Chauvel et al. Journal of Cloud Computing: Advances, Systems
and Applications (2015) 4:18
DOI s13677-015-0043-7

RESEARCH Open Access
@ CrossMark

® Journal of Cloud Computing

a SpringerOpen Journal

Evaluating robustness of cloud-based
systems

Franck Chauvel’, Hui Song, Nicolas Ferry and Franck Fleurey

Abstract

Various services are now available in the Cloud, ranging from turnkey databases and application servers to high-level
services such as continuous integration or source version control. To stand out of this diversity, robustness of service
compositions is an important selling argument, but which remains difficult to understand and estimate as it does not
only depend on services but also on the underlying platform and infrastructure. Yet, choosing a specific service
composition may fail to deliver the expected robustness, but reverting early choices may jeopardise the success of
any Cloud project.

Inspired by existing models used in Biology to quantify the robustness of ecosystems, we show how to tailor them to
obtain early indicators of robustness for cloud-based deployments. This technique helps identify weakest parts in the
overall architecture and in turn mitigates the risk of having to revert key architectural choices. We illustrate our approach
by comparing the robustness of four alternative deployments of the SensApp application, which includes a MongoDB
database, four REST services and a graphical web-front end.

Keywords: Systems architectures; Cloud-based systems; Robustness indicators; Robustness metric; Software deployment;

Sensitive components; Failure sequences

Introduction

Cloud is very dynamic: new services are continuously
made available, whereas less useful ones get rapidly
dismissed. Services include end-user applications (e.g.,
weather forecast), platform services (e.g., Heroku, Google
App Engine), and infrastructure services (e.g., Amazon
EC2, Cloud Sigma). In this dynamic environment, cloud-
based systems are continuously refined to make the most
of new opportunities.

High availability is one of the main selling argument
of Cloud solutions and is therefore included in many ser-
vice level agreements (SLA). Yet, systems—even highly
available ones—eventually fail [1]. Engineers must then
understand and quantify the impact of possible failures,
that is to say to measure the robustness. Robustness com-
plements reliability and availability: reliability quantifies
the frequency of failures and availability reflects the
fraction of the time when the system is up and run-
ning (implying repair). Measuring robustness is critical to

*Correspondence: franck.chauvel@sintef.no
SINTEF ICT, P.O. Box 124 Blindern, N-0314 Oslo, Norway

@ Springer

understand and estimate the consequences that architec-
tural decisions may have on the robustness of the system.
Understanding robustness thereby helps avoid expensive
rollbacks of inappropriate decisions.

Robustness indicators are commonly accepted as a
means to mitigate this risk through the development and
differentiate as soon as possible candidate architectures.
Qualitative indicators, based on subjective expert judg-
ments, are always available but are extremely time con-
suming to consolidate. By contrast quantitative indicators
of such as ATAM [2] result from complex procedures that
require a detailed technical knowledge which may not
be available. The fast pace of the Cloud calls for rapid
feedback regarding robustness of the system, despite the
complexity of robustness evaluation.

Our contribution is a set of three robustness indicators,
tailored for cloud-based systems, which require minimal
knowledge of the systems and do not involve expert judg-
ments. In addition, we provide Trio, an experimental tool
to compute them on cloud-topologies.

Our indicators are inspired by the robustness metrics
used for ecosystems in Biology. They are based on an
analogy between species extinctions in ecosystems and

© 2015 Chauvel et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=s13677-015-0043-7-x&domain=pdf
mailto: franck.chauvel@sintef.no
http://creativecommons.org/licenses/by/4.0/

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

component failures in software systems. Based on this,
one can not only compare the overall robustness (1)
of alternative architectures, but also spot the weakest
components (2) as well as the most threatening failure
sequences (3). We illustrate how our indicators permit
to rank alternative architectures of the SensApp applica-
tion, which includes a database, four REST services and a
graphical front-end. We also compare our measure with
existing topological metrics, including density, distance,
and centrality.

The remainder is organised as follows. Section Moti-
vating Example introduces a running example of Cloud-
based system, where various deployment architectures
may be envisioned. Section Robustness of Ecosystems first
introduces how robustness is understood and estimated
in Ecology. Section Overview summarises our robust-
ness indicators and discusses the minimal required inputs.
Section Cloud Robustness Indicators details their cal-
culation and explain how the models used in Biology
are tailored to Cloud-based systems. Section Robustness
Operationalisation explains how our measurement can
be obtained on a real systems, by using cloud man-
agement tools. Section Running Examples presents our
prototype implementation and how we used it to select
robust deployments of SensApp. In Section Comparisons,
we contrast our robustness metric with existing one from
graph theory. Section Threats to Validity reviews the
main weakness of our approach before Section Related
Work discusses a selection of complementary publica-
tions and Section Conclusion presents our future research
directions.

Motivating example

SensApp [3] is the typical cloud-based application that
we use as a running example hereafter. SensApp acts as
a buffer between sensor networks and cloud-based sys-
tems. It gives sensors a place to continuously push data
and provides Cloud services for notification and query.

As a service-oriented architecture (SOA), SensApp is
made of four REST services that intercept raw data com-
ing from sensors, store it in a database (e.g., MongoDB)
and notify interested users eventually. In addition, Sen-
sApp provides a graphical web interface called SensApp
Admin, which helps administrators manage the underly-
ing database. Figure 1 summarises these high-level com-
ponents and their interactions.

We are interested in the robustness of SensApp, which
is commonly understood as its ability to cope with fail-
ures, and which can intuitively be improved using two
main strategies: replication and isolation. In case of fail-
ures, replication leverages backup components whereas
isolation minimises failure propagation. In practise, good
isolation enables efficient replication, as it permits to only

Page 2 of 17
I listeners
k3
: SensApp System

{1

<<Web Ul >> notifications|
:SensApp Admin [1
1 {1
<< service >>
,,,,,,,, {] :Registry [] e 0

new_sensors

sensor_data

O
<< service >>
queries oo {1 :Storage [}

v
1

database

{1

Fig. 1 Decomposition of SensApp into high-level functional components,
depicted as a UML 2 component diagram

replicate the most critical parts. Breaking down SensApp
into six separate services improves isolation by restrict-
ing how failures can propagate (which is not the case
in a monolithic implementation) and makes possible to
replicate the database if needed.

However, robustness in Cloud-based system must also
take into account the execution environment, as envi-
ronment failures eventually propagate to the services.
Identifying the environment for any Cloud-application
requires answering the three following questions to gain
insight regarding platform, infrastructure and allocation.

e What platform? Web services are mainly SOAP-
based or REST-based and both can be built on many
technologies such as Java Enterprise, .NET, Ruby, to
name a few. These environments directly impact the
eventual robustness of the system.

e What infrastructure? Most platforms are provided
as services (e.g., Heroku, GoogleApp Engine, Cloud-
bees) but they can also be manually installed and
configured on public or private virtual machines (e.g.,
AWS EC2, OpenStack). The size, type and features
(e.g., replication, scaling) of the infrastructure further
impact the eventual robustness.

¢ Which allocation scheme? Finally, the way the appli-
cation components are deployed on the platform, and
the way the platform is deployed on the infrastruc-
ture reflect the use of isolation and replication, and in
turn, affect the eventual robustness.

For SensApp, the development team selected Java as
an execution environment. Services thus have to run on
a servlet container (SC) such as Jetty or Tomcat, which
requires a Java runtime environment (JRE) to run properly
on any given virtual machine (VM).

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

INFRA-
STRUCTURE

SERVICES

PLATFORM

Topology 1
(reference)
=
.'e

Topology 2

Topology 3

Topology 4

_—
communicates with

............. >
is hosted by

Fig. 2 Four alternatives deployment topologies of the SensApp

system

Figure 2 illustrates four possible deployment topolo-
gies for SensApp, representing alternative answers to
the above three questions. In the reference topology, we
envisioned to isolate SensApp Admin (A) on a separate
machine, running within its own servlet container. In the
second topology, the database (DB) is outsourced to a
platform-as-a-service provider (PaaS) to increase isolation

Page 3 0of 17

at the platform level. In the third topology, we further
isolated each SensApp service in a separate servlet con-
tainer. However, at the infrastructure level, the container
of the dispatcher and the registry are still running on
the same virtual machine (VM). Finally, in the fourth
topology, we included an additional load balancer (LB)
in front a replicated database (DB). Other topologies are
possible, but these four ones reflect our experience in
deploying SensApp in projects such as ENVISION [4] or
ENVIROFY [5].

Getting insight regarding the robustness of the SensApp
services in such topologies is critical and difficult, regard-
less of the approach chosen: graph theory metrics or
full-fledge architectural evaluation.

Existing graph-theory metrics such as density, aver-
age node degree, distance or betweenness, fail to capture
trade-offs between isolation and replication. These met-
rics are often used to quantify various forms robustness at
the architecture level and are readily available in most of
scientific computation software packages such as Matlab,
or R.

Yet, interpreting such metrics requires to choose either
a isolation or a replication oriented view. With isolation
in mind, a dense topology (one with more edges) implies
broader propagation of failures and, in turn, a more brit-
tle architecture. By contrast, with replication in mind, a
dense topology has alternative and redundant paths, and
is therefore synonym of robustness.

Alternatively, comprehensive analysis methods, such as
ATAM [2] or ABC/DD [6], remain quite time and resource
consuming. These are comprehensive processes includ-
ing analysis and testing, and could be used for audit for
instance, but are of little help to quickly sort out archi-
tectural ideas, especially when the systems does not yet
exist. In our SensApp scenario, although we could go
through such heavy procedure, we do not have all the
pieces of knowledge needed to apply such methods onto
the speculative topologies.

In the following, we present three robustness indicators,
inspired by an approach used in Biology for evaluating
the robustness of ecosystems, which does not require any
subjective judgement nor any deep technical knowledge.

Robustness of ecosystems

Ecology is the branch of Biology that focuses on the inter-
actions between organisms or groups of organisms and
their environment. Ecology portrays these interactions
as networks of species, called ecosystems, where depen-
dencies between species generally capture prey-predator
relationships. The intuition is that a species whose food
or resources are not anymore available will starve and die
consequently. In the ecosystem depicted in Fig. 3 below, if
both grasses and carrots disappear, rabbits will starve and
disappear as well. Ecosystems are often partitioned into

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

TOP PREDATORS =

Foxes Owls

(Rabbits) (Birds HGrasshoppers) (Mice)

RESOURCES

Grasses Grains

Fig. 3 lllustrative ecosystem capturing the prey-predator relationships

between a small set of species

trophic levels which gather species with similar properties,
such as the “resources” or the “top predators” in Fig. 3.

Ecologists distinguish between the robustness of the
whole ecosystem and the robustness of a particular
trophic level. In both cases, robustness is understood as
the capacity of the ecosystem (or part of it) to survive to
the extinction of species and is measured by simulating
extinction sequences [7]. During one extinction sequence,
one extinguishes the species one after the other while
measuring how many survive at each step. For instance,
Fig. 4 shows the response of the top predator group
to the extinction sequence “grasses, grains and carrots”.
The robustness of the top predators to this particular
sequence is given by the grey area. The overall robust-
ness of the top predators is the average robustness over all
possible extinction sequences.

It is worth to note that a high robustness at the
ecosystem-level does not necessarily imply the absence
of brittle species or groups of species. In Fig. 3, mice is
a sensitive species, which goes extinct as soon as grains
disappear.

o

g

S 2 4 B—m

g 2

N

N 1

QU - &

S

e

£0- —
g [T T T
© Grasses Grain Carrots

accumulated extinct resources

Fig. 4 Response of the “top predators” group to the extinction sequence
“grasses, grains and carrots” (cf. Fig. 3)

Page 4 of 17

We show in the following how the notion of extinction
sequences can be applied on Cloud topology to reflect
their robustness.

Overview

As shown by Fig. 5, the calculation of our robustness
indicators requires two inputs, which can be obtained in
the earliest stages of the development process.

e A deployment topology which describes the various
components of the system of interest. In a Cloud set-
ting, the key point is to categorise the deployment
by identifying the underlying infrastructure includ-
ing application servers, middleware components and
virtual machines.

e A failure propagation model which describes how
components’ failures propagate through the system.
This failure propagation model is a set of proposi-
tional logic formulae specifying the necessary condi-
tions for each component to fail (with respect to its
dependencies). If the topology distinguishes commu-
nication between components from hosting (as we
did on Fig. 2), default formulae can be generated, as
we assume that a component fails as soon as it misses
any of its dependencies or its host.

From the data generated during the simulation of fail-
ure sequences, three main indicators are derived:

® arobustness indicator as a value in [0, 1] reflecting the
impact that failures in a subsystem X have on another
subsystem Y. A robustness of 0.2 means that a failure
of 20 % of the subsystem X takes down, in average,
80 % of the subsystem Y. Similarly, a robustness of 0
means that any single failure in X, annihilates the sub-
system Y. Conversely, a robustness of 1 means that
the two subsystems are completely isolated and that
failures cannot propagate from one to the other.

o the most sensitive components, regardless of their role
in the architecture (application, platform or infras-
tructure) are the components whose local failure
brings down the most significant part of the topology.

e the most threatening failures sequences, describing
the most probable ordering of failures with a strong
impact.

These three indicators respond to different questions,
which motivates robustness analysis in our experience.

e Which topology is the most robust? When consid-
ering alternative designs or deployments, engineers
have to select as objectively as possible, a robust one.
The key selling factor of Cloud solutions (public, pri-
vate, PaaS, SaaS) is availability, reliability or both.

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

Page 5 of 17

Deployment
topology \
1. Simulation of
failure
) sequences
Failure
propagation
Fig. 5 Overview of the robustness indicators computation process

extinction data

Robustness

Most sensitive
components

2. Indicators
extraction

Most threatening
sequences

The robustness indicator is way to capture and rank
alternative topologies with minimal effort.

e Which component compromises the topology? When
the system is already deployed, and understanding
what causes an outage is very difficult. Knowing most
sensitive components helps prioritise the investiga-
tions.

e How a malicious agent can take down the system?
When a system goes in production, unforeseen events
will happen, especially unwanted requests. Knowing
the major threats raises awareness of weakness of the
topology.

Various factors contribute to failures: resource con-
tention, high work-load, unexpected inputs, network
configuration, and so on. Understanding how failure
propagated is a complex endeavour (requiring informa-
tion of concurrent processes, memory snapshots, etc.)
which goes beyond the use of these indicators. We
focused our contribution on supporting key architectural
decisions.

Cloud robustness indicators

Modelling cloud topologies

Our model of cloud topologies is built on an analogy
between species extinctions and software failures. Species
extinctions, which might trigger other species extinctions,
can be seen as failures of the software components, which
might similarly propagate to other components. Indeed,
our model relies on two main concepts: components and
the relationships between them.

As for species in ecosystems, the internals of a software
component are abstracted: only the relationships between
components matter. We focus on two kinds of relation-
ships, especially:

e Communication between components represents
the fact that a given component requests or triggers
a computation by another one. In practise, such com-
munication is either a local invocation or a remote
procedure call (RPC).

e Execution represents the fact that one component
is the execution platform of another one. Example
of such relationships are application servers such as

Tomcat or Jetty, which are required to execute any
Java servlet components.

Figure 2 in Sec. 1 denotes these two types of ,
as plain and dashed lines, respectively. The core Sen-
sApp services communicate among each others, but
are executed (i.e., hosted) by other components at
the platform level. For instance in Topology 4, the
Admin component A communicates with the other ser-
vices N,R,D, S, and is executed by a servlet container
SC.

Formally, we define a topology as a set of components
which can be either active or failed. We model the state of
a topology including k components, as a state vector such
as:

s = (81,82,...,5¢) wheres; € {0,1} (1)
Here 1 represents the activity of component s;, whereas

0 indicates it has failed. The overall activity level of the

topology, is denoted by « and given by «(s) = Zi»(:l S;.

Similarly, we model any failure in the system s as a failure

vector :

fi=0 ifs; fails

., fx) where
Je fi=1 otherwise

f=(f.. 2)

The local effect of a failure vector f (without propagation)
is a new state vector s’ = s A f.

Failure propagation

The limit of our analogy with Ecology lies in the fact that
whereas a species can theoretically survive as long as there
is at least one species on which it can feed, the propagation
of failure varies from software to software. Some compo-
nents fail as soon as one of their dependencies failed, other
may be more resilient and stand the failure of some of their
dependencies.

To this end, we include in each component, a propo-
sitional logic formula specifying the conditions under
which a component fails due to missing dependencies. In
Topology 4 depicted below on Fig. 6, the formulae used for

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

INFRA-
STRUCTURE

SERVICE PLATFORM

Fig. 6 Propagation of two separate failures throughout Topology no. 4

the Admin component A and the load-balancer LB are:

A requires SCCANARADAS
LB requires VM, A (DB; VvV DBy Vv DB3)

The Admin component thus fails as soon as it misses
any of its dependencies (logical conjunction). By con-
trast, the load-balancer (LB) fails if the underlying plat-
form fails (VM3) and if the all of the back-end database
(DBj, DBy, andDB3) failed.

Figure 6 illustrates the propagation of two failures on
Topology 4 (see also Fig. 2). Failure A, on the upper part,
first hits VM, which indirectly supports the execution
of the core services. Failure A thus propagates in turn to
JRE>, to SC», to the group N, R, D, S and eventually reaches
the Admin component A. This propagation scheme is due
to the fact that the components requires the other. By
contrast, Failure B, on the lower part, does not propagate
beyond the load balancer (LB), as it only requires that one
of its dependencies be running. Failure B does takes down
DBg3, but DB; and DB, cover for it.

Formally, we represent the set of rules that govern
the propagation of failures from one component to its
direct neighbours, as a propagation vector p, where each
function p; represents the conditions under which the
component s; fails, such as:

where p; : {0, 1}k — {0, 1}

(3)

The propagation of failures throughout the whole sys-
tem is therefore defined by the iterated function p.

P(S) = (PI:PZ: cee ’pk)

n times
——
Poo(s) = lim p(p(...p(s))) (4)

Note that the propagation of failures converges, under
the assumption that each local formula is the conjunction
of the current state of the system and of constraints on the

Page 6 of 17

other components. In other words, each function p; is of
the form p;(s) = s; A h(s), where h(s) is the necessary
environment for s; to be active. The interested reader can
found a detailed proof of the convergence in Appendix 1.

The number of components indirectly taken down by
a failure f, so called impact and denoted I can thus be
obtained by: I(s,f) = a(s) — a(p,, (s A f)), where o stands
for the number of active components.

Robustness to specific failure sequence

As ecologists, who study the impact of extinction
sequences, we propose to study the impact of failure
sequences.

In Topology 4 (see Fig. 6), we are interested in the
impact that failures occurring in the infrastructure have
on the service layer. We thus gradually fail components
from the infrastructure (i.e., VMj, VM5, VM3 or VM),
and we observe how the components at the service level
survive this sequence of failure. Let us consider the
sequence ¢ = (VMj, VM3, VM4, VM3, VMs). The failure
of VM propagates until the Admin component A. By con-
trast, the two subsequent failures of VM3 and VM, do not
impact the service layer as they are contained behind the
load-balancer LB. It is the failure of the VM, which hosts
the core services of SensApp, that eventually annihilates
the service layer completely. The impact of this sequence
of failures is illustrated by Fig. 7 below.

The robustness of Topology 4 to this failure sequence
r(s,¢) is 5+4+4+44 = 17. In the ideal case (see Fig. 7), no
service would have been impacted at all and the robust-
ness would have been 5 x 6 = 30. By contrast, in the worst
case (see Fig. 7), all services would have failed with VM;
and the robustness would have been 5. As this robustness
indicator varies according to the number of components

5 B N
l ideal case
4 : & &
'g i sequence ¢
(o))
S>3 S
S o 2!
T 0 Iy
€ o)
o _°2’ 2 g
i3] i
@]
\
1 \
\
‘
1
o - [}]
I T T T T T I
0 1 2 3 4 5 6
None VM, VM, VM, VM, VM, None
accumulated failures in
the "infrastructure"
Fig. 7 The failure sequence ¢ = (VM;, VM3, VM4, VM5, VM) and its
impact on the service layer in Topology 4

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

in the layers of interest (i.e., services and infrastructure),
we normalise it and obtain r(s, ¢) = 0.48.

Given an initial state vector s and a sequence of fail-
ure vectors ¢ = (f1,f5,...,f,), we recursively define the
associated sequence of state vectors o as:

Ont+1 = Poo(On A ¢n) withop =5 (5)

Finally the robustness r of a topology in state s to a par-
ticular failure sequence ¢ is given by the formula below.

r(s,p) =) a(o) ©6)
j=1

For the sake of comparison, the robustness values we
will show hereafter are all scaled on the unit interval [0, 1],
with respect to the maximum and minimum robustness.

Note that all failure sequences are not equally proba-
ble, despite the fact that we do not make any assumption
on the individual failure probability of each component.
In Fig. 7 for instance, assuming that each VM is selected
randomly from the infrastructure level, the probability to
select the sequence ¢ is P[¢] = % . % . % . % =8.33 x 1073,
In this particular case, all possible failure sequences at the
infrastructure level are equally probable, as there is no
dependencies between the components at this level. Note
that this is not the case at the platform and services levels.

Indicators of interest

Given a topology, the concept of failure sequence permits
to generate three indicators, namely the overall robust-
ness, its most sensitive components and the most threat-
ening sequences.

Overall robustness We define the overall robustness as
the impact that all possible failure sequences might have,
in average, on the system. Let us consider the random
experiment of observing any random failure sequence ¢ in
a given topology. The set of possible outcomes, denoted
®, is thus the space of all possible sequences. We define
the random variable R(¢) that associates its robustness
to each possible sequences such as R(¢) = r(s,¢). We
then define the overall robustness of the topology in state
s, denoted as Z(s) as the expected value of the random
variable R, such as:

#(s) =E[R]= Y R(p)-Pl¢ =g (7)

ped

Sensitive Components We define the most sensitive
component as the one whose failure fT has the highest
average impact regardless of the state in which it occurs as
shown below:

fr = méix <Z I(s,t)) (8)

seS

Page 7 of 17

Threatening Sequences By combining the robustness of
each sequence with its probability to occur, we identify the
associated threat level, as the product of these two values.
The most threatening sequence ¢ is thus the sequence
with the highest threat level, as formalised below:

o7 =m$X(1—R(<ﬂ)~IP’[¢=¢]))

In the following, we shall use these three indicators
to identify a more robust deployment for the SensApp
application.

Accounting for reliabilities

Failure sequences only captures the dependencies
between components, but fail to account for individual
reliabilities.

As opposed to robustness, which measures the impact
of failures, reliability measures the capacity to function
properly over a period of time. Engineers quantify it using
failure rates and mean time to failure (MTTEF), but other
representations such as ranges or probability distributions
may better describe the inherent uncertainty in predicting
failures.

Intuitively, failure sequences are not equally proba-
ble. Universal third-party components, such as standard
libraries or application servers, are more reliable and
therefore less likely to fail than new in-house components.
A failure sequence where reliable components fail first is
unlikely. The generation of failure sequences must there-
fore sample components according to their individual
reliability.

A proportional sampling algorithm such as the roulette-
wheel or the tournament selections accounts for reliabil-
ities expressed as scalar values, and results in a set of
failures sequences globally reflecting individual reliabili-
ties.

We may go further and account as well for the time
when failures are triggered. The horizontal axis is no
longer only ordinal, but stands for time, and the robust-
ness value thereby reflects the overall lifetime of the archi-
tecture. To our experience, this brings little added value
as the robustness values are no more comparable because
their normalisation depends on time.

Robustness operationalisation

One valuable aspect of this robustness measurement, is
that it can be operationalised: it is possible to quantify the
robustness of an existing system, without relying on simu-
lation. This requires the capacity to inject failures and the
capacity to detect how they propagate. We explain below
each of these two activities.

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

Figure 8 shows the key steps of the process. The test
driver first provisions the system in a test environment
using the set up procedure (including provisioning vir-
tual machines, installing and configuring components).
The test driver then iterates through the given failure
sequence: for each component, it triggers its failure using
the associated fault injection script and then run a com-
plete test suite to check the status of all components,
as any could have failed consequently. Eventually, the
test-driver releases the cloud resources used by the sys-
tems using the tear down procedure and outputs the
response (so called trace) associated with the failure
sequence.

If enough failure sequences are run, all three robust-
ness indicators can be extracted from the set of traces
produced by the test driver. By contrast with the simula-
tion techniques, measuring robustness does not require
to know the dependencies between components nor the
rules that govern failure propagation. We rely on test
suites to detect cascading failures.

Set-up & tear down

The robustness testing process described above fol-
lows the general structure of a test. It includes a set
up phase, which provisions a new instance of the sys-
tem in a test environment. Its counterpart is the tear
down, which frees all the resources needed by this test
instances. These two steps are critical to prevent interfer-
ence between failure sequences and to ensure that each
failure sequence is run against a system whose state is
fully known.

Recent Cloud management tools such as Cloudify, Chef,
Puppet or CloudML provide an effective means to fully
automate the deployment of complex cloud based archi-
tecture. In a nutshell, these tools can provision virtual
machines and connect to them to install the needed soft-
ware packages.

Robustness [e | provisin

RUNNING
SYSTEM

3. triggers

,,,,,,,,,,,,, ,r
—> TestDriver | | I Smoke
4. verdicts Tests

terminate
Teardown

Failure
Sequence

5. triggers (test environment)

Trace

Fig. 8 Using fault-injection and testing to measure robustness to specific
failure sequences

Page 8 of 17

Failure injection

In a Cloud setting, injecting failures (in a test environ-
ment) can be done in two main ways: by simply shutting
down the components of interest, or by changing the net-
work configuration so that calls to not reach the expected
end point. This sort of remote control of architecture are
now supported by Cloud management tools such Chef,
Puppet or CloudML to name a few, but can also be
encoded in shell scripts.

Note that shutting down a remote component properly
(i.e., using the devoted API calls) may give the compo-
nent enough time to notify its partners of its termination,
so that they may take any possible relevant action, such
as switching to a degraded mode for instance. In this
respect, network configuration changes, or process inter-
ruption may better emulate the sudden failure of a soft-
ware component. In addition, virtualisation techniques
now permit to inject failure in the infrastructure level by
terminating for instance the virtual machine hosting the
components.

In our SensApp example (see Sec. 1), injecting a failure
of a War container, such as Jetty for instance, can be done
by just killing the associated process at the system level.
With the proper access rights, it is possible to open an SSH
connection to the host system, and to kill the Jetty server
process.

Failure detection

Detecting failure of components can be done using tests,
that exercises a service/component and reports devia-
tion from the expected behaviour. To detect the state of
the system once a failure has been injected, one there-
fore needs to run a single test for each component in the
system.

A test that verifies whether a component is up and run-
ning do not necessarily need to exercise edge-cases of
this component specification. Single invocation with a set
of minimum assertions are enough in practise to detect
issues caused by a problem at the architecture level, such
as a missing dependency. Such tests, referred as smoke
tests by engineers are often used to check the validity
of fresh deployments. They differ from integration tests,
which are specifically designed to exercise specific trans-
action in the system. Regarding web components, tools
such as Selenium for instance, enable QA engineers to
quickly automate these simple testing tasks at the GUI
level. Such tools are good solutions for the development
of the needed smoke tests.

In practise, the use of smoke tests to evaluate the impact
of failure injected at the architecture level may be chal-
lenged by the existence of optimisation techniques such
as caching for instance, which may prevent to properly
exercise the dependency of the component under test.
Persistence frameworks such as Hibernate for instance

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

may cache objects that are read from the database and
avoid subsequent connection to the database.

Running examples

Prototype implementation

We developed the topology robustness indicator (Trio), a
prototype that simulates failure sequences. Trio provides
a domain- specific language to evaluate the robustness of
various topologies. The Trio description of the topology
presented by Fig. 1 is given by Listing 1.

Listing 1 SensApp described in Trio (see in Fig. 1)

1 system: ’'SensApp’
3 components:
- Admin requires Notifier and Registry
and Storage
5 - Notifier
- Registry requires Storage
7 - Dispatcher requires Notifier and
Registry and Storage
- Storage requires DB

9 - DB
u tags:
- 'platform’ on DB
13 - 'service’ on Admin, Registry, Storage,

Dispatcher, Notifier

Our prototype is an open source Java application, whose
source code is available at https://github.com/
fchauvel/trio. The robustness evaluator as well as
the samples topologies studied in the following can be
downloaded at https://github.com/fchauvel/
trio/releases.

Trio topologies can automatically be derived from
deployment models and SensApp was initially deployed
using CloudML [8, 9] for instance. CloudML is a domain-
specific language to capture the deployment of cloud-
based applications including “communication” and “exe-
cution” relationship between components. The strength
of CloudML is that the description of the deployment is
causally connected to the real running system: any change
on the description can be enacted on demand on the
system, and, conversely, any change occurring in the sys-
tem is automatically reflected in the model. Although our
prototype is derived from the CloudML concepts, our
indicators can be computed for any deployment models
capturing communication and execution.

In the experiment results presented below, we ran Trio
against our SensApp example. For each topology, we eval-
uated the service layer as a separate system, the service
layer w.r.t., failures in the infrastructure, and w.r.t., failures
in the platform layer. Each time, Trio simulated 10 000
random failure sequences to gain statistical evidence.

Page 9 of 17

Overall robustness

The first indicator is the overall robustness, which
reflects to which extent the system is able to stand fail-
ure sequences. Table 1 summarises several robustness,
depending on the layers where failures are observed
and and where they are injected respectively. Column
2, denoted as “overall” contains the robustness for the
whole system. By contrast, the other two columns dis-
play indicators measured when failures occur either at the
infrastructure or platform levels and that their effect is
only observed at the service level.

As one can see in Column overall, Topologies 2, 3 and
4 introduced in Fig, 2 all increase the overall robustness
(w.r.t., Topology 1). The robustness indicator reflects both
the dependencies and the number of components in the
system.

Topology 2, illustrates the benefits of removing depen-
dencies. Outsourcing the DB to a Paa$ service, improved
the robustness because it protects against failures of VM,
and in turn, reduced its impact.

Topology 3 illustrates the addition of components.
Using separate platforms inherently increases the overall
robustness, as more failures are needed to get the system
completely down. For instance, though only 8 components
survive the failure of VM; in Topology 1, 13 survive in
Topology 3.

Topology 4 illustrates the benefits of components which
are inherently more robust to failure. Here the load-
balancer fails only if all its back-end DB have failed already.

Relative robustness

Robustness indicators can also be calculated with respect
to specific subsystems. Columns 3 and 4 of Table 1
denotes the robustness of the service layer only, when fail-
ures occur at the infrastructure or at the platform level,
respectively.

Here, whereas all topologies improved the robustness of
the overall system, not all topologies increase the robust-
ness of the service layer. Compared to Topology 2, Topol-
ogy 3, for instance decreases the services robustness to

Table 1 Robustness indicators computed for the four topologies

of Fig. 2

Robustness of X to failure in Y
Topology overall service/infra service/platform
Topology 1 0.1364 0.2064 0.1394
Topology 2 0.1492 02112 0.142
Topology 3 0.1518 0.1890 0.0955
Topology 4 0.1928 0.3057 0.1478
SensApp (Fig. 1) 0.1488 n/a n/a

https://github.com/fchauvel/trio
https://github.com/fchauvel/trio
https://github.com/fchauvel/trio/releases
https://github.com/fchauvel/trio/releases

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

failures in the infrastructure (0.1890 < 0.2112) and to
failure in the platform (0.0955 < 0.1421).

In Topology 2, two components might fail at the infras-
tructure level: VM; and VM,. Without additional infor-
mation, both failures are equally probable, their impacts
are significantly different. Four services survive a failure
of VM; whereas no service survive a failure VM. Statis-
tically, there is 50 % chance that a large part (i.e., 80 %) of
the system survives.

By contrast, in Topology 3, three components might fail
at the infrastructure level. Four components will survive a
failure of VM;, one will survive a failure of VM, and one
will survive a failure of VM3. Statistically, there is now only
33 % chances that a large part (i.e., 80 %) of the system
survives. The service layer of Topology 3 is thus less robust
to failure in the infrastructure than the one of Topology 2.

This is due to the fact that the robustness indicator
is an expected value that combines the impact of each
failure sequence with its probability. By contrast, the gen-
eral intuition only reflects how significant are the impact
of a failure, and overlooks the fact that they might be
extremely rare.

Sensitive components

The second indicator provided by Trio is the identification
of the most sensitive components, that is to say, the com-
ponent whose failure brings down the largest part of the
system. As for the robustness indicator, this information is
relative to the subparts of the system where the failure are
injected and where their impact is observed.

Table 2 only presents the most sensitive components in
each situation, although the tool does provide a complete
ranking.

Regarding the whole topologies, the most sensitive com-
ponents are at the infrastructure layer, as they support the
execution of the service layer and its underlying platform.
The same is observed when failures are injected into the
infrastructure level (see column service/infra). In this case
the complete rankings reveal that the sensitivity of VM
and VM3 are very close. Indeed, in Topology 3, only the
Storage (S) survives a failure of VMj, whereas only the

Table 2 Most sensitive components of the four SensApp

topologies

Most sensitive components
Topology overall service/infra service/platform
Topology 1 VM VM DB
Topology 2 VM DB
Topology 3 VM, VM, JRE4
Topology 4 VM, VM, SCo
Services (Fig. 1) DB n/a n/a

Page 10 of 17

Notifier (N) survives a failure VM3. Thus, seen from the
service layer, both VM3 and VM have a similar impact.

This shows that the structure imposed by the ser-
vice layer significantly hinders the benefits of alternative
deployment schemes. In SensApp, with the exception of
the Notifier (N), all other services depend on the database,
and this remains regardless of the selected infrastructure,
software stack and allocation scheme.

Threatening failure sequences

The third indicator offered by Trio is the identification of
the most threatening failure sequences, or in other words,
the failures that brings down the largest part of the system
and which are very likely to happen. Table 3 only presents
the top sequences identified in each of the situations.

These results confirm the intuition that sequences hit-
ting sensitive components are the most harmful. As shown
on Fig. 1, the most two sensitive components of Sen-
sApp are the database (DB) and the Notifier (N), and the
most harmful sequence is thus to bring them down in this
very order. This order reflects the fact that failing the DB
impacts more significantly the rest of the application that
failing the Notifier. Only the notifier survives a failure of
the DB, whereas no other service is impacted by a failure
of the notifier.

It is worth to note that harmful failure sequences com-
puted for the alternative deployments reflect as well the
sensitive components of SensApp. For instance, regarding
Topology 3, failing VM, and VM3 results in failure of the
Notifier and the DB, respectively.

Effect of individual reliability

By changing the way we sample failure sequences, robust-
ness can account for the reliability of individual compo-
nents. We present here how changes in the reliability of
a single component affects the robustness of the whole
architecture. We used Topology 3, where we varied the
MTTF associated to VMp, its most sensitive component
(as shown in Table 2). We assigned a MTTF of 1 to all
other components. Figure 9 shows the response of the
robustness of the service layer, with respect to failure in
the infrastructure.

As shown by the vertical dashed line, when all compo-
nents are equally reliable (MTTF = 1), the robustness of
the service layer is about 0.18 (cf. Table 1). Increasing the
MTTF of VM5 does increase the robustness, but it fol-
lows a law of diminishing return. Assuming that the cost
of increasing reliability is constant, there is a limit above
which, increasing reliability does not worth the associated
gain in robustness.

These results emphasise that a sensitive component
can be mitigated by either increasing its reliability or by
modifying its role in the topology (using replication for
instance).

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

Page 11 of 17

Table 3 Most harmful sequences at various level for the four topologies of Fig. 2

Most harmful failure sequences

Topology overall service/infra service/platform
Topology 1 (VMj, JRE1, VM) (VM3, VM) (JRE>, DB)
Topology 2 (VM, VM, DB) (VM) (JRE,, DB)
Topology 3 (VMs, VM3, VM) (VMs3, VM>) (RE4,SCy)
Topology 4 VM, VM5, VM3, VM4, VM) (VM) (JRE)
Services (Fig. 1) (DB, N) n/a n/a
Discussion the duration spent simulating 500 failure sequences of

Isolation and replication are two common strategies to
improve robustness. Yet, as shown in the SensApp case,
if they do increase the robustness of the overall system,
they do not necessarily increase the robustness of the
services. In Topology 3, the usage of isolated platforms
supporting the core services, does not actually enhance
their robustness.

Getting insight about the benefits of such strategies is
possible in early stages of development, but requires indi-
cators that go beyond the mere structure of the graph and
finely account for isolation and replication.

It is worth to note that the model is flexible enough to
accomodate cases where the knowledge about the deploy-
ment is only partial. In Topology 2 for instance, we do
not know the execution environment of the DB, which is
provided by a PaaS provider. Yet we can assume that it is
isolated from the other execution environments, and thus
carry on with the calculation of the indicators.

We believe that coupling these robustness indicators to
the runtime model offered by CloudML can help manage
cloud-based systems, by detecting, in real-time, changes
which significantly hinder the robustness of the service
layer.

Performance benchmark
To better understand the factors that influence the time
we spend simulating failure sequences, we measured

I
o
o
Q
o
w O
o <
?5) =]
172}
32 2|
g o
~
=
©
2
‘ i ‘ ‘ ‘ ‘ ‘ ‘
05 1.0 1.5 2.0 25 3.0 35 4.0
Mean time to failure of VM 2
Fig. 9 Effect of individual reliability on robustness

random architecture models (including random propo-
sitional formulas driving local failure propagation). We
generated 600 Trio topologies, representative of three
commonly used families of graphs, namely random
graphs [10], small world graphs similar to social net-
works [11], and scale free graphs, similar to human-made
architectures (including software architectures [12, 13]).
Appendix 1 details the methods we used to generate
these random Trio topologies. The size of these synthetic
topologies (their number of components) is uniformly
distributed over the interval [0, 2500]. According to our
experience, such models represent architectures that are
larger than existing cloud architectures.

This performance benchmark was run on a lap-
top equipped with a processor Intel Core i7-4810MQ
2.80 GHz, with 16 GB of RAM and running Windows 7
Enterprise (64 bits). The system was equipped with a 64
bits Java virtual machine (Java 8 update 25) running with
default settings. To minimize variation during the exper-
iment, 25 models were initially simulated as a “warm-up”
of the JVM, to let it cache enough compiled byte code,
before we actually measure speed.

As one can see on Fig. 10, the time spent simulating
500 failure sequences is strongly influenced by the size
of the architecture model and by the family of topology.
To quantify the influence of these factors on the failure
sequence simulation duration, we carried out a regres-
sion analysis. We assume a quadratic model based on the
relationship:

v duration = By X size

+ B3 x density

+ By x scale-free

+ Bj x small-world

+ ¢
Table 4 presents the key statistics of the resulting predic-
tion model. Note that the size, density and graph family
factors explain approximately about 80 % of the variance
of the duration of failure sequence simulation (R? & 0.79).

Note that the density of the graph has a limited impact on
the overall duration.

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

© random °
+ scale free
S | * small world
B
N o
o
g1 w
x ©
@ X
E g Lo 20k %
5 ° © e, P
S x o
® &K g
5 x
- x o
S g o e xB%
S 7 x %o 0 S
- X & 0" 0%
o o
o o X el °do oo
Q x o X;xéﬁx‘u o
S ® % oo 8o
w0 X X ¥y %o o
x o R g o0 70 o °
2°5° % o Co
%o o o ‘
o - o i S S TR R R i e
T

T T T T T
0 500 1000 1500 2000 2500

Architecture size (component count)

Fig. 10 Duration of failure sequences simulation for 600 topologies

including up to 2 500 components

Finally, note that the algorithm is significantly faster for
scale free topologies, which are typical of human-made
architecture, and especially software architecture.

Comparisons

We discuss here the validity of our robustness metrics,
that is to say the extent to which it does reflect a sort
of robustness. To investigate this question, we studied
the correlations between our robustness metric and exist-
ing metrics used in graph/network theory. To do so, we
generated 600 trio topologies, covering three graphs fam-
ilies (random (R), small worlds (SW) and scale-free (SF)
graphs), for which we computed selected robustness met-
rics, and we computed their correlation with our metric.
Appendix 1 details the generation process we used.

We selected the following topological metrics, used in
the literature to characterize robustness. We refer the
reader to [14] for a comprehensive treatment of such
topological metrics.

Table 4 Regression analysis characterizing the impact that
architecture size, density, and graph family have on failure

Page 12 of 17

Density The density of the graph is the ratio of the num-
ber of edges in the graph over the number of
possible edges.

Average node degree The degree of a node is the num-
ber of edges connected to that node. By extension,
the average node degree is the mean degree of all
nodes.

Diameter The diameter of the graph is the longest of all
shortest path between any pair of vertexes.

Mean distance The mean distance is mean length of all
shortest path between any pair of vertexes.

Centrality The centrality reflects the importance of a
node in a graph, and in turn the “speed” at which
random “messages” can navigate from one node to
the other. There are various formulas to compute
centrality, based on node degree, node distance,
eigenvalue of the adjacency matrix.

For the record, the correlation coefficient is a value within
[—1,1], where both extrema show a strong negative or
positive correlation, whereas 0 stands for no correlation.
As one can see in Table 5, in general, our robustness met-
rics does not correlate with existing topological metrics
(all correlation coefficients are below £0.5). Yet, for scale-
free graphs, which are more representative of software
architectures, the correlations is much more significant:
only one correlation with the average node degree is below
+0.5. This confirms that some of the robustness char-
acterized by topological metrics is also reflected in our
metric.

Threats to validity
We discuss in this section the validity, the reliability and
usefulness of our robustness measurement.

Evaluating validity is questioning the extent to which
we do measure a form of robustness. Recalling the IEEE
glossary of Software Engineering [15] where robustness is
defined as the degree to which, a system or a component

Table 5 Pearson correlation coefficients between our robustness
metric and existing topological metrics

sequence duration Metric Overall Graph family
Parameters Bi Std. err. t-value p-value R SF SW
size 1.07e-02 3.06e-04 34.980 < 2e-16 density 0.17 —0.05 0.82 —0.26
density -7.40e-01 1.28e+00 -0.577 0.564 diameter —0.24 —-0.16 —0.59 0.68
scale free -1.45e+01 8.51e-01 -17.122 <2e-16 avg. distance —0.01 —0.13 —0.62 0.63
small world 1.77e+00 7.60e-01 2332 0.020 avg.node degree 0.30 0.83 0.34 0.76
(intercept) 5.21e+00 8.30e-01 6.277 6.65e-10 cent. degree 042 0.23 0.84 0.38
residual 5486 cent. betweenness 044 —0.07 0.52 0.61
F statistic 594.7 cent. eigenvalue —0.34 0.50 —0.70 0.75
adjusted R? 0.7986 cent. closeness 042 0.10 0381 022

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

can function correctly in the presence of invalid inputs or
stressful environmental conditions, we see that our mea-
surement does not account for invalid inputs, but only
for stressful environmental conditions. In our approach
the notion of environment only reflects other architec-
tural entities on which the system depends, but does not
account for network conditions such as work load for
instance.

Evaluating reliability is questioning, whether our
approach, applied on the same system by different peo-
ple, would eventually yield similar robustness values.
Although our measure of robustness is an expected value
and its computation is subject to some variance, the main
threat to reliability is the model on which robustness is
computed. We are convinced that system modeling at the
architectural level (components and dependencies) leaves
little room for interpretation, as such components often
exist as deployable artifacts. The logical formulae, which
are used to simulate failure propagation, are a source of
variation but note that if the approach is used to generate
tests, such formulae are not needed.

Regarding the usefulness of our measurement, one could
argue that Cloud services often exhibit high availability
(i-e., 99 % is often found in SLA). Yet, as pointed by M.
Nygard [1], “despite our best laid plans, bad things will
happen”. Major cloud consumers follows this advice and
anticipate possible failures. At Netflix for instance!, one
of the main consumer of Cloud resources, engineers do
fail significant parts of their infrastructure to evaluate the
impact on their services, using a program so-called “Chaos
monkey” The measurement we propose does not solve the
issue of robustness, but it helps anticipate what bad things
can happen at the architecture level, and in turn, helps to
make sure that the system can recover.

Related work

This work is the continuation of a line of research about
robustness, whose preliminary results were published in
the UCC 2014 conference [16].

Making reasonable design decision, especially in the
early stages of the development process is recognised as
a major factor of quality and fast return-on-investment
(ROI). Various methods have been proposed to help
elicit candidate designs or architecture fragments that
meet functional and extra-functional requirements (e.g.,
ATAM [2], CBAM [17], ABC/DD [6]). Reconciling con-
flicting requirements requires the calculation of indicators
for the quality-dimensions of interest. Our approach is an
attempt to provide robustness indicators, which can be
used in such tools.

Existing indicators are either quantitative when they
reflect quantities, that can be actually measured on the
final running system, or qualitative if they results from
subjective expert judgments.

Page 13 of 17

Qualitative indicators are one building block of risk
analysis methods such as Predict [18], CORAS [19]. The
CORAS method for instance helps identify major threats
and the related mitigations based on subjective probabil-
ities. Consolidating expert judgment is an expensive and
time consuming activity that our approach avoid as it
only focuses on the network topologies and the associated
failure propagation model.

Various quantitative indicators have been identified in
the past. Graph Theory provides a large body of metrics
such as connectivity, betweenness, distance or reliability
polynomials [20, 21], which are correlated to some forms
of robustness. Yet, they do not simultaneously accom-
modate for both isolation and replication. Connectivity
for instance correlates robustness with a high number of
alternative paths, reflecting replication. Yet, depending on
the failure propagation model, a highly connected graph
may be very brittle due to the extensive propagation of
failures. In Caballero et al. [22] for instance, robustness is
measured as the connectivity of coloured networks after
taking off of nodes from the graph which have particu-
lar colours. This work assumes that failures of networks
are caused by software bugs, and therefore when a fail-
ure happens, all the nodes hosting the same software will
be down. The work simplified the software on network
nodes, without considering the dependencies and soft-
ware stacks. Gorbenko et al. [23] consider the software
stacks for measuring the security of networked systems,
and measure the security of a whole stack by the time it
requires to recover from an attack (by switching to other
alternative services or waiting for a patch of the attacked
software). The measure needs historical data of software
patches, and therefore only works on well-supported soft-
ware.

Alternatively, percolation theory studies how graphs
react to addition (resp. removal) or nodes or links.
Although this more of a theoretical framework, the
method remains similar: removing elements and measur-
ing the evolution of some key properties. Endurance [24]
and elasticity [25] are other attempt to understand robust-
ness in terms of failures and how the propagate through
a graph. By contrast with these work, our approach per-
mits to finely tuned the propagation of failure for each
component.

Fault Tree Analysis (FTA) [26, 27] is another general tool
used to study failures. A fault tree represents the logical
combination of events which lead to a particular failure,
and can be used for robustness evaluation and diagnosis.
By contrast with FTA, failure sequences do not focus on a
single particular failure but account for sequences of fail-
ures and how their accumulation impacts the system or
subsystem of interest.

To the best of our knowledge, this research work is the
first attempt to adapt the notion extinction sequences,

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

well accepted in Ecology, to the problem of deployment
topology robustness.

Conclusion

With the ever growing number of opportunities provided
in the Cloud, it becomes critical to make the right choices
regarding the architecture of the system in the early stages
of development. To this end, we provide three robustness
indicators: the overall robustness, the most sensitives
components and the most threatening failure sequences.
These indicators can be derived from any deployment
topology, provided a fault propagation model. Our solu-
tion, inspired by Ecology, is built upon an analogy between
species extinction and components’ failures, which both
propagate into the (eco) system. Through SensApp, our
running example, we showed how these three indicators
help sort out architectural decisions regarding robustness.
We shown that our metrics permits to simultaneously
account for both isolation and replication strategies, and
remains computable on a reasonable amount of time.

Yet, our metrics remain subject to the understanding
engineers have of the system. Automating the extraction
of both the architecture as well as the failure propaga-
tion models would secure our robustness metrics and

Page 14 of 17

contribute to better understand such systems that have
evolved for many years.

Endnote
! See http://techblog.netflix.com/2011/07/netflix-
simian-army.html

Appendix A: Random TRIO topologies
We detail below, the process we used to generate ran-
domized Trio models. A Trio topology is a directed graph
where each node is decorated with a propositional for-
mula, where each variable refer to the other nodes in
the graph (i.e., the successors node). The procedure we
followed can be summarized as follows:

1. Generate a random directed graph G = (V, E);

2. For each vertex v € V, generate a random proposi-

tional formula involving the vertex succ(v).

A1.Random directed graphs

We considered three main classes of graphs, namely ran-
dom graphs, small worlds and scale free graphs. A graph
is a very versatile model that can describe structures
ranging from social networks to molecules. Depend-
ing on the domain of interest, graphs may have very

Random
o9 . 00 ©
o Q
e _|o p o
o 3 80
ocp g 0% s tele
o080 o
Q ®oo g@’c%%go
Ogo o O i (o)
Q o Og
oL b B
99 10000 5 o00d o6/ o o
539 3 000880% 8000OOO
& 0a0 B928%% 0600
&g 0000 &odgo ©
o
o OO&OO o
o
0 9 o °
o0

o7}
& 590
£5° 6%
0 90000, 8 o%
o o§>
800 Lo 0.04,0 OQOOQOOO
L0 o Fa oBS
50 = 00 020
o OO OOO dojoo OO 00
ol og> o %C’)%(?)o
O Dk °c8>% 60000000
he OOS‘J&o@ ° %o o 9%
O 00 O Cbo
9 2698
00 PR S
875 2 0 Jodo
Q 0038 5o
3% o 5 B Dod
o OOOOO (€]
o Q0
@

Fig. 11 Four different families of random graphs with 250 nodes

Regular lattice

http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

different structures, which are captured by their statistical

properties, and especially by their node degree distribu-

tion. Figure 11 illustrates the structure of such graphs
families.

Random graphs are graphs whose node-degree distribu-
tion follows a Poison law. Erdos and Renyi [10]
proposed a model to generate random graphs with
a given number of vertexes, where each possible
egdes has a fixed probability to exist. Although
such graphs are easy to generate, they are not rep-
resentative of structures observed in either nature
or engineering.

Small-worlds graph Inasmall-worlds graph, each vertex
can be reached from every other vertex in a small
number of steps. Small worlds are often charac-
terized by interconnected aggregations of vertexes.
Such graphs are typical of human collaborations
such as social networks for instance. We used the
model proposed by Watts and Strogatz [11] to gen-
erate such small world graphs. In a nutshell, the
idea is to first build a regular ring lattice and then
to randomly replace edges with a fixed probability.

Scale-free graphs In scale-free graph some vertex have
significantly more edges than the others: the
degree distribution follows a power law. Such
graphs have been observed in human made struc-
ture, such as network infrastructure of the World-
wide Web. We generate such graphs using the
Barabasi and Albert model [28], where graphs are
built incrementally: New vertexes are connected
to existing vertexes chosen with a probability that
depends on their number of edges.

A.2 Random propositional formula
Once a random graph is available, we convert it into a
TRIO topology. A vertex in the graph is mapped onto a
component in the TRIO topology, and for each vertex, its
outgoing edges capture the dependencies of the associated
TRIO component. For each component, we then gener-
ate a random propositional formula referring to its very
dependencies, where each successor vertex in the graph,
become a variable in the generated propositional formula.
The generation of random propositional formula is
based on a Boltzmann sampler [29]. In a nutshell, Boltz-
mann samplers provide a means to generate combinatorial
structures of a fixed size (e.g., lists, trees, and the like) that
are drawn following a uniform distribution.

Appendix B: Convergence of failure propagation
We detail below a proof of the convergence of the fail-
ure propagation. As we shall see, failures propagation is
monotonic and bounded by the zero-state vector (i.e., all
components are failed): it therefore converges as states the
monotone convergence theorem.

Page 15 of 17

Table 6 Truth table of Eq. 12

s Eslel sin Eslei] six Esle] <si
Active Active Active yes
Inactive Active Inactive yes
Active Inactive Inactive yes
Inactive Inactive Inactive yes

Lower bound of failure propagation

Recall that the propagation of a failure to the direct neigh-
bours is given by the function-vector p(s), conforming to
the following grammar:

p == (p1, P2, ---» Pk)
pi =S8 N e
ex=s | eeney | egvey | —e (10)

Given a state vector s, we denote the evaluation of a
propagation function-vector p by the function £ as shown
below:

(11)
(12)

58[[(191: . :Pk)]] = (&HPlﬂ: s ’58[[1%]])
Eslsi €] = Es[si]| A Eslle]
Esllsi] = sli]
Esller A ex] = Esler] x Eslea]
Esler v ea] = Esler] + Esllez]
El—e] = 1 — &le]

Equation 12 intuitively implies that failures propagate
throughout the topology until every single component
is failed. The zero vector s9 = (0,0,...,0) acts as the
absorbing element of the propagation and is therefore its
lower bound.

Monotony of failure propagation

We demonstrate below that the associated level of activ-
ity always decreases (or remains constant) while failures
propagate. In other words:

a (&lp]) < als) (13)
Using Eq. 11, we can rewrite Eq. 13 as follows:
o ((Ss[[pl]],...,gs[[pk]])) < a(s) (14)

Given the definition of the activity level «, as the number
of active component in the system, Eq. 14 yields:

k k
D &lpl <) s
i=1 i=1

To show that the number of active components is less or
equal after the propagation, we show that each component

(15)

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18

can only be inactivated if it is still active but not activated
again. In other words:

Vi<k, &lpi] < s (16)
Vi <k, 55[[si A e,‘]] <s;
Vi<k o Elsi] x Efe] < si 17)

Equation 17 holds due to the fact that the future state
of a component is the conjunction between the its current
state s; and an logical expression e; over its direct environ-
ment. As shown in Table 6, once a component has failed,
it remains failed forever.

Given the fact the failure propagation forms a mono-
tone decreasing sequence bounded by the zero vector,
it converges toward its very minimum, as stated by the
monotone convergence theorem.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work.

Acknowledgement

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement number: 318484 (MODAClouds) and 600654 (DIVERSIFY).

Received: 21 May 2015 Accepted: 11 August 2015
Published online: 28 August 2015

References

1. Nygard MT (2007) Release it! Design and deploy production-ready
software. Pragmatic Bookshelf, Dallas, Texas - Raleigh, North Carolina

2. Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere J (1998) The
architecture tradeoff analysis method. In: Engineering of complex
computer systems, 1998. ICECCS '98. Proceedings. Fourth [EEE
International Conference on. IEEE, Washington DC, USA. pp 68-78

3. MosserS, Fleurey F, Morin B, Chauvel F, Solberg A, Goutier | (2012)
SENSAPP as a Reference Platform to Support Cloud Experiments: From
the Internet of Things to the Internet of Services. In: Synasc 2012: 14th
international symposium on symbolic and numeric algorithms for
scientific computing. [EEE Computer Society, Washington, DC, USA.
pp 400-406

4. Roman D, Gao X, Berre AJ (2011) Demonstration: SensApp — An
Application Development Platform for OGC-based Sensor Services. In:
Taylor K, Ayyagari A, Roure DD (eds). Proceedings of the 4th international
workshop on semantic sensor networks, ssn11, Bonn, Germany, October
23,2011. CEUR-WS.org, Aachen, Germany Vol. 839. pp 107-110. CEUR
Workshop Proceedings

5. Havlik F, Havlik D, Egly M, Berre A, Granmo R, van der Shaaf H, Modafferi S,
Middleton S, Sabeur Z, Granell C, Esbri MA, Lorenzo J, Schleidt K, Pielorzoo
J(2013) Final recommendations for environmental enablers D4.4. http://
cordis.europa.eu/fp7/ict/netinnovation/deliverables/envirofi/envirofi-
d44.pdf, Deliverable, ENVIROFY Consortium

6. Cui X, SunY, MeiH (2008) Towards automated solution synthesis and
rationale capture in decision-centric architecture design. In: Software
architecture, 2008. WICSA 2008. Seventh working IEEE/IFIP conference on.
IEEE Computer Society, Washington DC, USA. pp 221-230

7. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks
to species extinctions. Proc R Soc Lond Ser B Biol Sci 271(1557):2605-2611

8. Ferry N, Rossini A, Chauvel F, Morin B, Solberg A (2013) Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems. In: O'Conner L (ed). CLOUD 2013: IEEE 6th

20.

21.

22.

23.

24.

25.

26.

27.

Page 16 of 17

International Conference on Cloud Computing. IEEE Computer Society,
Washington DC, USA. pp 887-894

Ferry N, Song H, Rossini A, Chauvel F, Solberg A (2014) CloudMF: Applying
MDE to Tame the Complexity of Managing Multi-cloud Applications. In:
Utility and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference on. [EEE Computer Society, Washington DC, USA. pp 269-277
Erdds P, Rényi A (1959) On random graphs, I. Publ Math (Debrecen)
6:290-297

. Watts DJ, Strogatz SH (1998) Collective dynamics of "small-world"

networks. Nature 393(6684):440-442.1SSN 0028-0836

Concas G, Marchesi M, Pinna S, Serra N (2007) Power-laws in a large
object-oriented software system. I[EEE Trans Softw Eng 33(10):687-708.
ISSN 0098-5589

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM
Trans Softw Eng Methodol 18(1):2:1-2:26. ISSN 1049-331X

Mahadevan P, Krioukov D, Fomenkov M, Dimitropoulos Xenofontas, Claffy
KC, Vahdat Amin (2006) The internet as-level topology: Three data
sources and one definitive metric. Comput Commun Rev (SIGCOMM)
36(1):17-26.1SSN 0146-4833

ISO/IEC/IEEE (2010) Systems and software engineering — vocabulary
24765. http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=
5733833

Chauvel F, Song H, Ferry N, Fleurey F (2014) Robustness Indicators for
Cloud-Based Systems Topologies. In: Utility and Cloud Computing (UCC),
2014 IEEE/ACM 7th International Conference on. IEEE Computer Society,
Washington DC, USA. pp 307-316

Kazman R, Asundi J, Klein M (2001) Quantifying the costs and benefits of
architectural decisions. In: Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on. pp 297-306
Omerovic A, Solhaug B, Stalen K (2012) Assessing practical usefulness and
performance of the predigt method: An industrial case study. Inf Softw
Technol 54(12):1377-1395

Lund M, Solhaug B, Stglen K (2011) A Guided Tour of the CORAS Method.
In: Model-driven risk analysis: The CORAS approach. Springer, Berlin
Heidelberg. pp 23-43. http://dx.doi.org/10.1007/978-3-642-12323-8_3
Wilkov R (1972) Analysis and design of reliable computer networks. IEEE
Trans Commun 20(3):660-678. ISSN 0090-6778

Bigdeli A, Tizghadam A, Leon-Garcia A (2009) Comparison of network
criticality, algebraic connectivity, and other graph metrics. In: Proceedings
of the 1st Annual Workshop on Simplifying Complex Network for
Practitioners, SIMPLEX '09. ACM, New York, NY, USA. pp 4:1-4:6

Caballero J, Kampouris T, Song D, Wang J (2008) Would diversity really
increase the robustness of the routing infrastructure against software
defects? In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th
February 2008. The Internet Society, Reston, USA. http://www.isoc.org/
isoc/conferences/ndss/08/papers/11_would_diversity_really.pdf
Gorbenko A, Kharchenko V, Tarasyuk O, Romanovsky A (2011) Using
diversity in cloud-based deployment environment to avoid intrusions. In:
Troubitsyna E (ed). Software engineering for resilient systems - third
international workshop, SERENE 2011, Geneva, Switzerland, September
29-30, 2011. Proceedings. Springer, Berlin, Heidelberg Vol. 6968.

pp 145-155. http://dx.doi.org/10.1007/978-3-642-24124-6_14, Lecture
Notes in Computer Science

Manzano M, Calle E, Torres-Padrosa V, Segovia J, Harle D (2013) Endurance:
A new robustness measure for complex networks under multiple failure
scenarios. Comput Netw 57(17):3641 —=3653. http://www.sciencedirect.
com/science/article/pii/S1389128613002740, ISSN 1389-1286

Sydney A, Scoglio CM, Schumm P, Kooij RE (2008) ELASTICITY: topological
characterization of robustness in complex networks. In: Murata M, Akan O
(eds). 3rd International ICST Conference on Bio-Inspired Models of
Network, Information, and Computing Systems, BIONETICS 2008, Hyogo,
Japan, November 25-28, 2008. ICST / ACM. p 19. http://dx.doi.org/10.
4108/ICST.BIONETICS2008.4713

Xing L, Amari S (2008) Fault tree analysis. In: Misra KB (ed). Handbook of
performability engineering. Springer, London. pp 595-620

Zhou J, Stalhaane T (2004) Using FMEA for early robustness analysis of
Web-based systems. In: Proceedings of the 28th Annual International
Conference on Computer Software and Applications (COMPSAC 2004).
IEEE Computer Society, Washington DC, USA Vol. 2. pp 28-29

http://cordis.europa.eu/fp7/ict/netinnovation/deliverables/envirofi/envirofi-d44.pdf
http://cordis.europa.eu/fp7/ict/netinnovation/deliverables/envirofi/envirofi-d44.pdf
http://cordis.europa.eu/fp7/ict/netinnovation/deliverables/envirofi/envirofi-d44.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5733833
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5733833
http://dx.doi.org/10.1007/978-3-642-12323-8_3
http://www.isoc.org/isoc/conferences/ndss/08/papers/11_would_diversity_really.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/11_would_diversity_really.pdf
http://dx.doi.org/10.1007/978-3-642-24124-6_14
http://www.sciencedirect.com/science/article/pii/S1389128613002740
http://www.sciencedirect.com/science/article/pii/S1389128613002740
http://dx.doi.org/10.4108/ICST.BIONETICS2008.4713
http://dx.doi.org/10.4108/ICST.BIONETICS2008.4713

Chauvel et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:18 Page 17 of 17

28. Barabasi A, Albert R (1999) Emergence of scaling in random networks.
Science 286(5439):509-512

29. Duchon P, Flajolet P, Louchard G, Schaeffer G (2004) Boltzmann samplers
for the random generation of combinatorial structures. Comb Probab
Comput 13:577-625.1SSN 1469-2163

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Keywords

	Introduction
	Motivating example
	Robustness of ecosystems
	Overview
	Cloud robustness indicators
	Modelling cloud topologies
	Failure propagation
	Robustness to specific failure sequence
	Indicators of interest
	Overall robustness
	Sensitive Components
	Threatening Sequences

	Accounting for reliabilities

	Robustness operationalisation
	Set-up & tear down
	Failure injection
	Failure detection

	Running examples
	Prototype implementation
	Overall robustness
	Relative robustness
	Sensitive components
	Threatening failure sequences
	Effect of individual reliability
	Discussion
	Performance benchmark

	Comparisons
	Threats to validity
	Related work
	Conclusion
	Endnote
	Appendix A: Random TRIO topologies
	A1. Random directed graphs
	A.2 Random propositional formula

	Appendix B: Convergence of failure propagation
	Lower bound of failure propagation
	Monotony of failure propagation

	Competing interests
	Authors' contributions
	Acknowledgement
	References

