
and results collection. As a preparatory step, an initial
start signal is sent by the generator to both the File
Manager and Remote Storage VMs so that the cache
optimisation algorithm and storage partitions are pro-
visioned with target files to be requested by users are
set up. After a delay of appropriate duration, a second
start signal is generated to initiate first user request,
Request;, which will be followed by a train of arrivals,
Request;y . . . Requesty, at the Application Server accord-
ing to the predefined arrival process rate, A4,,. The File
Manager VM responds to the initial start signal by set-
ting aside the required storage space in the local cache and
activating the algorithm selected for optimising cached
content.

In addition to retaining cached content according to the
selected optimisation criterion, the cache algorithm func-
tionality in the File Manager VM responds directly to the
data requests by compiling a record of the Request, Hit
and Miss events occurring in the local cache. The Remote
Storage VM ensures that permanent copies of all the file
objects to be requested by the users are kept on its storage
partition, ready to be copied across to the local cache
partition should any misses occur at the latter. Upon
the lapse of the predefined duration of the experimental
measurements, a stop signal is emitted by Load Genera-
tor to the Application Server, File Manager and Remote
Storage VMs.

The number of users, Nij.rs, that generate data requests
at runtime is varied from O to 250, and the user ses-
sions execute concurrently in the form of thread instances
spawned off from the invoked work process instance.
Thus, for each active user session, the runtime execution
is in the form a VM instance at the application server.
The consumptions of processor hardware resources (CPU
and memory), " Clpu and Scpumem, are according to the
requests generated by the application routine generated
inside the VM instance. The average number of input data
files, Nr, requested by each user routine, is fixed to 1,
with each file being 1000 KB in size and, the reserved
cache space on the storage node, Ci, is varied from 40
GB to 200 GB for the two cases for data request patterns.
The accessed files are indexed as database objects in the
MySQL backend database entries, and the file retrievals
into cache space are handled as block data transfers of
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the database table entries. The cached content is hosted
on a local Dell R515 node, whose hardware is made up
of an AMD 12-core 4170 HE, 2.1 GHz processor, 128 GB
Memory and 25 TB storage. The functional configura-
tion for Dell server is based on the Tier 2 settings so that
both the application’s CPU executions and the data access
services are colocated in the same machine. The inter-
arrival time, /\Al , for the data requests occurring inside
each cycle of user operations is assumed to follow the
exponential distribution with a mean of 2.5 seconds. The
mean service durations of computation operations when
interacting with cached files is set to 1.5 seconds also
following the exponential distribution, and the duration
of the experiments is 10 minutes. We base the parame-
ter values and the distribution patterns for service times

on the workload scenarios described in [11]. The run-
in period before the experiment begins recording results
data lasts for 2 minutes from the instant at which the
experimental run is launched. For each data point that
is presented by the graphs in the experimental scenar-
ios that were featured in our studies, the result value
was obtained from computing a running average of ten
output readings as shown in the screenshot in Figure 2.
Before the ten experimental runs for each result are con-
ducted, the input parameters are fed into both the File
Manager (which enforces the cache policies) and the User
Emulator (which generates requests for files). Reference
can be made to Table 1 for a complete list of the input
parameters that were used in setting up the practical
experiments.
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Definitions of scenarios for the experimental study

A simplification is made to Equations 1 - 4, developed in
2.1 and 2.2 so that the experimental analyses of the impact
of user runtime behavior on the local cache hits and miss
ratios can be carried out by expressing the local cache
and remote storage capacities in terms of the maximum
users that fill up the cache and master storage respectively.
Thus, the formula, L = G represents the maximum

SpNg’
number of users that can use cache storage before capacity

misses occur, and the equation, S = SFC]f,F, relates to the
maximum users whose data are kept on the remote stor-
age space. Figure 3 shows the experimental setup of the
scenarios based on the use of simplified input parame-
ters for user load levels, local cache and remote storage
capacities.

Therefore, in situations where user requests for the
experiments are defined according to each user having a
unique file set for exclusive access, L becomes relevant
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to the analysis of cache performance according to the
expression,

1 if N, Users = L
P = L 5
t if Nigsers > L. ©)
N Users

The cache performance analysis associated with
requests for private data is thus considered in terms of the
number of active users, Nij.rs, generating data requests
and the number of users, L, that fill up local cache capac-
ity. Similarly, when public data objects are requested
randomly from the list of shared data objects that are
kept in the remote storage, the respective sizes of the

local cache and remote storage affect cache performance
according to the equation,

L
ifL<S
P = (5) e (6)

1 if otherwise.

It is important to reiterate that the specific definitions
for the scenarios considered in the experimental stud-
ies take into account the fact that the levels of content
availability at storage nodes in the cloud are governed by
the interplay of the principal factors considered in the
derivations of cache hit ratios, which are the data request
patterns in terms of whether they specify private or shared
data, the amounts of storage space in both the cache and
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remote nodes, the applied user load according to vol-
umes of data requests and file sizes associated with each
request, and the efficacy of the storage management and
cache replacement policies in keeping content that closely
matches the needs of anticipated user requests. Hence,
we define scenarios for experimental investigations to
bring out the impact the respective factors to cache per-
formance by setting the key experimental parameters as
follows:

e Scenario 1 considers Cache Performance with User
Requests accessing Private Data

e Scenario 2 considers Cache Performance with User
Requests accessing Public Data

e Within each of the two primary scenarios, three
separate studies of cache performance are conducted
based on cache optimisation policies for Random,
Popularity and Age-based File Evictions.

e The applied user load, based on the number of users
and the average file sizes per request, is uniformly
increased to levels that are beyond the assigned cache
storage, Cr, and the resulting scalability patterns for
cache misses and hits are recorded for comparisons
with the theoretical ones.

Validations of cache performance trends for user
requests of private data

The arrival and service processes for the user requests
received at the local cache nodes server are assumed to
be Poisson, and in order to ensure a stable queue on the

storage node, the relationship, /\Al > Mclpu , must hold for
\vp

the respective magnitudes of the mean arrival and service
times. Reference can be made to the list of input param-
eters shown in Table 1 for the actual values of arrival
and service intervals. To investigate the sensitivity of the
local cache ratios to user load, the local cache and remote
storage capacities are assigned fixed values of L = 50,
and S = 400 respectively. The applied user load param-
eter, Nijers, is increased uniformly from 10 to 250 with
each active user accessing his own set of data whenever
requests are sent to the local cache.

Random eviction criterion

The pseudocode representing key functional features
of the cache optimisation program is presented in
Algorithm 1. It is important to point out that for the
purpose of providing a complete summary of the experi-
mental operations, Algorithm 1 also includes the primary
functionalities of the Load Generator and Storage Man-
ager programs. Once all start up misses have been dealt
with and the cache is space is filled up, the Random
Cache Eviction algorithm responds to any further misses
by choosing the victim files in the local cache that are
marked for deletion. The victim files are then replaced
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with the requested content, which is brought from the

remote storage in order to satisfy the cache miss event.

The durations of inter-arrival and service times of the user

requests follow the exponential distribution with mean

values of ; ! —25and ! =1.5seconds respectively.
App wepu

The results in Figure 4 showing both the measure-
ments and theoretical trends confirm a decrease in the
cache miss ratio, P;, as the applied user load, Niers, is
increased. Even more significant from the graphs is the
observation that the practical results track the modelled
trends very closely, with the cache performance levels of
the measurement results being higher than the theoretical
ones.

An important factor leading to better performance for
the measurement results is that the analytical models are
based on the worst-case situations, in which the consider-
ation of excess requests within each average cycle of user
requests by Niers does not take into account the possi-
bility that some of the requests generated in the practical
scenarios would be accessing data already in the cache.
Hence because of the inability of the performance analy-
sis to quantify exactly the extent of improvement in cache
hits caused by the repeat requests that can occur within
the {Nyjers — L} excess requests inside each average load
cycle, there are lower cache hit ratios for the theoretical
trends.

The use of the Random Eviction criterion in selection
of the files for deletion in the cache is another factor con-
tributing to the better cache performance achieved in the
practical measurements. Since the identities of requested
files is determined by the Load Generator according to
the probability, ( Nulsm ), and that of the files to be deleted

according to the probability, (i), identical strategies are
thus used for the respective actions of file requests and
cache optimisation. Having such alignment in the Load
Generator and Caching Algorithm functional patterns
therefore helps improve the cache hit ratios obtained from
practical measurements. Despite the consistently lower
performance levels for the modelled cache hit ratios, the
comparisons in Figure 4 nonetheless show that the the-
oretical trends can be a reliable indicator of achievable
cache performance in practice.

Least frequently used criterion

The LFU Algorithm is structurally similar to the Random
Eviction criterion, the important difference as shown in
the program module below, being that update and sort
functions on the popularity list are performed according
to the frequencies of the requests for the cached files.
The lowest ranked file on the list is marked for deletion
and its place in the cache is taken by the newly requested
content brought into the local cache from the remote
storage.
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Algorithm 1 : Cache Eviction Simulator (Nyjsers, L, S)

1: Measurement.start < true

Beginning program execution

2: ((|[LocalCache| < L) A (|RemoteStore| <— S)) | (LocalCache C RemoteStore)

Setting the cardinalities for, Local Cache and Remote Storage

3: forj < 1to Nijsers do
4 StorageFilel j| .Popularity < default

Initialising file popularity parameters to default value.

5. end for
6: (L < Li—1) + tw) | (Pr(tw) < exp(Aapp))
Setting the waiting time for next user request, ¢;
7. i < {0 + %rand(Nusers)}
Fixing User ID associated with next request, i
8: Listen.Request| i] < StorageFilel i] .[ Content]
Setting the affinity between User ID and Target File ID

Execution of File Manager upon resolving startup misses

9: while ((—Measurement.stop) A (CacheMiss.EventType—Compulsory)) do

10: if (Request[ i] .Content € LocalCache) then

11: LocalCacheRequest.Total.Update
12: LocalCacheHit. Total.Update
13: else
14: LocalCacheRequest. Total.Update
15: LocalCacheMiss. Total.Update
16: m < {0+ %rand(L)}
Local Cache position ID, m, marked for Random Deletion.
17: LocalCache.Position| m] < Request| i] .Content
18: end if

19: (CPUTime.Request[ i] < tcpy) | (Pr(tcpu) < exp(ucpu))

Setting the service time for current request
20: Request[ i] .execute
21: return Request]| i] .Result

22: end while

In order to perform the comparisons for cache per-
formance trends, two graphs are used in the validations:
one based on measurement results and the other on the
derived theoretical trends. The trends for the analytical
characterisations are based on capacity misses occurring
on the local cache space assuming that fully-associative
mapping policies are enforced i.e. cached objects brought
in from external nodes can reside anywhere within the
entire cache storage area, L, that is set aside for local
caching service. Apart from compulsory misses, the
impact of conflict misses on the cache performance is also

disregarded in the analysis, the assumption being that the
incidence of predictive errors of cache policies (i.e. when-
ever the algorithms evict content that should have been
retained) will have a negligibly low impact on the overall
cache ratio, Pj.

1: if (Request[i] .| Content) € LocalCache) then

2 LocalCacheRequest.Total.Update

3: LocalCacheHit. Total.Update

4 Popularity.List.Update < Request[ i] .Content.
5: else
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Figure 4 Cache performance vs. applied load with random file evictions for private data.

LocalCacheRequest. Total.Update
LocalCacheMiss. Total.Update
Popularity.List.Update < Request| i] .Content.
Popularity.Rank.Consult
10: m < Lowest.Rank.CachePosition.Get
Local Cache Position, m, marked for deletion
according to LFU criterion.
11: LocalCache.Position| m] < Request| i] .Content
12: end if

As in Figure 4, the overall cache hit ratio trend in
Figure 5 shows a decrease according to the relation-
ship, P1 = ( le;erx) whenever the data requirements
of user requests exceed the capacity of the local cache
space.

Measurements for scenarios based on the popularity of
cached data produce lower cache hits than in the case

of optimisation techniques that use the Random Eviction
policy. As can be seen in Figure 5, the practical values
of cache hit ratios are much nearer to the theoretical
ones than those shown in Figure 4. The reduced level
of cache performance using the popularity based crite-
ria suggests that the LFU algorithm is less efficient than
the random deletions of cached files in response to cache
misses. The performance knock resulting from the LFU
algorithm is likely accounted for by the fact that mecha-
nisms, which rank cached files by virtue of the frequencies
of previous requests are not employing the relevant strat-
egy given that the identities of requested files are in fact
specified by the Load Generator at random, based on
uniform probability of occurrence of magnitude, ( Nulsm)'
Hence, the LFU approach for ranking cached content only
produces nonexistent patterns of file popularity, which in
turn, results in reductions of cache hit events.



Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1

http://www.journalofcloudcomputing.com/content/2/1/1

Page 11 of 24

Validations of Cache Performance
Characterisations for LFU
Replacement Policy

=4+-Hit Ratio (Measurements)
-@-Hit Ratio (Theoretical)

1.2
1
)
opi
-
s
gg 0.8
-
o p-
am
2
o 0.6
)
o
p—
]
8
0.4
|
0.2
0 — T
e eoNeoNeNoNeoNeNoNeNeNe)
— AN M0 O -0 O
— -
Applied Load -
Figure 5 Cache performance vs. applied load with LFU cache optimisation for private data.

S O O O O OO0 O OO0 OO OO
NN F 10 O~ O =M 10
o o = H = = = NN NN AN
Number of Users

Least recently used criterion

The LRU algorithm is based on rating cached files accord-
ing to age so that file objects that have been kept in the
local cache the longest are assigned the lowest indices of
usefulness with respect to data needs of future requests.
The oldest files are thus selected for deletion whenever
cache miss events occur and the victim files are replaced
by the newly requested content, which is transferred from
the master storage.

The trends shown in Figure 6 for the comparisons of
both the theoretical and measurement results confirm
that there is a drop in local cache ratio performance as
the load is increased beyond the local cache capacity. The
results for the LRU algorithm are almost identical to those
associated with the LFU criterion presented in Figure 5.

As load levels exceed the local capacity cache correspond-
ing to L files, the cache hit ratios track the modelled trends
very closely according to the analytical formula, P, =
(N )

As in the case of the LRU, the lower cache hit ratio
performance is probably an outcome of the mismatch
between the cache optimisation strategy and the patterns
associated with data requests coming onto the cache.
The age-based approach of quantifying the likelihood of
experiencing repeat requests in the future for cached files
is not a useful optimisation technique given the random
manner in which requested files are specified by users.
Thus, any apparent difference in the ages of stored files
that may be computed by the LRU provides no predictive
value on the likely patterns of future file requests, which
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Figure 6 Cache performance vs. applied load with LRU cache optimisation for private data.
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according to Algorithm 1, are stochastic and follow a dis-
crete uniform distribution with probability, ( Nul ), for
each request action.

Summary of validation experiments for private data
requests

The practical measurements that were conducted using
the three cache optimisation algorithms produced results
that were closely matched to the modelled theoretical
trends. In terms of the actual cache hit ratios, the use
of the Random Cache Eviction criterion resulted in bet-
ter cache performance over the age and popularity-based
LRU and LFU policies respectively. The inefficiencies in
the LRU and LFU Cache Eviction criteria are due to the
non-existence of age and popularity-based behavioural

patterns in the requests for cached content. Since each of
the public data objects, like private content, are requested
with identical probability, the next set of validations of
cache performance models for the requests for public
data are therefore carried out on the basis that our initial
results show superiority of Random Eviction policy over
LRU and LFU by considering the scenarios involving use
of the Random Cache Eviction policy only.

Validations of cache performance trends for user
requests of public data

In conducting the practical measurements, we simplify
the cache performance models for public data requests
developed in Subsection “Cache performance analysis of
user requests for public data” by expressing the storage



Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1

http://www.journalofcloudcomputing.com/content/2/1/1

capacities of the local cache and external storage in terms
of L and S, which are the respective numbers of active
user requests that can fill up the storage entities. Con-
tent access patterns to the S publicly available files on the
remote storage are thus governed by the discrete uniform
distribution with the probability, é, applying to each file
request. Consequently, when the requested data objects
can be specified randomly from the list of shared data
objects that are kept in the remote storage, the respec-
tive sizes of the local cache and remote storage capacities
impact on cache performance according to Equation 3.

To ensure that user requests cycle through all the S
files in the remote storage device, the duration of the
experiment runs should be sufficient to cover at least S
unique file requests from active users. If the assumption
is made that no repeat requests are generated in each
request cycle, the minimum time period for the experi-
ment should equal i;\ . Hence, the duration of the

Hepu—rApp
experiments for publicly hosted content can be expressed
by the equation, Tg,, = uchjzw—S)»App’ where M > 1. Figure 7
shows the setup for the cache performance studies of
accesses generated in M request cycles.

Based on the setup shown in Figure 7, the derivation
and practical evaluations of cache performance emanat-
ing from scattered requests take into account that of the
S possible files that can be specified by each user request
with equal probability, é, there are L files already in the
cache if compulsory misses are ignored. Hence, assum-
ing that the M request cycles are sufficient to produce a
record of data accesses to all the S files, the probability that
a requested data object is found inside the local cache is
given by equation,

S L
P(L)|(TEx x .
OITep >, 7D (S) )

As an input parameter the practical validation of cache
performance trends, the applied load based on Ny is
increased from 10 to 250 in uniform incremental steps
as shown in Figure 8. Since the LRU and LFU algorithms
proved ineffective in tracking file request patterns that are
associated with the File Generator, our use of the cache
optimisation techniques in the second practical study is
confined to the technique of Random Eviction of least use-
ful data in the cache. Figure 8 also presents three cases
of modelled cache performance based on the ratio, é,
which were chosen for comparison. The theoretical per-
formance trends featured in the validations are based on
the predefined hit ratios, é =0.25, é =0.5, and é =0.75.

The results from the three scenarios confirm that in the
event of data requests predominantly going to publicly
hosted content, which all active users are free to access
the overall cache performance is independent of load
in accord with the theoretical approximation. Another
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important observation from the graphs in Figure 8 is that
for the modelled cache performances of 25 and 50%, the
theoretical and measurement results are very similar, with
the practical results marginally better than the theoreti-
cal estimates in some places for cache hit ratio of 25%.
As the size of the local cache is increased to 75% of the
remote storage, the practical performance also goes even
though it stays within the 70% range. We attribute the
lower values of cache hit ratios in the measurements at
high cache capacity to a further need for calibrating the
number of user request cycles, M, that governs the dura-
tion for the measurements to capture the events so that
the impact data of the requests to all S files is accurately
reflected by practical observations. Despite the discrep-
ancies in the modelled and practical results shown in
the graphs, particularly for higher values of hit ratios,
the theoretical approximations of cache performance (in
terms the respective sizes of local cache and remote stor-
age capacities) is a reliable guide of cache performance
for file requests that are spread across publicly available
content.

Section “Performance characterisations for concurrent
accesses to private and public content” follows the the-
oretical derivations of cache performance patterns with
scenarios where mixed requests are generated simultane-
ously by users to access both public and private content.

Performance characterisations for concurrent
accesses to private and public content

The analysis of simultaneous requests patterns to public
and private data considers two cases of cache space allo-
cation, one which features separate cache partitions for
private and public data and the other involving the use
of a common cache partition that is shared by both types
of content. In both cases of cache space assignment, the
sizes of input parameters used in the performance anal-
ysis remain the same, i.e. Nyjsrs is uniformly varied from
10 to 250, while L is equal to 50, and the remote storage
space for public data, S, is 200. The list of input and output
parameters used in the derivations of cache performance
models that are associated with the simultaneous requests
of private and public is provided in Table 2.

Data access patterns for content on separate caches

We define separate cache partitions, L; and Ly, for private
and public data respectively on the local cache storage.
The cache partitions are both equal to 50 and the respec-
tive probabilities of each active user requesting private and
public data are P; and P; i.e. a generated data request
either specifies personal user or publicly available con-
tent, which means P; + P = 1. Figure 9 shows the setup
involving data requests going to separately allocated cache
spaces.
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Figure 7 Setup for validations of cache performance trends for dispersed file accesses.

We recall that the local cache hit performance, Prisz1,  cached data, the cache hit ratio for private data accesses

on the cache partition assigned for private user content, = becomes:
Ly, is given by the expression:

p 1 ifNL[sers =L 8) P if]\[L[sers <L
Hitll = Ly ifNUsers > L. ( PHitPrivate = Pl . (10)
Nigsers if Nussers > Li.
Nissers
Similarly, the local cache performance, P2, on the
cache space that is set aside for hosting public content is
given by the expression, The cache hit ratio associated with requests to public
L data is given by equation,
( ) ifLy < Sy
Phitz = {1 \$2 &)
1 if otherwise. DL
( ; 2) if Ly < Sp
Hence, taking into account the preference weights Phitpupiic = 2 a1

associated with user request patterns to both sets of 1 if otherwise.
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Figure 8 Comparisons of cache performance for dispersed access of content.

The overall cache hit ratio for data accesses over the
both cache partitions is then given by the expression,

PyLy Table 2 Parameters for concurrent requests of private and
Py + ( S ) if Nygsers < L1 public data
P = 2 (12)  Parameter Description
P Ly PyLy .
( ) + if Nyjgers > L1. P, Probability of Requesting Private Data
Nisers ) . . .
. . . Py Probability of Requesting Public Data

The overall trends for the cache hit and miss ratios asso- . Capacity of Cache Partition for Private Data (users)

. . apacity or Lache rFartition 1or Frivate Data (users
ciated with the requests to both sets of hosted data are 1 P Ay - .
shown in Figures 10 and 11 respectively. Ly Capacity of Cache Partition for Public Data (users)

As shown by both Figures 10 and 11, the Private Access 51 Capacity Remote Storage Partition for Private Data (users)
Ratios i.e. the preference weights associated with requests S, Capacity Remote Storage Partition for Public Data (users)
to private data, Py, are varied in uniform steps of 0.1 from  p, . Cache Ratio from the requests of Private Data
0 to 1 Conversely, the access weights for public data, P», Priipubic Cache Ratio from the requests of Private Data
vary in reverse order from 1 to O for the featured scenar- o

P Overall Hit Ratio on the Local Cache

ios in the graphs, given that the request events to public



Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1

http://www.journalofcloudcomputing.com/content/2/1/1

Page 16 of 24

Request

Request
Cycle 2

Cycle 1

s

Request
Cycle M

Raq; llll’“‘qn qullll’R

£

/

") ¢
!

N Users

Figure 9 Access to public and private content on separate cache partitions.
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and private content are mutually exclusive. Hence, when
Private Access Ratio is 0, the cache hit and miss trends
solely emanate from requests that are directed at public
content. It also follows that when Private Access Ratio is
equal to 1, the cache performance complete derives from
the requests for private user content. Between the two
extremes as P is raised gradually, the cache performance
patterns associated with private data requests become
more dominant.

It can be deduced from the equation of the overall
cache hit ratio, Py, that the assignment of separate cache
partitions provides the ability to isolate and individually
control the respective cache performance trends associ-
ated with private and public data requests. Thus, within
the boundary fixed by Pj, there is the ability in the spilt
cache configuration to tune L; and fix the cut-off point,

at which cache performance begins to fall exponentially
with increase in N5 for requests of private data. Within
the bounds of P, the cache capacity, Ly, can similarly be
adjusted with respect to Sy to determine the average cache
performance associated with the requests of public data.
The trends for overall cache misses, My, shown in
Figure 11 can have serious QoS implications, should there
be considerable delays associated with data retrievals from
external source storage whenever requested content is not
found in the local cache. If the respective data access
times that are experienced in the event of cache hits
are also taken in account, the tuning of cache perfor-
mance can be carried out to deliver output performance
that keeps average storage access within SLA thresholds.
With the allocation of split caches providing the flexi-
bility of enabling individual adjustments of cache sizes,
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Modelled Cache Hit Trends for
Combined Data Accesses of Public
and Private Data on Separate
Cache Partitions
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performance can thus be managed in a way that discrimi-
nates between different sets of content according to their
desired QoS ratings.

Data access patterns for content on a shared cache
partition

We begin the analysis of cache performance trends for
mixed data access patterns on a shared cache partition
by assigning a value of 50 to the common cache space, L,
which is made up of L; and Lj as the component caches
for holding the private and public data respectively. The
preference weights associated with the data request pat-
terns to L; and Ly are P; and P,. The remote storage
capacity for Sy is set to 200 and the parameter, Niers,
for number of active users that generate data requests
increases uniformly from 0 to 250. Figure 12 shows the

basic setup for user requests accessing data on a shared
cache partition.

Given that the total cache space, L, is divided up
between public and data requests, we can express the
amount of space allocated to L; as follows:

PN, if N, <L
Ll _ 14N Users . Users = (13)
PL if Nijers > L.

Thus, the cache space for private data is a subset of
the data requested by active users according to the pro-
portional factor which is equivalent to probability, Py,
if the number of users does not exceed L. Whenever
Nisers becomes greater than L, the average space occu-
pied by public data is P1L. Similarly, the amount of cache
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Modelled Cache Miss Trends for
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Figure 11 Cache miss trends: public and private content on separate cache partitions.

space, Ly, that is occupied by public data is given by the
expression:

(L - PlNL[sers)
Pyl

if N, Users = L

Ly, = ]
if Nifsers > L.

(14)

Since Sy is greater than L, the cumulative requests for
public content will inevitably fill all space (equivalent
to L — P1Nyjers) that is left by public data requests if
the number of active users remains lower than L. Once
Nisers goes beyond the cache capacity, L, the storage
space is shared proportionally according to the ratios P;
and P.

The expression for the cache performance associated
with private data requests becomes,

Py if N Users = L
Pritprivate = P%L . (15)
if Nifsers > L.
N Users

For the data accesses to public content the cache trends
are given by the expression,

(L - PINL[sers)PZ

52 if N, Users = L

Pritpublic = P
2

S, if Nigsers > L.

(16)
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From the constituent cache performance trends of the
public and private data requests, the overall cache hit ratio
is therefore given by the expression,

(L - PINL[sers)PZ

P+ ifZVI,[sers <L
S2
Pr=vpp opy
1 2 ifNLIsers > L.
N Users 52

17)

Figure 13 shows the overall cache hit trends on a com-
mon cache partition as the access weight, P;, that is
assigned for private data is uniformly increased from
Otol.

As in the case of separate cache partitions, the cache
hit ratios trends for the scenario, P; = 0, correspond
to data requests that are going to completely public con-
tent, while that for P; = 1, applies solely to accesses
to private content. Between these two extremes, the
cache hit ratios fall more steeply compared to the corre-
sponding scenarios considered for split caches as shown
in Figure 12. The rate of performance drops as P; is
raised from 0.1 to 0.9 is due to limited space on L,
which is divided up between the two sets of cached
content.

The impact of having a shared cache can be further
emphasised by Figure 14, which shows the corresponding
cache miss ratios as P; varies between 0 and 1. Compar-
isons with Figure 10, which has the family of cache miss
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Modelled Cache Hit Trends for
Combined Data Accesses of Public
and Private Data on a Shared Cache
Partition
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Figure 13 Cache hit trends: public and private content on a shared cache partition.

ratio trends for corresponding scenarios of Pj, reveal that
with Nysers reaching the value of 250, the cache miss
ratios associated with the shared cache partition range
between 75 and 90% , while those for split cache con-
figuration are between 75 and 80%. The impact of the
higher cache misses on overall performance is ampli-
fied if the data access operations that are associated with
content transfers from external storage are subject to
huge delays.

The equations for cache performance trends of private
and public data requests are subject to the size of the
available space, L, in the common cache. As such it is
not possible to individually change the storage allocations
for given sets of content without affecting other cached
datasets. Hence, even though the shared cache configura-
tion is simpler to implement and is less computationally
expensive because of having all the cached datasets on a

single global list for cache optimisation, the design does
not permit flexible allocation of cache space that would
grade various sets of content according their assigned QoS
categories.

Discussion

We began the discussion by highlighting the need for
having capabilities for scalable solutions in storage cloud
domains so that infrastructure-based responses can be
achieved for maintaining performance within SLA thresh-
olds in the event of such challenges as increases in
user demand or, interruptions to the operating states
of the service entities making up the cloud resource
fabric. We went on to argue that for SLA-compliant
services to be provided consistently over a wide range
of load levels, an in-depth understanding of the per-
formance trends associated with storage cache resource
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Figure 14 Cache miss trends: public and private content on a shared cache partition.
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entities in the cloud infrastructure, is an important
foundation on which to base QoS-ready solutions. It was
further pointed out that from the performance char-
acterisations of storage cache entities, storage resource
management decisions on infrastructure sizing can be
made, which are relevant to important stages of resource
deployment such as initial roll-outs, short-term expan-
sions to deal with overflow requests, and permanent
upgrades.

Theoretical models were proposed for estimating per-
formance trends occurring at individual cache entities as
the levels of user demand for content increase. In order
to validate the derived theoretical trends, three suites
of experiments (based on Random, LFU and LRU evic-
tion policies) were defined for studying the sensitivity
of cache performance to applied loads. A noteworthy

observation from the results was that whenever the data
request patterns are characterised by rigid affinity to con-
tent (i.e. each user accessing only its own data) and with
the requested data objects being of comparable popularity,
the decay trends for the measured cache hits exhibit high
fidelity to the theoretical characterisations. Additionally,
the Random Cache replacement algorithm provides better
results than the LFU and LRU algorithms, which although
still conforming to theoretical estimates, have lower levels
of cache hit ratio performance. Thus, the LFU algorithm
is more effective if there are distinct categories of data
popularity from the users generating the requests. Simi-
larly, the LRU algorithm performs better for cases where
the usefulness of cached content is indexed by age, and
thus the algorithm is not equipped deal with the even
scatter of requests over a wide range of file objects.



Sithole et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:1

http://www.journalofcloudcomputing.com/content/2/1/1

Overall, the results for private data requests demon-
strate the potential utility of the models for estimating
the cache storage needs associated with computing sce-
narios involving enterprise application routines such as
Sales and Distribution (SD), Assembly-to-Order (ATO)
or Employee Self-Service Portal (EP-ESS), whereby user
requests work with their own sets of customer account
data [11].

Another important observation from the results was
the confirmation of the validity of trends for the second
set of cache performance models that is associated with
data requests for wide selections of files [12], where there
is loose coupling between users and public content. The
cache performance levels in such cases characterised by
dispersed requests are independent of the levels of input
user load i.e. the local cache hit ratio can be expressed
as a function of the respective ratios of the local cache
and remote storage capacities, P; = é The accuracy of
performance measurements for scattered file requests is
based on setting the durations of the observation time
window for the experiments long enough to cover data
requests to the all the S files kept in the remote storage.
Additionally, the measurement results of the three cases
of predefined cache performance (corresponding to Py =
0.25, 0.50 and 0.75) show that the actual values of cache
hit ratios obtained from practical investigations are close
to the theoretical estimates. However performance from
results is slightly lower than the theoretical one when the
size of the local cache is increased to 0.758S. It therefore has
to be emphasised that the potential usefulness of second
set of characterisations in predicting cache performance
trends in scenarios where users interact with public con-
tent (to which there is unrestricted access) is subject to
durations of the observation time window.

The cache model extensions for the characterisations
of concurrent requests to private and public data were
developed in Sections “Validations of cache performance
trends for user requests of public data” and “Performance
characterisations for concurrent accesses to private and
public content”, the modelled trends derived for mixed
requests apply to scenarios of shared and separate storage
cache partitions holding the cached content.

Related research
A number of initiatives are being pursued towards matur-
ing performance management capabilities in cloud com-
puting infrastructures so that scalable, secure and reliable
IT services can be delivered to computing environments,
most of which run business-critical applications. Below,
we briefly highlight some of the work that is under-
way to develop SLA-based strategies for supporting firm
guarantees of performance delivery.

In [13], estimates of output performance based on the
levels of applied user loads and the mean service rates
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at the resource entities are used and, from applying the
Laplace Stieltjes Transform, the overall response times at
each service node in the cloud infrastructure are calcu-
lated, with SLA mappings being derived from probability
distributions of the calculated response service times. The
study in [14] also features use of input parameters such
as the number of service requests from the consumers
and the service capacities offered by deployed resource
entities in developing SLA indices and, a trust model is
then obtained for performing predictive estimates of the
levels of resource and service availability in the cloud
infrastructure. The strategy for SLA enforcement that
is presented in [15] categorises workload instances that
are despatched to server entities into four basic classes
of resource consumption of the processor, memory and
disk entities, and from taking into account the service
constraints in the cloud infrastructure, the optimisation
function determines the number of VM instances of each
resource consumption class, which can be hosted by the
provider. The work that is presented in [16] features
fault tolerant and redundancy techniques for identifying
and filtering out compromised resource elements in the
infrastructure in order to ensure service availability and
continuity in the cloud. Apart from applying redundancy
strategies on the matrix-mapped resource collections, the
SLA enforcement in [16] also employs predefined perfor-
mance constraints on the constituent resource entities in
the cloud together with integer linear programming meth-
ods that eliminate faulty and malicious elements with the
greatest likelihood of compromising service quality.

By making high-level considerations regarding the over-
all resource capabilities in developing strategies for SLA
guarantees, the approaches described above thus treat the
runtime operations of CPU execution, memory and stor-
age data access as a single composite service functionality,
which differs from our work, whose focus is exclusively on
establishing internal cache performance trends pertaining
to storage access.

The studies in [17-19] have a similar focus to our
approach of isolating subsystems of server hardware in
order to characterise their resource consumption patterns
for SLA and QoS support, the difference being that the
strategies presented in all the three contributions consider
CPU and memory utilisations associated with processor-
bound workloads. Specifically, the strategy in [17] aims to
guarantee CPU QoS delivery by overcoming the common
problem of runtime interference effects that usually arises
when running multiple instances of applications that are
derived from virtualisation technologies. The interfer-
ences between the active VM application instances are
minimised through the control of the working set sizes of
allocated memory pages, thereby ensuring predictability
of memory fetch times, CPU utilisations and ultimately,
processor QoS support. In [18], the standardised metric,
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EC2 Compute Unit (ECU), developed by Amazon is used
for rating available computing power on various CPU
hardware architectures. Based on the ECU metric, thresh-
olds margins can be defined for identifying the resource
utilisation levels, at which SLA violations are approached
and the reallocation of the CPU resources can be initi-
ated to protect SLA contracts. The framework presented
in [19] features a dynamic SLA template that is designed
to deal with changing user requirements by mapping con-
sumer requirements to existing capabilities in the cloud
infrastructure, with the focus also being on the allocation
of processor cores as the primary resource entities of user
interest.

In a related contribution on data caching mechanisms
featured in [20], models have been developed for cache
hit performance, with emphasis however being on the
performance of multilevel cache configurations based
on hierarchical and cooperative models for data sharing
across distributed environments. Another endeavour on
developing caching solutions for improve data availability
is in the form of the Tuxedo caching framework presented
in [21], which is based on the use of protocols to enhance
traditional CDN and local caching strategies and thereby
ensure that user requests for both personalised and pub-
lic content are fulfilled incurring minimum latency. While
the objectives behind Tuxedo are very similar to the moti-
vations for our work particularly as considered in Section
“Performance characterisations for concurrent accesses to
private and public content’, the approach taken in the for-
mer approach is different from ours in that the emphasis
of Tuxedo is on an architecture-based solution as opposed
to the quantitative analyses for cache performance that we
consider in this paper.

Future directions

It has been highlighted that the relative inadequacies of
LRU and LFU cache algorithms in the scenarios that were
featured in our studies, stem from the inherent bias of the
cache optimisation logic to index the usefulness of cached
content according to age and popularity respectively. It is
therefore necessary to build within our cache algorithms
the ability to capture and respond to the complexity in
the behaviours of user requests. Hence, one strand of
further work will proceed in the direction of establish-
ing and characterising the relevant dynamics affecting
the likelihood of repeat requests of cached content based
on both popularity and passage of time. A significant
part of proposed investigations on this aspect will con-
sider developing strategies for breaking down the cached
content into principal categories of popularity (such as
High, Moderate and Low popularity) and building time
profiles for the request events so that the decay of con-
tent popularity is defined as a function of time. The
proposed extension will be a further step in the study
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of the heterogeneity of data access patterns, which in
our current models involves two broad classes of data
requests; private and public content requests. From the
results of this study, we intend to calibrate the cache
replacement algorithms on the basis of hybrid criteria
that employ adjustable time windows for rating content
value.

The allocation of storage cache space for accessed data
in our initial studies was simplified through the choice
of uniform file sizes. In the next phase of the study,
we will therefore also investigate approaches, by which
cached content is classified according file sizes. In work-
ing towards the overall estimates of the required cache
capacity, it will be important to investigate how to charac-
terise patterns of the variability of the range of all file sizes
grouped together within each category.

Another dimension worth exploring in the future work
is employing the utilisation of the strategy proposed in
[22] to harness the cloud infrastructure as a data gather-
ing and dissemination engine to achieve ready availability
of context information in supporting informed caching
decisions. The information collection and dissemination
technique considered in [22] is predicated on the idea
that context data exhibits predominantly temporal trends.
Hence, cache optimisation mechanisms (most likely in
the form of enhanced versions of the LRU policy) can be
developed for characterising the time-related properties
of cached items in such a way that their values are indexed
and, the eviction and retention of content can then fol-
low formal criteria. An additional aspect of scoring the
cached files would determine how to categorise the rates
of expiration of cached objects based on the frequency of
modifications to original files. Typically, the public con-
tent which becomes stale more quickly would be based
on volatile updates such as live sports news and business
feeds.

As has been highlighted in Section “Experimental facil-
ity for validations of cache performance Trends’, our
experimental scenarios employ the Tier 2 configura-
tion i.e. application executions and data fetch opera-
tions are conducted on the same physical server. In the
next phase, part of the focus will involve deployments
based on the Tier 3 setting, whose configuration is such
that application routines and data transfer operations
are handled in server entities. Based on the outcome of
the experiments conducted so far, we consider network
delays that are associated with the transfers of requested
data to be the most likely factor that can impact the
accuracy of the future experiments. Hence, an impor-
tant aspect of the work on analysing cache performance
in Tier 3 server settings will involve characterisations
of the network delays so that the time windows for
the measurement epochs are properly calibrated accord-
ing to prevailing conditions on the data transfer paths
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such as available bandwidth, propagation and congestion
delays. And since our current theoretical models basi-
cally apply to standalone cache configurations, the Tier 3
scenarios can also be considered in the context of more
complex caching environments based on redundant and
hybrid physical deployments. Thus, the follow up work
will study of the joint use of network management and
replica location services on our infrastructure-monitoring
framework in order to characterise service performance
profiles associated with wide-area data accesses in
cloud environments.
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