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Abstract

Virtualization and broadband Internet connections enabled what is known today under the term cloud. Benefits like
scalability and cost reduction by pay per use agreements are accompanied by potential harm to the users data. Since
existing cloud solutions can be considered synonymous with unknown locations and potentially hostile environments
security protection objectives can not be guaranteed. Motivated by cloud’s potential we propose a way to get rid of
this drawback. We present -Cloud, a personal secure cloud, that enables users to benefit from cloud computing and
retain data sovereignty by federating the users own resources. More precisely we present a cloud resource manager
that is able to keep control on the devices forming the user’s w-Cloud as well as the services running on them.
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Introduction

Catchwords like scalability, on demand self service, pay
per use, availability everywhere and any time describe an
even bigger catchword: cloud computing. Cloud comput-
ing has evolved from technologies like utility and grid
computing or the Internet of services. The progress in
the area of virtualization and the availability of broadband
Internet connections even for average consumers enabled
cloud computing. It allows the outsourcing of comput-
ing and storage and involves the renting of virtualized
hardware as well as of software running on it.

The cloud computing paradigm focuses on offering ser-
vices and differentiates between three service levels [1]: As
a foundation, the Infrastructure as a Service (IaaS) layer
offers pure virtualized hardware like computing, network
and storage. On top of this, the Platform as a Service
layer (PaaS) provides a development platform for software
which can then be utilised as Software as a Service (SaaS).
Orthogonally to these service layers, four types of clouds
are defined based on their consumer groups. The type
mostly referred to when talking about clouds is the pub-
lic cloud. Users of public clouds share the same resources
under control of a cloud provider. In contrast, the users of
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private clouds are provided with resources that are main-
tained by themselves or at least for them alone. Hybrid
clouds are a combination of public and private clouds
while community clouds are a combination of several pri-
vate clouds. Furthermore, we define federated clouds in
contrast to other work such as [2] not only as synonymous
to hybrid clouds but as a special mixture of hybrid and
community clouds. To be more precise, a federated cloud
is formed by an individual combination of public and pri-
vate cloud resources as defined by an arbitrary participant
of a community cloud.

With the outsourcing comes the cost reduction as it is
no longer necessary to run data centres that are dimen-
sioned for maximum peak loads and that run most of the
time underutilized. However, these benefits are accompa-
nied by a severe drawback that unsettles companies and
prevents them from using cloud solutions: the decrease
of data control. Data once outsourced is exposed to loss,
abuse and manipulation. Cloud users are not able to deter-
mine where their data is located and who has access to
it. The three security protection objectives availability,
integrity and confidentiality are endangered in cloud envi-
ronments. This is where our approach of a personal secure
cloud sets.

The 7-Cloud approach
The FlexCloud research group [3] aims to enable users to
outsource their data and benefit from cloud computing
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without losing data control. This is achieved by dividing
the used resources within a federated cloud into trust-
worthy and non-trustworthy ones. The devices under
complete control of the user are per definition trust-
worthy whereas foreign resources are assumed to be
non-trustworthy until further classification. This personal
secure cloud, or w-Cloud is controlled by the so called
m-Box, a security gateway that manages the separation of
sensitive from public data. The former is stored prefer-
ably on trustworthy resources although it might be out-
sourced if necessary. An automatic encryption beforehand
ensures data protection. Public data can be outsourced
unencrypted. While this approach ensures integrity and
confidentiality of important data the usage of information
dispersal mechanisms ensures availability as well. See [4]
for further details regarding the implementation of this
feature. Similar mechanisms apply for the distribution of
services. So services processing critical data should be
bound to trusted resources only.

Thus, the 7-Cloud’s major objective is to put the user
in a position to externalize his IT-infrastructure without
losing the control over his data [5]. Therefore we form
the w-Cloud consisting of all resources, services and data
under the complete control of the user. The user is able to
adjust his 7-Cloud to his actual demands by secure inclu-
sion of foreign resources. In doing so, data flow as well as
service execution has to be controlled. Cloud setup and
control, data flow as well as service distribution are regu-
lated by the w-Box. The 7-Box is composed of four main
components, as depicted in Figure 1: (1) the Cockpit, (2)
the Service Controller, (3) the Data Controller and (4) the
Resource Manager.

The Cockpit provides the user interface. Although we
are aiming to include as much intelligence in our 7-Box as
possible, to disburden the user from cumbersome admin-
istration tasks, it would be exaggerated to claim that the
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w-Cloud is able to maintain itself. In order to prevent
the user from becoming the weakest link in the secu-
rity chain, the cockpit has to put him into a position to
supervise and manage his w-Cloud even if he is not an
expert [6,7].

The Service Controller is responsible for secure ser-
vice execution. As complete homomorphic encryption
is not yet real-time capable, we realize secure service
execution by decomposing services into critical and non-
critical sub-services. Critical sub-services process high-
confidential data and are executed strictly on trustworthy
resources, whereas non-critical sub-services are allowed
to compute on arbitrary resources.

The Service Controller’s counterpart, the Data Con-
troller, takes care of secure cloud storage. We split each
file into several slices and place each slice encrypted and
attached by an authentication code on a different resource.
Since only a subset of these slices is required to restore the
original information, a high availability is realized [4].

Last but not least, the m-Box Resource Manager is
responsible for managing the set of all available resources
and services.

Contributions and outline

In this work we focus on the development of this Resource
Manager. The remainder of this paper is structured as fol-
lows. Before actually analysing necessary requirements for
the design of the Resource Manager, we first discuss draw-
backs of existing cloud resource management approaches.
Going on, we present our three-fold design concept that
covers service description as well as device and service
coordination. We then present an overview of our proto-
type implementation and discuss first evaluation results.
We conclude with a final discussion of our achievements
as well as future work.

Our main contributions are:
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Figure 1 The z-Box. Architectural layout of the 7-Cloud with a subdivision of the -Box into Service and Data Controller, Cockpit, Monitoring
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e The conceptional and technical development of
fundamental system components for the setup of
user-controlled federated clouds.

e This includes the development of CRDL, a Cloud
Resource Description Language, that leverages the
existing Open Cloud Computing Interface (OCCI)
standard for the PaaS and Saas$ layer.

A preliminary version of this work has already been pre-
sented at the Utility and Cloud Computing Conference
in 2012 [8]. This revised version provides more details
and insight in all aspects of our work. Furthermore, we
have added two sections to discuss drawbacks of cur-
rent cloud resource management solutions and to present
first evaluation results of our Resource Manager prototype
respectively.

Drawbacks of existing cloud resource management
solutions

To gain an understanding, which functionality the
Resource Manager has to provide, we start with an analy-
sis of already existing solutions. In order to compare them
with each other, we first of all define following reasonable
evaluation criteria.

Availability as open source In order to prevent
lock-in effects and to enhance
security/trustworthiness, only Open Source solutions
or such based on open standards are considered
suitable.

Ability to integrate services from a user’s devices
Furthermore according to the -Cloud idea
presented in the previous section it is mandatory that
the sought solution is able to integrate services from
a user’s own devices.

Ability to integrate arbitrary cloud providers The
same applies for the integration of services and
devices from different cloud providers. This includes
community clouds.

Ad hoc migration of the managing component
Additionally, we aim at enabling the ad hoc
migration of the managing component itself between
different parts of the w-Cloud due to stability,
performance or trustworthiness reasons.

Support for Iaa$S, PaaS and SaaS Last but not least,
our solution should support the whole bandwidth of
cloud platforms, i. e. aaS as well as Paa$S and SaaS
platforms.

For our investigation we concentrated on open source
solutions and those proposed by academia. Industry
solutions like Akitio MyCloud [9], mydlink Cloud [10],
Synology Cloud Station [11] and LenovoEMC Personal
Cloud [12] as well as Samsung HomeSync [13] and myQ-
NAPCloud [14] have not been considered as they are
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proprietary, focussed solely on storage service and are
bound to the respective companies’ storage devices.

OwnCloud [15] is a promising open source solution
which unfortunately does not support computing or plat-
form services either and nearly no software services yet.

Most scientific approaches like the Anzere project [16],
PCP [17] and Cloud@Home [18] are mainly storage cen-
tred, offer sometimes groupware functionality but not
more and are therefore not suitable. Some scientific
approaches like the Clouds@Home [19] project seem
promising but are still work in progress.

Table 1 summarizes how the mentioned cloud resource
management solutions match our evaluation criteria.
Obviously, none of them fully meets our requirements
which motivates the development of our own solution.

Requirements analysis

We start our requirements analysis by detailing the gen-
eral tasks a cloud Resource Manager has to perform.
Basically, these can be divided in three parts. On the on
hand, the user’s devices must be coordinated in order to
combine them into a 7-Cloud. On the other hand, there
are the requirements from the other 7-Box components.
Specifically, the description of services to be run within
the m-Cloud as well as their storage and management.
Thus, we come to a high-level architectural overview of
the Resource Manager presented in Figure 2.

The connector is more or less a straight forward com-
ponent that encapsulates all necessary functionality for
connecting the Resource Manager with the remaining
parts of the 77 -Box as well as with the user’s own devices or
with external cloud resources. As it only contains techni-
cally state of the art mechanisms we skip a more detailed
description here. Instead, we concentrate on the device
and service coordination respectively.

Device coordination requirements

For coordinating the access to all relevant user devices
in the 7-Cloud the Resource Manager first has to recog-
nize the (re)appearance of devices whose status has then
to be maintained by a specific device directory. For this
purpose, we distinguish between three general communi-
cation scenarios as depicted in Figure 3.

Intra-r-cloud scenario In this first scenario a
resource wants to establish a connection to the
m-box and both are inside a local area network. In
such a situation as low operational effort as possible
should be necessary. In ideal case the resource
detection and interconnection between resource and
7-box should work automatically. Furthermore the
7-box should be safely identifiable and the
communication should take place in a secure manner
in order to prevent unauthorized access to the user’s
communication and data.
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Table 1 Comparison of existing cloud resource management solutions

Approach Open Integration of Integration of Ad hoc laas, Saas
source services from arbitrary migration of and PaaS

user’s devices clouds the managing component

Industry Solutions No No No No No

OwnCloud Yes No Yes No No

Sparkle Share Yes No No No No

Aero FS Yes No No No No

Anzere [16] Yes Yes Yes No No

PCP[17] Yes ? ? ? No

[20] Yes Yes No ? ?

[21] Yes Yes No No Yes

Cloud CDI [22] Yes Yes ? No No

Social Cloud [23] Yes Yes No No No

Cloud@Home [18] Yes Yes Yes No ?

Clouds@Home [19] Yes ? Yes ? ?

Cloud4Home [24] Yes Yes Yes No No

The solutions are evaluated by means of the criteria defined above. If a matching is not certain due to no or imprecise information, a question mark is entered in the

corresponding field.

Remote Intra-7 -cloud scenario In this second might want to use a service. In order to find an
scenario a resource tries to establish the connection appropriate one he will send a query to the own

to the w-box from the outside of the local network. 7-Box. If the desired service is not available in the
Here it is necessary for that resource to know how to own repository the user can try to use the service of
establish the connection to its own -box. The somebody else. Every w-Box runs its own repository.
requirements regarding identifiability and secure In order to use foreign services the 7w -Box has to
communication are just the same as in the connect to at least one other 7-Box. This third
Intra-r -cloud scenario. scenario is the Inter--Cloud scenario where one or
Inter-7 -cloud scenario If all the user’s resources are more 7-Boxes interconnect to share information and
registered — and with them the services — the user resources.
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Figure 2 The Resource Manager. Basic overview of the Resource Manager’s architecture.
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—TT-CLOUD SCENARIOS

Remote Intra-m-Cloud

Intra-m1-Cloud

Inter-11-Cloud

Figure 3 7-Cloud communication scenarios.

For each scenario the device directory has to be able to
store all necessary information about available resources.
It must be possible to search a device based on these
information. Thus, the following two basic requirements
are retrieved from the striven functionalities of the device
directory.

Storing The information about devices might either
be stored as a file directly into the file system or they
might be stored in a storage system of any kind like
for example in a relational database.

Searching Either a device initiates a search — for
example to find the current w-Box — or other
components of the 7-Box incorporate the search
function as a subroutine for other tasks. The result of
a request is a set of attributes of the node.

Besides these functional requirements our system
should also satisfy several non-functional requirements as
follows.

Platform independence According to the 7 -Cloud
idea every device might get the 7 -Box status which
basically means that the same 7 -Box software has to
run on all of them independent of their software and
hardware platform.

Resource conservation To enable all devices to gain
7-Box status, the Device Directory as well as the
other m-Box components have to be lightweight
enough to run — at least in small scenarios with a low
double-digit number of devices — even on a smart
phone if necessary without affecting its main
functionalities. This means that a resource
conserving architecture has to be chosen.

Security The device coordinator must support the
user’s wish for confidentiality, integrity and
availability of his data when migrating it to the cloud.
Therefore, strong security mechanisms must be
integrated to protect the data traffic carried out by
the device coordinator.

Scalability The number of the devices within the
corresponding 7 -Cloud could vary from half a dozen
in a home office to several hundred thousands in a
big company. The device directory has to show a
high scalability to manage such a large number of
devices with satisfying performance.
Responsiveness Besides scalability another
important aspect for the acceptance of such a system
is its responsiveness. It is important to keep waiting
times for search results as low as possible.

Service coordination requirements

Service description format requirements

During the handshake between device and 7-Box the
device has to publish its services. To describe them a
service interface description format has to be found that
is extensible, widely distributed, easy usable and that
supports the description of non-functional properties.
These requirements have to be meet for the following
reasons:

1. Extensibility: For the description of cloud services
they have to be differentiated based on the before
mentioned service levels Iaa$, PaaS and SaaS. Since
PaaS and Saa$ show a broad range of properties that
differ from provider to provider and from service to
service a fixed basic set of properties is not powerful
enough to describe the services. For example the
description of functional properties of a routing
planner differ fundamentally from that of an office
product. Even IaaS providers need the flexibility to
extend the basic feature set. Although it might be
assumed that a basic set of computing, storage and
network properties is sufficient for them and that
only units may change from time to time (the
measure for computing power may for example
change from GigaFlops to TerraFlops) a closer
inspection shows that essential infrastructural
changes occur. It just takes longer time periods for
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changes that are fundamental enough to require the
descriptiveness of new properties.

General-purpose computing on graphics processing
units (GPGPU) is such a fundamental change.
Powered by computing engines and interfaces like
CUDA (Compute Unified Device Architecture) [25]
and OpenCL (Open Computing Language) [26] users
were provided with a huge performance boost that
came with the utilization of GPUs (graphic
processing units) for former CPU tasks. Amazon for
example offers GPU computing instances since 2011
[27]. With this change came the need to extend the
given set of property descriptions.

2. Non-functional properties: Given a set of services
with similar functional properties the non-functional
properties become important for the selection of the
most appropriate service. That is why the description
language has to be able to describe them as well.
Non-functional properties include the functional
description, costs, quality and safety.

3. Distribution: The distribution of the service interface
description language plays another important role. In
order to be able to integrate as much existing services
as possible a widespread language has to be used.

4. Ease of use: Last but not least the ease of use is a
major feature that should allow service providers to
easily extend the basic set of property descriptions
without being discouraged by to complex handling.
Therefore the service interface description language
has to be of as low complexity as possible while being
as complex as necessary.

Service directory requirements

To manage all available services within the 7-Cloud we
further introduce a service directory. It has to be able to
store service descriptions and extract information from
them to build search indexes. It furthermore has to be able
to deliver whole service descriptions or specific informa-
tion about them if users request so. Hence, the following
requirements are retrieved from the striven functionalities
of the service directory:

Storing The service descriptions might either be
stored directly into the file system or they might be
stored as a string in a storage system of any kind like
for example in a relational database. Furthermore the
storage subsystem has to be able to store extracted
elements and attributes in a way that future
extensions of the service description format can be
handled. For management reasons meta data like IDs
have to be stored in the same place as the
information extracted from the service descriptions.
Parsing After storing a new service description, the
system has to extract relevant data from it. Due to
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the fact that it can not be foreseen which data might
be requested by users and which not, all the elements
and attributes have to be considered relevant. The
whole content of the service description is therefore
extracted and in the following referred to as relevant
data. Since the service description format might be
extended, the parser should be able to deal with new
elements.

Searching It is not only the user that should be
enabled to initiate a search. Other components of the
7-Box might incorporate the search function as a
subroutine for other tasks. The data controller might
for example run a background task that searches for
suitable storage services to disperse the data to. For a
broad access to the stored information the ability to
cope with syntax variety is important. The use of a
lexical analyser that can for example handle fuzzy
queries and replace synonyms can make the search
for users more intuitive and flexible. 7 -Box
components that have to access the service directory
are better suited with a machine readable query
language. To face this demand the service directory
has to be provided with an interface that allows to
couple a variety of query modules to it. The result of
a request is however a list of suitable services. These
might be ordered according to a rating either based
on information from a monitoring system or on user
decisions. Although the rating system necessary for
this task is out of focus of this work, the service
directory has to be designed open enough to be easily
extended with such a system.

Retrieval If the user chooses one of the offered
services from the list, additional detailed information
and the whole service description might have to be
retrieved. Authorisation and authentication rules
have to be part of an other subsystem of the 7 -Box or
should be encapsulated in a library that all w-Box
components can use.

In addition, the same non-functional requirements
already stated for the device directory apply here, too.
Concerning the scalability a maximum amount of 500,000
devices for big companies was estimated. Assumed that
not all devices provide services, an average of two ser-
vices per device is likely which sums up a total amount of
1,000,000 service descriptions. With the amount of man-
aged service descriptions the response time increases and
it becomes increasingly complicated to keep users patient
if the search is executed directly on the descriptions. So
the responsiveness of the system has to be high enough to
react within 3 to 4 seconds or faster [28]. For the adding
of service descriptions this can be achieved with caching
mechanisms if necessary. In contrast the retrieval of infor-
mation has to rely on an efficient indexing technology, e. g.
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with binary search trees. Since service descriptions can
describe different resources, they contain various, some-
times unrelated data. That implies the need for multi tree
indexes. A search combining different parameters results
in the utilisation of the same amount of search trees.
There is the need for a manager for different binary trees
and for the trees themselves. But instead of creating them
from scratch it seems to be more economically to consider
only such existing storage systems that are able to generate
the trees and manage them. The storage system therefore
has to analyse the service descriptions and generate binary
search trees based on extracted elements and attributes.
Furthermore it has to have mechanisms to organise the
search over multiple trees.

Designing the resource manager

In the following we discuss the conceptual design of the
Resource Manager based on the requirements determined
in the previous section.

Device coordination

The design of the device coordinator architecture is pre-
sented according to the three scenarios introduced in the
last section.

Intra-7-Cloud In the previous section low
operational effort was defined as a requirement when
a resource wants to establish a connection to the -
Box in a local network. During this initial handshake
phase resource and 77-Box meet each other for the
first time. The resource shares information about its
available services and gets an ID. For the automatic
resource discovery Zero Configuration Networking
(Zeroconf) [29] seems promising since it is a
configuration-free network approach that proposes
techniques to build up an Internet Protocol without
intervention from human operators. Participating
resources can automatically connect to the network
and get network addresses assigned. The two most
common implementations are Bonjour [30] from
Apple and Avahi [31]. Bonjour is an implementation
not limited to Apple OS X and iOS. It also works on
Linux and Microsoft Windows. Unfortunately
Bonjour is only partially open source under Apache
2.0 license and partially closed source under an
Apple license. We aim to offer the 77-Box as open
source. That is why we prefer Avahi which is an open
source implementation developed under GNU Lesser
General Public License. The needed identifiability
could for example be ensured with a PIN code that is
shown at a diplay at the 7-Box. Other ways to safely
identify the 7 -Box involve for example certificates
and a Public Key Infrastructure (PKI) to check these
certificates or recommendation or reputation
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systems might be utilized. A hybrid encryption will
ensure a secure communication that is more efficient
than a asymmetric one. Therefore the 7 -Box first
sends its public key to the resource. In case of an
successful identity check the resource generates a
symmetric key, encrypts it with the 7 -Box’s public
key and hands it over to the 7-Box. Which for its
part decrypts the symmetric key with the private key
only known to the 7 -Box. After this the whole
communication (which includes the remote Intra-7 -
Cloud communication) can take place encrypted in a
lightweight manner with the symmetric key that is
now only known to the resource and the 7-Box.
Since we are in an early state regarding the
communication protocol we can not offer deeper
conceptional insight or implementations. The
essence is that Zeroconf would enable automatic
interconnection between resource and 7-Box as
desired and that the identifiability might be ensured
via PIN code, PKI or recommendation or reputation
systems while the secure communication should be
realized with a hybrid encryption approach.

Remote Intra-m-Cloud In general it can be assumed
that a remote connection to the 7-Cloud follows an
initial resource registration like discussed in the
Intra-7-Cloud scenario. If so the necessary
information like a constant IP and a port to contact
the -Box from the outside were already handed
over to resource by the 7-Box. If not for example
because the user got in possession of a new device
and is eager to test it before he enters his home
network he has to know these information from
memory. The solutions for identifiability and secure
communication can be based on the solutions for the
Intra-m-Cloud scenario.

Inter-7 -Cloud The Inter-7-Cloud scenario is
conceivable in two forms. Either all 7-Boxes are part
of a friend of a friend (FOAF) network. In this case it
can be assumed that the users 7-Box is in possession
of the connection information to all the users friends’
m-Boxes. Then a directed multicast might be the best
way to query for a desired service. Then again if it is
assumed that the user does not have such a FOAF at
least one other 7 -Box has to be known. In this case a
structured peer-to-peer network can be the solution.
If a user enters such a network where he only knows
one other 7-Box the communication is not limited to
the known instance. In fact directly addressed

7 -Boxes should be able to forward failed service
queries or to introduce other instances to the new
m-Box. To cope with -Boxes that are leaving the
network unattended because of faulty internet
connections or hardware failures the network has to
be robust. That is the network should be able to heal
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itself and replace information that are missing due to
the unannounced absence of the peer. Furthermore it
should be fault-tolerant and highly effective to ensure
successful routing of messages.
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Delete device record If a device has to be finally
dismissed from the network — for example because it
is broken — it has to be deleted from the list of
managed devices in order to keep the data base

up-to-date and slim.

Set disconnected For management tasks it is
sometimes necessary to know if a device is available
or not. Therefore it must be possible to set an entry
in the data base that marks a device as disconnected.
Set 7-box info The 7 -Box software should

Given these scenarios, we have identified several
options for the general architecture of the device directory
as depicted in Figure 4.

Going on, we analysed the use cases for the Intra-r-
Cloud scenario (see Figure 5).

Join 7 -cloud The first use case captures the contact
initiation between a device and the 7-Box. A
successful attempt results in the 7 -Box revealing
itself and sending information to the device how to
connect from the outside of the personal network.
Furthermore a certificate has to be generated and
handed over to the device to enable it to identify
itself as an authorised member of the 7 -Cloud.
Create connection This use case deals with the
creation of a secure connection between a device and
the w-Box. It is required that the 7-Box is clearly
identifiable and that the communication takes place
in a secure manner in order to prevent unauthorised
access to the user’s data. The device sends
information about itself to the 7 -Box. After a
authorisation check the 7 -Box generates a session
key for the ongoing communication. Afterwards the
Device Directory marks the device is as connected
and stores the session key.

potentially run on all 7-Cloud devices. The 7-Box
status can change from one to another. This means
that the Resource Manager has to provide a way to
assign 7 -Box status to a specific device.

Get -box info If a member of the 7 -Cloud wants to
contact its 7w -Box it has to be provided with a
method to get to know which other member of the
-Cloud is the current -Box.

Revoke certificate It has to be ensured that
certificates once handed out by the 7-Box can be
revoked to exclude devices from the 7-Cloud if they
are responsible for access violations or other harmful
behaviour. The revoking has to be initiated by a
component of the 7 -Box which sends the ID of the
device that has to be excluded from the 7 -Cloud.
After the Device Directory added the certificate of
the corresponding device to the revoke certification
list, a list of the connected devices is requested which
leads the Device Directory to return a list of them. A
request should then be send to all devices of the list
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Figure 4 Architectural options of internal and external z-Cloud device directories.
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Figure 5 Use cases regarding the device coordination.

in order to cause each of them to add the undesired
device to the own revoke certification list.

Service coordination

Service description

As the analysis shows there are four main features the
service interface description language has to provide. It
has to be easily extensible and support the description of
non-functional properties while being widely distributed
and of low complexity in order to achieve a good ease
of use. Existing service interface description languages
are either easily extensible and support the description
of non-functional properties (like USDL and OWL-S) or
they are widely distributed and show a good ease of use
(like WSDL, WADL) as to be seen in Table 2.

To the best of our knowledge there is no approach that
is fulfilling all four requirements in one solution. Here is
where a meta model comes in hand that was designed to
describe cloud resources. It is the so called Open Cloud
Computing Initiative (OCCI) [32] powered by the Open
Grid Forum [33]. At the moment it consists of a core
model [34] and an infrastructure extension [35]. A com-
bined diagram of both models is depicted in Figure 6.
The graphic except the grey parts represents the OCCI
core model with an infrastructure extension according to
the specifications v1.1. Among other things this modu-
larisation makes the model easily extensible. Well known
open source cloud attempts like OpenNebula, Openstack
and Eucalyptus already implement OCCI [36]. Given this

Table 2 Comparison of service description formats

high distribution and the simple but easily extensible
model OCCI seems to be an appropriate base for an own
implementation to describe services.

Service directory
The design of our service directory is based on the use
cases depicted in Figure 7.

Add service description To be able to describe cloud
resources, CRDL, a Cloud Resource Description Lan-
guage, was developed. It leverages the existing Open
Cloud Computing Interface (OCCI) standard for the Paa$S
and SaaS layer. To publish the services of a device an
appropriate CRDL file has to be added to the Service
Directory. Therefore the file is sent to the to the Resource
Manager. The Resource Manager checks the file’s valid-
ity and adds some meta data like the user’s id. The file
is then translated in a format that can be understood by
the Resource Manager’s Service Directory where it is sent
next. In the Service Directory a file id is generated and
added as meta data. Furthermore the CRDL file has to be
parsed to extract relevant data. All information will then
be stored in the Service Directory’s own storage. Finally an
acknowledgement and the newly generated id will be sent
back to the device.

Search service To search a service a device sends a
respective search request to the w-Box. The request is
handled by Service Directory’s Storage module. As a result
the Service Directory returns a list of CRDL files match-
ing the search criteria. The Resource Manager as well as

UsDL WSDL WADL OWL-S WSMO ocdal
NFP Support Very good Existing Existing Existing Existing Existing
FP extensibility Existing No/bad No/bad Good Good Very good
NFP extensibility Very good No/bad No/bad Very good Very good Very good
Distribution No/bad Very good Existing No/bad Existing Existing
Ease of use Existing Very good Very good No/bad No/bad Good
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other components of the 7-Box can filter and reorder the
results, for example according to the knowledge of a rating
module, before they are resend to the inquiring system.
Retrieve service description Retrieve a CRDL file based
on the ID assigned during the addition of the service
description.

Delete service description Delete a CRDL file based on
the ID assigned during the addition of the service descrip-
tion.

Update service description Update a CRDL file based
on the ID assigned during the addition of the service
description.

Update metadata Update a CRDL file’s metadata based
on the ID assigned during the addition of the service
description.

Overall architecture

A schema of the Resouce Manager’s architecture is shown
in Figure 8. It consists of three main modules, one for
each directory and one — the Connector — as an inter-
face. This Connector itself again contains three modules.
The Internal Call Manager is responsible for the com-
munication with other 7 -Box components while Listener
and External Call Manager cover the communication with
external resources. The Device Directory consists of two
modules. The Core module encapsulates management

Page 11 0f 18

functionalities and the Storage module offers storage
functionalities. In addition to two similar modules, the
Service Directory contains a parser module, which is
responsible for the parsing of the CRDL files.

Prototype implementation

Device directory

According to the 7-Cloud idea, the w-Box software is
intended to run on a variety of hardware platforms. That is
why the prototype is based on the platform-independent
programming language Java. With future migration in
mind, devices and 7 -Box should run different instances of
the same program. Migrating the 7-Box from one device
to another then just involves a change of the status of
both devices and a transfer of administrative tasks, infor-
mation and rights. It seems appropriate to use RMI the
Remote Method Invocation protocol for the communi-
cation. It is Java’s version of an RPC (Remote Procedure
Call). An RPC enables one program to execute proce-
dures in the foreign address space of another program on
a different machine. The Java RMI API allows to invoke
Java methods remotely from another (JVM) (Java Vir-
tual Machine). The machine which is in possession of
the remote object registers it at the RMI-registry with a
unique name. The machine that strives for remote access
uses the object’s name to retrieve an object reference from

r RESOURCE MANAGER ARCHITECTURE | COMPLETE OVERVIEW

COCKPIT
P2 =
i T 2 |SERVICE DATA
) H
; E E;_ CONTROLLER | CONTROLLER |
PO O e
120
Resource Manager
Device Directory Connector Service Directory
Storage |1 Core | Internal Call Manager r 1| Core |1 Parser
| External Call Manager | T
T Storage
| Listener |
Devices

Figure 8 Complete overview of the Resource Manager’s architecture.
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the RMI-registry. The object reference has to correspond
with its remote interface. If the machine that strives for
remote access invokes a method from the object refer-
ence of the machine which is in possession of the remote
object, the method on the remote object is executed. In
this process external code might be loaded dynamically
for usage. As a result of the invocation return values or an
error message are sent back. This response is useful in the
communication process between client and 7 -Box since
in most cases it is initiated by the client which relies on a
response. In seldom cases the communication is initiated
by the w-Box and is then sent to all connected clients in
the network. But this is a rare event. It is so rare, that RMI
overhead compared with publish subscribe mechanisms is
acceptable.

The most obvious storage solution for data sets is stor-
ing them in the file system. But if the data to be stored
are well structured, data bases can be a faster solution.
Data bases that are able to store the data completely in
main memory have to be preferred. They utilise high
throughput and low response times of main memory and
achieve a much better performance than common data
bases, which work mostly on comparatively slow hard
disks. With HSQLDB (HyperSQL DataBase) [37] one of
the most popular Java-based open source databases is
used which is able to run completely in-memory.

Service description

The base of the 7-Box service description is the OCCI
core specification with some extensions implemented as
XML Schema. The class resource is complemented by a
complex data type converter specifications that consist of:

e aclassification of the service description of the service
provider as Enum (e.g. WSDL,WADL and OWL-S)

e the corresponding service description address in
form of an URI

o the address of the converter for the extraction of the
needed data from the service providers service
description in form of an URI

e an execution instruction for the converter (e.g. XSLT
for WSDL/WADL/OWL-S converter in XSL)

This converter specifications are stored in a separate
local file and can therefore be easily extended by the
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user for other forms of service descriptions. The core
class Link is extended by inheritance for diverse interface
types of the services in addition to existing specifications
of the OCCI infrastructure model. The resulting inter-
face class structure is integrated into the resource class
as an abstract element. Its ascertainment of goods can be
generated at runtime — together with other resource ele-
ments — from the providers service description by means
of the converter specification. The class resource uses
the extensions for infrastructure services of the OCCI
infrastructure model. With Software and Platform own
extensions for software and platform services are added
in form of ascertainments of goods of the resource class.
The class Platform is composed of one or more instan-
tiations of each of the following: Compute, Storage and
software. Non-functional extensions (e.g. for quality and
safety features) as well as individual extensions of the
service description by the mw-Box users are integrated
via Mixins. Mixins allow to extend Ressource with addi-
tional arbitrary attributes. For reasons of manageability
and clarity of the service description the class Mixin
is extended by the address of the Mixin in form of
the URI of the XML source file which is integrated at
runtime.

Service directory

For the implementation of the service directory we have
existing basic technologies that are open source and
therefore compatible with the w-Cloud idea. Table 3
summarizes the results of our analysis. We have cho-
sen Lucene as our founding implementation component
since it fulfils all our functional requirements. The fulfil-
ment of non-functional requirements is only of interest
for the complete Service Directory. For a basic technology
like Lucene it is only important to be platform inde-
pendent, resource conserving, scalable, responsive and
able to cope with CRDLs inherent complexity. Accord-
ing to the Apache project [38] all these requirements are
fulfilled.

Evaluation and discussion

In this section we describe our evaluation of the Resource
Manager’s efficiency. After introducing the evaluation
methodology, our results are presented and discussed.

Table 3 Comparison of basic technologies for the service directory

LDAP RDBMS File system XML Query Digester Lucene
Languages
Parsing Impossible Impossible Impossible Intended Intended Intended
Storing files Possible Intended Intended Impossible Possible Possible
Storing data Intended Intended Possible Impossible Possible Intended
Searching Intended Possible Possible Impossible Impossible Intended
File retrieving Intended Intended Impossible Impossible Impossible Intended




Mosch et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:10

http://www.journalofcloudcomputing.com/content/3/1/10

Methodology

In order to validate sufficient performance in real-world
scenarios, several test scenarios are applied. As already
discussed the 7-Box and thereby also the Resource Man-
ager have to be scalable to manage even big usage scenar-
ios with up to 500,000 devices and 1 million CRDL files.
At the same time the response of the system should not
exceed 4 seconds to provide a good user experience [28].
The tests cover this big scenario with 1 million CRDL files
and a middle size scenario with 100,000 CRDL files. Even
smaller scenarios are indirectly included in the middle size
scenario.

Service Directory and Device Directory are accessed by
only one Connector and therefore have to handle requests
only sequentially. The Connector can be accessed by sev-
eral devices at the same time. Therefore in theory it has to
manage parallel requests and is responsible for the execu-
tion order. However, the prototype takes no care of this.
Since for the tests only one client sends requests they enter
the connector one by one and are executed sequentially.
So the scalability can just be assumed.

Four test parameters can be used to judge the
performance of the developed Resource Manager. The
parameter which represents the efficiency of the Resource
Manager the most is the response time (tyesp). It is defined
as the period between the moment when the device sends
the request and the moment when it receives the response.
The period starting with the point when the Listener
module receives the query and ending when it sends the
response is the period which defines the execution time.
Thus, the response time equals the execution time (Zgy)
plus twice the network delay (¢,,4):

tresp = texe + 2tnd

Another important parameter is the CPU load. As
already mentioned the w-Box may run on a device which
has another original purpose. If a smart phone actsasa w-
Box, it should for example still be able to make and accept
calls. That is why the CPU should be used economical —
at least in smaller -Clouds. In case of bigger 7 -Clouds,
it seems plausible that the 7-Box is hosted by a dedicated
server, rendering CPU load less relevant, as long as it is
not excessive.

The memory consumption is a further parameter which
may also interfere with using the host system in smaller
scenarios for its original purpose. It is hard to find an
objective requirement regarding the acceptable amount of
utilised memory. That is why it is only possible to rely on
subjective estimation.

Last but not least the size of the Device Directory’s
database and the Service Directory’s index are important
parameters. They have to be within reasonable limits.

Our test cases have been designed with all processes in
mind which involve a waiting user. These are:
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join m-Cloud
create connections
add new CRDL files
search services
retrieve CRDL files
delete CRDL files
update CRDL files

Furthermore these processes have to be evaluated under
different sizes of 7w-Clouds according to the before men-
tioned usage scenarios. The evaluation covers a middle
size w-Cloud with 0 to 100,000 CRDL files and 50,000
devices and a big 7-Cloud with 10,000 to 1,000,000 files
and 500,000 devices.

To reflect conditions of real world personal clouds, the
client server communication takes place inside a local
network. Apart from that, the systems differ for the two
7-Cloud sizes. The middle size scenario involves a laptop
computer with the following characteristics hosting the
m-Box:

Model: Lenovo G550

CPU: 2.1 GHz Intel Core 2 Duo

Memory: 3072 MB RAM

Architecure: 32 bit

HDD: WesternDigital 500 GB 5400 rpm (ATA WDC
WD5000BEVT-22ZATO0)

OS: Debian 6.7 Squeeze

Runtime Environment: Oracle JDK 7

The laptop computer itself was the server and a QEMU-
KVM 0.12.5 based virtual machine with 1 CPU core and
128 MB of RAM was used as client. The server for the big
scenario is a virtual machine with the following specifica-
tions:

CPU: 4 x 2.4 GHz (only one core used)
Memory: 8192 MB RAM

Architecure: 64 bit

OS: Debian 6.7 Squeeze

The client virtual machine shows the following charac-
teristics:

CPU:1 x 2.0 GHz
Memory: 500 MB RAM
Architecure: 64 bit
OS: Debian 6.7 Squeeze

Both virtual machines run on a host system with the
following characteristics:

Model: Fujitsu Primergy RX300S6

CPU: 2 x Xeon E5620 2,4 GHz 4C/8T 12 MB

RAM: 4 x 12 GB

HDD: Fujitsu ETERNUS DX APAK 6x750 GB (Raid5)
Virtualisation Environment: VM Ware vSphere 4.1
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The measurements presented in the following should
provide a coarse comparison of the performance of the
two systems. They were taken with the GNU/Linux file
copy and conversion command dd.

The CRDL files for the test were generated based on
four main structure types — one for storage, one for com-
pute, one for platform and one for software descriptions.
To achieve good diversity which means a huge set of
unique CRDL files, parameters were changed randomly
within each of the four groups — always within predefined
limits.

The queries were generated at runtime. There are
four query types: the fastest possible without parameters
which retrieves all services; the normal one, a query for
storage, with different sizes and status online; the slow-
est, a query for compute services with close restrictions
for all five possible parameters; a query which searches for
storage with unsatisfiable demands.

Results

Response time
Join 7 -cloud In the middle size scenario run on the
laptop computer the fulfilment of join requests on
server side (execution time) took 2.25 milliseconds in
average with a maximum of 202 milliseconds. 98.9
percent of the request where processed within 2 to 8
milliseconds. And 99.9 percent took not longer then
64 milliseconds. The overall network delay with an
average of 2.25 milliseconds leads to an average
response time of 4.89 milliseconds and a maximum
response time of 206 milliseconds on client side. 98.2
percent of the responses reached the inquiring client
within 2 to 8 milliseconds. And 99.9 percent took not
longer then 68 milliseconds. Since the overall
network delay is constant and negligible small the
execution time on server and the response time are
almost identical. We found that the response time is
independent from the amount of already joined
devices. This result was expected. It reflects the fact,
that information about already registered nodes is
not retrieved during the join process.
In the big scenario executed on the virtual machine
the fulfilment of join requests on server side took
1.04 milliseconds in average with a maximum of 2179
milliseconds. The second longest join was executed
within around 1 second. 99.994 percent of the
request where processed within less then 10
milliseconds. And only 10 of 500,000 joins took
longer then 100ms. The overall network delay with
an average of 1.04 milliseconds added to a total
average execution time of 1.73 milliseconds. 99.988
percent of the responds reached the inquiring client
within less then 10 milliseconds. As in the mid-size
scenario, we found that the response time for join
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requests is independent from the amount of already
joined devices.

Create connections In the middle size scenario the
response time grows almost at a linear rate with the
amount of registered devices. After each 10,000 join
operations the time for connecting the according
clients was measured. After joining the last 10,000
clients to the 7w -Cloud each of the subsequent
connections took around 38.5 milliseconds in
average from sending the request to receiving the
acknowledgement. The drop at the beginning is the
result of initial just-in-time compilation of the JVM.
In the big scenario the response time also grows
almost at a linear rate with the amount of registered
devices. After each 100,000 join operations the time
for connecting the according clients was measured.
After joining the first 100,000 clients to the w-Cloud
each of the subsequent connections took around 34
milliseconds in average while the last 100,000
connections took around 264 milliseconds from
sending the request to receiving the
acknowledgement.

Add new CRDL files In the middle size scenario run
on the laptop computer the fulfilment of an add
request on server side took 262 milliseconds in
average with the four slowest responses between 6
and 11 seconds. 88 percent of the requests were
answered in less than 0.3 seconds and 99.8 percent
took less than 2 seconds. Since the overall network
delay is similar to the delay in the join case the
execution time can be considered almost equal to the
response time.

In the big scenario, run on the virtual machine the
fulfilment of an add request on server side took 29
milliseconds in average which is almost ten times
faster than on the laptop computer. The four worst
results reached from 20 to 45 seconds. Nevertheless,
99.83 percent of the requests were answered within
less than 300 milliseconds and 99.99 percent within
less then 1 second. Since the overall network delay is
similar to the delay in the join case the execution time
can be considered almost equal to the response time.
Search services As it can be seen in Figure 9 the
response time for search requests depends on the
size of the index and grows with a linear rate.
Retrieve CRDL files After each 1,000 added CRDL
files the retrieval of 100 files was measured. The
retrieval took an average of 6.7 milliseconds. The
slowest request took 71 milliseconds. 99 percent of
the requests took not more than 14 milliseconds. 99.9
percent of the retrieve requests took less than 39
milliseconds and 99.99 percent less than 45
milliseconds. We found that the response time grows
only negligibly for the mid-size scenario.
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Figure 9 Response time for the search a service request. The abscissae show respectively the amount of already added CRDL files and are
therefore like time-lines. The ordinates both show the response time in milliseconds. For the response times for every 10,000 requests maximum,
75%, median, 25% and minimum are shown. The circles mark faulty measured values not considered for the determination of these quantiles.

After each 10,000 added CRDL files the retrieval of The same applies for the big scenario where 10 files
1,000 files was measured. The retrieval took an were updated every 10,000 added files. The response
average of 9.3 milliseconds. The slowest request took time for the updating took 55.2 milliseconds in

40 milliseconds. 99 percent of the requests took not average. This is almost 7 times faster compared with
more than 14 milliseconds. 99.9 percent of the the middle size scenario — the result of the more
retrieve requests took less than 28 milliseconds and powerful host system. The longest update took 780
99.99 percent less than 37 milliseconds. Just as in the milliseconds. 90 percent of the requests were
mid-size scenario the response time for the big answered within a maximum of 79 milliseconds.
scenario grows negligibly. Scalability assumptions It can be assumed that the
Delete CRDL files After each 1,000 added files 10 of response time will increase with the number of
them were deleted for this test. The response time parallel requests. Given the almost consistent low
for the deleting requests took 121.9 milliseconds in response times for the different processes this
average. 90 percent of the requests took not longer increase can be assumed marginal. Except for the
than 146 milliseconds. The longest request took 302 search process, it is most likely that the response
milliseconds. Up to 100,000 added files the response time will not exceed the critical 4 seconds mentioned
time grows with the size of the index — but not before. However, referring to this 4 second threshold,
considerably. the search process only performed well for up to
After each 10,000 added files 10 of them were deleted 300,000 stored service descriptions. The number of
for the big scenario test. The response time for the manageable descriptions will decrease with the
deleting requests took 20.5 milliseconds in average. growing number of parallel requests, since the

The longest request took 331 milliseconds. 90 regular expressions used for the search are very
percent of the requests did not take longer than 25 resource intensive. However, it is likely that
milliseconds. Up to 1,000,000 added files the response companies big enough to depend on hundreds of
time grows with the size of the index. Nevertheless thousands of service descriptions will have powerful
the response time is superior considering that the dedicated 7 -Box servers to speed up the response
average value is in the range of black-white-black times to a bearable extent. Furthermore it has to be
response times of LCD displays. And even the worst pointed out that the developed architecture only
result with 331 milliseconds corresponds with the covers service brokering. Regarding performance the
duration of a blink of the human eye. service brokering is far less important then the actual
Update CRDL files For this test 10 files were service usage. The usage is responsible for the main
updated every 1,000 added files. The response time traffic and takes place between the clients only. No
for the updating took 371,6 milliseconds in average. server is involved.

The longest update took 2,773 milliseconds. 90 percent

of the requests were answered within a maximum of Index and database size

438 milliseconds. The growing of the request time with ~ The generated CRDL files have a size between 2 KB and
the amount of files in the index is negligible. 9 KB with an average of 6 KB. Figure 10 shows that the
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size of the index grows at a linear rate with the amount
of files. The index including CRDL files plus extracted
data and meta data is 1.6 to 1.9 times smaller than the
storage space needed by the original CRDL files. 590 MB
for 100,000 CRDL files mean a Lucene index of 361 MB.
In the big scenario the compression is even more effi-
cient most likely due to a higher rate of reusable patterns
for Lucene’s compression algorithms. With growing index
the compression induced perennial index size reduction
shows as a spiky graph. The storage space of 5,896 MB for
1,000,000 CRDL files is reduced to 3,019 MB if the files
are stored and described in the index. Extensions of the
description via meta data will increase the size of the index
but the growing will be negligible. The size of the database
also grows at a linear rate. 50,000 joined devices occupy
22.6 MB if they are all connected. 500,000 devices use

219 MB. The size of the data base depends on the num-
ber of joined and connected nodes and on the amount of
revoked certificates.

CPU load and memory consumption

Table 4 shows CPU load as well as memory and hard disk
consumption for the different use cases. The adding pro-
cess depends more on the hard disk than on the CPU
or the memory. On the laptop computer there were for
example only 10 to 20 percent CPU usage. The com-
parison of the adding process for laptop computer and
virtual machine shows that a fast hard disk can shift the
bottleneck. Since the virtual machine’s host was a server
with 6 fast SAS disks in RAID5 mode the CPU became
fully utilised. In contrast searching requests demanded
full processing power on both, server and laptop

Table 4 Utilisation of processor, memory and hard disk for the specific use cases

Use case CPU RAM HDD
Laptop computer

Join and connect 60%-70% 78 MB-84 MB Low load
Add 10-20 Grows linear High load
Search 100% 330 MB-360 MB Low load
Retrieve 100% ca. 300 MB Low load
Delete 20%-30% ca. 200 MB High load
Update 30%-50% ca. 350 MB High load
VMWare

Join and connect 73%~75% 140 MB-190 MB Low load
Add 100% Grows linear High load
Search 100% up to 2 GB per request Low load
Retrieve 100% up to 2 GB per request Low load
Delete up to 100% upto1.5GB Medium load
Update 50%-60% ca. 400 MB Medium load

The values for processor and memory are based on observations during the evaluation while the content of the last column is based on theoretical assumptions.
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computer. The memory consumption did not exceed 360
MB on the laptop computer while the virtual machine had
to provide the 7 -Box with up to 2 GB per request when the
index held 1 million service descriptions. After the request
the size of the program in memory fell below 200 MB.

Summary

The developed prototype works well for networks with
a file amount of up to around 300,000 CRDLs with the
given virtual test server and with a sequential order of
requests. Larger amounts of service descriptions lead to
response times for search requests of 4 seconds and more,
at least with the given virtual test server. Anyhow, is likely
that such large 7-Clouds are managed by powerful dedi-
cated 7 -Box servers, which would be capable of handling
more service descriptions. Then again, the tested pro-
gram was only a prototype. Not all designed features were
included. The communication channel was for example
not encrypted and was furthermore based on a local
area network. Additional encryption will add overhead
and increase the response time. Communication over the
Internet can be substantially slower then our LAN-based
tests, depending on the quality of the user’s connection.
But there are also possibilities to enhance the prototype
with regard to its performance. The Lucene based Storage
module of the prototype is single threaded and there-
fore only utilises one core. But since the design of the
Resource Manager is modular, Lucene could be exchanged
for example with ElasticSearch [39] — an extension of
Lucene which enables distributed indexes. This would
allow multi threading and therefore decrease the response
time with the growing number of distributed indexes.
The response time for the search requests could also be
reduced if regular expression queries would be replaced
by less resource intense query types. During the parsing
process frequently searched properties could be extracted
and added as meta data to the service records. Since this
would prevent browsing indexes for whole CRDL files at
run time, it will speed up the search process.

Conclusion

Cloud computing attracts, inter alia, with scalability and
cost reduction. However, cloud’s benefits are accompa-
nied by potential harm to the users data. Existing cloud
solutions can be considered synonymous with unknown
locations and potentially hostile environments. Therefore
security protection objectives can not be guaranteed in
the cloud. Motivated by cloudaAZs potential we proposed
a way to get rid of this drawback. We presented 7 -Cloud,
a personal secure cloud, that enables users to benefit from
cloud computing and retain data sovereignty by federat-
ing the users own resources. More precisely we presented
the prototypic implementation of a Resource Manager for
personal secure clouds. This includes the coordination of
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devices which form this cloud as well as the description
of the services they provide and the description of exter-
nal services. For this description an intermediary format,
the Cloud Resource Description Language (CRDL) was
developed as an extension of the Open Cloud Computing
Infrastructure (OCCI). Since OCCI is currently limited to
infrastructure services the approach has been extended
to support PaaS and SaaS services as well. Furthermore,
an architecture for the coordination and management of
CRDL service descriptions and the respective services was
developed. As a foundation for the w-Box the Resource
Manager enables users to (re)gain their data sovereignty
when going to the cloud. Scalability and usability of our
prototype have been empirically demonstrated by exten-
sive lab tests.

Future work
Until now we have neglected the need for a trust manage-
ment system although it represents an inevitable require-
ment for real life scenarios. However, the estimation of
trust in services, resources and provider implies manifold
research challenges from different scientific disciplines.
Thus, we have postponed this issue for future work.

More technical aspects for further development include
distribution support, temporary fragmentation or inter-
connecting several w-Clouds in order to form a com-
munity cloud. As each component of the 7-Box can be
considered to be a service, it should be possible to dis-
tribute them throughout the 7-Cloud. This implies mech-
anisms to handle abrupt disconnections of devices which
host services, intelligent replication of services, service
redundancy and so on. The scientific area of peer-to-
peer protocols offers a variety of potentially suitable basic
technologies for this challenge.

For scenarios like business trips it seems plausible that
a user would benefit from a mobile w-Box. Building up
on already implemented basic 7-Box status functionali-
ties, intelligent hand over mechanisms can be developed.
Depending on the amount of data necessary for a business
trip, it might be wise to migrate the 7-Box and relevant
data in advance. Particularly interesting is the question
which criteria can be used to predict such user behaviour
and how this data can be aggregated, utilised and secured.

Finally, in community cloud scenarios every participat-
ing w-Box would provide at least partial access to its
resources for friendly w-Boxes in addition to its own
devices. This entails authentication checks during search,
update, delete and retrieval processes.
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