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Abstract

We present an algorithm for the automated verification of Linear Temporal Logic formulæ on event traces using an
increasingly popular cloud computing framework called MapReduce. The algorithm can process multiple, arbitrary
fragments of the trace in parallel, and compute its final result through a cycle of runs of MapReduce instances.
Experimentation on a variety of cloud-based MapReduce frameworks, including Apache Hadoop, show how complex
LTL properties can be validated in reasonable time in a completely distributed fashion. Compared to the classical LTL
evaluation algorithm, results show how the use of a MapReduce framework can provide an interesting alternative to
existing trace analysis techniques, performance-wise, under favourable conditions.

Introduction
Over the recent years, the volume and complexity of inter-
actions between information systems has been steadily
increasing. Large amounts of data are gathered about
these interactions, forming a trace of events, also called a
log, that can be stored, mined, and audited. Web servers,
operating systems, database engines and business pro-
cesses of various kinds all produce event logs, crash
reports, test traces or dumps in some format or another.
One possible use of such a log is to perform trace valida-

tion: given a specification of the expected or agreed-upon
interaction (or inversely, of invalid behaviour), the trace of
actions recorded at runtime can then be searched auto-
matically for patterns satisfying or violating that specifi-
cation. The specification generally relates events to some
sequence of actions, method calls or events: the validity
of each event cannot be assessed individually, but must
rather be evaluated according to the event’s position with
respect to surrounding events, both before and after. As
we shall see in Section ‘Trace validation use cases’, there
exists a variety of scenarios where event traces are subject
to sequencing constraints, and the use of a language such
as Linear Temporal Logic represents a reasonable mean of
expressing these constraints formally.
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Various solutions have been proposed in the past to
automate the task of trace validation [1-6], either based
on temporal logic or other kinds of formal specifications.
While these solutions allow the expression of intricate
relationships between events in a log, the scalability of
many of them is jeopardized by the growing amount of
data generated by today’s systems. Recently, the advent
of cloud computing has been put forward as a potential
remedy to this problem, in particular for the tasks of pro-
cess discovery and conformance checking [7]. By allowing
the distributed processing of data spread across a network
of commodity hardware, cloud computing opens the way
to dramatic improvements in the performance of many
applications.
Given the growing amount of collected trace data

and the observed move towards distributed computing
infrastructures, it is crucial that existing trace validation
methodologies be ported to the cloud paradigm. However,
the prospect of parallel processing of temporal constraints
in general, and LTL formulæ in particular, is held back
precisely because of the sequential nature of the proper-
ties to verify: since the validity of an event may depend
on past and future events, the handling of parts of the
trace in parallel and independent processes seems to
be disqualified at the onset. A review of available solu-
tions in Section ‘Related work’ observes, perhaps unsur-
prisingly, that most existing trace validation tools are
based on algorithms that do not take advantage of paral-
lelism, while those that do offer very limited specification
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languages where sequential relationships between events
are excluded.
The present paper addresses this issue by presenting

a parallelizable algorithm for the automated validation
of LTL properties in event traces. The algorithm uses a
recent and popular execution framework, called MapRe-
duce [8], which is described in Section ‘An overview of
MapReduce’. MapReduce provides an environment par-
ticularly suitable to the breaking up of a task into small,
independent processes that can be distributed across mul-
tiple nodes in a network, and is currently being used
in large-scale applications such as the Google search
engine for the computation of the PageRank index [9].
The algorithm, detailed in Section ‘LTL trace validation
with MapReduce’, exploits this framework by splitting the
original property into subformulæ that can be evaluated
separately through cycles of MapReduce jobs.
The algorithm has been implemented in two distinct

MapReduce environments: MrSim and Apache Hadoop.
Experiments were conducted on evaluating sample LTL
properties on traces of up to 10 million events, and com-
pare their running time with a state-of-the-art, classical
trace analyzer for LTL. Results from these experiments,
described in Section ‘Experimental results’, show that the
algorithm offers similar or better performance whenmap-
pers and reducers are executed in a purely sequential
fashion. This first result confirms that the proposed algo-
rithm is not intrinsically penalizing a user over existing
solutions.
However, our experiments also reveal that, with par-

allelism turned on, the same batch of MapReduce jobs
offers lesser performance, slowing down the process by as
much as two orders of magnitude. This seems to suggest
that LTL trace analysis is indeed a fundamentally linear
process, and that attempts at distributing its computation
are offset by the cost of parallel management (threads,
inter-process communication, etc.).
To the best of our knowledge, the present work is the

first application and analysis of MapReduce for the veri-
fication of temporal logic properties on event traces. The
approach presents an interesting alternative to existing
tools when the formula to verify is below a certain com-
plexity threshold, in cases where LTL with past operators
is required, or when the trace to analyze is fragmented
across multiple computing nodes.

Trace validation use cases
We shall first recall basic concepts related to the valida-
tion of event traces in various contexts. For the needs of

this paper, an event trace m0m1 . . . , noted m, represents
a sequence of events over a period of time. Each event is
an individual entity, made of one or more parameter-value
pairs of arbitrary names and types. The schema (that is,
the number and names of each parameter in each event)
is not assumed to be known in advance, or even to be
consistent across all events.

Constraints on event sequences: linear temporal logic
Given an event trace, one is then interested in express-
ing properties or constraints that must be fulfilled either
by individual events or sequences thereof. Given an event
trace m and some constraint ϕ, we denote by m |= ϕ

the fact that the trace satisfies the constraint. A variety of
formal languages are available to describe constraints of
different kinds; one of them is a logical formalism called
Linear Temporal Logic (LTL), whose syntax is described
in Figure 1. The basic building blocks of LTL formulæ
are propositional variables p, q, . . . , expressing Boolean
conditions on particular messages of the trace. In the
present context, each propositional variable is an asser-
tion of the form parameter = value, which evaluates to true
if the equality holds for the current message, and to false
otherwise.
The complete semantics of LTL is given in Figure 2.

One can evaluate when a tracem satisfies a given formula
ϕ, written as m |= ϕ, by giving conditions to be evalu-
ated recursively on the structure of the formula. On top
of propositional variables, LTL allows Boolean connectives
∨ (or), ∧ (and), ¬ (not), bearing their usual meaning and
temporal operators to express constraints on the sequence
of events. The temporal operator G means “globally”; the
formula Gϕ means that formula ϕ is true in every event
of the trace, starting from the current event. The opera-
tor Fmeans “eventually”; the formula Fϕ is true if ϕ holds
for some future event of the trace. The operator X means
“next”; it is true whenever ϕ holds in the next event of the
trace. Finally, the U operator means “until”; the formula
ϕ Uψ is true if ϕ holds for all events until some event sat-
isfies ψ . We also define ϕ Vψ as ¬(¬ϕ U¬ψ) and ϕ Wψ

as (ϕ Uψ) ∨ Gϕ. a
Two concepts bear particular importance in this paper.

Given some operator � and a formula ϕ of the form �ϕ′
or ϕ′ � ψ , expressions ϕ′ and ψ are called the direct sub-
formulæ of ϕ. Subformulæ form a partial ordering; we will
denote as ϕ′ ≺ ϕ the fact that ϕ′ is a direct subformula of
ϕ. The depth of a formula ϕ, noted δ(ϕ), is then defined
as the maximum number of nested subformulæ it con-
tains. For example, the expression G (p ∧ F q) is of depth

Figure 1 The syntax of linear temporal logic.
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Figure 2 The semantics of LTL operators, where ϕ and ψ are LTL formulæ,m is an event tracem0,m1,m2, . . . andmi designates its suffix
mi,mi+1, . . . .

3, and its set of proper subformulæ is {p ∧ F q, p,F q, q}.
For a set of subformulæ S, we will say that ϕ is a (direct)
superformula of ψ if ϕ,ψ ∈ S and ψ ≺ ϕ.

A use-case scenario
There exists a variety of scenarios where constraints on
event traces can be modelled as LTL properties. This
issue has gained considerable importance in the past
decade with the advent of anti-fraud regulation such as
the Sarbanes-Oxley Act (SOX) [10] or the Payment Card
Industry Data Security Standard (PCI) [11], which require
some form of storage and analysis of log files, such as
database transaction history. We shall describe in the
following a number of such scenarios described in past
literature.
As a simple example, we recall an earlier work where

a bookstore business process was modelled as a set of
constraints in a language called DecSerFlow [12], [p.34].
The workflow is initiated by a customer placing an order
(event place_c_order). This customer order is sent to and
handled by the bookstore (event handle_order). The book-
store then transfers the order of the desired book to a
publisher. If the bookstore receives a negative answer,
it decides to either search for an alternative publisher
or to reject the customer order (event c_reject). If the
bookstore searches for an alternative publisher, a new
bookstore order is sent to another publisher, etc. If the
customer receives a negative answer (event rec_decl), then
the workflow terminates. If the bookstore receives a pos-
itive answer (activity c_accept), the customer is informed
(event rec_acc) and the bookstore continues processing
the customer order.

From this workflow, the authors identify sequencing
relationships between the various events that must be
enforced for a valid transaction to take place. For example:

1. A customer order must eventually be acknowledged
by the bookstore

2. Event rec_acc cannot occur unless some
place_c_order has been seen previously

These relationships, expressed in a graphical notation
called DecSerFlow, can be translated into equivalent LTL
formulæ.
LTL can then be used to formalize the these properties.

For example, the first property above becomes

G (place_c_order → F (rec_acc))

Similarly, the second can be expressed as:

(¬rec_acc)U place_c_order

We also mention that the same techniques used for
LTL business process compliance can be reused for the
verification of web service interface contracts [13], the
detection of network intrusions in web server logs [14],
and the analysis of system events produced by spacecraft
hardware during testing [5].

Related work
Existing solutions for the validation of event traces can be
split into two categories. On one side are formal trace val-
idation tools, mostly experimental or academic, offering a
rich input language but for which no parallel processing
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algorithms are available; on the other side lie distributed
log analysis products whose input language and validation
capabilities are relatively limited.

Formal trace analysis
A first category of tools is made of so-called “formal”
trace analyzers. Complex sequential patterns of events
are expressed using a rich, mathematically-based notation
such as finite-state machines, temporal logic or Petri nets.
Algorithms are then developed to process these specifica-
tions and automatically check that some trace satisfies the
given pattern.
In this realm, a wide variety of techniques have been

developed for different purposes. When the specifica-
tions are written as temporal logic formulæ, algorithms
can manipulate the expressions symbolically, and pro-
gressively rewrite the original specification as the trace
is being read; the pattern is violated when this rewriting
process transforms the specification into a contradiction.
This idea has been implemented in two independent tools,
respectively based on the Maude engine [15] and the Java
programming language [13].
An alternate approach consists of storing the events

into a database, and to transform the sequential patterns
into an equivalent database query. This has been experi-
mented with traditional relational databases and SQL [1],
and more recently using XML databases and the XQuery
language [2]. The database approach has also been fol-
lowed, to some degree, by the Monpoly tool [3], which
associates to each event in the trace a set of conditions on
its values.
ProM [4] is an open-source environment aimed at the

mining of patterns in large sets of log data. Among the
many plugins developed for ProM, one can find a tool
for the automated verification of LTL formulæ on process
logs. Also worthy of mention are Logscope [5] and RuleR
[6], which use their own input language loosely based on
logic and finite-state machines.
However, none of the aforementioned tools is reported

to offer parallel processing capabilities, and in particu-
lar the leveraging of cloud-based infrastructures, such as
MapReduce, to that end. On the contrary, [16] uses par-
allelism by sharing the truth values of common atomic
propositions of a past-time LTL (ptLTL) among multiple,
low-hardware footprint micro-CPU cores. The evalua-
tion of LTL properties has been offloaded to multiple
GPUs in [17,18], in the latter case by first reduc-
ing the LTL properties to Büchi automata. The term
“parallelism” has also been used in [19] in the limited
context of executing the monitor of a temporal logic spec-
ification in a separate thread from the program being
observed. However, these approaches are CPU or GPU-
based, and do not attempt to leverage the MapReduce
framework.

Distributed trace analysis
The second category of related work comprises so-called
“log analysis” solutions. Most products in that category
are commercial software aimed at the filtering of event
data (such as database or server logs) to search for the
presence of specific patterns. Notable examples include
Snare [20], ManageEngine [21] or Splunk [22]; even oper-
ating systems such asWindows provide viewing and filter-
ing capabilities for internal events. These tools can be seen
as refined variants of the well-known “Grep” function,
which performs pattern matching over an input file and
returns lines corresponding to some regular expression. It
can be seen as a (somehow limited) form of log analysis
that can be used to return parts of an event trace corre-
sponding to a filter expression. Indeed, such mechanism
has also been proposed as the basis of trace validation
tools in the past [23].
“Distributed Grep” [24] is the name given to the par-

allel version of this procedure, where the input file is
split into chunks that can be processed independently.
For each line � read from an input file chunk, the Map
function emits a tuple 〈�,∅〉 if it matches a given pattern;
the Reduce function just copies the supplied intermediate
data to the output. As a matter of fact, most log anal-
ysis tools that leverage cloud infrastructures speed up
their data processing using essentially this procedure. Of
these aforementioned solutions, some offer the possibil-
ity to distribute the processing of filtering functions across
multiple nodes in a network. This includes a log analysis
tool called that p3 has been developed to analyze packet
traces in the cloud using Apache’s Hadoop distributed
computing environment [25].
A problem arises, however, when one wants to query an

event trace using a more articulate query language than
single-line regular expressions. Linear Temporal Logic is
a prime illustration of this problem: if p and q define sin-
gle event patterns, a temporal expression likeG (p → X q)
validates whether an event that satisfies p is always imme-
diately followed by an event that satisfies q. Events (or
lines) are no longer compared individually, but rather with
respect to their sequential relationship. The main hypoth-
esis of the aforementioned techniques, namely that event
processing can be done individually, no longer holds. If the
two lines of some temporal pattern are stored on different
chunks of the trace, and processed by independent parallel
threads, the sequential relationship will be missed.
Therefore, in all the aforementioned solutions, the fil-

tering process is generally limited to single events taken in
isolation. For example, it is possible to obtain the list of all
events satisfying some criterion on the event’s attributes
or to compute aggregate numerical statistics on events
collected (such as total throughput, average delay, etc.),
but not to fetch events in relation with other events, or sat-
isfying some sequence or temporal pattern. Similarly, p3
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can only be used to perform simple filtering on individual
instances, or to compute aggregate numerical statistics on
events collected (such as total throughput, average delay,
etc.).
A close cousin to the approach presented in this paper

has been exposed by Bauer and Falcone [26]. In this set-
ting, multiple components in a system each observe a
subset of some global event trace. Given an LTL prop-
erty ϕ, their goal is to create sound formulæ derived from
ϕ that can be monitored on each local trace, while min-
imizing inter-component communication. However, this
work assumes that the projection of the global trace upon
each component is well-defined and known in advance.
Moreover, all components consume events from the trace
synchronously, such that the distribution of monitoring
does not result in a speed-up of the whole process.

An overview of MapReduce
Since the emergence of the concept of cloud computing
a few years ago, a variety of distributed computing envi-
ronments have been released. One notable proponent is
MapReduce, a framework introduced by Google in 2004
for the processing of large amounts of data [8]. It is one of
the forerunners of the so-called “NoSQL” trend, which has
seen the development and rising popularity of alternative
data processing schemes steering away from mainstream
relational databases.
Figure 3 summarizes the schematics of MapReduce.

Data processing starts by the reading of some piece of data
(typically an input file) by an Input Reader, whose task is
to convert the input stream into a set of tuples. Each tuple
is a key-value pair, denoted 〈qi, v〉, where both keys and
values can be of arbitrary types.
As Figure 3 shows, multiple instances of the Input

Reader can run in parallel, and typically process separate
fragments of the input data simultaneously. The tuples
produced by the Input Reader are then sent one by one to
a Mapper, whose task is to convert each input tuple 〈qi, v〉
into some output tuple 〈ki, v′〉. The processing is stateless
—that is, each tuple must be transformed independently
of any previously-seen tuple, and regardless of the order in
which tuples are received. For an input tuple, the Mapper
may as well decide not to produce any output tuple.
The pool of tuples from all Mapper instances then goes

through a shuffling step; all tuples with the same key are
grouped and dispatched to the same instance of Reducer.
Therefore, a Reducer that receives a tuple 〈ki, v〉 is guar-
anteed to receive all other tuples 〈ki, v′〉 for that same key
ki. For the sake of clarity, we can safely assume that each
Reducer instance receives the tuples for exactly one key;
we can hence parameterize each such instance with the
key it has been assigned.
Contrarily to the Mapper, the Reducer receives its input

tuples at once, and is hence allowed to iterate through and

Figure 3 The different steps of MapReduce data processing.

retain information about previously seen tuples. Again,
the Reducer’s task is to read the input tuples, and produce
as output one final set of tuples of the form 〈ti, v〉. This set
of tuples can then be read, and formatted back to some
output format by an Output Writer.
In some cases, the Input Reader and Mapper may be

fusioned into a single processing step, as is the case for the
Reducer and Output Writer. Moreover, some definitions
of MapReduce also imply that tuples are sorted according
to their value before being fed to the Reducer, although we
do not assume such sorting in the present paper.
Popular frameworks such as Google’s or Apache’s

Hadoop [27] provide an environment and code libraries
allowing one to write data processing tasks as MapReduce
jobs. It generally suffices to write the (Java or Python) code
for the Map and Reduce phases of the processing, compile
it and send it to the nodes of the cloud infrastructure.



Hallé and Soucy-Boivin Journal of Cloud Computing: Advances, Systems and Applications  (2015) 4:8 Page 6 of 16

One can see from this simple description that the keys
and values produced by a processing step need not be
(and generally are not) the same for input and output. In
the same way, there is no fixed relationship between the
number of tuples read and the number of tuples sent out;
a Mapper or Reducer processing some tuple may return
zero, one, or even more than one tuple as output.
Moreover, it is possible to chain multiple MapReduce

phases. It suffices to take the output of the Reducers as
input for a subsequent cycle of Mappers. Google’s PageR-
ank algorithm is computed through three MapReduce
phases, the second of which is repeated until convergence
of some numerical value is reached [9]. The algorithm for
Mappers and Reducers differs from phase to phase.
Although the MapReduce scheme is arguably less nat-

ural than a classical, linear program to an inexperienced
developer, its architecture presents one key advantage:
once a problem has been correctly split into Map and
Reduce jobs, scaling up the processing to multiple nodes
in the cloud becomes straightforward. Indeed, multiple
Input Readers can simultaneously take care of a separate
chunk of the input data. Then, since the Map step pro-
cesses each tuple regardless of any past or future tuple,
an arbitrary number of Mappers can process the tuples
generated by the Input Readers in parallel. Similarly, the
processing done by each Reducer only requires access
to tuples of the same key, which entails that up to one
Reducer per key can run in parallel. All in all, the whole
processing chain greatly decreases the number of steps
that require to be done in sequence. A good review of
MapReduce’s pros and cons can be found in Lee et al. [28].

LTL trace validation withMapReduce
Despite the potential parallelism brought about by the use
of the MapReduce paradigm, the fundamental question
of whether LTL trace validation is parallelizable remained
open until very recently. We have already shown that,
if one is to leverage distributed cloud frameworks for
LTL querying of event traces, simple mechanisms such
as Distributed Grep and their derivatives cannot be used
directly.
Kuhtz and Finkbeiner showed in 2009 that LTL path

checking belongs to the complexity class AC1(logDCFL)
[29]; this result entails that the process can be efficiently
split by evaluating entire blocks of events in parallel.
Rather than sequentially traversing the trace, their work
considers the circuit that results from “unrolling” the for-
mula over the trace. However, while the evaluation of
this unrolling can be done in parallel, a specific type of
Boolean circuit requires to be built in advance, which
depends on the length of the trace to evaluate. Moreover,
the formal demonstration of the result shows that, while
a fixed number of gates of this circuit can be contracted
in parallel at each step of the process, the algorithm itself

requires a shared and global access to the trace from every
parallel process. As such, it does not lend itself directly to
distributed computing frameworks.
We take an alternate approach, and describe in this

section an algorithm that performs LTL trace validation
on event traces directly using the MapReduce computing
paradigm. The algorithm evaluates an LTL formula in an
iterative fashion. At the first iteration, all the states where
ground terms are true are evaluated. In the next iteration,
these results are used to evaluate all subformulæ directly
using one of those ground terms. More generally, at the
end of iteration i of the process, the events where all sub-
formulæ of depth i hold are computed. It follows that, in
order to evaluate an LTL formula of depth n, the algorithm
will require exactly n MapReduce cycles. Each MapRe-
duce cycle effectively acts as a form of temporal tester [30]
processing a trace made of the evaluation of lower-level
testers.
This does not mean, however, that the event trace must

be read as many times. In fact, the input trace is entirely
read only once, at the first iteration of the procedure.
Afterwards, only sequential numbers referring to those
events need to be passed between mappers and reduc-
ers. The contents of the original trace never need to be
consulted ever again.
The system is described by providing details on each

component of the MapReduce algorithm described in
Figure 3. We suppose that every instance of the pro-
cess (Input Reader, Mapper, Reducer, Output Writer) are
parameterized by the formula to verify ϕ, and the length
of the trace, �.
We will illustrate the workings of this algorithm through

a simple example, by considering the formula

ϕ ≡ G (¬c ∨ F (a ∨ b))

evaluated on the trace a,c,a,d,c,d,b.

Trace format and input reader
The Input Reader is responsible for the processing of a set
of events from the trace to read and the generation of a
first set of key-value tuples from that set. We assume that
each event is sequentially numbered, or that its position
in the whole trace can be easily computed otherwise. For
some event e, we will refer by #(e) this event’s sequential
number.
The Input Reader, whose algorithm is given in Figure 4a,

iterates through each event of the trace chunk, and eval-
uates on each event the ground terms present in ϕ. For
each propositional variable a and each event e, it outputs a
tuple 〈a, (i, 0)〉 where i is the event’s sequential number in
the trace. The ground terms of a formula ϕ are computed
using the function atom(ϕ).
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Figure 4 Pseudo-code for the LTL Input Reader (a) and Mapper (b).

At the first iteration of the process on our sample for-
mula, the InputR eader (or multiple input readers) process
the trace and generates the first set of tuples:

〈a, (0, 0)〉, 〈a, (2, 0)〉, 〈b, (6, 0)〉, 〈¬c, (0, 0)〉,
〈¬c, (2, 0)〉, 〈¬c, (3, 0)〉, 〈¬c, (5, 0)〉, 〈¬c, (6, 0)〉

One should remark that this initial processing step does
not require that the trace be located on a single node, or
even that each node’s fragment consist of blocks of succes-
sive events. As long as each event can be placed in some
total order (such as the value of a global, shared clock),
any number of nodes can host any subset of the trace.
This is particularly useful if event collection and storage is
performed in a distributed fashion.

Mapper
The Mapper takes as input tuples of the form 〈ψ , (n, i)〉,
either from the Input Reader or from the output of a pre-
vious MapReduce cycle. Each such tuple reads as “the
process is at iteration i, and subformula ψ is true on event
n”. One can see, in particular, how the tuples returned by
the Input Reader express this fact for ground terms of the
formula to verify.
The Mapper, shown in Figure 4b, is responsible for lift-

ing these results, computed for some ψ , up into every
formulæ ψ ′ of which ψ is a direct subformula (these
are obtained using the function superformulæ(ϕ,ψ)). For
example, if the states where p is true have been computed,
then these results can be used to determine the states
where F p is true. To this end, the Mapper takes every
tuple 〈ψ , (n, i)〉, and will output a tuple 〈ψ ′, (ψ , n, i + 1)〉,
where ψ is a subformula of ψ ′. This tuple reads “the pro-
cess is at iteration i + 1, subformula ψ is true on event n,
and this must be used to evaluate ψ ′”. In the definition of
the reducer, ξ stands for whatever subformula the input
tuple is build from.
On our example, the tuples produced by the Input

Reader at the previous step are sent to mappers which
produce the following output tuples:

〈a∨b,(a, 0,1)〉,〈a∨b,(a, 2,1)〉,〈a∨b,(b, 6,1)〉,〈¬c∨F(a∨b),(¬c,0,1)〉,
〈¬c∨F(a∨b),(¬c, 2,1)〉,〈¬c∨F (a∨b),(¬c,3,1)〉,〈¬c∨F(a∨b),(¬c,5,1)〉,

〈¬c ∨ F (a ∨ b), (¬c, 6, 1)〉

Reducer
The mappers are mostly used to prepare results from the
last iteration to be used for the current iteration. In con-
trast, each instance of the reducer performs the actual
evaluation of one more layer of the temporal formula to
verify. After the shuffling step, each individual instance
of the reducer receives all generated tuples of the form
〈ψ ′, (ψ , n, i)〉 for some formula ψ ′, and where ψ is a direct
subformula of ψ ′. Hence, the reducer is given informa-
tion on all the event numbers for which ψ ′ holds, and is
asked to compute the states where ψ holds based on this
information. This task can then be decomposed depend-
ing on the top-level connective in ψ ′. The algorithm for
each reducer is shown in Figure 5.
When the top-level formula to evaluate is Xψ , the

events that satisfy the formula are exactly those immedi-
ately preceding an event whereψ holds. Consequently, the
reducer iterates through its input tuples of 〈Xψ , (ψ , n, i)〉
and produces for each one an output tuple 〈Xψ , (n−1, i)〉.
When the top-level formula to evaluate is Fψ , the

events that satisfy the formula are exactly those for which
some event in the future is such that ψ holds. The
corresponding reducer iterates through the input tuples
and computes the highest event number c for which ψ

holds. All events preceding c satisfy Fψ . Consequently,
the reducer generates as output all tuples of the form
〈Fψ , (k, i)〉, for each k ∈[ 0, c].
The reducer for ¬ψ iterates through all tuples and

stores in a Boolean array whether ei |= ψ for each
event i in the trace. It then outputs a tuple 〈¬ψ , (k, i)〉
for all event numbers k that were not seen in the input.
The reducer for Gψ proceeds in reverse. It first iterates
through all tuples in the same way. If we let c be the
index of the last event for which ψ does not hold, the
reducer will then output all tuples 〈Gψ , (k, i)〉 for k ∈[ c+
1, �]. This indeed corresponds to all events for which Gψ

holds.
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Figure 5 Pseudo-code for the LTL Reducers.

The case of binary connectives ∨ and ∧ is slightly more
delicate. Special caremust be taken to persist tuples whose
result will be used in a later iteration. Consider the case of
formula (F p) ∧ q. The states where ground terms p and
q hold will be computed by the Input Reader at iteration
0. However, although q is a direct subformula of (F p) ∧ q,
one has to wait until iteration 2 to combine it to F p, evalu-
ated at iteration 1. More precisely, a tuple 〈ψ �ψ ′, (ψ , n, i)〉
can only be evaluated at iteration δ(ψ �ψ ′); in all previous
iterations, tuples 〈ψ , (n, i)〉 must be put back in circula-
tion. The first condition in both reducers’ algorithm takes
care of this situation.
Otherwise, when the top-level formula to evaluate isψ∨

ψ ′, the reducer outputs a tuple 〈ψ ∨ψ ′, (n, i)〉 whenever it
reads input tuples 〈ψ ∨ ψ ′, (ψ , n, i)〉 or 〈ψ ∨ ψ ′, (ψ ′, n, i)〉.
When the top-level formula is ψ ∧ ψ ′, the reducer must
memorize event numbers n for which it has read tuples
〈ψ ∧ψ ′, (ψ , n, i)〉 and 〈ψ ∧ψ ′, (ψ ′, n, i)〉, and outputs 〈ψ ∧
ψ ′, (n, i)〉 as soon as it has seen both. The last case to con-
sider is that of a formula of the form ψ Uψ ′. The reducer
first iterates through all its input tuples and memorizes
the event numbers for whichψ holds, and those for which
ψ ′ holds. It then proceeds backwards from the last event
of the trace, and outputs 〈ψ Uψ ′, (n, i)〉 for some state n
if ψ ′ holds for n, or if ψ holds for n and there exists an

uninterrupted sequence of states leading to a state n′ for
which ψ ′ holds. This last information is handled through
the Boolean variable b.
On our example formula, the reducer for a ∨ b will

receive the first three tuples and output 〈a∨b, (0, 1)〉, 〈a∨
b, (2, 1)〉, 〈a∨b, (6, 1)〉. Since the iteration number is 1, and
the depth of¬c∨F (a∨b) is 3, the reducer for¬c∨F (a∨b)
will simply re-output the tuples

〈¬c, (0, 1)〉, 〈¬c, (2, 1)〉, 〈¬c, (3, 1)〉, 〈¬c, (5, 1)〉, 〈¬c, (6, 1)〉
As one can see, the tuples produced by each reducer is

of the form 〈ψ , (n, i)〉, carrying the exact same meaning
as those originally produced by the Input Reader, albeit
for formulæ of greater depth. Therefore, the result of
one MapReduce cycle can be fed back as input of a new
cycle; as we have seen, it takes exactly δ(ϕ) such cycles to
completely evaluate some LTL formula ϕ.

Output writer
At the end of the last MapReduce cycle, one is left with
tuples 〈ϕ, (n, δ(ϕ))〉. These represent all event numbers n
such that mn |= ϕ. The output writer, shown in Figure 6,
translates the last set of tuples into the truth value of the
formula to evaluate. By the semantics of LTL, an event
trace satisfies the formula ϕ if m0 |= ϕ. Hence the output
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Figure 6 Pseudo-code for the LTL output writer.

writer simply writes “true” if 〈ϕ, (0, δ(ϕ))〉 is found, and
false otherwise.

A complete example
For the sake of completeness, the remaining iterations of
MapReduce processing on our example formula are given
below.

Iteration 2
The tuples produced by the first round of Reducers are
sent to mappers for a second cycle, producing:

〈F(a∨b), (a∨b,0,2)〉, 〈F(a∨b), (a∨b,2,2)〉, 〈F(a∨b), (a∨b,6,2)〉,
〈¬c∨F(a∨b), (¬c,0,2)〉, 〈¬c∨F (a∨b), (¬c,2,2)〉,〈¬c∨F(a∨b), (¬c,3,2)〉,

〈¬c ∨ F (a ∨ b), (¬c, 5, 2)〉, 〈¬c ∨ F (a ∨ b), (¬c, 6, 2)〉.

The reducer for F (a ∨ b) will produce:

〈F (a∨b), (0, 2)〉, 〈F (a ∨ b), (1,2)〉, 〈F (a ∨ b), (2, 2)〉, 〈F (a∨b), (3, 2)〉,
〈F (a ∨ b), (4, 2)〉, 〈F (a ∨ b), (5, 2)〉, 〈F (a ∨ b), (6, 2)〉

while the reducer for ¬c ∨ F (a ∨ b) will again re-output:

〈¬c, (0, 2)〉, 〈¬c, (2, 2)〉, 〈¬c, (3, 2)〉, 〈¬c, (5, 2)〉, 〈¬c, (6, 2)〉.
Iteration 3
The tuples are sent into the penultimate cycle; the map-
pers will produce:

〈¬c ∨ F (a ∨ b), (F (a ∨ b), 0, 3)〉, 〈¬c ∨ F (a ∨ b), (F (a ∨ b), 1, 3)〉,
〈¬c ∨ F (a ∨ b), (F (a ∨ b), 2, 3)〉, 〈¬c ∨ F (a ∨ b), (F (a ∨ b), 3, 3)〉,
〈¬c ∨ F (a ∨ b), (F (a ∨ b), 4, 3)〉, 〈¬c ∨ F (a ∨ b), (F (a ∨ b), 5, 3)〉,

〈¬c∨F(a∨b), (F(a∨b), 6,3)〉, 〈¬c∨F(a∨b), (¬c,0,3)〉, 〈¬c∨F(a∨b), (¬c, 2,3)〉,
〈¬c∨F(a∨b),(¬c,3,3)〉, 〈¬c∨F(a∨b), (¬c,5,3)〉, 〈¬c∨F(a∨b), (¬c,6,3)〉.

The reducer for ¬c ∨ F (a ∨ b) will output:

〈¬c∨F (a∨b), (0, 3)〉, 〈¬c∨F (a∨b), (1, 3)〉, 〈¬c∨F (a∨b), (2, 3)〉,
〈¬c∨F (a∨b), (3, 3)〉, 〈¬c∨F (a∨b), (4, 3)〉, 〈¬c∨F (a∨b), (5, 3)〉,

〈¬c ∨ F (a ∨ b), (6, 3)〉.

Iteration 4
For the last iteration, the mappers produce

〈G(¬c∨F (a∨b)), (¬c∨F (a∨b),0,4)〉, 〈G (¬c∨F (a∨b)), (¬c∨F(a∨b),1,4)〉,
〈G(¬c∨F(a∨b)), (¬c∨F (a∨b),2,4)〉, 〈G (¬c∨F (a∨b)), (¬c∨F(a∨b),3,4)〉,
〈G(¬c∨F(a∨b)), (¬c∨F(a∨b),4,4)〉, 〈G(¬c∨F(a∨b)), (¬c∨F (a∨b),5,4)〉,

〈G (¬c ∨ F (a ∨ b)), (¬c ∨ F (a ∨ b), 6, 4)〉

The reducer for G (¬c∨ F (a∨ b)) computes the output
tuples

〈G(¬c∨F(a∨b)),(0, 4)〉, 〈G(¬c∨F(a∨b)),(1,4)〉〈G (¬c∨F(a∨b)), (2,4)〉
〈G(¬c∨F(a∨b)),(3,4)〉〈G(¬c∨F(a∨b)),(4,4)〉〈G(¬c∨F (a∨b)), (5, 4)〉

〈G (¬c ∨ F (a ∨ b)), (6, 4)〉

Finally, since event number 0 is part of the tuple set, the
output writer concludes that the formula is true for the
trace considered.
From this simple example, one can see how multiple

input readers can process separate chunks of the same
event trace independently. As a matter of fact, each input
reader does not even require that its chunk contains sets of
consecutive events, as long as each event is properly num-
bered according to its sequential position. In addition,
as a side effect of fitting the problem into the MapRe-
duce framework, an arbitrary number of parallel Mapper
instances can be used to process a set of input tuples at
each cycle. Similarly, up to one Reducer per key (that is,
one per subformula) can run in parallel in the Reduce
phase of a cycle.

LTL with past
The use of the present algorithm for LTL validation pro-
vides a number of interesting side effects. The most
notable one is that the evaluation of LTL past operators
can be obtained mostly “for free”. For instance the transla-
tion of operator Y (the past version of X) simply amounts
to replacing n− 1 by n+ 1 in the definition of the reducer
for X. A similar reasoning can be applied for the remain-
ing past temporal operators, like P (or F−1), H (G−1) or
S (U−1). Furthermore, unusual operators such as the C
(“chop”) modality [31] can also be defined easily with their
custom reducer.

Experimental results
To illustrate the concept and evaluate its feasibility, we
implemented the algorithm described earlier in two dif-
ferent MapReduce frameworks, and compared it to an
existing trace analysis tool called BeepBeep, which uses a
classical, non-parallel algorithm. Experiments were then
conducted to compare their running time on the same set
of traces; the point of the comparison is to get an intuition
whether using MapReduce can provide an improvement
over existing techniques, performance-wise.
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Sample properties
To assess the running time of the MapReduce valida-
tion algorithm, we built a dataset consisting of traces of
randomly-generated events, with each event being made
of up to ten random parameters, labelled p0, . . . p9, each
carrying five possible values. Each trace has a length
between 1 and 100,000 events, and 500 such traces were
produced. In total, this dataset amounts to more than one
gigabyte of randomly-generated event data.
Four properties, with increasing complexity, were veri-

fied on these traces. Property #1 is G p0 �= 0, and simply
asserts that in every event, parameter p0, when present, is
never equal to 0. Property #2 is G (p0 = 0 → X p1 = 0):
it expresses the fact that whenever p0 = 0 in some event,
the next event is such that p1 = 0. Property #3 is a
generalization of Property #2:

∀x ∈[ 0, 9] : G (p0 = x → X p1 = x)

This property asserts that whatever value taken by p0
will be taken by p1 in the next event. The universal and
existential quantifiers are meant as a shorthand notation;
the actual LTL formula to be validated is the logical con-
junction of the previous template for all possible values of
x between 0 and 9, and reads

(G (p0 = 0 → X p1 = 0)) ∧ (G (p0 = 1 → X p1 = 1)) . . .

Finally, Property #4 checks that some parameter pm
alternates between two possible values; this is true when
the value of pm in the current event is the same as the value
two events from the current one, and is written:

∃m ∈[ 0, 9] : ∀x ∈[ 0, 9] : G (pm = x → XX pm = x)

Again, the quantifiers are meant as a shorthand.

Execution environments
Our execution environment for the validation of proper-
ties consists of a virtual cluster inside a Solaris 11.1 server,
equipped with 24 GB of RAM. One reason for the choice
of Solaris is its possibility to create isolated environments,
called zones, without the need for a full-fledged virtual
machine. Each zone has its own resource controller, and
communicates with the rest of the environment only
through a connection using virtual network interfaces.
This makes it easy to create and manage computing
nodes.
The practice of using Solaris zones to create a Hadoop

cluster is well known and documented [32]. Advantages
of using such an architecture include fast provision of
new cluster members using the zone cloning feature, very
high network throughput between the zones for data node
replication, optimized disk I/O utilization, and secure data
at rest using ZFS encryption. In our setup, the cluster is
made of five nodes: a master “name-node” whose task is
to manage Hadoop jobs, three “data-nodes” that perform

the actual Map and Reduce operations, and a backup of
the name node that can resume its job should a failure
occur. It is out of the scope of this paper to describe in
detail the architecture of the cluster; we followed the basic
setup steps contained in documentation from Oracle and
available online [32].
We now proceed to describe the trace analysis tools that

were run on the cluster. It shall be noted that only Hadoop
requires a multi-node (and hence multi-zone) setup. The
remaining tools were executed in the default, “global” zone
of the system.

BeepBeep
The first tool included in our survey is a runtime moni-
tor we developed in earlier work called BeepBeep [33].b
BeepBeep receives a stream of events produced by some
application or process, and constantly analyzes it against
a specification given beforehand. When the stream of
events deviates from what the specification stipulates, a
signal is sent which can then be piped into another pro-
gram for further processing. It can also work in offline
mode and analyze a pre-recorded trace of events taken
from a file.
Although BeepBeep accepts as input an LTL expres-

sion, its processing uses a completely different algorithm
from the one described in this paper. This algorithm is not
based on MapReduce: it is sequential, and requires a sin-
gle process to analyze each event of the trace one by one
in their proper order.
A recent benchmark has showed that BeepBeep pro-

vides performance in the average of a large number of
other trace validation solutions [34]. It was included in
our analysis as the baseline case, being representative of
the kind of performance that classical solutions provide. It
will hence be possible to compare the running time of our
proposed MapReduce solution and measure any actual
benefits in terms of performance.

MrSim
The second environment we used for the comparison is
a hybrid between sequential trace processing and dis-
tributed MapReduce, called MrSim. MrSim [35] is a sim-
ple implementation of MapReduce in Java, intended for
a pedagogical illustration of the programming model. It
originates from frustrating experiences using other frame-
works, which require a lengthy and cumbersome setup
before running even the simplest example. In most cases
those examples are entangled with technical consider-
ations (distributed file system, network configuration)
that distract from learning the MapReduce programming
model itself.
MrSim aims at providing a simple framework to cre-

ate and test MapReduce jobs with a minimal setup,
using straightforward implementations of all necessary
concepts. This entails some purposeful limitations to the
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system: for example, it is not optimized in any way. In
counterpart,MrSim offers interesting features from a ped-
agogical point of view: it runs out of the box, and the cen-
tralized processing makes it easy to perform step-by-step
debugging of a MapReduce job.
MrSim can run in two modes. In sequential mode,

the actual coordination of Map and Reduce jobs is done
locally on a single machine using a single-thread imple-
mentation of MapReduce: the data source is fed tuple
by tuple to the mapper, the output tuples are collected,
split according to their keys, and each list is sent to
the reducer, again in a sequential fashion. As such, this
sequential workflow reproduces exactly the processing
done by MapReduce environments, without the distribu-
tion of computation. This was done on purpose, so that
the running time of each mapper and reducer instance
could be easily measured.
In multi-threaded mode, Map and Reduce jobs of the

same iteration each run in a distinct thread provided by
a thread dispatcher. The dispatcher is instantiated with a
parameter n specifying the maximum number of concur-
rent threads. The first nMap and Reduce jobs that execute
are immediately given a thread; remaining jobs in excess of
n, if any, are put into a waiting queue for one of the existing
threads to terminate. In terms of performance, the oper-
ation in sequential mode is equivalent to multi-threaded
when n = 1 (barring some light thread management over-
head), as was confirmed by a set of preliminary setup
tests.
A first observation that can be made is that this execu-

tion environment is the simplest of all we tested: excluding
the code for coordinating Mappers and Reducers (itself
made of only 250 lines of code), the total implementation
of the validator amounts to 1,000 lines of Java code. This
should be put in contrast with BeepBeep, which is also
implemented in Java and rather uses the classical, on-the-
fly algorithm for the evaluation of LTL formulæ on traces
[13]; BeepBeep is is made up of twice as many lines of Java
code.

Hadoop
The third environment used in our experiments is Apache
Hadoop version 1.2.1, already introduced earlier.
While Hadoop is regularly presented as the canonical

example of a MapReduce implementation, it turns out
that there are significant differences between the theo-
retical principle of MapReduce described in Section ‘An
overview of MapReduce’, and the real-life implementation
of MapReduce in Apache Hadoop.

Chaining MapReduce jobs In the theoretical MapRe-
duce framework (and in MrSim), tuples output by reduc-
ers can be sent directly as input to mappers, making
multiple iterations of MapReduce cycles possible. Hadoop

does not support this: tuples produced by reducers must
be sent serialized to an output collector, saved to a file,
and then be re-read from an input collector and con-
verted back into tuples. This makes the chaining of cycles
of MapReduce jobs, necessary in our context for but the
simplest LTL formulæ, very cumbersome, inefficient, and
ultimately uncalled for, as the MrSim environment does
not require such a mandatory serialization to chain cycles
of MapReduce jobs.

Line input format A second limitation of the Hadoop
implementation is the fact that input readers are line-
based —that is, an input reader is fed one line at a time
from the input source, and elements fromwhich tuples are
created cannot span multiple lines. While this behaviour
is appropriate for simple log formats, it makes it hard to
support rich data models such as, in our case, XML. We
had to preprocess our input traces to remove line end-
ings inside all events, so that each event occupies exactly
one line. Again, input readers in MrSim do not present
this limitation and can be fed arbitrary chunks of an input
source.

Object inheritance An LTL expression is represented as
a top-level LTL operator, which in turn may contain a
number of children operators, hence creating a nested
structure representing the contents of the formula. Every
operator is a subclass of the general class LTLOperator; it
is therefore natural to declare the key of tuples as an object
of type LTLOperator, and this is precisely what is done in
MrSim.
Yet, Hadoop does not support inheritance when manip-

ulating tuples. This means that if a map or a reduce job is
declared to accept tuples of type (K ,V ), Hadoop throws
a runtime error when trying to process a tuple of type
(K ′,V ′), where K ′ and V ′ are descendants (in the object-
oriented sense of the term) of K and V respectively. This
poses a serious problem in our context, which necessitated
rewriting our representation of LTL formulæ as a single
object, using a member field whose value makes it behave
like a conjunction, an operator G, etc. This unexplained
limitation belongs to Hadoop, and is not an inherent lim-
itation of the MapReduce principle, as MrSim does not
present this problem. This arguably renders the valida-
tion code inelegant, and again, most assuredly affects its
performance.

Results
To test and compare each validation solution, we ran-
domly generated traces of XML events with abstract
names p0, p1, etc., each containing a random integer
value. The length of each trace varied from less than 10
events to more than 9 million; in this last case, the XML
file weighed just short of 1 gigabyte. Each property P1–P4
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was validated on each trace, and various statistics on the
process were computed.
All tools operate in the same way: they accept as input

a character string (the same for every tool) represent-
ing an LTL formula, and a filename pointing to an XML
trace saved locally. Each tool then processes the formula
and the trace using its own algorithm (the classical LTL
evaluation algorithm for BeepBeep, and the MapReduce
implementation described in this paper for the others).
It should be noted at the onset that all three MapRe-

duce solutions (Hadoop and the two versions of MrSim)
crashed when evaluating Property 4 on the two largest
traces we generated (respectively 3.5 and 9million events).
Apart from these two events, every tool successfully com-
pleted each verification task and returned the same (cor-
rect) verdict.

Number of tuples
The first measurement is the number of tuples produced
by the algorithm. This value is taken as the sum of Ti, the
total number of tuples processed at the Map phase of each
MapReduce cycle number i, for all cycles i ∈[ 1, δ(ϕ)], as
shown in Table 1. One can see that the number of tuples
increases with the complexity of the formula: while Prop-
erty #1 produces 180,000 tuples for a trace, the validation
of Property #4 on the same trace generates more than 8
million such units.
For example, validating property P2 produces roughly

twice as many tuples, in total, than there are events in the
trace to analyze. From this ratio, it is possible to guess that
the total number of tuples that would have been produced
when evaluating property 4 on the largest trace is around
400 million.
The distribution of tuples across iterations is far from

uniform, however. Table 2 shows the number of tuples
produced by the reduce phase of each cycle for each
property and two different traces.
We also computed the “sequential ratio” of the vali-

dation process. At each MapReduce cycle, we keep the
largest number of tuples processed by a single instance of
a reducer. This value, noted ti, represents the minimum
number of tuples that must be processed sequentially in

Table 1 The total number of tuples produced for the
validation of each properties on traces of increasing sizes

Trace size P1 P2 P3 P4

11 14 17 20 221

180,035 180,062 346,642 815,449 8,194,477

1,770,922 1,770,938 3,409,468 8,010,419 80,552,405

3,523,211 3,523,218 6,782,937 15,938,586 > 54 M

9,025,596 9,025,603 17,375,057 40,830,370 —

Ratio 1 1.9 4.5 45

Table 2 Number of tuples produced at eachMapReduce
iteration for the validation of properties P1–P4, for a trace
of a fewkilobytes (a) and a trace of around100megabytes (b)

(a)

Iteration P1 P2 P3 P4

1 8 8 9 11

2 3 3 4 43

3 3 3 4 42

4 3 3 59

5 34

6 24

7 8

(b)

Iteration P1 P2 P3 P4

1 132,392 132,392 662,013 856,275

2 1,638,530 1,638,530 3,674,133 26,563,830

3 16 1,638,530 3,674,133 26,563,830

4 16 47 26,564,584

5 31 1,508

6 31 1,022

7 31 750

8 336

9 28

10 28

11 54

12 80

13 80

that particular cycle. If all reducers for that cycle were
allowed to run in parallel, and assuming similar process-
ing time for each tuple, the ratio ti/Ti is an indicator of
the time the “parallel” cycle requires with respect to the
“sequential” version. The global sequential ratio shown in
Table 3 is taken as

s =
∑δ(ϕ)

i=1 ti
∑δ(ϕ)

i=1 Ti

This sequential ratio shows one of the limits of the val-
idation algorithm in its present incarnation: the potential
for parallelism is bounded by the structure of the formula
to validate, as there can be at most one instance of reducer
for every possible subformula of the property to verify.

Table 3 Sequential ratio each of the four properties P1–P4

Property #1 Property #2 Property #3 Property #4

Sequential ratio 100 % 92 % 19 % 3 %
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Therefore, for simple formulæ such as Property #1 and #2,
which have very few different subformulæ at eachMapRe-
duce cycle, almost all the work must be done sequentially
(100% in the case of Property #1, and 92% in the case of
Property #2). However, as soon as the property becomes
more complex, as is the case for Properties #3 and #4,
the situation is reversed, and each reducer handles a small
fraction of the total number of tuples. Property #4 is most
dramatic in that respect, since 97% of all tuples involved
can be processed in parallel. The presence of quantifiers
accounts for a large part of this phenomenon, as it rapidly
blows up the size of the actual LTL formula passed to
the trace validator: 50 copies of the same template are
validated, with various combinations of values form and x.

Running time
The second measurement is the total running time
required to vaildate each property, on traces of increas-
ing size. A summary of these results is given in Table 4,
which shows, for each property, the average running time
per event, which is the total processing time divided by
the number of events in the trace; the value shown in the
table is the average of these values over all traces.
From the sequential ratio s and the average sequential

running time per event r obtained for each property, it is
also possible to infer the theoretical validation time in the
maximally-parallel case by computing r × s; this inferred
running time is also shown in Table 4, using the sequential
run of MrSim as the baseline.
A first observation that can be made is that, for most

properties, the BeepBeep runtime monitor ismany orders
of magnitude slower than any MapReduce implementa-
tion. Even the sequential MrSim setup provides runtime
performance superior to BeepBeep, indicating that the use
of a MapReduce algorithm in itself presents an intrinsic
performance advantage.
Detailed results on the running time for every property,

and trace are plotted, for each validation environment, in
Figure 7. The figure reveals a running time that is roughly
linear in terms of the length of the trace for all prop-
erties and all tools. The rate of growth, however, varies
widely from one tool to the next, with BeepBeep faring the

Table 4 Average running time inmicroseconds per event
for each property and each tool

Tool P1 P2 P3 P4

BeepBeep 15,788 6,332 0.2 31

MrSim (sequential) 1.9 3.6 10.4 335

Hadoop cluster 44 96 243 4,694

MrSim (multi-thread) 73 138 433 5,734

MrSim (predicted) 1.9 3.3 2.0 10

worst. Surprisingly, the multi-thread versions of MrSim
and the Hadoop cluster exhibit slower validation times
than the sequential version of MrSim; depending on the
properties, these tools are sometimes 40 times slower than
the sequential version of MrSim. The running times esti-
mated from the sequential ratio (last line of Table 4) are
also sometimes orders of magnitude lower than the actual
running times observed with the multi-thread version of
MrSim. Since the sequential MrSim uses the same Map
and Reduce jobs, the culprit cannot lie in the algorithm
itself, but rather in the introduction of parallelism.

Worst-case bandwidth
Given that all three MapReduce approaches crashed for
traces and formulæ producing the most tuples, we per-
formed a theoretical analysis of the bandwidth required to
evaluate a formula in the worst csae.
First, one can realize that a tuple can be reduced to

at most four integers. Assuming 32-bit integers, a tuple
can hence accommodate roughly 4 billion events (232), as
many subformulæ and iteration cycles, and be serialized
as a 12-byte string.
We can then estimate the maximum number of tuples

that can be generated during the evaluation of a formula.
There can be as many tuples as there are events in the
trace to process, and one such tuple can be produced for
each subformula of the formula to verify. If we let |ϕ| be
the length (i.e. number of symbols) of ϕ, one can conclude
that there are at most 2|ϕ| subformulæ; indeed, each log-
ical connective occurring in ϕ brings at most two proper
subformulæ. Hence the cumulative tuple bandwidth B to
be exchanged can be given by:

B = T × δ(ϕ) × � × 2|σ(ϕ)|

where T is the tuple size, δ(ϕ) is the depth of the formula
to verify (and hence the number of MapReduce cycles),
� is the event trace length, and 2|σ(ϕ)| denotes the total
number of subformulæ. The � × 2|σ(ϕ)| term is indeed a
crude worst case bound, as it assumes that each event of
the input trace generates one tuple for each subformula
and at each cycle, that all subformulæ are present at each
cycle (they obviously aren’t), and that the formula is only
composed of binary connectives (it generally isn’t). It also
assumes that every produced tuple must be transmitted to
another site to be processed in the next step in the algo-
rithm. For the properties given as an example in this paper,
|σ(ϕ)| is effectively bounded by 3.
One can see that, while this bound can amount to a large

number of tuples, it nevertheless remains linear both in
the length of the trace and the size of the LTL formula to
evaluate. Therefore, the cheerless results we obtained with
the parallel versions of the algorithm seem to be related to
their implementation, and not to asymptotic complexity.
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Figure 7 Running time for the validation of properties P1 (a) to P4 (d), using the four validtion methods presented in this paper.

This is confirmed by the much better performance of the
single-threaded MapReduce implementation.
To simplify the notation and reduce bandwidth, a sim-

ple modification can be made to the current method by
computing all subformulæ of ϕ in advance and later on
designate them with a single digit, as shown in Table 5
for the formula used as an example throughout the paper.
This modification effectively reduces the amount of data

Table 5 Shorthand symbols can be assigned to each
subformula of the property to verify

Formula Symbol

a 0

b 1

¬c 2

a ∨ b 3

F (a ∨ b) 4

¬c ∨ (F (a ∨ b)) 5

G (¬c ∨ (F (a ∨ b))) 6

that needs to be exchanged between mappers and reduc-
ers, and emphasizes the fact that no manipulation of the
formulæ is necessary during the validation process (apart
from fetching formulæ from the table to determine which
action to follow).

Discussion and conclusion
In this paper, we have presented an algorithm for the
automated validation of Linear Temporal Logic properties
on large traces of events using the MapReduce develop-
ment framework. As far as we know, this work is the first
published algorithm that leverages theMapReduce frame-
work for the validation of temporal logic properties on
large event traces. It opens the way to the use of cloud
computing services for the efficient compliance checking
of program traces and event logs of various kinds.

Summary
We have shown experimentally on a sample dataset how
the algorithm presents reasonable running times when the
MapReduce environment is restricted to a single thread.
The breaking up of the algorithm into several phases of
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independent mappers and reducers presents the potential
of reducing the number of operations that must be per-
formed linearly by executing these processes in parallel,
yielding a potential speedup of 90% in some cases.
We were surprised to discover that among the three

MapReduce implementations, the two that use paral-
lelism (Hadoop and the multi-threaded MrSim) are vastly
outperformed by the sequential, single-threaded imple-
mentation of MrSim –by more than two orders of magni-
tude in most cases. Since all three versions were given the
same map and reduce jobs, the culprit cannot be put on
the algorithm we propose and is therefore inherent in the
actual environment used. We could not witness any of the
potential execution time savings brought on by the use of
parallel processing, as the sequential ratio of Table 3 led us
to believe.

Strata andmonotonic logic
This tends to indicate that verifying temporal properties
on a trace of events is an essentially linear process, and
that its breaking up into parallel steps requires a com-
munication overhead that largely offsets the presence of
parallelism. In some cases, we observed that the num-
ber of tuples produced (and hence the amount of data
exchanged) amounts to more than 40 times the number
of events in the trace to analyze. It might be tempting
to explain the relatively poor runtime performance of the
distributed tools by the volume of tuples that need to be
produced and exchanged between nodes or threads; yet
the reader shall be reminded that the sequential version of
MrSim produces and manages the same tuples as well.
This sequential nature of the LTL validation process

bears close resemblance to the concept of stratification
in distributed Datalog [36]. In this context, the execution
of a distributed database query is divided into “non-
monotonic stratification boundaries”: the evaluation of
each strata can be split into multiple independent and
distributed processes, but a global coordination of all pro-
cess at strata N must be done before any process of strata
N+1 can start. In the case of LTL property evaluation, the
boundaries can clearly be equated to the levels of nesting
of each subformula: evaluating subformulaæ of a level of
nestingN−1 can be done independently of each other, but
the evaluation of a subformula of level of nesting N may
require using the result of any subformula of level N , and
hence a global coordination —materialized by the shuf-
fling of tuples between reducers and mappers of the next
iteration.

Potential uses
The results described in this paper are promising. They
show how the use of a MapReduce framework can
provide much better runtime performance than the
classical LTL algorithm (sometimes by many orders

of magnitude), especially for large traces. Despite the
mild disappointment at the runtime performance of the
Hadoop cluster, we conclude that the use ofMapReduce to
perform log analysis still is a viable solution that can ana-
lyze, in the worst case, hundreds if not thousands of events
per second on very complex LTL formulæ. In addition
to the performance argument, there also exist situations
where the use of MapReduce is the only option; we list a
few cases below.

• The property contains LTL past operators. Existing
solutions (including BeepBeep) cannot handle LTL
with past, while we have seen in Section ‘LTL with
past’ that the MapReduce implementation provides
these operators for free.

• The trace to analyze is fragmented across multiple
locations. Existing trace validation tools all require
the trace to be accessible sequentially from start to
finish, which in general entails that the trace must be
reconstructed and saved in a single location prior to
analysis. In contrast, in the MapReduce
implementation each single event can be located
arbitrarily in any node, and each node needs not even
to store contiguous sets of events. As a matter of fact,
as long as the trace can be unambiguously ordered,
events can be produced and recorded in multiple
locations. This makes it particularly suited to verify,
e.g. transaction processing systems [37].

• Using a professional MapReduce environment such
as Hadoop provides side benefits, such as failure
protection, generally absent from trace validators like
BeepBeep or ProM.

Extensions and future work
The results obtained on the implementation discussed in
this paper lead to a number of extensions and improve-
ments over the current method. First, the algorithm
presents an interest in that it can be reused as a basis
for other temporal languages that intersect with LTL.
This is the case, for example, of specifications written as
finite-state machines, PSL [38] or DecSerFlow [12]. It is
expected that similar techniques could also apply to to
other logical formalisms, such as deontic logic [39]. Sec-
ond, the technique itself could be expanded to take into
account data parameters and quantification; the formulæ
described in Section ‘Sample properties’ gave a foretaste
of such quantification and initial results indicate that
quantification is a fertile ground for parallelism. The pro-
posed implementation is currently being ported as a free
software suite for Apache Hadoop.
Finally, we have seen that the potential for parallelism

is bounded by the structure of the formula to validate, as
there can be at most one instance of reducer for every
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possible subformula of the property to verify. This entails
that one cannot freely distribute the processing of the
trace to an arbitrary number of parallel processes: for a
simple formula, or one that contains few nested expres-
sions, few reducers can be started in parallel. Therefore,
a sought after refinement of the current method is cur-
rently being worked on, which will allowmultiple Reducer
instances for the same key to be merged in a later step.

Endnotes
aWe implicitly assume a finite-trace semantics where

ε �|= Xϕ, ε �|= Fϕ, and ε |= Gϕ, where ε represents the
empty trace.

bhttp://beepbeep.sourceforge.net. The analysis in this
paper has been done on version 1.7.6.
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