Kéhler et al. Journal of Cloud Computing: Advances, Systems and
Applications (2015) 4:1
DOI 10.1186/513677-014-0025-1

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

Confidential database-as-a-service
approaches: taxonomy and survey

Jens Kéhler', Konrad Jiinemann and Hannes Hartenstein

Abstract

Survey, Taxonomy

Outsourcing data to external providers has gained momentum with the advent of cloud computing. Encryption
allows data confidentiality to be preserved when outsourcing data to untrusted external providers that may be
compromised by attackers. However, encryption has to be applied in a way that still allows the external provider to
evaluate queries received from the client. Even though confidential database-as-a-service (Daa$) is still an active field
of research, various techniques already address this problem, which we call confidentiality preserving indexing
approaches (CPIs). CPls make individual tradeoffs between the functionality provided, i.e,, the types of queries that can
be evaluated, the level of protection achieved, and performance.

In this paper, we present a taxonomy of requirements that CPls have to satisfy in deployment scenarios including the
required functionality and the required level of protection against various attackers. We show that the taxonomy’s
underlying principles serve as a methodology to assess CPIs, primarily by linking attacker models to CPI security
properties. By use of this methodology, we survey and assess ten previously proposed CPlIs. The resulting CPI catalog
can help the reader who would like to build Daa$S solutions to facilitate DaaS design decisions while the proposed
taxonomy and methodology can also be applied to assess upcoming CPl approaches.

Keywords: Database-as-a-service, Confidential data outsourcing, Confidentiality preserving indexes, Attacker models,

Introduction

The cloud computing paradigm promises benefits such as
cost-effectiveness and scalability with regard to outsourc-
ing services and data to external providers. However, loss
of control over the outsourced data puts data confiden-
tiality at risk — in particular in the database-as-a-service
scenario (DaaS), where databases are outsourced to exter-
nal storage providers (SPs), who could potentially be inter-
ested in the content of the outsourced data. Other attack
scenarios include curious administrators who work for the
SP or external attackers.

One way to address this problem is to thoroughly assess
whether an SP can be trusted to enforce data confiden-
tiality [1]. However, making such assessments is hard and
in many cases users do not consider any SPs trustworthy
[2]. The approach that we investigate further in this paper

*Correspondence: jens.koehler@kit.edu
Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT),
Zirkel 2, Building 20.21, 76131 Karlsruhe, Germany

@ Springer

assumes that all SPs may be compromised. Thus data con-
fidentiality is enforced by encrypting the data before it is
outsourced.

To efficiently retrieve data records that match a certain
query, traditional database systems make use of indexes.
While the data records can be encrypted to preserve con-
fidentiality, the records in traditional indexes have to be
in plaintext in order to allow efficient query execution. In
order to protect data confidentiality in the indexes, sev-
eral authors propose confidentiality preserving indexing
approaches (CPls), such as the deterministic encryption
or hashing of data values to be outsourced. The setting
in which these approaches operate is shown in Figure 1.
In this scenario, a user wishes to outsource data to one
or more SPs. While the trusted user may view the data,
the external SPs are considered untrustworthy or prone to
being compromised by third-party attackers. Therefore,
the data has to be protected before being outsourced, in
order to preserve data confidentiality. In order to protect
the data, the user runs a trusted mediator that encrypts

© 2015 Kohler et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

http://creativecommons.org/licenses/by/4.0

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Trusted users Untrus.ted Storage
; Providers (SPs)
o 9] L SP1 S
Mediator
' CPI] Records
E \/
Queries Data ;
E | Records
Application :
Figure 1 The database-as-a-service setting.

the data records before outsourcing them and applies CPI
approaches to build confidentiality-preserving indexes
that can be used to evaluate queries efficiently.

Problem statement: Choosing CPIs that are suited to
confidentially outsource data in a given deployment sce-
nario represents a challenge: Each CPI supports specific
query types and provides specific security properties. In a
deployment scenario, requirements exist with regard to the
queries that have to be executable, the attackers to protect
against and the required protection level, i.e., whether or
not it is sufficient to protect only a subset of all the out-
sourced data items. In particular, assessing which attackers
a CPI protects against is not trivial because most publi-
cations list security properties of their approaches rather
than the addressed attacker models in a way that can be
compared to other approaches.

In this paper, we present a taxonomy of requirements
that CPIs have to satisfy in various deployment scenarios
including the required functionality and the level of pro-
tection against various attackers. Based on the taxonomy,
we propose a methodology to assess the applicability of
CPIs in deployment scenarios by linking attacker models
to CPI security properties. We apply this methodology to
a survey covering ten of the most popular CPIs and build
a CPI catalog that makes it easy to determine whether a
specific CPI suits the security requirements of a particular
deployment scenario. Compared to other surveys such as
[3], we focus less on identifying future research challenges
in the DaaS domain and more on the applicability of exist-
ing CPlIs in different deployment scenarios. Therefore, we
refer to the original publications and other surveys for an
in-depth illustration of the cryptographic foundation and
the background of individual CPIs.

Page 2 of 14

The focus of this study is on preserving the confiden-
tiality of outsourced relational data, i.e., data that contains
records consisting of a fixed set of attribute values. In
particular, we do not address related areas such as the
preservation of data integrity [4], proof of retrievabil-
ity [5] or access control enforcement [6] in a multiuser
setting. These problem settings are orthogonal to preserv-
ing confidentiality and can be applied in addition to the
approaches we investigate in this paper.

The main contributions of this paper are:

¢ A taxonomy of deployment scenario requirements
with regard to the required functionality, assumed
attackers and protection levels that have to be
guaranteed when outsourcing data.

¢ A methodology for assessing which taxonomy
requirements are satisfied by a given CPI approach.
To assess a CPI, the attacker capabilities the
approach protects against have to be derived from a
set of security properties the CPI satisfies. A mapping
between the security properties and attacker
capabilities is provided in this paper.

¢ A survey of popular CPIs that applies the proposed
methodology to build a CPI catalog based on the
proposed taxonomy. The CPI catalog makes it
possible to quickly determine which CPIs can satisfy
the requirements of a specific deployment scenario.
Furthermore, we provide a high-level performance
evaluation of the presented CPlIs.

The paper is structured as follows: First, we present the
taxonomy of deployment scenario requirements on CPI
approaches. Then we provide the methodology to assess
which requirements a CPI satisfies with regard to the tax-
onomy and use the proposed methodology to categorize
the surveyed CPI approaches. Finally, we draw the key
conclusions and highlight future research directions.

Taxonomy of deployment requirements

A CPI approach that is used in a specific deployment
scenario has to satisfy multiple scenario-specific require-
ments with regard to (1) the supported functionality, i.e.,
which queries can be efficiently executed and how out-
sourced data can be modified, (2) the protection level,
i.e., a definition of when the data can be considered
protected and (3) the ability to protect the data confi-
dentiality against the assumed attackers and their capa-
bilities. From a user’s perspective, determining the func-
tionality requirements is usually easier than determin-
ing the protection goal and the assumed attacker capa-
bilities. However, our study underlines the importance
of paying attention to all three dimensions. The pro-
posed taxonomy constitutes a foundation that supports
developers of frameworks that use CPIs in creating

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

a concise description of their individual deployment
requirements [7,8].

In the following, we introduce a taxonomy of the deploy-
ment scenario requirements. We list the functionality
requirements in addition to categorizing protection levels
and attacker models.

Functionality

In most deployment scenarios, it is important for a CPI
approach to support efficient query execution on the out-
sourced data. Queries can be used to retrieve parts of
the outsourced data that match certain criteria. For the
sake of simplicity and readability, we focus on a sub-
set of Structured Query Language (SQL). However, the
study can be extended with additional functionalities
based on the proposed methodology by checking for each
CPI whether it supports the functionality. For instance,
Join operations are supported by deterministic indexes
and order-preserving encryption. We distinguish between
three ways to filter records:

Equality selections (ES) can be used to retrieve records
that have a certain value for an attribute. Example: The
query SELECT. . .WHERE name='Adam’ performs an
equality selection on the attribute name.

Range selections (RS) can be used to retrieve records
that have an attribute value that lies within a certain
range. Example: The query SELECT . . . WHERE age<30
performs a range selection on the attribute age.

Like selections (LS) can be used to retrieve records that
have an attribute value that is similar to a certain search
term. Example: The query SELECT...WHERE name
LIKE ‘Ad’ performs a like selection on the attribute
name.

Furthermore, aggregation (AG) queries do not
retrieve records but request aggregated attribute val-
ues of multiple records. Example: The query SELECT
SUM (salary) ... performs an aggregation on the
attribute salary.

Besides evaluating queries efficiently, many deploy-
ment scenarios also require the modification of out-
sourced data. While some proposed CPI approaches
assume that the data is outsourced once without being
modified at a future point in time, other approaches
allow changes to be made to the outsourced data with-
out harming its confidentiality. Modifications of the
data may constitute insertions, updates or deletions of
records.

Typically, a CPI supports specific queries. Thus, future
queries have to be known before the data is outsourced.
Outsourcing frameworks [8] that use CPIs can support
ad-hoc queries by using onion encryption and apply all
available CPIs by default when outsourcing data. How-
ever, as support for ad-hoc queries is not a feature of CPIs,
we consider it out of this article’s scope.

Page 3 of 14

Protection levels

In this paper, we focus on preserving the confidentiality of
records in the outsourced data. A confidentiality require-
ment on a record level can be that specific attributes of a
record must not be readable by an attacker or that specific
attributes must not be readable together by an attacker.
Consider, for instance, the data shown in Table 1. By (par-
tially) encrypting the contained values as shown in Table 2
one can prevent an attacker from determining the salary of
record «, as the attribute salary contains indistinguishable
ciphertexts only. We do not aim to preserve the confi-
dentiality of attributes in general, i.e., CPIs may still leak
information on single attributes such as their frequency
distribution. For instance, in Table 2, the gender attribute
is encrypted but distinguishable. Thus, an attacker does
not learn the gender plaintext values of the records but the
frequency distribution of attributes.

Example: In Table 1, a confidentiality requirement can
be that an attacker must be unable to map a salary to a
name. For instance, this requirement can be satisfied by
protecting the salary attribute by encrypting it or by not
storing it in indexes at all. Thus, an attacker is able to read
the name of an outsourced record but not the salary.

The example shows that attribute combinations can be
protected by protecting specific attributes. In the follow-
ing we denote such attributes as protected attributes.

Existing approaches can be categorized according to
their notion of record protection, i.e., when they consider
the records to be sufficiently protected:

e Computational record protection: The outsourced
records are considered protected if computationally
bounded attackers with access to the outsourced
database cannot discover anything about the
confidential information contained in each record
that they would not know without having access to
the database.

e Probabilistic record protection: A CPI ensures
only probabilistic record protection if an attacker
might be able to infer confidential attribute
combinations of a small set of records or narrow
down the possible confidential attribute
combinations of certain records. For the sake of

Table 1 Running example - plaintext data

ID Name Rating Gender Salary Age
1 Adam 1 m 20000 23
2 Bob 2 m 20000 25
3 Carol 3 f 24000 25
4 Dan 4 m 20000 30
5 Eve 5 f 26000 30
6 Adam 6 m 40000 30

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Table 2 Running example - outsourced data

ID Name Rating Gender Salary ID Age
o Adam 345 n L /4 23
B Bob 452 n) 25
y Carol 632 6 o 25
8 Dan 742 n n T 30
€ Eve 893 2 v 30
¢ Adam 897 n £ é 30

Rating: order-preserving ciphertexts.
Gender: distinguishable ciphertexts.
Salary and ID: indistinguishable ciphertexts.

simplicity, we keep the definition of probabilistic
record protection vague in this paper because the
limit of obtainable information can depend on the
background knowledge of the attacker, the number of
outsourced records and the specific CPI approach.
This protection level can be subdivided further in
future work in order to cope with this variety.

Example: Assume that the combination of the attributes
name/salary of a dataset is considered confidential, i.e., it
must be impossible for an attacker to map a person’s salary
to their name. In Table 2, the attacker cannot discover any
salary because it is encrypted for each record. Computa-
tional record protection is ensured because the attacker
only learns something about the confidential attribute
combination name/salary if they know the encryption key
for the encrypted salary values.

In Table 2, the attacker learns something about the con-
fidential attribute combination name/age. For instance,
the attacker learns that Bob’s age is either 23, 25 or 30.
Thus, only probabilistic record protection is ensured.

Assumptions on attackers

Our attacker taxonomy is shown in Figure 2. The CPI
approaches presented in this paper make the basic
assumption that an attacker is honest-but-curious, i.e.,
the attacker observes the outsourced data and/or queries
but behaves according to protocol. In other words, the
attacker does not manipulate the data or query results.
Additional integrity-preserving approaches can be uti-
lized to enable detection of malicious behavior before
data confidentiality is compromised. However, these
approaches are beyond the scope of this paper. Most
approaches assume that the data is outsourced to a single
SP. Others assume that the data is outsourced to multiple,
non-colluding SPs. With non-colluding SPs, only a single
SP can be compromised by an attacker and the outsourced
data can be split up between multiple (non-colluding) SPs
to protect it. Notice that approaches that protect against
attackers who are able to compromise multiple SPs also

Page 4 of 14

protect against attackers who are just able to compromise
a single SP.

In the following, we propose an attacker taxonomy at
a level of detail that we deem suitable for real-world
application. In our opinion, a finer-grained model would
provide only limited additional benefit as users typically
possess limited knowledge about the attacker and are
hence unable to provide a more detailed model. On the
other hand, a coarser-grained model would not allow the
description and harnessing of key differences between
individual CPIs.

The existing approaches also make different assump-
tions with respect to what an attacker is able to observe.
While some approaches assume that an attacker is only
able to view the outsourced data (D), others assume
they can observe modifications (M) to the data or even
queries (Q) that are executed on the outsourced data. In
particular, to be able to monitor queries on the data, an
attacker has to have control over an SP when the queries
are executed. An attacker who only compromises the SP
for a very short period of time is able to take a snapshot
of the outsourced data, but cannot observe query execu-
tions. An attacker, who has compromised an SP multiple
times for a short period of time can analyze the differ-
ences between the two data versions observed and infer
the modifications that were performed. Furthermore, if
the data modifications are logged by the SP for version-
ing purposes, they can even be observed by attackers
who compromise an SP just once. Notice that approaches
that protect against attackers who are able to observe
queries (Q-Attackers) also protect against attackers who
are able to observe modifications (M-Attackers) because
performing a modification requires a query to the SP.

Another important aspect in this regard is the assumed
background knowledge (BK) of the attacker, i.e., the
knowledge that the attacker has in addition to the out-
sourced data or monitored queries/modifications. We dif-
ferentiate between approaches that assume attackers have:
no background knowledge (NBK), background knowl-
edge of the outsourced data’s schema (BKS), back-
ground knowledge of the outsourced data’s content
(BKD) and background knowledge of the outsourced
data and executed queries (BKQ). While a BKS-attacker
knows the data’s schema, i.e., the data types of an attribute
and its value range, they do not know anything about
the specific outsourced data. A BKD-attacker has specific
knowledge of the outsourced data such as the frequency
distribution of the attribute values. We argue that an
attacker is more likely to possess BKS knowledge rather
than specific BKD knowledge of the data. Also notice
that it can be possible to infer BKS knowledge from BKD
knowledge as we show in the following example. Thus, an
approach that protects against BKD-attackers also needs
to protect against BKS-attackers.

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Page 5 of 14

Attacker’s monitoring Attacker’s
capabilities background
knowledge

... and NBK

[... with access to data (D) ...

... and BKD

... and BKQ

... and BKS

I Honest-but-curious attacker...H ... With access to modifications (M) ...

... and BKQ

... and NBK

[... with access to queries (Q) ...

Figure 2 Attacker taxonomy.

... and BKD

... and BKQ

Example: The knowledge that marks are integer values
in the range 1-6 is considered BKS knowledge. The fre-
quency distribution of the outsourced marks constitutes
BKD knowledge. Based on the frequency distribution, it
may also be possible to derive the BKS knowledge that
marks are generally within the 1-6 value range.

A BKQ-attacker has knowledge of both the outsourced
data and queries that are executed.

Example: The knowledge that the record correspond-
ing to the director of a company is the one queried most
often constitutes BKQ knowledge. An attacker who is able
to observe queries can use this knowledge to identify the
record of the director.

It should be noted that in the real world, the attacker’s
capabilities are bound to change over time, for instance
when the attacker gains additional background knowl-
edge. Thus, it has to be checked continuously whether
new threats arise. If that is the case, the attacker model has
to be adapted and the CPI choice has to be reassessed and
adapted if necessary.

Methodology to assess CPls

To map CPIs to deployment scenarios in which they are
applicable, they have to be assessed with regard to the tax-
onomy requirements they are able to satisfy. CPIs can be
assessed based on the presented taxonomy as follows: In
most cases, the functionality and the protection level of
a CPI is clearly specified by the authors who published
the CPL Furthermore, most authors provide security prop-
erties for their CPIs that declare what an attacker who

can monitor the outsourced (encrypted) data and the exe-
cuted queries is able to observe. A mapping that maps
security properties onto the attackers is not always pro-
vided. However, such a mapping is crucial to compare the
protection guarantees of CPIs.

Whether confidentiality is preserved by using a CPI
approach depends on both the security properties of the
approach and the attacker model assumed. In this section,
we show which security properties are needed to protect
against various attacker models. We differentiate between
the following security properties:

¢ Content Confidentiality: The content
confidentiality provided by an approach reflects how
the protected attribute values are represented at the
SP. We differentiate between order-preserving
ciphertexts, distinguishable ciphertexts, and
indistinguishable ciphertexts. Order-preserving
ciphertexts leak information on the ordering of the
corresponding plaintext values to the SP. If
distinguishable ciphertexts are used, the SP is able to
differentiate between ciphertexts that encrypt value
A from those that encrypt value B. In particular,
deterministic encryption schemes produce
distinguishable ciphertexts because encrypting equal
plaintext values results in equal ciphertexts. If
indistinguishable ciphertexts are outsourced, the SP
is not able to differentiate ciphertexts that encrypt
value A from those that encrypt value B. In particular,
this implies that encrypting a plaintext value twice

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

results in different ciphertexts. Furthermore, based
on indistinguishable ciphertexts, attackers can not
discover which values are contained in the
outsourced data and which are not.

e Access Confidentiality: An approach that provides
access confidentiality ensures that based on the query
results that the SP transmits to the mediator it is not
possible to infer which records are affected by the
query with regard to the protected attribute (e.g.,
which records are targeted by a SELECT query’s
selection condition on the protected attribute or
which protected attributes have been newly inserted
by an INSERT query).

e Pattern Confidentiality: An approach that provides
pattern confidentiality ensures that an attacker is not
able to observe query patterns, i.e., it is not possible
for an attacker to observe that two distinct queries
are targeting the same set of records [9].

The security properties that are necessary to protect
against specific attacker models are shown in Figure 3
and explained below. Notice that Figure 3 is based on
the worst case assumptions concerning the observable
data/modifications/queries and background knowledge of
the attacker. For instance, if an attacker is able to observe
modifications, we assume that they can observe arbitrary
insert, update and delete operations even if they would
never occur in certain deployment scenarios, e.g., where
records are never updated or deleted. With regard to the
CPI approaches that we introduce, we show that those
that do not have the necessary security properties given
in Figure 3 can provide protection if these worst case
assumptions are restricted (e.g., update/delete operations
are not performed, therefore they are not observable).

If the attacker has no background knowledge (NBK),
outsourcing order-preserving ciphertexts is sufficient. By

Page 6 of 14

analyzing these ciphertexts, the attacker learns the order-
ing of the attribute values, however since they have no
background knowledge they are not able to discover any
confidential plaintext values.

Example: Based on the order-preserving ciphertexts of
rating in Table 2, an attacker can observe that Bob has a
better rating than Adam. However, without background
knowledge on how the ratings are specified, discovering
the plaintext rating of Adam and Bob is not possible.

If the attacker has background knowledge of the
data schema (BKS), order-preserving ciphertexts may no
longer provide protection. CPI approaches that outsource
distinguishable ciphertexts can be used to protect against
an attacker with BKS knowledge because distinguishable
ciphertexts do not contain any order information, which
means that the value range of an attribute cannot be used
to map distinguishable ciphertexts onto plaintext values.

Example: Based on the order-preserving ciphertexts of
rating in Table 2 and the knowledge that the ratings cor-
respond to integer values between 1 and 6, an attacker can
infer that the smallest of the six ciphertexts (345) has to
correspond to the plaintext rating 1. However, based on
the knowledge that gender can take the values “m” or “f’,
an attacker is not able to derive whether 1 corresponds to
“m” or “t” from Table 2.

However, once the attacker can observe range queries
and range query results, they may again be able to infer the
order of distinguishable ciphertexts. When the order of
the ciphertexts is known, BKS knowledge can be applied
to reveal confidential attribute values. Therefore, in order
to protect against an attacker that can observe range
queries and has BKS knowledge, an approach needs to
provide access confidentiality to hide the query results.
The same holds true for attackers that are able to observe
modifications because a modification often implies the
evaluation of a query.

Attacker‘s Attacker‘s background knowledge
monitoring
capabilities No BK (NBK) |BK of schema (BKS)| BK of data (BKD) |BK on data&queries (BKQ)
a Mo o)
Data (D) Distinguishable Indistinguishable
ciphertexts ciphertexts
(2]
[I | I -
2 [Data& Order-pres. |||/’
5 e Access
© |modifications (M){| ciphertexts |||! ; iali
< (M) P | confidentiality Access Pattern
2 1 (range & like [[| A NN
% ! . confidentiality confidentiality
o Data& ! queries)
ueries (Q \
9 |aweres @ [NG W/I\N J)
[J Attacker model (D security property
Figure 3 The attacker-security property mapping shows which security properties a CPI has to satisfy in order to protect against specific
attackers. An approach that provides computational record protection against a given attacker model has to satisfy the security properties that
cover the cell that represents the assumed attacker model.

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Example: If an attacker observes the results of two range
queries containing distinguishable ciphertexts {w, ¥} and
{¥, ¢}, they can infer that eitherw < ¥ < pore > ¢ > @
holds true and that there is no other value between w and
Y or Y and ¢.

If the attacker has background knowledge of the data
(BKD), they can reveal plaintext values based on distin-
guishable ciphertexts as we show in the following example.
To protect against attackers that can only observe out-
sourced ciphertexts and that have BKD knowledge, an
approach can only be considered secure if the outsourced
ciphertexts are indistinguishable with regard to their con-
tent. If the ciphertexts are indistinguishable, the attacker
has no way of correlating the BKD knowledge with the
outsourced data.

Example: If the attacker knows that “m” is the most
frequent gender in the data, this plaintext value can be
mapped to the most frequent distinguishable ciphertext
n in Table 2. If the attacker knows that 20000 is the
most frequent salary, they cannot use this knowledge
on Table 2 because the ciphertexts of salary are not
distinguishable.

However, once the attacker can observe queries and
query results, it may once again be possible to distin-
guish the otherwise indistinguishable ciphertexts. Once
the ciphertexts are distinguishable, BKD knowledge can
be applied to reveal the confidential attribute values.
Therefore, in order to protect against an attacker that can
observe queries and has BKD knowledge, an approach
needs to provide access confidentiality to hide the query
results. The same holds true for attackers that can observe
modifications because a modification often implies the
evaluation of a query.

Example: If an attacker observes that records 1, 2 and
4 are the result of a query that was evaluated on the
indistinguishable attribute values of salary in Table 2,
the attacker could infer that records 1, 2 and 4 have the
same salary. Combined with the knowledge that Adam
earns 20000, the attacker could then reveal the salary of
Bob and Dan. Furthermore, if an attacker observes that
records 1, 2 and 4 are deleted by one DELETE query that
filtered on salary (DELETE ...WHERE salary=?),
it can infer that the deleted records had the same
salary.

An approach that can be used to protect data from
attackers who are able to monitor queries, and have back-
ground knowledge of the executed queries (BKQ), has to
offer pattern confidentiality. Otherwise, an attacker would
be able to observe the query patterns and correlate the
background knowledge on the queries to gain confidential
information.

Example: If an attacker knows that the records with
a salary of between 25000 and 40000 are queried most
often, and observes that the majority of queries return the

Page 7 of 14

set of records 5 and 6, they learn that these records have a
salary of between 250000 and 40000.

Survey of existing CPls

In the following, we survey the most popular CPIs, map
them to deployment scenarios in which they are applicable
and provide an overview of their performance. Using the
proposed methodology, we build a CPI catalog that sum-
marizes our analysis by showing how the existing CPIs
map to the deployment scenario requirements of our pro-
posed taxonomy. The CPI catalog lists the requirements
that a CPlI is able to satisfy, and allows a quick determina-
tion of which CPIs match the requirements of a specific
deployment scenario in terms of the assumed attacker
model, the required CPI functionality, and the protection
level.

CPI catalog

The CPI catalog that contains different classes of CPI
approaches can be found in Table 3. Depending on the
functionality that is utilized, some approaches protect
against multiple attacker models. In the following, we pro-
vide a brief description and explain the categorization of
each CPI approach.

Deterministic indexes

In order for the SP to evaluate equality selections on
attribute values without revealing the values, each plain-
text value can be mapped to a deterministic substitute.
For instance, these substitutes can be keyed hash values
of the plaintext value or ciphertexts that are produced by
deterministic encryption schemes. Both the keyed hash
function and the deterministic encryption schemes ensure
that mapping single deterministic substitutes back to the
plaintext value without knowing the key is infeasible. In
order to search for a certain attribute value g, the attribute
value a is replaced by its deterministic substitute within
the query.

Example: To evaluate the query SELECT ...WHERE
Gender=m on Table 2, the attribute value “m” is first
mapped to its deterministic substitute n by the media-
tor using the secret key. The query SELECT . ..WHERE
Gender=n can then be passed to the SP, which returns
record 1, 2, 4 and 6 as the result.

Since deterministic ciphertexts are distinguishable and
only equality selections are evaluated, the approach pro-
tects against Q&BKS-attackers, i.e., attackers with back-
ground knowledge of the data’s schema (cf. Figure 3).

In order to also use deterministic indexes against attack-
ers with background knowledge of the data, the flattened
hash indexes approach was proposed [10]. The basic idea
of flattened hash indexes is to map different plaintext val-
ues to the same deterministic substitute in such a way that
each deterministic substitute occurs the same number of

Table 3 CPI catalog

CPl approach

Satisfiable deployment requirements

CPI security properties

Functionality Prot. level Attacker model
Queries Modification Monitoring cap. Knowledge (Properties in brackets are only
ES RS LS AG Insert Update Delete Data Mod. Quer. NBK BKS BKD BKQ provided to a certain degree.)
Deterministic Indexes X X X X @ v v v v v Distinguishable ciphertexts
Deterministic Indexes (flattened) [10] X X X X p v v v v v (Indistinguishable ciphertexts)
X X X X C v v v
Bucketization [11,12] X X X X C v v v v Distinguishable ciphertexts
X X C v v v v
Bucketization (flattened) [11,12] X X X X p v v v v v (Indistinguishable ciphertexts)
Order-Preserving Encryption [13,14] X X X X X C v v v v Order-preserving ciphertexts
X X X X X C v v v v v
X X X X X C v v v v
Searchable Encryption [15-20] Indistinguishable ciphertexts
X X X X C v v v v v
X X C v v v v v
X xa X X X C v v v v v
Encrypted B-Trees [10,22] X xa X @ v v v v Indistinguishable ciphertexts
X xa X C v v v v v
Indistinguishable ciphertexts
Encrypted B-Trees (shuffied) [24] X X xf X X X P v v v v v v v
(Access & pattern confidentiality)
Fragmentation [25] X X X X X X p N v v v v (Indistinguishable ciphertexts)
) Indistinguishable ciphertexts
Fragmentation (Non-colluding sps) [26-28] X X X X X X C v v v v v v
Access confidentiality
) i Indistinguishable ciphertexts
Homomorphic Encryption [29-33] X X X C v v v v v v v
Access & pattern confidentiality
Oblivious RAM [34,35] X X xd X X C v v v v v v v Indistinguishable ciphertexts
Oblivious RAM (Non-colluding sps) [36] X X x@ C v v v v v v v Access & pattern confidentiality
Private Information Retrieval [39-42] X X x@ C v v v v v v v Indistinguishable ciphertexts
Private Information Retrieval (Non-colluding sps) 3743441 X X X9 C v v v v v v v Access & pattern confidentiality

aLike selections are supported to a limited degree (e.g., prefix matching).

Legend

ES: Equality selection; NBK: No background knowledge; C: Computational record protection RS: Range selection; BKS: Background knowledge of the data’s schema P: Probabilistic record protection; LS: Like selection; BKD:

Background knowledge of the data’s content; AG: Aggregation; BKQ: Background knowledge of the data’s content and queries.

(S107) suonpdyddy pup swajsAs ‘saaupapy :buiindwor pnojd Jo [puinor ‘b 13 13|Yoy

L'y

71 Jo g abeq

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

times. By doing this, the deterministic ciphertexts become
indistinguishable in the sense that background knowledge
on the frequency distribution of an attribute can no longer
be applied. However, flattening the distribution of the
deterministic substitutes does not entirely prevent back-
ground knowledge from being applied on single plaintext
records because equal plaintext values still map to equal
deterministic substitutes [10].

Example: Even if Table 2 contained as many female as
male persons, an attacker who knows that Adam has gen-
der “m” could infer that Carol cannot have gender “m”
because Carol’s record contains 8, which does not match
Adam’s 7.

Thus, flattened hash indexes can be used against
D&BKQ-attackers, but only provide probabilistic
database protection because an attacker with background
knowledge may gain information about some of the
plaintext values based on the outsourced data.

Bucketization

Range selections cannot be evaluated based on deter-
ministic indexes because deterministic ciphertexts do not
maintain the order of the plaintext values. The idea of
value bucketization [11,12] addresses this by sorting the
plaintext values into buckets, i.e., continuous value ranges.
For each plaintext value, only the corresponding bucket
ID that does not contain information on the content of the
bucket is outsourced. In order to query for a range of val-
ues, the ID of each contained and intersecting bucket is
queried.

Since the outsourced values are distinguishable cipher-
texts, bucketization can be considered secure against
a D&BKS-attacker that is only able to access the data
and has background knowledge of the data’s schema.
However, once an attacker can observe queries or mod-
ifications that update/delete records, which are selected
based on a bucketization index, it can deduce the order-
ing of the bucket IDs and thus transform distinguishable
ciphertexts into order-preserving ciphertexts. Therefore,
if queries can be monitored by the attacker, bucketiza-
tion is only secure against Q&NBK-attackers that have no
background knowledge.

Like deterministic indexes, buckets can be flattened
so that each bucket contains the same number of
records. For the same reasons as flattened hash indexes,
flattened bucketization can be used against D&BKQ-
attackers, however it only provides probabilistic database
protection.

Order-preserving encryption

To allow the SP to evaluate range selections on encrypted
attribute values, order-preserving encryption schemes
(OPES) can be used to encrypt the attribute values [13,14].
OPES schemes maintain order when mapping plaintext

Page 9 of 14

values to ciphertext values, i.e., the ciphertext values have
the same order as the corresponding plaintext values.
Thus, it is possible for the SP to evaluate < and > opera-
tors without decrypting the ciphertexts and revealing the
plaintext values.

Since order-preserving ciphertexts are outsourced, the
approach only protects against Q&NBK-attackers without
background knowledge (cf. Figure 3).

Searchable encryption

Searchable encryption schemes [15-17,17-20] can be used
to encrypt data values in such a way that the SP can check
whether a ciphertext contains a value that matches a given
predicate or not. The outsourced ciphertexts are indis-
tinguishable. Searchable encryption schemes enable the
mediator to generate a token based on the predicate that
has to be checked and the secret key that was used to
encrypt the data. This token is passed to the SP. While
it is not possible to determine the predicate to be evalu-
ated from the token without the secret key, the token can
be used by the SP to check which ciphertexts match the
(unknown) predicate. Predicates can be utilized to encode
equality, range and like selections.

Since the outsourced ciphertexts are indistinguishable,
searchable encryption can be used to protect the data
from D&BKQ-attackers that have access to the out-
sourced data as well as background knowledge on the
data and the queries. However, once an attacker can
monitor queries or modifications it is not necessary for
them to have background knowledge of the data because
indistinguishable ciphertexts alone do not protect against
Q&BKD-attackers and searchable encryption approaches
do not provide access confidentiality (cf. Figure 3) [21].
Furthermore, if range selections can be monitored, it is
not necessary for the attacker to have background knowl-
edge because they can establish an order between the
ciphertext values based on the monitored range queries,
as was the case with bucketization.

Encrypted B-Trees

In traditional database management systems, B-Trees are
used to create indexes and speed up query execution. To
enable efficient query execution based on indistinguish-
able ciphertexts stored by the SP, encrypted B-Trees con-
taining only indistinguishably encrypted nodes were pro-
posed [10,22]. Since the encrypted nodes of the encrypted
B-Tree are indistinguishable for the SP, the trustworthy
mediator has to maintain the encrypted B-Tree and par-
ticipate in the execution of queries. To retrieve a leaf
that references a record with a certain attribute value,
the mediator first retrieves the root node of the B-Tree,
decrypts it and selects the node for descending into
the tree as in the unencrypted case. This node is then
retrieved once again and the process is repeated until the

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

target leaf node is reached. Thus, log(n) communication
rounds are required to retrieve a record.

Since the outsourced ciphertexts are indistinguishable,
encrypted B-Trees can be used to protect attributes
against D&BKQ-attackers that have access to the out-
sourced data as well as background knowledge on the data
and the queries (cf. Figure 3). However, since encrypted
B-Trees do not provide access confidentiality, they are not
suited to provide protection against a Q&BKD-attacker
that has background knowledge of the data and can mon-
itor queries/modifications. Once an attacker can observe
queries or modifications, they are not only able to dis-
tinguish ciphertexts, but can also infer the order of the
ciphertexts due to the B-Tree’s ordered structure [23].
Thus, if queries or modifications that target specific
records can be observed, encrypted B-Trees can only pro-
vide security guarantees against Q&NBK-attackers that
have no background knowledge.

In order to make encrypted B-Trees applicable to
stronger attacker models, shuffling the B-Tree after every
query was proposed to achieve access and pattern confi-
dentiality [24]. For each value looked up in the B-Tree, e
different values are looked up so that e nodes need to be
retrieved at each stage of the B-Tree. Once the leaf nodes
for all the cover searches are received, the nodes of each
stage are shuffled by the client and written back to the
B-Tree at the SP. Thus, the access patterns of two identi-
cal queries look different to the SP. However, since only e
nodes are shuffled, the SP is still able to distinguish queries
with a certain probability. This amount of information
decays with the number of queries that are executed in
between the queries of interest. It may be possible for the
attacker to apply background knowledge concerning the
access pattern with a certain probability. Thus, shuffled
B-Trees only guarantee probabilistic database protection
against Q&BKQ-attackers that have background knowl-
edge of query patterns.

Fragmentation
In some cases, it is not attribute values, but attribute
value combinations that are considered confidential. Frag-
mentation approaches split relations up into multiple
fragments to protect the attribute combinations. For
instance, even though an attacker is allowed to see plain-
text attribute values of attribute age and name, it must be
impossible to link any age to a name. In order to achieve
that, the relation can be split up into two unlinkable frag-
ments, where each one contains either name or age as
shown in Table 2. Since no encryption is applied, the SP
can still evaluate equality, range and like selections as well
as aggregations.

To protect a record, it suffices to protect one of the
attributes that should not be linked by not storing the
attribute in the same fragment. As the SP does not learn

Page 10 of 14

the values of attributes that are not part of a fragment, the
values of such attributes can be considered indistinguish-
able ciphertexts.

The fragments can all be stored on a single SP or
distributed on multiple non-colluding SPs. If the frag-
ments are stored on a single SP [25], the confidentiality
of attribute combinations can only be guaranteed against
D&BKQ-attackers that are not able to observe any mod-
ifications of the data. For instance, in order to insert a
new record, partial records are inserted into each frag-
ment. An attacker that observed the newly inserted partial
records can infer that they belong to the same record
and link them. As shown in Figure 3, to protect against
stronger attackers, access confidentiality is necessary to
obfuscate which records were inserted. Notice that stor-
ing fragments on a single SP can only provide probabilistic
record protection: For instance, in Table 2 the attacker
learns that Bob’s age is either 23, 25 or 30 based on the
outsourced data. Thus, values of protected attributes are
only somewhat indistinguishable.

Storing the fragments on multiple non-colluding SPs
[26-28] can be considered secure against Q&BKD-
attackers that are able to observe queries and modifica-
tions. Since the fragments are stored on different SPs,
an attacker that compromised a single SP is not thereby
enabled to observe which partial records are inserted into
each fragment or to join them to reveal the confiden-
tial attribute combination. Furthermore, computational
record protection can be achieved because the value range
of the protected attributes cannot be narrowed down by
the SPs as only a single fragment can be observed by each
SP. Thus, values of protected attributes are truly indistin-
guishable. For instance, an attacker that has access to the
fragment that contains age in Table 2 can infer that the age
of a person in the dataset is either 23, 25 or 30. However,
since the attacker has no access to the other fragment, they
do not learn any names that are contained in the database
and can be possibly linked to the age.

Homomorphic encryption
Homomorphic encryption schemes [29-31] can be used
to produce ciphertexts that can be aggregated with-
out knowing the secret key used for encryption [32,33].
The execution of certain operations in the ciphertext
domain has the effect of executing an operation such as
addition or multiplication is performed in the plaintext
domain. Thus, the mediator can outsource homomorphi-
cally encrypted ciphertexts that can be aggregated by the
SP (e.g., summed, depending on the scheme utilized).
The ciphertexts produced by homomorphic encryp-
tion schemes can be considered indistinguishable for an
attacker. Aggregation queries target all records, rather
than specific ones, and therefore naturally ensure access
and pattern confidentiality. More precisely, all the records

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

that were selected are either based on other indexing
approaches such as deterministic indexes or B-Trees.
Thus, homomorphic encryption can be considered secure
against strong Q&BKQ-attackers with background knowl-
edge of the data and queries and the ability to monitor
queries.

Oblivious RAM and private information retrieval

The goal of Oblivious RAM (ORAM) [34-36] approaches
is to ensure that queries evaluated on the data are indis-
tinguishable and that the SP does not know which records
are returned or whether the same query has been exe-
cuted before. ORAM approaches shuffle the outsourced
encrypted data structure with each data access to ensure
that the executions of multiple identical/similar queries
look entirely different and cannot be distinguished by the
SP. The property of indistinguishable queries can only
be guaranteed if there is access and pattern confiden-
tiality. Thus, ORAM approaches ensure access and pat-
tern confidentiality and can be considered secure against
Q&BKD-attackers.

Private Information Retrieval (PIR) [37,38] approaches
obfuscate data access patterns and can be considered
secure against Q&BKD-attackers. Unlike ORAM, PIR
can only be applied for data retrieval, not for writing
data, which is a common requirement in DaaS scenar-
ios. In contrast to ORAM, PIR approaches can obfuscate
query access patterns in a single round of communica-
tion. Computational PIR approaches [39-42] achieve this
at the expense of increased computational cost for the SPs,
while information-theoretical PIR approaches [37,43,44]
obfuscate access patterns based on non-colluding SPs. To
evaluate queries (e.g., range selections) based on prob-
abilistic ciphertexts, PIR approaches can be combined
with methods such as encrypted B+ trees. This implies
a logarithmic number of communication rounds, which
would cancel out the benefits of PIR over ORAM in this
regard.

CPI efficiency

In order to facilitate assessment of whether a CPI is
suited for a given deployment scenario, we also provide a
high level overview of the query execution performance
achieved by each CPI. While a fine-grained performance
evaluation is beyond the scope of this article, our aim is to
give a rough estimate of the most important performance
metrics. We distinguish between transmission overhead,
which we define as the amount of data transmitted during
a query, the number of sequential communication rounds
between the mediator and the SP to answer a query and
the number of entries that need to be touched by the SP
in order to evaluate a query. Lastly, we categorize each
CPI with respect to the computational overhead induced
for the mediator and the SP according to four levels.

Page 11 of 14

We assign the level none if no or almost no calculations
need to be performed. Overhead is assumed to be low if
only lightweight cryptographic operations such as hash-
ing are performed. If only symmetric encryption schemes
are used, we assume the overhead to be moderate. If more
resource-consuming asymmetric encryption schemes are
utilized, we regard the computational overhead as /igh.

In the following, some of the most important findings
are highlighted:

Compared to other CPI approaches, deterministic
indexes and fragmentation induce the lowest overhead.
With fragmentation, however, the SP is not able to fully
execute a query based on a single fragment that does not
contain all the attributes that are relevant for the query.
Thus, a large number e of false-positive records may be
unnecessarily transmitted and have an impact on query
execution performance. In the non-colluding-SP model,
this is less of a problem because attributes can be stored
redundantly in multiple fragments.

The performance of flattened deterministic indexes and
bucketization highly is highly dependent on the distri-
bution of the outsourced attribute values. In unequally
distributed datasets, many different plaintext values need
to be mapped to a deterministic substitute in order to
ensure a flat index. Querying for one of these plain-
texts will result in the unnecessary transmission of many
false-positive records e.

B-Trees require log(n) consecutive communication
rounds between the mediator and the SP to retrieve the
tree nodes. This leads to a stacking of network latency
between the mediator and SP during query execution.

Using searchable encryption, the SP has to scan all out-
sourced ciphertexts contained in the index to find the
records that match a query.

Homomorphic encryption induces a comparatively high
computational overhead for the SP to aggregate cipher-
texts and for the mediator to encrypt/decrypt the cipher-
texts. We refer to partially homomorphic encryption here;
the overhead for fully homomorphic encryption is much
higher.

ORAM and PIR approaches each have their own
trade-offs between transmission overhead, the neces-
sary communication rounds and computational overhead.
Overall they are considered expensive compared to other
approaches that protect against weaker attacker models.

Comparative analysis and discussion

The proposed CPI assessment with regard to the CPIs’
functionality, their protection guarantees against various
attacker models and their efficiency allows recommenda-
tions to be made on which CPIs should be used in which
context. Figure 4 illustrates these recommendations under
the assumption that computational record protection is
required. For each given attacker model, the figure lists

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Page 12 of 14

Attacker‘s Attacker‘s background knowledge
monitoring
capabilities No BK (NBK) BK of schema (BKS) | BK of data (BKD) BK on data&queries (BKQ)
(o Y N searchable Encryption / Enc. BTrees)
Data (D) Deterministic Index Enc. B-Trees Searchable Encryption / Enc. B-Trees
Order-preserving searc?:::fsfgtélz;yon/ Searchable Encryption / (Enc. B-Trees)
© Encryption |[| ----------- -
> ’
O |Data& | R
5 P Searchable) Deterministic Index ORAM / PIR ORAM / PIR
2 | modifications (M) Encrypti
e yption/ ! ORAM/PR ORAM / PIR ORAM / PIR
3 (Enc.B-Trees) I, (ORAM/PIR) (ORAM / PIR) (ORAM / PIR)
! 1
% [Dpata& '
c : 1
§ |queries (Q) \
g _ B N/ \N Z
|:] Attacker model Q Security property Required Functionality: Eaquality selections Like selections
Range selections
Figure 4 Efficiency-optimal CPlIs that offer the required functionality and the security properties that are required to provide
computational record protection against each attacker model (fragmentation excluded).

the most efficient CPIs that can be applied without threat-
ening data confidentiality. In some cases multiple CPI
candidates are listed as it depends on the deployment sce-
nario and its requirements which CPI can be considered
the most efficient. For instance, searchable encryption and
encrypted B-Trees can be used to evaluate range selec-
tions and provide similar protection guarantees. As shown
in Table 4, searchable encryption induces more com-
putational overhead and requires the SP to touch more

Table 4 Performance categorization of existing approaches

entries than encrypted B-Trees, whereas encrypted B-
Trees require multiple rounds of communication. Thus,
searchable encryption should be favored over encrypted
B-Trees if network latency is expected to be high. To
provide computational record protection, fragmentation
alone is typically insufficient as too few SPs are available.
We omitted the fragmentation approach in the figure.
However, it can be applied in addition to other CPIs to
avoid having to apply more expensive CPIs [7].

Transmission overhead

Communication rounds

Touched entries Computation

SP Mediator
Deterministic Indexes O(k) 1 O(k) none low
Deterministic Indexes (Flattened) O(k+-e) 1 O(k+e) none low
Bucketization O(k+e) 1 O(k+e) none low
Bucketization (lattened) O(k+e) 1 O(k+e) none low
Order-Preserving Encryption O(k) 1 O(k) none low
Searchable Encryption O(k) 1 O(n) moderate moderate
Encrypted B-Trees O(log(n)+k) log(n) O(log(n)-+k) none moderate
Encrypted B-Trees shyfied) O2xexlog(n)+k) log(n)+1 O2xexlog(n)+k) none moderate
Fragmentation O(k+e) 1 O(k+e) none none
Fragmentation (non-colluding SPs) O(k) 1 O(k) none none
Homomorphic Encryption o(1) 1 O(k) high high
Oblivious RAM Depends on the specific approach
Example [35] O(log(n)?+ log(n)xk) log(n)+1 O(log(n)?+log(n)=k) none moderate
Examp.le [36] SP—Client: O(log(n)+k) log(n)+1 Ollog(+Hog(nk) low low
non-colluding 5Ps) - 5p_ SP: O(log(n)?-+log(n)sk)
Private Information Retrieval Depends on the specific approach
Example [38,44] Hash Index; O(n%)-i— k 1 O(n%)-i- k
Cor<oldng$9 B-Tree: Olog(n)nd +K) log(r) Olog(nnt +K o o

Legend

n: Number of outsourced attribute values.

k: Number of records matching a query.

e: Number of (unnecessarily transmitted) false positive records.

Kohler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

Key conclusions and future work

The survey shows that while no universal CPI approach
exists that supports every query type and protects the data
from all attacker models, the existing CPIs can cover many
deployment scenarios. The requirement triad of function-
ality, attacker model and protection level is important in
terms of assessing the applicability of an approach for a
given deployment scenario. These requirements are inter-
dependent, i.e,, in some cases a specific CPI can protect
against a stronger attacker model if the user is willing to
accept less functionality or less protection. Furthermore,
our study clearly indicates that CPI approaches that pro-
tect against strong attacker models induce a higher per-
formance overhead than approaches that protect against
weak attackers.

In the future, some of the important tasks of the
database-as-a-service community will be improving CPI
performance as well as leveraging individual CPI bene-
fits by integrating them into frameworks that automate
the choice of CPIs. Approaches for integrating CPIs have
been proposed [7,8,45], however, further exploration of
the potential of the symbiotic effects between CPIs with
regard to security and performance is another interesting
future research challenge.

Abbreviations

CPI: confidentiality preserving index; SP: storage provider; ES: equality
selection; RS: range selection; LS: like selection; AG: aggregation; D-attacker:
attacker that can observe outsourced data; M-attacker: attacker that can
observe modifications on outsourced data; Q-attacker: attacker that can
observe queries on the outsourced data; NBK: no background knowledge; BKS:
background knowledge on the data’s schema; BKD: background knowledge
on the data; BKQ: background knowledge on queries; C: computational record
protection; P: probabilistic record protection.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

JK developed the taxonomy and methodology, carried out the study on CPls
and drafted the manuscript. KJ served as a discussion partner and revised the
manuscript. HH provided advice and reviewed/revised the manuscript. All
authors read and approved the final manuscript.

Authors’ information

Jens Kohler received his diploma degree in computer science in 2011 from the
department of computer science of the Karlsruhe Institute of Technology.
Since 2012, he has been a researcher at the Institute for Telematics and the
Steinbuch Centre for Computing (SCC) in the Decentralized Systems and
Network Services Research Group (DSN) and is pursuing a Ph.D. degree. His
work focusses on IT security management and confidential data outsourcing
as well as federated identity management in particular.

Konrad Jinemann studied computer science at the Karlsruhe Institute of
Technology (KIT). In 2008, he worked for SAP Corporate Research Brisbane.
Since 2009 he has been a researcher at the Institute for Telematics and the
Steinbuch Centre for Computing (SCC) in the research group of Prof. Dr.
Hartenstein and is pursuing a Ph.D. degree. His work focusses on confidential
data outsourcing, IT security management and the analysis, modeling, and
simulation of decentralized systems.

Hannes Hartenstein is a full professor of computer science and a director of
the Steinbuch Centre for Computing at the Karlsruhe Institute of Technology,

Page 13 of 14

Karlsruhe, Germany. He received a diploma degree in mathematics and a Ph.D.
degree in computer science from Albert Ludwigs University, Freiburg,
Germany. Prior to joining KIT, he was a senior research staff member at NEC
Europe. His research interests include mobile networks, virtual networks,
security, and information technology management. He is a member of the
scientific directorate of the Leibniz Centre for Informatics, Schloss Dagstuhl.

Received: 24 July 2014 Accepted: 14 November 2014
Published online: 31 January 2015

References

1. Huang J, Nicol D (2013) Trust mechanisms for cloud computing. Journal
of Cloud Computing 2(1):1-14

2. Gonzalez N, Miers C, Redigolo F, Simplicio M, Carvalho T, Nélund M,
Pourzandi M (2012) A quantitative analysis of current security concerns
and solutions for cloud computing. Journal of Cloud Computing 1(1):1-18

3. Wei DSL, Murugesan S, Kuo S.-Y, Naik K, Krizanc D (2013) Enhancing data
integrity and privacy in the cloud: An agenda. Computer 46(11):87-90

4. Mykletun E, Narasimha M, Tsudik G (2006) Authentication and integrity in
outsourced databases. ACM Transactions on Storage 2(2):107-138

5. Juels A, Kaliski BS Jr (2007) Pors: Proofs of retrievability for large files. In:
Proceedings of the 14th ACM Conference on Computer and
Communications Security. CCS'07. ACM, New York, NY, USA. pp 584-597

6. Damiani E, di Vimercati SDC, Foresti S, Jajodia S, Paraboschi S, Samarati P
(2005) Key management for multi-user encrypted databases. In:
Proceedings of the 2005 ACM Workshop on Storage Security and
Survivability. StorageSS ‘05. ACM, New York, NY, USA. pp 74-83

7. Koler J, Junemann K (2014) Securus: From confidentiality and access
requirements to data outsourcing solutions. In: Hansen M, Hoepman J-H,
Leenes R, Whitehouse D (eds). Privacy and Identity Management for
Emerging Services and Technologies. IFIP Advances in Information and
Communication Technology, vol. 421. Springer, Berlin Heidelberg.
pp 139-149

8. Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H (2011) Cryptdb:
Protecting confidentiality with encrypted query processing. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. SOSP '11. ACM, New York, NY, USA. pp 85-100

9. De Capitani di Vimercati S, Foresti S, Paraboschi S, Pelosi G, Samarati P
(2011) Efficient and private access to outsourced data. In: Proceedings of
the 2011 31st International Conference on Distributed Computing
Systems. ICDCS "11. [EEE Computer Society, Washington, DC, USA.
pp 710-719

10. Ceselli A, Damiani E, Vimercati SDCD, Jajodia S, Paraboschi S, Samarati P
(2005) Modeling and assessing inference exposure in encrypted
databases. ACM Transactions on Information and System Security
8(1):119-152

11. Hacigimus H, lyer B, Li C, Mehrotra S (2002) Executing sgl over encrypted
data in the database-service-provider model. In: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data.
SIGMOD '02. ACM, New York, NY, USA. pp 216-227

12. Hore B, Mehrotra S, Canim M, Kantarcioglu M (2012) Secure
multidimensional range queries over outsourced data. VLDB Journal
21(3):333-358

13. Agrawal R, Kiernan J, Srikant R, Xu Y (2004) Order preserving encryption
for numeric data. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. SIGMOD '04. ACM, New York, NY,
USA. pp 563-574

14. Boldyreva A, Chenette N, Lee Y, O'Neill A (2009) Order-preserving
symmetric encryption. In: Joux A (ed). Advances in Cryptology -
EUROCRYPT 2009. Lecture Notes in Computer Science, vol. 5479.
Springer, Berlin Heidelberg. pp 224-241

15. Kamara S, Papamanthou C, Roeder T (2012) Dynamic searchable
symmetric encryption. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security. CCS "12. ACM, New York, NY,
USA. pp 965-976

16. Song DX, Wagner D, Perrig A (2000) Practical techniques for searches on
encrypted data. In: Proceedings of the 2000 IEEE Symposium on Security
and Privacy (S&P). IEEE Computer Society, Washington, DC, USA. pp 44-55

17. Chang Y-C, Mitzenmacher M (2005) Privacy preserving keyword searches
on remote encrypted data. In: loannidis J, Keromytis A, Yung M (eds).

K&hler et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:1

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

Applied Cryptography and Network Security. Lecture Notes in Computer
Science, vol. 3531. Springer, Berlin Heidelberg. pp 442-455

Bellare M, Boldyreva A, O'Neill A (2007) Deterministic and efficiently
searchable encryption. In: Menezes A (ed). Advances in Cryptology -
CRYPTO 2007. Lecture Notes in Computer Science, vol. 4622. Springer,
Berlin Heidelberg. pp 535-552

Kerschbaum F, Vayssiere J (2008) Privacy-preserving data analytics as an
outsourced service. In: Proceedings of the 2008 ACM Workshop on
Secure Web Services. SWS '08. ACM, New York, NY, USA. pp 87-96

Li J, Omiecinski ER (2005) Efficiency and security trade-off in supporting
range queries on encrypted databases. In: Proceedings of the 19th
Annual IFIP WG 11.3 Working Conference on Data and Applications
Security. DBSec’05. Springer, Berlin, Heidelberg. pp 69-83

Islam M, Kuzu M, Kantarcioglu M (2012) Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In:
Proceedings of the Network and Distributed System Security Symposium
(NDSS). Internet Society, Geneva, Switzerland

Damiani E, De Capitani di Vimercati S, Jajodia S, Paraboschi S, Samarati P
(2003) Balancing confidentiality and efficiency in untrusted relational
DBMSs. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS). ACM, New York, NY, USA

Pang H, Zhang J, Mouratidis K (2013) Enhancing access privacy of range
retrievals over (B*)-trees. IEEE Transactions on Knowledge and Data
Engineering 25(7):1533-1547

Capitani di Vimercati S, Foresti S, Paraboschi S, Pelosi G, Samarati P (2013)
Distributed shuffling for preserving access confidentiality. In: Crampton J,
Jajodia S, Mayes K (eds). Computer Security — ESORICS 2013. Lecture Notes
in Computer Science, vol. 8134. Springer, Berlin Heidelberg. pp 628-645
Foresti S (2011) Preserving Privacy in Data Outsourcing. Springer, Berlin
Heidelberg

Aggarwal G, Bawa M, Ganesan P, Garcia-Molina H, Kenthapadi K,
Motwani R, Srivastava U, Thomas D, Xu Y (2005) Two can keep a secret: A
distributed architecture for secure database services. In: Proceedings of
the Second Conference on Innovative Data Systems Research. CIDR,
Asilomar, CA, USA

Henrich C, Huber M, Kempka C, Mueller-Quade J, Reussner R (2010)
Technical report: Secure cloud computing through a separation of duties.
Institut fur Kryptographie und Sicherheit (KIT)

Ganapathy V, Thomas D, Feder T, Garcia-Molina H, Motwani R (2011)
Distributing data for secure database services. In: Proceedings of the 4th
International Workshop on Privacy and Anonymity in the Information
Society. PAIS "11. ACM, New York, NY, USA. pp 8-1810

Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In: Stern J (ed). Advances in Cryptology - EUROCRYPT
'99. Lecture Notes in Computer Science, vol. 1592. Springer, Berlin
Heidelberg. pp 223-238

Okamoto T, Uchiyama S (1998) A new public-key cryptosystem as secure
as factoring. In: Nyberg K (ed). Advances in Cryptology — EUROCRYPT'98.
Lecture Notes in Computer Science, vol. 1403. Springer, Berlin Heidelberg.
pp 308-318

Rivest RL, Adleman L, Dertouzos ML (1978) On data banks and privacy
homomorphisms. Foundations of Secure Computation 4(11):169-180
Haciglimis H, lyer B, Mehrotra S (2004) Efficient execution of aggregation
queries over encrypted relational databases. In: Lee Y, Li J, Whang K-Y.,
Lee D (eds). Database Systems for Advanced Applications. Lecture Notes
in Computer Science, vol. 2973. Springer, Berlin Heidelberg. pp 125-136
Mykletun E, Tsudik G (2006) Aggregation queries in the
database-as-a-service model. Data Appl Security XX 4127:89-103
Goldreich O, Ostrovsky R (1996) Software protection and simulation on
oblivious rams. Journal of the ACM 43(3):431-473

Stefanov E, van Dijk M, Shi E, Fletcher C, Ren L, Yu X, Devadas S (2013)
Path oram: An extremely simple oblivious ram protocol. In: Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications
Security. CCS "13. ACM, New York, NY, USA. pp 299-310

Stefanov E, Shi E (2013) Multi-cloud oblivious storage. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communications
Security. CCS "13. ACM, New York, NY, USA. pp 247-258

Chor B, Kushilevitz E, Goldreich O, Sudan M (1998) Private information
retrieval. Journal of the ACM 45(6):965-981

38.

39.

40.

41.

42.

43.

44,

45.

Page 14 of 14

Olumofin F, Goldberg | (2010) Privacy-preserving queries over relational
databases. In: Proceedings of the 10th International Conference on Privacy
Enhancing Technologies. PETS'10. Springer, Berlin, Heidelberg. pp 75-92
Aguilar-Melchor C, Gaborit P (2007) A lattice-based
computationally-efficient private information retrieval protocol. In:
Proceedings of the Western European Workshop on Research in
Cryptology (WEWoRC'2007), Bochum, Germany. pp 50-54

Kushilevitz E, Ostrovsky R (1997) Replication is not needed: single
database, computationally-private information retrieval. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science,
1997. IEEE Computer Society, Washington, DC, USA. pp 364-373

Chor B, Gilboa N (1997) Computationally private information retrieval
(extended abstract). In: Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing. STOC '97. ACM, New York, NY, USA.
pp 304-313

Sion R, Carbunar B (2007) On the computational practicality of private
information retrieval. In: Proceedings of the Network and Distributed
Systems Security Symposium. Internet Society, Geneva, Switzerland
Beimel A, Stahl Y (2003) Robust information-theoretic private information
retrieval. In: Security in Communication Networks. Springer, Berlin
Heidelberg. pp 326-341

Beimel A, Ishai Y, Kushilevitz E, Raymond J-F (2002) Breaking the
o(n1(2k-1)/) barrier for information-theoretic private information retrieval.
In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002. IEEE Computer Society, Washington, DC, USA.
pp 261-270

Jinemann K, Kéhler J, Hartenstein H (2012) Data outsourcing simplified:
Generating data connectors from confidentiality and access policies. In:
Proceedings of the 2012 12th IEEE/ACM International Symposium
OnCluster, Cloud and Grid Computing (CCGrid). pp 923-930

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Taxonomy of deployment requirements
	Functionality
	Protection levels
	Assumptions on attackers

	Methodology to assess CPIs
	Survey of existing CPIs
	CPI catalog
	Deterministic indexes
	Bucketization
	Order-preserving encryption
	Searchable encryption
	Encrypted B-Trees
	Fragmentation
	Homomorphic encryption
	Oblivious RAM and private information retrieval

	CPI efficiency

	Comparative analysis and discussion
	Key conclusions and future work
	Abbreviations
	Competing interests
	Authors' contributions
	Authors' information
	References

