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Fast methods for designing circulant
network topology with high connectivity
and survivability
Rui Lu

Abstract

This paper proposes two fast methods to design network topologies with high connectivity and survivability based
on circulant graph theory. The first method, namely, the Combination Method (CM), investigates the average distances
of circulant graphs with different combinations of chordal jumps, and tries to locate the optimal one among them. For
this purpose, empirical formulas are proposed to describe the fluctuation features of average distances on curved
surfaces. Furthermore, an enhanced Local Search Method (LSM) is proposed to find the local minimum points in
troughs of the surfaces. The second method, namely, the Spider Web Method (SWM), is based on a bionic concept
deriving from observation of the spider web, which is a classical example of network connectivity and survivability in
natural world. The relation between CM and SWM in certain situations is also discussed. Finally, the connectivity
and survivability of the topologies designed by CM and SWM are verified via simulated experiments involving
vertex destruction.
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Introduction
Topology design plays an important role in network
planning. Various topologies have been studied and ana-
lyzed for different networks [1–3]. A circulant graph
outperforms other topologies owing to its low message
delay, high connectivity, and strong survivability [4–8].
Therefore, it has been widely employed in many tech-
nical fields such as telecommunication networks, com-
puter networks, parallel processing systems, and social
networks [9–12].
The connectivity and survivability of circulant graph

networks can be evaluated by several metrics, such as
average distance and connectivity ratio [2, 12–15]. The
average distance is preferred as the prime optimization
objective for it effectively represents network connectiv-
ity. In general, the smaller the average distance is, the
shorter the delay is. Although network with complete
graph topology has the minimum average distance of 1,
the demand of a huge number of nodes and link re-
sources usually render it impractical in projects.

Therefore, the performance of circulant graphs with lim-
ited resources is a major focus of network planning.
Lower bounds and heuristic algorithms locating the
minimum average distance of a circulant graph have
been proposed [2, 6, 15]. Furthermore, the average dis-
tance of a recursive circulant graph, i.e., a special type of
circulant graph, has also been investigated [16]. How-
ever, the optimal jump sequence of a circulant graph can
be determined only when its degree is 4.
In this paper, we propose two fast methods to con-

struct network topology with small average distance and
high connectivity ratio based on circulant graph theory
and bionics. Furthermore, we verify the effectiveness of
the proposed methods by simulated experiments.
The remainder of this paper is organized as follows: In

section Definitions of chordal ring, average distance and
connectivity ratio, the concepts of circulant graphs and
evaluation metrics are introduced. In section The Com-
bination Method for topology design, we propose a
Combination Method (CM) that develops formulas and
algorithms to construct a circulant graph with a rela-
tively minimum average distance, based on the features
and characteristics of the average distance fluctuation
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curves. A Local Search Method (LSM) is also developed
to optimize the search for the jump sequence with the
minimum average distance. In section The Spider Web
Method for topology design, we propose a more intuitive
design method, namely, the Spider Web Method
(SWM). This method is typically effective when the de-
gree of each node is 4. In section Survivability experi-
ments, survivavility experiments are implemented to
verify the survivability of topologies designed by CM
and SWM. Different nodes and links are destroyed enu-
merately, and the worst connectivity ratios of the net-
works are recorded and compared. Finally, research
results in this paper are summarized and concluded.

Definitions of chordal ring, average distance and
connectivity ratio
Circulant graph and chordal ring
A circulant graph is a special case of a Cayley graph.
Suppose that G(V, E) (V = {v1, v2, …,vm}, E = {e1, e2, …,
en}) is a graph with m vertices and n edges. The circulant
graph can be defined as follows [2, 13]:

Definition 1: G(V, E) is a simple graph with m vertices
and n edges. There are integers w1, w2, …, wj (w1 <w2

<… <wj < (m + 1)/2) that represent a jump sequence.
Two vertices vk and vl of V are connected if and only if
(k +wi) mod m = l, or (k – wi) mod m = l. This graph is
defined as a circulant graph. A circulant graph with j
jumps is usually denoted by CG(m; w1, w2, …, wj) or
CG(m; W) with jump sequence W = {w1, w2, …, wj},
and |W| = j.
This definition does not guarantee that a circulant
graph is connected. For example, CG(8; 1, 2) is a
connected circulant graph, but CG(8; 2, 4) is not
connected. Boesch and Tindell [5] found that a
circulant graph is connected if and only if the greatest
common divisor gcd(m, w1, w2, …,wj) is equal to 1.
Such a graph is always known as a connected circulant
graph. Furthermore, it has been proved that every
connected circulant graph has a Hamiltonian cycle
[17]. In particular, a complete graph can always be
considered as a combination of all CG(m; wi) (1 ≤ i ≤
⌊m/2⌋), which are considered as basic parts, as shown
in Fig. 1.
In addition, the chordal ring network is introduced.
There are two definitions for a chordal ring [13].

Definition 2: If a circulant graph CG(m, W) has w1

equal to 1, it is known as a chordal ring. The edges
with wi ≠w1 (2 ≤ i ≤ j) are denoted by chords of length wi.
Definition 3: G(V, E) is a simple graph with m vertices
and n edges. Vertices v1, v2, …,vm in V are connected in
sequence into a Hamiltonian cycle. There are integers
w1, w2, …, wj (w1 < w2 <… < wj < (m + 1)/2). Two
vertices vk and vl of V are connected if and only if k
and l are odd numbers, and (k + wi) mod m = l. This
graph is defined as a chordal ring. A circulant graph
with j chords is usually denoted by CR(m, w1, w2, …,
wj) or CR(m, W).
In this work, we consider the former definition of a
chordal ring, i.e., Definition 2. From this definition, it
can be deduced that a chordal ring is a special case of a
connected circulant graph.

Average distance
The average distance �D is defined as the average length
of the shortest paths between any two nodes in the net-
work [2]. It is illustrated on the basis of bi-directed
graphs, which are essentially undirected graphs with
edges represented by bi-directed arrows instead of full
lines [18]. �D can be expressed as

�D ¼
X

vi∈V

X
vj∈V ;vj≠vi

Dij

m m−1ð Þ ð1Þ

Dij is the shortest path distance between vertices vi
and vj. In general, the shortest path distance can be
expressed as

Dij ¼ min
X

eij∈E
cijxij

s:t:
X

j:eij∈E
xij−

X
j:eji∈E

xji

¼
1;

−1;
0;

i ¼ s;
i ¼ t;
i≠s; t:

xij≥0

8<
: ð2Þ

In the definition of Dij, xij denotes whether there is an
edge eij from vi to vj on the path from vs to vt, and cij de-
notes the cost of edge eij. They can be expressed as follows:

xij ¼ 1
0

eij is on thepath fromvs tovt
eij isnot on thepath fromvs tovt

�
ð3Þ

Fig. 1 Decomposition of a complete graph
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cij ¼ 1
þ∞

If there isanedgebetweenvi and vj
If there isnoedgebetweenvi and vj

�
ð4Þ

According to the isomorphism of a circulant graph, �D
can be simplified as [19–23]

�D ¼
X

vj∈V ;vj≠v1
D1j

m−1
ð5Þ

A typical lower bound for the average distance is the
Moore bound [2]. However, the Moore bound is attain-
able only for some special topologies [2, 6].
A circulant graph with a jump relatively prime with m

is isomorphic to a chordal ring. Therefore, its average
distance is equal to that of the corresponding chordal
ring. In most cases, the optimal distance of a chordal
ring is equal to that of a circulant with the same m. The
smallest m that does not fit this rule is 450, according to
the exhaustive research of Fiol [24, 25].
According to the definition of a circulant graph, there

are C(⌊m/2⌋ , j) circulant graphs with different W for cer-
tain m and j. Correspondingly, the number of chordal
rings for the same m and j is C(⌊m/2⌋ − 1, j − 1), which is
j/⌊m/2⌋ the number of circulants on the same scale.

Connectivity ratio
Connectivity ratio is defined as the ratio of the number
of reachable node pairs to the total number of node

pairs in the network, and it can be calculated as

C ¼
X

i∈V

X
j∈V ;j≠i

lij
m m−1ð Þ ; subject to

lij ¼ 1 there is a path from vi to vj ;
0 there is no path from vi to vj :

�
ð6Þ

The maximum network connectivity ratio for a net-
work with q node failures can be expressed as

Cq;max ¼ m−qð Þ m−q−1ð Þ
m m−1ð Þ ð7Þ

Assuming that the probability of q node failures is pq,
we propose the probability weighted connectivity, calcu-

lated as �C ¼
Xm

q¼1
pqCq

�C is more suitable for measuring network survivability
in the event of a disaster that may take a heavy toll.

The Combination Method for topology design
Average distance of chordal ring
In this section, the average distance of a chordal ring is
calculated in an enumerated manner, and some

characteristics are deduced. The number of edges in a
chordal ring CR(m, W) is given by

n ¼
jm wj≠

m
2

j−
1
2

� �
m wj ¼ m

2

1≤j≤
m
2

� �8><
>: ð8Þ

The average distance of chordal rings for j = 1 and 2
has already been investigated; however, the average dis-
tance of more general chordal rings is still being studied.
All these chordal rings are discussed stepwise:

① If j = 1, n is equal to m (m ≥ 3) and the chordal ring
is a Hamiltonian cycle. The average distance of the
Hamiltonian cycle can be deduced from the
following proposition:
Proposition 1: G(V, E) is a Hamiltonian cycle,
|V| =m (m ≥ 3), |E| = n (n =m). If m is odd, its
average distance is (m + 1)/4; if m is even, its
average distance is (1/4)[1/(m − 1) +m + 1].

② If j = 2, the average distance of the chordal rings can
be expressed as a function �D ¼ f m;w1;w2ð Þ with
w1 = 1. However, this function becomes too complex
to be expressed analytically. We draw a curve that
connects discrete average distance points that vary
with w2, as shown in Fig. 2. This figure shows 3
features of the average distance that varies with
w2-jump:
First, there are several local minimum values
scattered in the troughs among several local peak
values. The values of the local minimum average
distances do not differ significantly and are very
close to the values of the global minimum points
among them. All of them contribute to the flat
envelope at the bottom of the curve.
Second, there are local maximum average distance
points near (2/k)wmax, [4/(2k + 1)]wmax (k ≥ 2), where
wmax = ⌊m/2⌋. The values of the peaks are
approximately linearly proportional to their
positions when k is small. Specifically, the average
distance is nearly 2=kð Þ�Dmax at points w2 = (2/
k)wmax. Further, �Dmax is the average distance when
w2 = wmax. However, if k is large, the peaks cannot
be resolved and is no longer linearly proportional to
its position. The peaks can clearly be observed along
the red and green lines in Fig. 2.
The tendency of the optimal average distances varying
with m is presented in Fig. 3. Although it has been
proved that the average distance does not increase
monotonically with m [24], it approximately has a
relation with m. From Fig. 3, the global minimum
average distance in our topology with n = 2m is nearly
proportional to

ffiffiffiffi
m2

p
. The relation between �Dmin and

m can be represented approximately as
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�Dmin ≈ 0:47
ffiffiffiffi
m2

p
−

ffiffiffi
52

p
Þ þ 1

�
ð9Þ

③ If 2 < j ≤ ⌊m/2⌋, the average distance of the chordal
ring can be expressed as a function as follows:

�D ¼ f m;w1;… ;wi;… ;wj
� 	 w1 ¼ 1

2 < wi ≤bm2 c; 2 ≤ i ≤ j

wi < wk ; i < k ≤ j

0
B@

1
CA

ð10Þ

There are C(⌊m/2⌋ − 1, j − 1) choices for W =
{w1, w2, …,wj}. Figure 4 shows an example of �D
varying with w2 and w3 (w1 = 1). Even though the
curved surface is rough, the envelope of the local
minimum points is on a relatively flat surface. In
Fig. 11, several peak sequences can be found
radiating with increasing peak values from positions
where w2 and w3 are small. They are local maximum
points at (w2, w3), with w3 near (2/k)wmax or [4/
(2k + 1)]wmax and w2 near (2/s)w3 or [4/(2s + 1)]w3

(k ≥ 2, s ≥ 2).
Empirical formulas of the minimum average distance
values are also studied by a curve fitting method.

Fig. 2 Increasing tendency of peak values for average distance of chordal ring with m = 289 and j = 2

Fig. 3 Global optimal average distance varying with
ffiffiffiffi
m2

p
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The shortest average distance varying with j and m
can be approximately expressed as

�Dmin j;mð Þ≈
j
4

0:94þ 4j−5
m


 �
m

1
j− 2jþ 1ð Þ

1
j

2
64

3
75þ 1 2 ≤ j <bm2 c

1 j ≥bm2 c

8>>>><
>>>>:

ð11Þ
To verify the effectiveness of the formula, we
compare the real �Dmin selected in enumerated
manner according to the definition of average
distance, with that calculated using formula (11).
The result is presented in Fig. 5. According to the
empirical formula described above, �Dmin is
approximately proportional to jm1/j.

The Combination Method
The idea of Combination Method is to select the optimal
combination of chordal jumps by avoiding the peaks on
the curved surface of the average distance. The formula
for different number of jumps (j) is proposed as follows.

① If j = 2, the average distance curve has a rough
surface which does not vary monotonous with w2

and is hard for choosing the optimal w2-jump.
However, if the peak positions can be avoided, some
local minimum points are still locatable. In this
work, two peak avoidance methods are developed:
The first method is Global Peak Avoidance (GPA).
As shown by the pink marker in Fig. 6, there is a
relatively slow varying region that has very small
average distance values. Although the values may

Fig. 4 Average distance with m = 125 and j = 3

Fig. 5 Variation of global optimal average distance with m for different j
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not be the global minimum points, they are very
close to the optimal ones. We can quantitatively
locate w2-jump in this region as

w2 ¼b ffiffiffiffi
m2

p c ð12Þ

For example, for m = 289, w2 = 17, and the
corresponding �Dsel ¼ 8:5. This is very close to the
minimum average distance of 8.0278.
The second method is Local Peak Avoidance (LPA).
This method derives from the motivation to select
jump sequence W in the trough between peaks near
the positions of (2/k)wmax, [4/(2k + 1)]wmax.

w2 ¼b 2=kð Þwmax � βc; β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
k
−

2
k þ 1


 �
m

2

s
ð13Þ

w2 ¼b 4= 2k þ 1ð Þ½ �wmax � γc;
γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

2k þ 1
−

2
k þ 1


 �
m
2

� �
2

s ð14Þ

The former w2 is termed as Type-I jump, whereas
the latter is termed as Type-II jump.
A simulation is implemented to verify these
formulas. The chordal ring with m = 289 is still

(b)

(a)

Fig. 6 The jumps chosen by CM. a Type-I jump. b Type-II jump
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considered as an instance. For Type-I jump, select
k = {2, 3, 4, 5, 6}, and calculate w2 that complies
with the Type-I jump formula (13). After the re-
moval of w2 from the range of (1, wmax), the re-
sults are obtained as shown in Fig. 6 (a).
Similarly, for the Type-II jump, select k = {2, 3, 4,
5}, and calculate w2 that complies with the Type-
II jump formula (14). The results are shown in
Fig. 6 (b). The mean value of the average distance
of the Type-I jump location �Dsel−Type−I is 8.3927,
and that of the Type-II jump location �Dsel−Type−II

is 8.3733. They are also very close to the optimal
average distance of 8.0278.

② If j = 3, troughs with relatively small values on the
average distance surface can also be found.

Similarly, this can be accomplished by avoiding
local peaks. We select two types of W = (1, w2, …,
wi, …, wj) (2 ≤ i < j). For the Type-I jump
sequence,

Table 1 An instance of jump sequence selection

(a) Type-I

k2 Col. 2 3 4

k3

2 (w2,w3) — — — — — —

Dsel — — — — — —

(w2,w3) — (48,55) (40,55) (32,55) (30,55) (24,55)

Dsel — 3.3871 3.7419 3.4516 3.5161 3.6129

3 (w2,w3) — (39,45) (33,45) (26,45) (25,45) (19,45)

Dsel — 4.0645 3.6613 3.6452 3.5161 3.3871

(w2,w3) — (31,36) (27,36) (20,36) (20,36) (15,36)

Dsel — 3.5323 3.8226 3.6613 3.6613 3.5806

4 (w2,w3) — (29,34) (26,34) (19,34) (19,34) (14,34)

Dsel — 3.8871 3.3387 3.7581 3.7581 3.3871

(w2,w3) — (22,27) (21,27) (15,27) (15,27) (11,27)

Dsel — 3.6290 3.4194 3.8871 3.8871 3.4355

(b) Type-II

k2 Col. 2 3 4

k3

2 (w2,w3) — (51,52) (41,52) (36,52) (31,52) (28,52)

Dsel — 4.5645 3.9677 4.1774 4.1290 3.5161

(w2,w3) — (41,46) (33,46) (29,46) (26,46) (22,46)

Dsel — 3.9516 3.9839 3.4194 3.6452 3.8710

3 (w2,w3) — (33,37) (27,37) (23,37) (21,37) (18,37)

Dsel — 3.4677 3.4194 3.4194 3.4032 4.5161

(w2,w3) (30,33) (26,33) (22,33) (18,33) (17,33) (14,33)

Dsel 5.1290 3.6935 3.5968 3.5484 4.0323 3.4032

4 (w2,w3) — (25,29) (20,29) (17,29) (16,29) (13,29)

Dsel — 3.5645 3.6129 3.3710 3.5484 3.7419

(w2,w3) (23,25) (19,25) (16,25) (14,25) (13,25) (10,25)

Dsel 4.5968 3.5323 3.5484 3.7097 4.5968 3.4677

—: Denotes that W is out of the range of definition

Table 2 Local search algorithm

Step 1: Calculate the set of jump sequence points surrounding W, which
can be denoted by W’ = {w1', w2', …,wj'}, with wi ' ∈ (wi − α,wi

+ α). Calculate �Dcenter ¼ f m;Wð Þ
Step 2: Calculate all �Dneigh ¼ f m;W 0ð Þ, and determine the W’neigh_min

that corresponds to the minimum �Dneigh within the
neighborhood. The minimum �Dneigh is denoted by �Dneighmin.

Step 3: If �Dneighmin < �Dcenter , set W =W’neigh_min, �Dcenter ¼ �Dneighmin, and
goto Step 1. Otherwise, output W’neigh_min.
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wj ¼b 2=kj
� 	

wmax � βjc; βj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kj
−

2
kj þ 1


 �
m

2

s

ð15Þ

wi ¼b 2=kið Þwiþ1 � βic; βi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ki
−

2
ki þ 1


 �
2wiþ1ð Þ2

s

ð16Þ
For the Type-II jump sequence,

wj ¼b 4= 2kj þ 1
� 	� 


wmax � γ jc;
γj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

2kj þ 1
−

2
kj þ 1


 �
m
2

� �
2

s

ð17Þ

wi ¼b 4= 2ki þ 1ð Þ½ �wiþ1 � γic;
γi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

2ki þ 1
−

2
ki þ 1


 �
wiþ1

2

s

ð18Þ
When m = 125 and j = 3, the average distances of the
selected W according to the above formulas, are
listed in Table 1. From the experiments, the mean
values of the average distances selected by the Type-
I and Type-II peak avoidance methods are 3.6252
and 3.8170, respectively. They are very close to the
optimal average distance of 3.3226.

The Local Search Method for further optimization
In this section, Adaptive algorithm is devloped to
minimize the average distance, based on the conclusions
made above.
In general, An adaptive algorithm is divided into two

steps: configuration of the initial parameters and iteration
of the objective function. In this context, the parameter is

the jump sequence W = {w1, w2, …, wj} with a fixed num-
ber of vertices m and j jumps. The objective function is
the average distance �D ¼ f m;w1;… ; wi; … ; wj

� 	
in equa-

tion (12). The algorithm is described as follows.

① Initial value for iteration
The initial W can be configured by the peak
avoidance method mentioned above. Using these
methods, W with a relatively small average distance
can be achieved.
The initial step for iteration can be configured as α.

②Optimization by local search method
A local search method is an algorithm that searches
for the local minimum average distance of a chordal
ring. The details of the algorithm are presented in
Table 2.
This local search process starts from different initial
W in parallel; all these local optimal results are
compared, and the minimum one which is closest to
the global optimal point is chosen. The chordal ring

(a) (b)

Fig. 7 Example of structural behavior of standard spider web topologies. a m = 9. b m =16

Fig. 8 Shortest paths from v1 to other vertices
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with m = 289 and j = 2 is considered as an instance.
w2 = 79 is an initial jump according to the peak
avoidance method. After one iteration of the local
search algorithm, w2 = 80, and the corresponding
�Dcenter ¼ 8:0278, which is equal to the global
optimal average distance.

The Spider Web Method for topology design
The spider web method is proposed based on the bionic
phenomenon of robust nets weaved by spiders.

Design method description
For a graph with m = k2 (k ≥ 3), where the degree of each
vertex is 4, we can construct our robust topology as
follows:

①Divide m vertices into k groups with each group
containing k vertices. The groups are numbered
from 1 to k. The vertices in group i (1 ≤ i ≤ k) are
denoted by Vi = (vk+i, v2k+i, ……,vjk+i,……, v (k-1)k+i)
(0 ≤ j ≤ k-1).

②Connect the vertices in each group into a ring.
③ For every j, connect vertices vjk+i in all groups from

V1 to Vk into a line.
④ For every j, connect vertices vjk+k and v[(j+1)%k]·k+1

with an edge.

An example of this structural behavior of spider web
topologies with 9 and 16 vertices is shown in Fig. 7.

There are three types of edges in this figure. The
edges in red are generated in step 2 to construct
rings; thus, they are termed as hoop directional
edges. The edges in blue are generated in step 3
to construct lines; thus, they are termed as radial
directional edges. The edges in black are generated
in step 4 to connect two vertices on neighboring
radial directional lines and rings with the largest
difference in group indices; they are termed as
bevel edges. Because these topologies are very simi-
lar to a spider web when the number of nodes is
large, we refer to them as standard spider web
topologies.
In addition, an obvious conclusion is that the

average distance of a standard spider web topology
where the number of vertices is m = k2 is given by
�D ¼ k=2 ¼ ffiffiffiffi

m2
p

=2.
Proof:
We assume that k is even. A path length is a com-

bination of three parts: hoop sub-path, radial sub-path,
and bevel sub-path. First, the distance from vertex v1 to
the other vertices is considered. For vertices with
smaller indices on a radial directional line, the shortest
path can go along the cycle first, and then, move up
along the radial direction line to the destination vertex,
as shown by the red path in Fig. 8. For vertices with
larger indices on a radial directional line, the shortest
path can go along the cycle first, and then move along
a bevel edge and down the radial direction line to the
destination vertex, as shown by the blue path in Fig. 8.

Fig. 9 Example of hoop directional extension

Fig. 10 Example of radial directional extension
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Fig. 11 Relation between spider web and combination topologies

(a) (b)

(c)

Fig. 12 Comparison of topologies with the same average distance. a Combination Method. b ILP design method. c Connectivity
ratio comparison
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The sum of the shortest paths from v1 to other verti-
ces can be written as

L ¼ k
2

Xk
2

i¼0
iþ

Xk
2

i¼2
iþ 2•

Xk
2

i¼1
i

� �
þ 2•k

Xk
2−1

i¼1
i


 �

¼ k
2

k2−1
� 	

Because every vertex in the spider web is equally im-
portant, the average distance can be written as

�D ¼ mL
m m−1ð Þ ¼

k
2
¼ ffiffiffiffi

m2
p

2

Similarly, when k is odd, we can come to the same
conclusion.
Therefore, the average distance of a standard spider

web is
ffiffiffiffi
m2

p
=2.

Extension of spider web topologies
Spider web topologies can be extended in a very intuitive
manner. There are two main directions for the extension
of spider web topologies: hoop directional extension and
radial directional extension.
For hoop directional extension, one vertex is added to

each vertex group and is connected into the correspond-
ing ring between the vertices with the maximum and
minimum indices in the group. Then, the new vertices
are connected into a radial directional line. Finally, bevel
edges are added before and after the new radial direc-
tional line. A topology extended from 12 vertices to 16
vertices is shown as an example in Fig. 9.
For radial directional extension, s vertices are added to

the graph, and they are connected into a new ring. Each ra-
dial directional line is extended to connect a vertex on the
new ring. The bevel edges start from the new vertex and
extend to the vertex with the minimum index on the neigh-
boring radial directional line. A topology extended from 12
vertices to 15 vertices is shown as an example in Fig. 10.

(b)(a)

(c)

Fig. 13 Comparison of combination method and hypercube. a Combination Method. b Hypercube (4-cube). c Connectivity ratio comparison
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By these extension methods, spider web topologies
can be conveniently transformed without complex
reconstruction.

Relation with the combination method
The standard spider web topology is identical to the
combination method with m = k2 (k ≥ 3) and w = k. Their
connection matrices have the same eigenvalues. This re-
lation can be seen intuitively in Fig. 11. In conclusion,
the spider web topology is a special case of the topology
constructed using the combination method, but it is
more intuitive.

Survivability experiments
To evaluate the survivability of topologies, we design an
survivability experiment. It is implemented by the tar-
geted nodes attack. For a topology with m nodes and n
links, we destroy k out of m nodes in an enumerated
manner. Then, we select the worst case of the connectiv-
ity ratio among all the attack results as the metric for
comparison with other topologies.
For topologies with different design methods, the

worst-case connectivity ratio is used to verify the effect-
iveness of the combination method. Figures 12 and 13
show comparisons of these topologies.
From Fig. 12, we can see that a topology designed

using the combination method performs better than a
topology designed using an integer linear programming
(ILP) model with the equal degree and node connection
constraints. From Fig. 13, we can see that the combin-
ation method is slightly better than the hypercube when
k is large.
For all topologies constructed using the combination

method with the same m and n, the worst-case connect-
ivity ratio is used to verify the effectiveness of w
selection.
Figure 14 (a) shows the connectivity ratio of a de-

signed topology with m = 18 nodes. The connectivity

ratio decreases more slowly when w = 4. In particular,
when 5 nodes fail, the connectivity ratio is nearly 0.3,
which is much higher than that for other w. Figure 14
(b) shows the variation of �Cnum with w for different m.
In this simulation, pq is set to 1/m. All these curves have
higher points at w = 4 or 5. This verifies the selection of

wsel ¼b ffiffiffiffi
m2

p c in formula (12).

Conclusion
We proposed two quick methods to construct topologies
with small average distance and high connectivity: CM
and SWM. CM can be divided into two special methods
according to different empirical formulas, namely, the
Global Peak Avoidance method and the Local Peak
Avoidance method. Further, CM can be enhanced by a
local search method. SWM is essentially a special case of
CM; it is a more intuitive and expandable approach. Ex-
perimental results showed that the topologies designed
by CM and SWM perform well in terms of network con-
nectivity and survivability.
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