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Abstract

With increased demand for computing resources at a lower cost by end-users, cloud infrastructure providers need to
find ways to protect their revenue. To achieve this, infrastructure providers aim to increase revenue and lower
operational costs. A promising approach to addressing these challenges is to modify the assignment of resources to
workloads. This can be used, for example, to consolidate existing workloads; the new capability can be used to serve
new requests or alternatively unused resources may be turned off to reduce power consumption. The goal of this
paper is to highlight features, approaches and findings in the literature, in order to identify open challenges and
facilitate future developments. We present a definition of cloud systems adaptation, a classification of the key features
and a survey of adapting compute and storage configuration. Based on our analysis, we identify three open research
challenges: characterising the workload type, accurate online profiling of workloads, and building highly scalable
adaptation mechanisms.
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Introduction
Cloud computing is an established paradigm for pro-
viding on demand computing services to a wide range
of users, including enterprises, software developers and
researchers. Infrastructure Providers (IPs) manage the
base infrastructure, including servers, storage and net-
work connectivity, and typically present this infrastruc-
ture as Virtual Machines (VMs). Other providers rent
these resources and resell value-added services (VARs)
as Platform as a Service (PaaS) or Software as a Service
(SaaS).
VARs utilise clouds to lower operating costs by only

paying for computing resources they use. The ability to
expand to additional resources means they do not have to
build capacity upfront. In return for these benefits, VARs
typically pay a higher per hour cost for resources used,
compared to managing infrastructure directly. IPs, on the
other hand, have the challenge of providing these bene-
fits to VARs. IPs build the capacity to cope with increasing
demands for computing resources, which requires signif-
icant investment in infrastructure, skilled personnel and
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incurs power costs. Furthermore, with increased com-
petition and commoditisation of cloud services, IPs are
under pressure to reduce their prices. Amazon reduced
its prices on 41 different occasions in the last few years
[1]. The adoption of cloud computing does, however, open
up a new market for IPs, where they can run a wide vari-
ety of computing requests that previously were housed in
private infrastructure.
IPs generate revenue by meeting Service Level Agree-

ments (SLAs). To achieve this, one approach is to period-
ically Adapt the infrastructure configuration. Adaptation
typically entails a decision to increase or reduce cloud
resource allocation to a workload. For example, the CPU
share allocated to a VM running a web server can be
reconfigured to a lower share, if SLAs can remain unaf-
fected. The gained capacity can be used to accept new
workloads or to reduce power consumption, resulting in
an increase in IP profit.
This paper surveys resource reconfiguration, covering

40+ publications that focus on adaptation of computing
resources in a cloud context. The chosen publications
appeared in cloud focused journals and conferences. Our
contributions are a definition for cloud adaptation and
a classification that we use to survey the literature. To
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focus the scope of this work, we chose to cover adaptation
of compute and storage resources. However, we recog-
nise the potential impact adaptation of network resource
can play. For example, multiple under-utilised network
routers can be powered down by reconfiguring the net-
work infrastructure, thus lowering power consumption.
Several surveys pull together results of different features

of cloud resource management. In [2] the authors sur-
veyed elastic approaches in cloud computing, providing
a high level overview of the approaches. Our survey is
different as it investigates adaptation and, as we demon-
strate later, adaptation is a superset of elasticity. In [3], the
authors comprehensively discuss approaches to efficient
data centres, choosing to focus on power consumption.
Our work covers power as an adaptation objective and
also covers SLA and revenue. In [4], the authors sur-
veyed autoscaling, and classified the literature based on
the adaptation techniques used. Their work focused on
the Infrastructure as a Service (IaaS) client’s perspec-
tive, while we focus on the IaaS provider, thus their
work excluded VM migration and server consolidation.
In [5], the authors provide an overview of the mecha-
nisms and techniques employed to manage elasticity from
the perspective of a SaaS provider, while we focus on
the IaaS provider. In [6], the authors investigate cloud
resource management and in [7], the authors present
common aspects used in cloud computing environments,
such as metrics, tools and strategies. In [8], the authors
surveyed the VM allocation problem and models and
algorithmic approaches. In [9], the authors present anal-
ysis of autonomic resource management in general, and
specifically Quality of Service aware autonomic resource
management. In [10], the authors surveyed SLA-based
cloud research including the techniques used for adaptive
resource allocation. In [11], the authors surveyed cloud
computing elasticity using a classic systematic review cov-
ering metrics and tools. In [12], the authors summarised
different method and theory used in cloud resource allo-
cation and monitoring. In [13], the authors depict a broad
literature analysis of resource management in the cloud.
While there is some overlap from these surveys with our
work, they chose a different classification scheme to our
work, which focuses on adaptation of resource configu-
ration, enabling us to analyse the factors that influence
the adaptation process. Additionally we investigate factors
affecting scalability of the various proposals in the litera-
ture. To the best of our knowledge there is no other work
that uses our chosen dimensions.
As PaaS can be built on top of IaaS, there can be similar-

ities between how resources are adapted in both environ-
ments. However, as IaaS is typically presented at the VM
abstraction level, IPs have less visibility into the nature
of workloads and their configurations. This presents
additional challenges for Autonomic [14] approaches to

adapting resources on IaaS. “Cloud systems setup” Section
introduces cloud infrastructure and lays the foundation
for a discussion on how this can be adapted in “Cloud sys-
tems adaptation” Section; we also define the dimensions
used in the survey. “Adaptation in cloud resource configu-
ration” Section surveys the literature based on the adapted
cloud resource, identifying the techniques and approaches
used. “Open research challenges” Section presents
open challenges in adapting resource configuration and
“Conclusion” Section presents our conclusions.

Cloud systems setup
Cloud computing is defined as “a model for enabling con-
venient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort
or service provider interaction” [15]. In this section we
introduce the constituents of cloud systems.
Compute Resource: The core processing capabilities that

are used to execute software instructions. We define this
as comprising of a CPU, typically in multicore configura-
tion, CPU cache and primary storage memory. Data cen-
tres typically house many thousands of servers containing
these compute resources.
Storage Resource: Non-volatile secondary storage mem-

ory houses the data used by compute resources. As this
resource is typically cheaper than primary memory, many
operating systems are able to use it as an extension of main
memory, to temporarily swap out unused memory state.
Many data centres will have servers with access to internal
storage as well as to a Storage Area Network that con-
solidate and abstracts the complexity of accessing storage
throughout the data centre.
Network Resource: includes the network cards that con-

nect into servers as well as infrastructure components
that include repeaters, load balancers, switches and fire-
walls. Networks can use different topologies and proto-
cols, which influence the level of security, resilience and
Quality of Service.
Virtual Resource: is an abstraction added onto compute,

storage and network resources. It enables slicing of these
resources into smaller chunks that can be scaled verti-
cally or horizontally. Typically virtualisation is used in a
data centre to slice data centre compute resource into Vir-
tual machines, and potentially to present several logical
processors by mapping these onto a single physical pro-
cessor. Network cards and storage are also virtualised and
presented as individual devices to VMs.
Service Management Resource (SMR): is a knowledge

library where IPs store management objectives, policies,
pricing and orchestration information.
Management Tools: are used by IPs to provision, moni-

tor, reconfigure, back up and restore the infrastructure.
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IPs typically build the infrastructure and offer access to
virtual resources, with a VM being the main component.
VMs reside on physical nodes of heterogeneous capabil-
ities where the performance characteristics of compute,
storage and network vary. Demand for recourses varies
over time as users consume and release these resources.
As more resources are used, power consumption in the
data centre increases and IPs may choose to optimise the
allocation of VMs to physical nodes. In the next section,
we will cover IPs objectives and approaches used to opti-
mise this allocation.

Cloud systems adaptation
In this section we introduce the IPs objectives and
approaches to adapting the cloud infrastructure.
To meet workload demands, IPs can use Elasticity [16]

to reconfigure resources in an autonomic manner. The
limitation of this view is that it assumes the IP’s objec-
tive is to satisfy precisely all workload demands. While
this may be true, it may not always be the case, as the
IP has finite resources and may apply differentiation on
requests. Additionally, the IP may decide it is more cost
effective to pay a penalty for an SLA violation instead
of scheduling the request. The current view on Elasticity
abstracts several complex activities. We refine this view
by separating the decision making process from how the
cloud environment is reconfigured, by defining elasticity
as the on demand ability, to scale vertically or horizon-
tally segmented resources in discrete units. To achieve a
specific business goal, IPs go through a decision mak-
ing process that changes the infrastructure, a process
we name Cloud Systems Adaptation. We define this as
a change to provider revenue, data centre power con-
sumption, capacity or end-user experience where decision
making resulted in a reconfiguration of compute, network
or storage resources. Reconfiguration is the process of
increasing or reducing resource allocation to a workload,
through elasticity.
Core to cloud systems adaptation is a decision mak-

ing process that decides the resources to reconfigure and
how. Figure 1 shows the inputs into the decision making
process, including:

1. The desired management objective in each
adaptation cycle from the SMR.

2. The adaptation techniques and infrastructure
metrics.

When decision making is complete, Elasticity is used to
scale the infrastructure resources.
We define the dimensions of cloud systems adaptation

as: 1) Adapted cloud resource, which categorises what
resources are modified and how; 2) Adaptation objective
is a desired business outcome; 3) Adaptation techniques

are a set of analytical and modelling techniques used to
achieve the adaptation objective; 4) Adaptation engage-
ment categorises when the adaptation process is invoked;
5) Decision engine architecture categorises the different
architectures used by the decision making engines within
the literature; 6) Managed infrastructure type categorises
whether node capabilities and properties are used in
the decision making. These dimensions are presented in
Table 1 and discussed in the following subsections.

Adapted resource
We extend the definition of possible resource adaptation
from [17] in Table 1, which describes our classification of
the literature and the dimensions used. VM level adap-
tation are typically applied to improve/reduce workload
performance due to an increased/reduced demand by
adjusting CPU, memory, disk bandwidth and/or storage.
For example, a web server running on a VM may need
a bigger share of CPU due to an increased number of
requests.
Node level adaptation could be applied to add capac-

ity by powering on a node. Power consumption could be
reduced by using Dynamic Voltage and Frequency Scal-
ing (DVFS) [18], before the node is powered off when not
needed. Node configuration can also be adapted when a
VM’s requirements extend beyond the capacity of its host-
ing node, so that it needs to be migrated to another node
that has the required capacity. Migration can also be used
to reduce power consumption, by consolidating VMs into
fewer nodes and enabling some nodes to be switched off.
Cluster level adaptation is applied to facilitate node

adaptation and to adhere to any reliability policies used by
IPs by adding and/or removing nodes.

Adaptation objective
All of the proposals surveyed drive adaptation tominimise
SLA violations and some trade this off with a secondary
objective. Examples include reducing power consump-
tion, maximising IP revenue and combined wheremultiple
objectives are sought. A small number of proposals focus
on reducing the customer cost of using the infrastructure.

Adaptation technique
Several adaptation techniques have been applied to cloud
infrastructure in the literature, including Heuristic, Con-
trol theory orMachine learning [19].
Heuristic based adaptation techniques use problem spe-

cific knowledge to provide a quick solution and trade
preciseness of the outcome with lower time complex-
ity, which makes them good candidates for dynamic
resource allocation on the cloud. Control theory can pro-
vide QoS guarantees by using a feedback controller, that
dynamically adjusts the behaviour of the system based on
the measured outputs. Machine Learning techniques are
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Fig. 1 Cloud Systems Adaptation sequence

grouped into two categories, supervised and unsupervised
learning.

Adaptation engagement
Cloud systems adaptation needs to be invoked in order
to evaluate the infrastructure and determine whether
resource reconfiguration is required. The approaches used

Table 1 Dimensions for Cloud Systems Adaptations

Dimension Definition

Adpated Resource VM ⊂ {Adjust CPU, Memory, Storage,
Disk Bandwidth}

Node ⊂ {Power on/off, Adjust DVFS,
Migrate VM}

Cluster ⊂ {Add/remove nodes}

Adaptation Objective SLA, Power, Revenue, Customer Cost

Adaptation Technique Heuristics, Control theory, Queing theory

Machine learning

Adaptation Engagement Reactive, Proactive, Reactive/Proactive

Decision Engine Architecture Central, Hierarchical, Distributed

Managed Infrastructure Heterogeneous, Homogeneous

in the literature fall onto Reactive, Proactive and Hybrid
engagement.
Reactive approaches invoke adaptation when a mon-

itored metric, e.g. CPU utilisation, reaches a specific
threshold.
Proactive approaches predict what demands will be

placed on the infrastructure and invoke adaptation ahead
of the predicted resource contention point.
Hybrid approaches utilise proactive approaches and

combine these with reactive approaches, as way to engage
adaptation for long and short term time scales.

Decision engine architecture
The architecture of the decision engine governs where the
engine is placed and how it operates. Centralised archi-
tectures use an engine with a global view of the managed
infrastructure and can adapt resource across the entire
infrastructure.
Hierarchical architectures typically divide the infras-

tructure into multiple clusters, placing an engine (Level 1)
in each cluster. A global, Level 2, engine coordinates each
of the Level 1 engines.
Distributed architectures typically use a Peer-to-Peer

protocol [20] that enables nodes to communicate directly
without a centralised controller.
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Managed infrastructure
Cloud systems are typically diverse and made of a het-
erogeneous set of compute and storage resources [21].
Some of the proposals incorporate the type of the man-
aged infrastructure in the decision making process, while
other proposals assume a homogeneous infrastructure,
where every node has the same capability and power
consumption.

Adaptation in cloud resource configuration
In this section we survey the literature that adapt cloud
resource configuration, focusing on compute and storage
resources.We chose to focus on the reconfigured resource
and classify the reviewed literature on this dimension,
in order to analyse patterns that are specific to a cloud
resource. The reconfigured resources are:

1. CPU and Memory
2. VMMigration
3. Node Power Usage
4. Storage

In general, proposals apply cloud systems adaptation to
minimise SLA violations and some trade this off with a
secondary objective, by recognising that meeting SLAs
is not the only business objective for IPs. To achieve
this, proposals use different techniques and engage the
adaptation at different points. Additionally, the execu-
tion complexity of the proposals impact their ability to
scale their approach on data centres with thousands of
nodes. Therefore, the secondary objectives, adaptation
techniques, adaptation engagement and decision engine
architecture distinguish the various proposals in their
adaptation of cloud resource configuration. The remain-
der of this section will be structured principally according
to the adapted resource, and then within each resource
following the remaining dimensions in Table 1. Table 2
provides a summary comparison of the literature, in an
IaaS context.

VM adaptation - CPU andmemory
As core computing resources, CPU and memory adapta-
tion have been widely researched. Many of the proposals
scale the infrastructure horizontally by adding new VMs,
typically via predefined VM classes [22–32]. While this is
simpler to apply, compared to fine grain CPU andmemory
configuration, it may lead to wastage by over-allocating
resources to workloads as well consume more power. In
[33] the authors further argued that fine grain CPU and
memory configuration reduces the provisioning overhead
and mitigates SLA violations. Other proposals, particu-
larly those focusing on maximising revenue, apply fine
grain management of VM resources with CPU and mem-
ory configurations modified in discrete values using the

Xen [34] hypervisor API. In [35–37], the authors utilise
Xen’s credit-based CPU scheduler to set the CPU share for
workloads and in [37, 38], the authors additionally utilise
Xen’s ability to define the amount of memory assigned to
each VM. The life cycle management of workloads can
be categorised into two overlapping phases. Admission
control [62], which is the decision to accept a new work-
load if it contributes to the current management objec-
tives and resource adaptation [10], which reconfigures the
infrastructure after a state change. Several proposals treat
admission control as distinct phase and assume availabil-
ity of free resources. While this simplifies the approach,
it may unnecessarily power on a new node. Alternatively
admission control should be used as an opportunity to
apply cloud system adaptation and redistribute existing
workloads.

Secondary objectives
Some of the proposals focus on reducing power consump-
tion in the data centre [39–43]. While this has a direct
impact on an IPs profits, some of the proposals aim to
maximise revenue by increasing capacity to service work-
loads [19, 36, 44, 45]. In contrast, the authors in [23]
aim to reduce the cost of using cloud infrastructure to
customers on Amazon EC2 [46], by automatically allocat-
ing resources based on the current demand. The authors
in [24, 47] aim to reduce the complexity in resource
provisioning of the Apache Hadoop framework [48], by
enabling automated allocation of resources and configura-
tion parameters, andminimise the incurred infrastructure
cost. Both approaches attempt to predict the workload
behaviour to optimise run time performance, however
they differ in their methodology. The authors in [24] used
offline training, while the authors in [47] used histori-
cal data from past jobs. The latter approach may initially
produce lower optimal allocations as it builds job perfor-
mance history. However, over time this could enable the
approach to build better clusters of workload signatures
that enable it to make more optimal allocations. There-
fore there is a tradeoff between initial performance and
time taken to build workload knowledge. While offline
approaches can be used to improve the online decision
making process by constructing a model of the system
behaviour, this has an upfront overhead and is not practi-
cal to apply for every application deployed on IaaS.
To reduce power consumption of a node before turning

it off, proposals [3, 40] use power management features in
modern nodes (DVFS) to scale down both the frequency
of the CPU and the voltage used. An alternative approach
to DVFS was used in [42], where the authors incorpo-
rate the power cost and priority of a VM in the decision
of where to add the VM, thus reducing the number of
active nodes. Figure 2 shows the components that may get
adapted on compute resources.
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Table 2 Summary of literature that adapt cloud resources, ordered by the Decision Engine Architecture

Project Objective Resource Tech Adapt trigger Arch Infra Workload Setup [#nodes]

P SLA Rev Cust cost Whole VM/node CPU Mem Migrate Disk I/O DVFS Node ST
off

Zheng [31] x x x x GA P Central Hom Generic Simulation[200]

Zhang [32] x x QT P Central Hom Multi tier Simulation

Zuo [71] x x x x x Heuristic R Central Het Generic Simulation

Tchana [66] x x x x CSP R Central Het Generic Private + AWS

Beloglazov [39, 69] x x x x x Heuristic R Central Het Generic Simulation [100] [800]

Wesam [33] x x x Heuristic R Central Het Multi tier Xen test bed

Gmach [57] x x x CT R Central Hom Generic Simulation

Fargo [37] x x x x x x Heuristic P Central Hom Web App Xen test bed

Won Choi [70] x x Heuristic R Central Hom Generic Linux test bed

Iqbal [62] x x x Heuristic R + P Central Hom Generic Eucalyptus

Roy [28] x x x CT P Central Hom Multi tier NA

Xiangping Bu [38] x x x RL R Central Hom Multi tier Xen test bed

Padala [35] x x x CT P Layered Hom Multi tier Xen test bed

Xu [51] x x CT P Central Hom Web App ESX test bed

Jamshidi [52] x x x CT R + P Central Hom Web App Azure

Bodik [23] x x x CT P Central Hom Multi tier Simulation

Lama [24] x x SML + Heuristic P Central Het Hadoop ESX test bed

Koehler [47] x x x Utility P Central Hom Hadoop KVM test bed

Kusic [41] x x x x x CT+ Utility+ TS P Central Het Multi tier ESX test bed

Zhu [50] x x x CT + Utility R Central Hom Web App HP-UX

Hasan [55] x x Heuristic R Central Hom Generic Test bed

Cardosa [42] x x Utility + Heuristic R Central Hom Generic ESX test bed

Shen [40] x x x x x x TS P Central Het Web App Xen test bed

Nathuji [49] x x CT P Central Het Generic Hyper-V test bed

Malkowski [25] x x CT + Heuristic P Central Hom Multi tier Xen test bed

Lim [74] x x CT R Central Hom Hadoop Xen test bed

Ali-Eldin [26] x x CT R + P Central Hom Generic Simulation

Zhani [27] x x x x Heuristic R Central Hom Generic Simulation [400]

Han [45] x x x x x Heuristic R Central Hom Generic IC Cloud

Han [54] x x x QT R Central Hom Generic Simulation

Gulati [65] x x x x x Greedy Heuristic R Central Het Generic ESX test bed
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Table 2 Summary of literature that adapt cloud resources, ordered by the Decision Engine Architecture (Continued)

Project Objective Resource Tech Adapt trigger Arch Infra Workload Setup [#nodes]

P SLA Rev Cust cost Whole VM/node CPU Mem Migrate Disk I/O DVFS Node ST
off

Berral [56] x x x x SML P Central Hom Generic Simulation [400]

Addis [19] x x x x x x Utility + Heuristic R Central Het Multi tier IBM test bed

Urgaonkar [29] x x QT R + P Central Hom Multi tier Xen test bed

Tolia [73] x x x x Heuristic R Central Hom Generic Xen test bed

Casalicchio [68] x x x Heuristic N/A Central Hom Generic Workstation

Celaya [30] x x x x Heuristic P Central Hom Parellel Simulation

Addis [53] x x x x x x x Utility + Heuristic P Hierarch Het Multi tier IBM test bed [7200]

Zhu [67] x x x x CT + Heuristic + TS P Hierarch Hom Web App ESX/Simulation

Jung [44] x x x x x Heuristic + Utility+TS P Central + Hierarch Het Multi tier Xen test bed

Almeida [36] x x x x Utility P Hierarch Hom Multi tier Simulation

Nguyen Van [22] x x x x Utility + CSP R Hierarch Het Generic Simulation

Sedaghat [64] x x Heuristic+ P2P R Distrib Het Generic Simulation [100,000]

Wuhib [43] x x x x Heuristic + P2P + TS P Disrib Hom Generic Simulation [160,000]

Legend: CT=Control Theory; RL= Reinforcement learning; CSP= Constrained satisfaction problem; SML= Supervised machine learning; P2P= Peer-to-Peer; QT= Queuing Theory; GA= Genetic Algorithm; TS= Time series;
R= Reactive; P= Proactive; Hom=Homogenous; Het= Heterogeneous
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Fig. 2 Compute Resource components

Adaptation technique
A common adaptation technique is Control theory
[23, 25, 26, 35, 41, 44, 49, 50], which aims to guaran-
tee system stability by adapting resource configurations
at defined intervals. Some of the control theory propos-
als react to monitored metrics such as CPU utilisation
thresholds and workload throughput [50], but most of the
proposals surveyed use a proactive mechanism to fore-
cast the future workloads, typically using time series. In
contrast, [51] proposed a control theory based approach
that utilised Fuzzy Logic to predict short term CPU util-
isation. The authors in [52] also used a reactive Fuzzy
controller, which can handle conflicting rules. The authors
approach attempts to simplify the complexity of setting
thresholds by using imprecise thresholds such as high and
low for specifying elasticity rules. However this requires
human experts to set multiple values for the approximate
thresholds.
Following a heuristic approach, the authors in [53]

assign application tiers to nodes, preserving CPU util-
isation in each node below a 60 % threshold. A local
search optimises the initial allocation, guided by availabil-
ity guarantees. This architecture results in the heuristic
being invoked at three different time-scales, evaluating
different adaptation decisions on each time period. In
[45], the authors propose a lightweight heuristic based
on workload response time, which is defined by the
customer. Their approach attempts to satisfy workload
response time by incrementally adding CPU and memory
resources to the workload. The authors approach requires

a deployment portal, but does uniquely account for cus-
tomer specified constraints, such as budget, when making
adaptation decisions. In later work, the authors [54] use
an open queueing network, a queuing theory technique, to
reduce utilisation cost to customers. Their approach iden-
tifies and scales a bottlenecked tier in a multi-tier cloud
application. The authors in [32] simplify the cloud applica-
tion to a typical request queuing model and combine this
with binary search.
The heuristic based approach in [55] allows control and

adaptation of multiple resources simultaneously, by build-
ing groups of resources and performance metrics, which
can be adapted based on customer defined events. While
the approach uses multiple objective optimisation, the
authors did not show empirical evidence of their approach
or its ability to scale.
Machine Learning based proposals fall into two cat-

egories, supervised learning [24, 56] and unsupervised
learning [38]. Given the variability of workloads deployed
on cloud infrastructure, Reinforcement Learning (RL)
seems promising as it does not rely on pre-constructed
models of the controlled infrastructure, by discovering
system behaviour online without prior training. The main
disadvantage of RL is the online training time, which
can be exponential to the size of the explored space,
potentially resulting in poor decisions during the learning
phase. To combat this challenge, [38] proposed combin-
ing RL with a Simplex method to reduce the search space
to a smaller valuable set, and then used online CPU and
memory utilisation to guide decision making.
Utility based approaches are used to define a measure of

usefulness towards a management objective, typically util-
ising a customer metric like response time as objective to
the utility function. Proposals typically build utility frame-
works by constructing a performance model of multi-
tier applications embedded in an optimisation problem
[19, 22, 25, 36, 42], where a utility function expresses satis-
faction of each workload towards assigned resources. Util-
ity has also been combined with control theory in [41, 44]
to apply a fine grain configuration of CPU and memory,
by estimating the benefits of potential adaptations and
incorporating a notion of risk. In contrast, the authors in
[49] argue that defining multiple levels of QoS, Q-states,
beyond the traditional minimum level, is easier for cus-
tomers to define than utility functions. The challenge with
utility based approaches is humans could find it difficult
to define the utility functions needed in a complex system.

Adaptation engagement
Proposals adapt CPU and memory configuration either
by reacting to a breached metric or by forecasting a met-
ric change. Reactive approaches typically set and monitor
a utilisation threshold to CPU and memory [38]. How-
ever, setting the optimal threshold is not simple and
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typically requires workload knowledge. Some proposals
used experimentation [39, 57] to set threshold values. In
[45], the authors proposed an alternative approach, where
the customer defines the SLA and the IPs set the resource
utilisation thresholds. The proposals in [19, 50] react to
workload response time, instead of CPU/Memory thresh-
olds, and trigger adaptation to preserve response times
to the requested levels. In addition to the challenge of
setting the threshold level, reactive approaches risk oscil-
lating system state by reacting too frequently to varying
node utilisation. In [55], the authors combat this by using
four thresholds and two duration periods to track for how
long the threshold has been reached.
Proactive mechanisms are typically time series based,

where a sequence of events at defined intervals are anal-
ysed to find patterns that can be used to forecast future
values. Time series estimators include Auto Regressive
Moving Average (ARMA) [58], Smoothing Spline [59],
Kalman Filter [60] and Fast Fourier Transform [61]. Pro-
posals that forecast workload arrival rate have an addi-
tional challenge to map this to a utilisation forecast.
Several proposals tackle this by using an offline phase
[24, 37, 44, 49] to build performance models of workloads,
which are then used to make adaptation decisions based
on online CPU and memory measurements. A disadvan-
tage of the offline approach is it may have a significant
overhead and may not cope with dynamic behaviour of
some workloads.
A few proposals combine both proactive and reactive

approaches in a hybrid approach to engage the adaptation
process. In [29], the authors propose a proactive controller
that provisions based on peak load seen in the last hour,
with a reactive controller for sudden bursts, but it had no
ability to scale down CPU/memory resources. In [26, 62],
the authors extend this approach and use a reactive con-
troller for scaling up and a proactive controller for scaling
down, by removing whole VMs. The authors claim this
hybrid approach is able to cope with sudden bursts as well
as being able to conserve energy by proactively switching
nodes off. The authors did not experiment with gradual
scaling of CPU frequency and voltage using techniques
such as DVFS, which typically reduces power consump-
tion. The authors in [52] combine both proactive time
series analysis and a reactive fuzzy controller. The authors
approach attempts to simplify the complexity of setting
thresholds by using imprecise thresholds such as high
and low for engaging adaptation. However this requires
human experts to set multiple values for the approximate
thresholds.

Decision engine architecture
The scalability of a proposal is primarily affected by the
execution complexity of the adaptation decision making
process. Most proposals are centralised, and memory and

CPU adaptation are scheduled across the entire infras-
tructure. While this gives opportunities for global optimi-
sation, it presents a significant challenge when managing
thousands of resources. In [38], the authors used a cen-
tralised reinforcement learning engine and the time taken
to stabilise performance increased with the size of the
managed cluster. The central controller in [41] took sig-
nificant time to execute the scheduling of 15 nodes, which
had 109 control options, just to adapt CPU resource -
memory configuration was not covered. The centralised
engine in [19] was only able to manage 400 nodes with
1000 VMs, when adapting CPU and VM configurations.
In later work [53], the authors changed their centralised
approach to a hierarchical architecture, resulting in the
ability to support 7200 servers with up to 60,000 VMs. In
[35], the authors propose an alternative layered approach
where each node has a decision engine, with no global
controller. While this enabled each node to perform its
own allocation, it lost out on the opportunity to redis-
tribute workloads across the data centre infrastructure.
To improve on scalability of the centralised approaches,

researchers investigated decentralised approaches such
as hierarchical and distributed frameworks. In [44], the
authors proposed hierarchical controllers and divided the
infrastructure into multiple clusters, where each cluster is
managed by a local controller. The hierarchical controllers
run at different intervals, with a local cluster controller
running more frequently than a global controller. In [36],
the authors chose to slice the hierarchy along the opera-
tions of the controllers. A Level 1 controller handles VM
placement and load balancing, and runs every 30 min-
utes. A Level 2 controller handles the resources of a node,
and runs every few minutes. The challenges with hierar-
chical approaches include choosing the run time interval
of the global controller and the lack of an escalation path
between the local and global controllers. Therefore in a
sudden burst scenario, a workload may exhibit SLA vio-
lations before the global level controller is engaged. An
additional challenge is limiting the size of each cluster so
it does not become too large for the controller to man-
age, thus encountering the same challenge as centralised
approaches.
Distributed approaches typically focus on VM consoli-

dation and will be covered as part of our analysis of VM
migration, in the next subsection.

Node adaptation - VMmigration
Nodes maybe adapted when a VM’s requirements extends
beyond the capacity of its hosting node, and it needs to
be moved to another node that has the required capac-
ity. Proposals opting to simplify their approach assume the
entire infrastructure is homogeneous and has the same
computing capability and power consumption, which may
lead to suboptimal VM migration decisions. Proposals
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that do take the infrastructure capability into account,
usually focus on power consumption of nodes. Some
proposals assume the ability to capture the relationships
between cooperating VMs, and many proposals abstract
how workload KPIs, like response time, can be captured.
Such proposals are better suited to PaaS, where a deeper
integration between the workload and infrastructure is
available, and workload metrics and configurations can be
made available to the decision-making engine.

Secondary objectives
Proposals apply VM migration primarily to minimise
SLA violations, and some proposals aim to reduce power
consumption as a secondary objective, by consolidating
workloads and switching nodes off, as evidenced by the
summary in Table 2.
VM migration adds an overhead and can impact the

SLA of the migrated VM and other VMs on the cooperat-
ing nodes, yet this is considered acceptable [63] given the
opportunities migration can present. In [39], the authors
argue that CPU power consumption is the largest contrib-
utor to a node’s power consumption, thus VM migration
can be used to lower power consumption.

Adaptation technique
Beloglazov et al. [39] used a heuristic based adaptation
technique and explored three policies, minimisation of
migrations (MM), highest potential growth and Random
choice, and concluded the MM policy can achieve sig-
nificant energy savings, compared to non-energy aware
policies. The authors argue there is a minor SLA viola-
tion trade off, to achieve these energy savings. The MM
policy selects VMs with the highest CPU utilisation to
migrate to another node. A disadvantage of this approach
is it migrates VMs that are already at risk of SLA vio-
lation, due to the CPU utilisation, and further increases
the risk by adding the cost of live migration. In [43, 64],
the authors use a heuristic implemented as a peer-to-peer
protocol, enabling nodes to communicate directly without
a centralised controller. Two cooperating nodes determine
whether to migrate a VM based on the defined objectives.
While [43] did not take into account the cost or dura-
tion of the conflict before applying the migration, [64]
incorporated migration cost into the decision making. In
contrast to other proposals, the authors in [44] incorpo-
rate the power consumption of the decision engine. Other
proposals include VMware’s Distributed Resource Sched-
uler (DRS) [65], which uses greedy hill-climbing to reduce
cluster imbalance. DRS incorporates migration cost and
benefit, based on workload demands observed in the last
hour. Similarly, a greedy heuristic that incorporatesmigra-
tion cost was proposed in [27]. The authors in [31] aimed
to reduce the number of nodes used migration as well as
reduce VM migration times at the same time, by using a

multi-objective Genetic Algorithm based on hybrid group
encoding.
In contrast to heuristic based proposals, the authors

in [22, 66] uniquely formulated VM migration as a Con-
strained Satisfaction Problem, taking into account the
migration overhead. Tchana et al. [66] combine VM
migration with Software migration, by collocating sev-
eral software applications on the same VM to reduce
the number of VMs used. The authors claim significant
reduction in power consumption can be achieved by using
this approach. However, a limitation of this approach
is it requires explicit knowledge of the software being
migrated, compared to VM migration, which typically
abstracts the software within a VM.
Similar to [44], the authors in [22] used utility as mea-

sure the satisfaction of each managed workload and a
global decision module prioritises decisions that max-
imise a global utility.
A less common adaptation technique for VMmigration

is time series analysis, proposed in [40], to predict con-
tention for resources through a Fast Fourier Transform
algorithm. The authors engaged the migration before it
is needed, and minimise cost by only migrating when
the resource contention is predicted to last beyond a
defined period of time. In a multi-adaptation technique,
Zhu et al. [67] experimented with integrating a fuzzy logic
controller with a trace-based controller, arguing the inte-
gration resulted in better resource allocation compared to
the non-integrated approach.
Proposals typically do not cover cloud system adapta-

tion during admission control phase, assuming availabil-
ity, however the authors in [68] migrate VMs during the
admission control phase, by using a heuristic solution
based on hill climbing search techniques.

Adaptation engagement
To engage VM migration, the authors in [39] used a
two-threshold reactive approach. The low threshold aims
to lower power consumption and triggers VMs to be
migrated off a node, which is then set to sleep mode.
The high threshold aims to meet SLA and triggers migra-
tion of a VM with the highest utilisation to another node.
The double threshold approach takes a snapshot in time
of the current CPU utilisation and thus can suffer from
false positives caused by workload utilisation peaks and
troughs. In later work, Beloglazov et al. [69] proposed an
adaptive auto-adjustment of the upper threshold, based
on statistical analysis of historical data collected during
the lifetime of VMs, combating statistical outliers in their
earlier approach. Similarly, the authors in [70] proposed a
dynamic threshold approach that finds and adjusts thresh-
olds at runtime. Zuo et al. [71] also use an adaptive
threshold. The authors monitor 3 metrics: number of
resource requests, resource service capacity and resource
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service strength, and propose a dynamic weighted evalua-
tion, dividing the resource load into three states including
Overload, Normal and Idle.
Proactive approaches [40, 44] start the VM migration

before the conflict occurs, to avoid sustained service
degradation from the cost of the migration. In [44], the
authors proposed performing a cost and benefit analysis
before applying migration, and only invoked a migration
if the benefit outweighed the cost of the migration.

Decision engine architecture
Most proposals are centralised and VM migration is
scheduled across the entire managed infrastructure.
While this gives opportunities for global optimisation,
it presents a significant challenge when managing thou-
sands of resources. Despite its name, VMware’s Dis-
tributed Resource Scheduler [65] uses a centralised load
balancing approach to engaging VM migration, so it
suffers the same scalability challenges of centralised
approaches proposed in academia. Zheng et al. [31] aim
to reduce the number of nodes used in migration as well
as reduce VM migration times, by using a multi-objective
Genetic Algorithm based on hybrid group encoding. The
approach used a centralised controller and limited simu-
lation to only 200 nodes. Additionally, the authors did not
explore the time complexity of their Genetic algorithm.
To improve the scalability of a centralised approach,

researchers investigated hierarchical and distributed
frameworks.
Hierarchical approaches tackle the scalability challenge

by reducing the frequency of engaging the global con-
troller. The hierarchical approach in [22] used a local
decisionmodule for each application and a global decision
module. Application satisfaction is regularly measured
using a utility function and communicated to the global
module, which prioritises requests to satisfy a global util-
ity. An alternative approach was proposed in [67], where
an additional Level 3 (L3) controller was used to man-
age multiple clusters operating at seconds (L1), minutes
(L2) and days (L3) intervals. However the authors did not
explore the scalability of their approach.
For a distributed and decentralised approach to man-

aging the data centre, the authors in [43, 64] proposed a
peer-to-peer protocol that enables nodes to communicate
directly without a centralised controller. A periodic node
discovery service enables nodes to find new neighbouring
nodes to communicate with. On each round of the pro-
tocol, two cooperating nodes determine to migrate a VM
based on defined objectives. The distributed approaches
in [43, 64] are used to redistribute the load across the clus-
ter as well consolidate VMs. Using simulation, the authors
claim their approaches can manage more than 100,000
nodes. A challenge with distributed approaches is the
lack of a global view of the infrastructure, which impact

the ability to reach a globally optimal solution. Addition-
ally, gossip approaches consume considerable bandwidth
to implement propagation of node state across the entire
data centre infrastructure.

Node adaptation - power
Proposals adapt a node’s power configuration to reduce
operational costs for IPs. Proposals may use a policy in
the VM placement phase to use the most energy-efficient
nodes first, apply power management features on a node
and eventually migrate VMs and switch the node to a
sleep state. To reduce the power consumption of a node
before turning it off, some proposals use Dynamic Voltage
and Frequency Scaling (DVFS), which is a framework to
change the frequency and/or operating voltage of nodes
based on system performance requirements. To utilises
DVFS, it needs to be supported by both the node and
OS. Modern processors typically support multiple levels
of frequency/voltage, which can be selected through the
OS. Proposals typically select a frequency/voltage level
that reduces the node capability and minimises impact to
workloads, applying a trade-off between workload perfor-
mance and power consumption.
An alternative approach to DVFS was used in [42],

where the authors incorporate the power cost and prior-
ity of a VM in the decision of where to add the VM, thus
reducing the number of active nodes. While DVFS has
been widely deployed and proven to reduce power con-
sumption, the authors in [72] argue that DVFS can have an
impact on mult-tier application performance. They pro-
pose a solution to minimise the impact, by increasing the
DVFS adjustment frequency and predicting the workload
burst cycle.

Adaptation techniques
Proposals differ in their approach to reducing node power
consumption, with some researchers opting to migrate
VMs and set the node to a sleep state [39, 44, 56, 67],
compared to incrementally reduce power consumption by
using DVFS.
Beloglazov et al. [39] propose a heuristic to consolidate

workloads and switch nodes into a sleep state, arguing that
an idle node can consume 70 % of the power consumed
by a node running at the full CPU speed. Their approach
was able to switch a node to sleep mode within 20 sec.
However, the authors did not discuss how nodes can be be
woken up from sleep mode if more nodes are required to
service requests. Other proposals that do not utilise DVFS
include the gossip based protocol in [43], which places
new VM requests on the highest loaded node capable of
hosting it. VMs are redistributed by moving a VM from a
lower loaded to a higher loaded node if it can be hosted.
In [64], the authors take into account power consump-
tion in the decision making. The authors in [31] aim to
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reduce the number of nodes used in migration as well as
reduce VM migration times at the same time, by using a
multi-objective Genetic Algorithm based on hybrid group
encoding.
In contrast, [19, 40, 73] utilise DFVS to gradually reduce

power consumption and switch nodes to a sleep state.
The authors in [40] use time series, while [19, 73] use a
heuristic to adjust DVFS.

Adaptation engagement
To adapt power configuration, reactive approaches
[56, 69] use a low threshold for CPU utilisation to switch
nodes to sleep state. In contrast, proactive approaches
predict workload utilisation and switch nodes to sleep
state at the predicted time intervals. In [41], the authors
used a Kalman filter to predict the number of requests.
VM capability and power consumption were captured
offline, by measuring the average response times achieved
when different CPU shares were assigned to the VM.
The authors modelled risk in the decision making to
cater for the cost of switching nodes on and off, argu-
ing this reduces SLA violations considerably compared
to a non risk aware controller. Core to this argument is
SLA violations, or opportunity cost, in having to power
on a node. However, with commoditisation of Solid state
storage (SSD), which offers significant boot performance
compared to Hard disk drives, many servers use SSD to
boot the operating system. The authors previous conclu-
sions may need to be revisited to re-evaluate whether
more nodes using SSD can be left in switched off mode
and switched on nearer to the time they are needed. Sim-
ilarly, [40, 53] proactively adjust the node frequency and
eventually switch the node to sleep state.

Decision engine architecture
To consolidate VMs, proposals migrate VMs between
nodes by searching for suitable nodes that can take addi-
tional VMs without violating another management objec-
tive. As the scalability of migrating VMs was covered in
the Node Adaptation subsection, here we focus on the
approaches to managing power reduction at large scale.
In the gossip based protocol in [43], the authors experi-

mentally assessed the power consumption of the proposal,
by measuring the number of active servers. However they
do not incorporate an explicit notion of power cost in
their policy. In [64], when two nodes communicate they
attempt to consolidate all VMs onto one peer and the
released peer is set into the power savingmode. If the VMs
cannot be entirely consolidated onto one node, the proto-
col attempts to redistribute the load across the two nodes,
taking into account power consumption and migration
cost.
Proposals utilising DVFS to lower power consumption

typically use a centralised decision engine [19, 40, 73],

although Addis et al. proposed a hierarchical architecture
in later work [53].

Storage adaptation
Cloud storage adaptation can be applied to both I/O
access and the storage itself, although this area is less
covered compared to other cloud resources.

Adaptation technique
Control theory is used by researchers to adapt different
levels of the storage stack. Padala et al. [35] used an appli-
cation controller to determine disk I/O resources needed
at the node level. While the approach can apply service
differentiation, it over-allocates disk I/O bandwidth when
these are available, which potentially increases power con-
sumption. In [74], the authors used control theory to
adapt the central storage tier, focusing on the Hadoop Dis-
tributed File System, from a customer perspective. Offline
profiling data was used to build the transfer function into
the constructed systemmodel, combining this with online
CPU metrics from the storage node.
Another technique used to adapt I/O access is super-

vised machine learning, proposed in [24], focusing on
automated provisioning of Hadoop jobs.

Adaptation engagement
To engage storage adaptation, the approach in [74] reacts
to the CPU utilisation of the storage node. The first con-
troller adds and removes storage nodes and a second
controller rebalances data across the new set of storage
nodes. To ascertain some of the thresholds, the authors
used offline experimentation with Cloudstone bench-
mark. In contrast, the proactive approach in [24] used a
two phase approach, where phase one is offline and builds
a prediction model using past job information and a k-
medoid clustering and support vector machine. Phase two
is online and uses a staging area to obtain a resource
utilisation signature for newly submitted jobs. These sig-
natures are then matched to the offline constructed data
for the decision making process. The authors assume
availability of job history information, and the staging area
imposes additional costs that have to be met by either
the IPs or end users. In contrast, the authors in [35]
used a second order ARMA model, taking into account
two previous control intervals to predict workload per-
formance, by using response time as the performance
metric.

Decision engine architecture
The scalability of centralised approaches is typically prob-
lematic [43], however proposals in [24, 35] do not migrate
VMs to resolve contention, therefore do not require a
global view of the infrastructure. This places less emphasis
on the scalability of their approaches.
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The centralised proposal in [74] needs to rebalance data
when nodes join and leave a storage cluster. During the
rebalancing phase, no additional adaptation can be car-
ried out. The impact of this limitation will increase as the
number of nodes in the cluster increase, thus limiting the
applicability of the approach.

Open research challenges
While there has been considerable research in adapta-
tion of resource configuration, there are several open
challenges. Based on our analysis, the following are
open challenges in cloud systems adaptation, in an IaaS
context:

1. Many of the proposals in the literature focus on
managing web/multi tired applications, as can be
seen on Table 2, and use application metrics as input
into the decision making process. Other proposals
attempt to manage generic workload types and
typically utilise threshold based approaches to trigger
adaptation. A potentially better approach is to
characterise the workload type and engage
adaptation that takes into account the workload type.
Several projects attmept to analyse and characterise
cloud workloads. Analysis of public Google traces
[21, 75–77] has shown variance in the resources
utilised and the duration of cloud tasks, making
popular simplifications such as being able to slot
workloads on resources unsuitable [21]. Additionally,
users typically overestimate resources reservations,
leading to significant wastage [76]. Some existing
approaches aim to predict future workloads using
classical prediction models such as ARMA [28], a
linear regression model [78] and a hybrid model
tuned to bursty web traffic [32, 79]. Other
characterisation approaches aim to predict workload
resource utilisation, by identifying a feature of the
workload. The authors in [80] match applications
with appropriate VM types by defining application
profiles, which are manually extracted from workflow
logs. The authors in [77] classify tasks based on
resource utilisation and the authors in [81, 82]
extract utilisation usage signatures. The authors in
[31] use a load predictor that clusters historical
resource utilisation, and select the cluster set with
the highest similarity as a training sample into a
Neural Network. However, these approaches simplify
the impact of colocating VMs, which can lead to
significant performance overhead [83, 84]. The
authors in [85] tackle colocation interference and
perform four parallel classifications on each
application to evaluate the impact of vertical and
horizontal scale, server configuration, and the impact
of colocating applications. However this approach

needs specific knowledge of the application in order
to profile and classify. Based on the current state of
art, there is no generic non application aware online
classification of workload types, which are typically
deployed on IaaS. A generic mechanism to predict
whether the workload is a user desktop, web server,
file server or batch job, can enable the decision
engine to adapt resource configuration in an optimal
way for the workload type. This can potentially allow
the workload to complete quicker or conserve
resource otherwise not utilised by the workload, and
enable colocation of VMs in a way that does not
introduce interference.

2. Offline profiling and staging area approaches are
typically used to experimentally derive workload
resource requirements. However this has an upfront
overhead and is not practical to apply for every
application that will be deployed on a IaaS. Several
proposals have attempted online profiling and/or
monitoring of workloads, however these typically
require explicit knowledge of the application [85], or
an output from the VM such as latency or response
time [82, 86, 87], which is typically not available to
IPs. More research is need into application agnostic
mechanisms that can extract workload resource
requirements, and impact of adaptation, dynamically
at run time.

3. Scalability of computing systems is an understood
challenge in traditional enterprise infrastructure.
However cloud environments magnify this challenge
due to the larger size and heterogeneity of
infrastructure used in cloud data centres. Table 2
shows a summary of the proposals in the literature,
including the number of nodes each proposal
attempted to manage. This shows many of the
proposals do not explore the scalability of their
approach and typically implement a centralised
decision engine. Some of the proposals explore
scalability of managing several thousand nodes,
which is still significantly below many modern data
centres, which can house more than 100,000 nodes
[88]. Proposals that explored scalability capable of
managing modern data centres tend to implement a
distributed decision engine. However these
approaches trade off ability to manage a large
infrastructure with a reduction in optimal resource
allocation. Additionally, these approaches consume
considerable bandwidth for the nodes to
communicate directly across the entire
infrastructure. More research is required to
demonstrate robust and practical application of
distributed approaches, which can achieve similar
level of optimal allocation as centralised
approaches.
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Conclusion
This paper presented a definition of cloud systems adap-
tation and a classification of the key features. We analysed
the literature and highlighted approaches and techniques
used to enable adaptation of cloud resource configuration.
Workload management on IaaS entails controlling the

admission of new workloads and periodically adapting
resource configuration to achieve a management objec-
tive. Proposals in the literature aim to minimise SLA
violations and some trade this off with a secondary
objective, such as reducing power consumption or max-
imising IP revenue. To achieve these objectives, several
adaptation techniques have been used. The architec-
ture of the decision engine has a significant impact on
the scalability of a proposal, with centralised approaches
not being able to scale on large data centres. While
there has been considerable research, we have high-
lighted several open challenges that are worthy of further
investigation.
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