Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems
and Applications (2016) 5:19
DOI 10.1186/513677-016-0069-5

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access
@ CrossMark

Fine-grained multilayer virtualized
systems analysis

Cédric Biancheri” ® and Michel R. Dagenais

Abstract

With the consolidation of computer services in large cloud-based data centers, almost all applications and even
application development execute in virtualized systems (VS's), sometimes nested. Whether it is inside a container, a
virtual machine (VM) running on a physical host, or in a nested virtual machine, every process eventually runs on a
physical CPU. Consequently, multiple virtualized systems might unknowingly compete with each other for physical
resources. In this paper we study the interactions between all the VS's running on a physical machine. We introduce
an analysis based on kernel tracing that erases the bounds between VS's and their host, to display a multilayer system
as a single layer. As a result, it becomes possible to know exactly which process is currently running on a physical CPU,
even if it is launched inside multiple layers of containers, themselves enclosed into two layers of VMs.

To use this analysis, we developed in Trace Compass a view that displays a time line for each host CPU, showing across
time which process is running. Moreover, the full hierarchy of the VS's is retrieved from the analysis and is displayed in
the view. By using a system of dynamic and permanent filters, we added the possibility to highlight in this view either

systems.

Keywords: Virtualized system, KVYM, LXC, Tracing, LTTng

traced VMs, virtual CPUs, specific processes and containers. This last feature, combined with our view, allows to
thoroughly apprehend the execution flow on the physical host, although it may involve multiple nested virtualized

Introduction

Among the advantages of cloud environments we can
cite their flexibility, their lower cost of maintenance, and
the possibility to easily create virtual test environments.
Those are some of the reasons explaining why they are
widely used in industry. However, using this technology
also brings its share of challenges in terms of debugging
and detecting performance failures. Indeed, it can be more
straightforward, when using the right tools, to detect per-
formance anomalies while working with a simple layer of
virtualization. For instance, if we have information about
all the processes running on a machine through time, it
is then possible to know for a specific thread which pro-
cesses interrupted it. Because virtual machines (VM) are
running in a layer independent of their host, it becomes
more tedious to detect direct and indirect interactions
between tasks happening inside a VM, on the host, inside
a container, or even on nested or parallel VMs.

*Correspondence: cedric.biancheri@polymtl.ca
Department of Computer and Software Engineering, Polytechnique Montréal,
Boulevard Edouard-Montpetit, Montréal H3T 1J4, QC, Canada

@ Springer Open

In this study, we focus on a way to analyze information,
coming from a host, multiple VMs and linux containers
(LXC) [1], asif all the execution was only happening on the
host. The main objective is to erase as much as possible
the boundaries between a host and the different virtual
environments, to help a user visualize in a clearer way how
the processes are interacting with each other.

To achieve this, we use kernel tracing on both the host
and VMs, synchronize those traces, aggregate them into
a unique structure and finally display the structure inside
a view showing the different layers of the virtual envi-
ronment during the tracing period. Considering the set
of recorded traces as a whole system is the core concept
of our fused virtualized systems (FVS) analysis presented
here.

This paper is structured as follow: Section “Related
work” exposes some related work about performance
anomalies related to virtual environments. Section “Fused
virtualized systems analysis” explains in more details the
multiple steps of the FVS analysis, including the single

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-016-0069-5&domain=pdf
http://orcid.org/0000-0002-5948-1123
mailto: cedric.biancheri@polymtl.ca
http://creativecommons.org/licenses/by/4.0/

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 2 of 14

Container

Container Container

Fig. 1 Examples of different configurations of layers of execution environment

Container ’

Container

Container

layered VMs (SLVMs), nested VMs (NVMs) and contain-
ers detection strategies. The same section introduces the
view created to visualize the whole system. Section “Use
cases and evaluation” presents some use cases for the FVS
analysis and view. Section “Conclusion and future work”
concludes this paper.

Related work

Dean et al. [2] created an online performance bug infer-
ence tool for production cloud computing. To accomplish
this, they created an offline function signature extraction
using closed frequent system call episodes. The advan-
tage of their method is that the signature extraction can
be done outside the production environment, without
running a workload that usually triggers a performance
default. By using their tool, they can identify a deficient
function out of thousands of functions. However, their
work is not adapted to performance anomalies involving
multiple virtual machines.

The research investigated by Sambasivan et al. [3], pro-
poses an approach to find, categorize and compare similar
execution flows of different requests to diagnose per-
formance changes. Their way of extracting similarities
between different requests comprises some similarity to
our method. However, our solution can be used in dif-
ferent purposes, from comparing the different execution
flows to understanding the overall execution of VMs and
extracting the relations between the different executions
of different processes of the VMs and the host machine.

In their work, Shao et al. [4] proposed a scheduling
analyzer for the Xen Virtual Machine Monitor [5]. The
analyzer uses a trace provided by Xen to reconstruct the
scheduling history of each virtual CPU. By doing so, it is
possible to retrieve interesting metrics like the block-to-
wakeup time. However, this approach is limited to Xen
and not directly applicable to other hypervisors. Further-
more, a trace produced by Xen is not sufficient to identify
a process inside a VM that creates a perturbation across
the VMs.

To gain in generality and not rely too much on hyper-
visors and application code, some work was initiated with
the intention to detect performance anomalies across vir-
tual machines by using kernel tracing.

With PerfCompass [6], Dean et al. used kernel tracing
on virtual machines and created an online system call
trace analysis, able to extract fault features from the trace.
The advantage of their work is that it only needs to trace
the virtual machine’s system calls and not the host. Con-
sequently, their solution has a low overhead impact and
is able to distinguish between external and internal faults.
However, it is not possible to see the direct interactions of
the VM with neither the host nor the other VMs and the
containers.

Another work proposed by Gebai et al. [7] focused
more on the interactions between several machines. The
authors proposed at first an analysis and a view show-
ing, for each virtual CPU, when it is preempted. They
also created a way to recover the execution flow of a spe-
cific process by crossing virtual machine boundaries to see
which processes preempted it.

Their work is similar to ours but differs on multiple
points. For instance, in their work, the Virtual Machine

Data model
i
y
RN
Data analyzer

\

Synchronization

Yyvy

Visualization
VMn

Fig. 2 Architecture of the fused virtual machines analysis

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications

(2016) 5:19 Page 3 of 14

2015 sept. 17, 16:31:25 16:31:30 16:31:35 16:31:40 16:31:45

16:31:50 16:31:55 16:32:00 16:32:05 16:32:10

Bhost
cPuo
cPu 1
CcPU2
CPU3
CcPU4
CPUS
CPUG
cPy7
IRQ 16
IRQ 43
IRQ 44
Bserverl _)))
CcPUO o I
IRQ 15 i i i i i i i
IRQ 41 1 I fir I (]
IRQ43 | 1 | I | | I |

Fig. 3 Traces visualization without synchronization

T T

[hol 1L il 11l }
[[I N |
1 | T [l l
(] e B[
T i o
1 O e | —
AITREEEHIFEEEIE IR ORI
AFEEFEE A HEH IR
L | L — | | 1 i

view displays one row for each virtual CPU. This num-
ber can easily grow if numerous VMs are traced. Con-
sequently, the readability of the view can be altered.
Additionally, by doing so, information about physical
CPUs is lost. It is therefore impossible to track a VM, a
virtual CPU or a process on the host. Finally, their work is
dedicated to the analysis of single layered VMs, unlike our
work that focuses also on nested VMs and containers.

In [8], authors used the recently introduced Intel PT
ISA extensions on modern Intel Skylake processors to
analyse performance of VMs. They developed interactive
Resource and Process Control Flow visualization tools to
analyze the hardware trace data for VM. They could trace
proprietary close-sourced operating systems to diagnose
abnormal executions. Despite its merits, it is limited to
new Intel processor and works only for hardware-assisted
virtualization, thus it cannot be used with other virtu-
alization methods, which does not meet our flexibility
requirement.

Nemati et al. [9] proposed a low-overhead technique
that uses the trace from Host hypervisor to detect over-
commitment of resources in host machine. Their work
can detect some problems related to resource contention
but is not able to detect problems occurring within the
VMs.

To our knowledge, no previous work tried to retrieve
information about containers from a kernel trace. Other

projects, like Docker [10], give access to runtime metrics
such as CPU and memory usage, memory limit, and net-
work IO metrics, exposed by the control groups [11] used
by LXC. No previous work tries to represent the full
execution of a multilayered system as if everything was
happening on the host. Nonetheless, in reality, every pro-
cess, even in nested VMs, eventually runs on a physical
CPU of the host. Our contribution is to fulfill this gap.

Fused virtualized systems analysis

A multilayered architecture is often the chosen strategy
regarding the development of a software architecture.
Each layer is dedicated to a specific role, independently of
other layers, and is hosted by a tier, or a physical layout,
that can contain multiple layers at once.

In this paper, we focus on a tier, or physical machine,
hosting multiple layers of virtualized systems (VS) also
called virtualized execution environment. A virtualized
system will be considered as a virtual machine or a con-
tainer. Figure 1 shows how the different layers can be
organized in practical cases. Without using multilayers of
virtual environments, the system is reduced to a single
layer which is the host, also called the physical machine.
This layer will be called Lg. Virtual machines adding a
layer above the host will be labeled as L; VMs, and
recursively, any VM above a L, VM will be a L,,;; VM.
Containers will not be labeled but will be associated to the

Host

Virtual Machine Running Process

1. process 1 running
accurate 2. VMEntry
synchronization 3. process 2 running
4, sched_switch to process 3
5. VMEXxit
1. process 1 running
inaccurate 2. VMEntry
synchronization 3. process 2 running
4. VMEXxit
5. sched_switch to process 3

Fig. 4 Wrong analysis due to inaccurate synchronization

N

-
<

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19 Page 4 of 14

Time

VM1/vCPUO

VM2/vCPUO

Host/pCPUO

Fused
execution flow

Legend: - user space vCPU preemption

Fig. 5 Construction of the fused execution flow

- kernel space

machine directly hosting them. Containers can be running
directly in Lg but, for security reasons [12], they are most
often used within virtual machines.

The idea we introduce here is to erase the bounds
between Lo, its VMs in L; and Ly and every container,
to simplify the analysis and the understanding of com-
plex multilayer architectures. Some methods for detecting
performance degradations already exist for single-layer
architectures. To reuse some of these techniques on mul-
tilayer architectures, one might remodel such systems as
if all the activity was involving only one layer.

Architecture

The architecture of this work is described as follows: first
we need to trace the host and the virtual machines, then
because of clock drift [13] we have to synchronize those
traces. After this phase, a data analyzer fuses all the data
available from the different traces to put them in a data
model. Finally, we need to provide an efficient tool to visu-
alize the model that will allow the user to distinguish easily
the different layers and their interactions. Those steps are
summarized in Fig. 2.

A trace consists of a chronologically ordered list of
events characterized by a name, a time stamp and a pay-
load. The name is used to identify the type of the event, the
payload provides information relative to the event and the
time stamp will specify the time when the event occurred.

In this study, we use the Linux Trace Toolkit Next
Generation (LTTng) [14] to trace the machine kernels.
This low impact tracing framework suits our needs,
although other tracing methods can also be adopted. By
tracing the kernel, there is no requirement to instrument
applications. Therefore, even a program using proprietary
code can be analyzed by tracing the kernel. However,
some events from the hypervisors managing the VMs

—Mach

— PCPUs

—CPUO

— Condition

— Status

— CurrentMachine
— CurrentThread

— CurrentVCPU

—Threads

— Host
—354

VM1
—1041

ines
Host
VM1
Parent
PCPUs
VCPUs

Containers

Fig. 6 Structure of the data model

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 5 of 14

VMEntry
VMEXit VMEntry VMEXit

Fig. 7 Entering and exiting L,

VMEntry VMEXit

VMEXit
VMEntry VMEXxit VMEntry

are needed for the efficiency of the fused analysis. The
analysis needs to know when the hypervisor is letting a
VM run its own code or when it is stopped. Since, in our
study, we are using KVM [15], merged in the Linux ker-
nel since version 2.6.20 [16], and because the required
trace points already exist, there is no need for us to add
further instrumentation to the hypervisor. In our case,
with KVM using Intel x86 virtualization extensions, VMX
[17], the event indicating a return to a VM running mode
will always be recorded on Ly and will be generically
called a VMEntry. The opposite event will be called a
VME«xit.

Synchronization is an essential part of the analysis.
Since traces are generated on multiple machines by dif-
ferent instances of tracers, we have no guaranty that a
time stamp for an event in a first trace will have any
sense in the context of a second trace. Each machine may
have its own timing sources, from the software interrupt
timer to the cycle counter. When tracing the operating
system kernel, each system instance (i.e., host, VM, con-
tainer, etc.) uses its own internal clock to specify the
events time stamps. But, in order to have a common
sense of all systems behaviors, which are recorded as
trace events separately in each system, it is essential to
properly measure the differences and drifts between these
machines.

Figure 3 shows that without synchronization two traces
recorded at the same time may seem to be created at
two different times. The right scheduling of events, even
coming from different traces, is crucial because, when
fusing the traces of a VM with its host, the events of
the VM will have to be handled exactly between the
VMEntry and the VMExit of Lo, relative to this spe-
cific VM. An imperfect synchronization can be the vector

of incoherent observations that would impede the fused
analysis. Figure 4 shows the difference between an analysis
done on two pairs of traces with respectively an accurate
and inaccurate synchronizations. The inexact synchro-
nization can lead to false conclusions. In this case, a
process from the VM seems to continue using the proces-
sor while in reality the VM has been preempted by the
host.

There are different possible solutions to synchronize the
trace events between host kernel and VMs. One way is
using TSC (Time Stamp Counter) that is built in the pro-
cessors as a register. TSC is a 64-bit register which counts
CPU cycles since the boot time of the system, and can
be read by single assembly instruction (rdtcs) and there-
fore could be considered as a time reference, anywhere
in the system (i.e., both kernel, hypervisor, and applica-
tion). However, using TSC for timekeeping in a virtual
machine has several drawbacks. The TSC_OFFSET field
for VM can be changed especially during VM migra-
tion which forces tracer to keep track of this field in
VMCS. If this event is lost, or the tracer is not started
at that time, the calculated time will not be true any-
more. Furthermore, some processors stop the TSC in
their lower-power halt states which causes time shifting
in VM. Also, timekeeping for full virtualization is not
possible since TSC_OFFSET is part of Intel and AMD
virtualization extensions.

Because VMs can be seen as nodes spread through a
network, a trace synchronization method for distributed
systems [18] can be adapted. As [7] we use hypercalls
from the VMs to generate events on the host that will be
related to the event recorded on the VM before triggering
the hypercall. With a set of matching events, it is possible
to use the fully incremental convex hull synchronization

{tid = 3887, vtid = 291, pid = 3881, vpid = 285, ppid = 3563, vppid = 1, ns_level = 1, ns_inum = 4026532199 }
{tid = 3887, vtid = 3887, pid = 3881, vpid = 3881, ppid = 3563, vppid = 3563, ns_level = 0, ns_inum = 4026531836 }
{ tid = 3888, vtid = 292, pid = 3881, vpid = 285, ppid = 3563, vppid = 1, ns_level = 1, ns_inum = 4026532199 }
{ tid = 3888, vtid = 3888, pid = 3881, vpid = 3881, ppid = 3563, vppid = 3563, ns_level = 0, ns_inum = 4026531836 }
{tid = 3893, vtid = 297, pid = 3893, vpid = 297, ppid = 3563, vppid = 1, ns_level = 1, ns_inum = 4026532199 }
{ tid = 3893, vtid = 3893, pid = 3893, vpid = 3893, ppid = 3563, vppid = 3563, ns_level = 0, ns_inum = 4026531836 }

Fig. 8 Payload of Ittng_statedump_process_state events

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

— Threads
— Host
f 354
— VM1
— 1041
PPID
ns_id
VTID
VPPID
ns_id
VTID
VPPID
ns_id
Fig. 9 Virtual TIDs hierarchy in the SHT

algorithm [19] to achieve trace synchronization. Because
of clocks drift, a simple offset applied on the time stamps
of a trace’s events is not enough to synchronize the traces.
To solve this issue, the fully incremental convex hull
algorithm will generate two coefficients, a and b, for each
VM trace while the host’s trace is taken as time reference.
Each event e; will have its time stamp ., transformed to
t,, with the formula:

t, =ate +b

Gebai et al. [7] used the hypercall only between Ly and
L,. However, the method also applies between L, and
L,41, since an hypercall generated in L,; will necessar-
ily be handled by L,. In our case, synchronization events
will be generated between Lo and all its machines in Ly,
and between machines of L1 and their hosted machines.
Consequently, a machine in Ly will be synchronized

Page 6 of 14

with its host that will have previously been synchronized
with L.

The purpose of the data analyzer is to extract from the
synchronized traces all relevant data and to add them in a
data model. Besides analyzing events specific to VMs and
containers, our data analyzer should handle events gener-
ally related to the kernel activity. For this reason, the fused
analysis is based on a preexisting kernel analysis used in
Trace Compass [20], a trace analyzer and visualizer frame-
work. Therefore, the fused analysis will by default handle
events from the scheduler, the creation, destruction and
waking up of processes, the modification of a thread’s
priority, and even the beginning and the end of system
calls.

Unlike in a basic kernel analysis, the fused analy-
sis will not consider each trace independently but as
a whole. Consequently, the core of our analysis is to
recreate the full hierarchy of containers and VMs, and
to consider events coming from VMs as if they were
directly happening in Lg. As shown in Fig. 5, for the sim-
ple case of SLVMs, the main objective is to construct
one execution flow by fusing those occurring in Ly and
its VMs. The result is a unique structure encompass-
ing all the execution layers at the same time, replacing
what was seen as the hypervisor’s execution, from the
point of view of Loy, by what was really happening inside
L1 and Lz.

KVM works in a way such that each vCPU of a VM
is represented by a single thread on its host. There-
fore, to complete the fused analysis, we need to map
every VM’s vCPU with its respective thread. This map-
ping is achieved by using the payloads of both syn-
chronization and VMEntry events. On the one hand,
a synchronization event recorded on the host con-
tains the identification number of the VM, so we can
match the thread generating the event with the machine.
On the other hand, a VMEntry gives the ID of the
vCPU going to run. This second information allows the
association of the host thread with its corresponding
vCPU.

Fig. 10 High level representation of a multilayered virtualized system

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Data model

The data analysis needs an adapted structure as data
model. This structure needs to satisfy multiple criteria. A
fast access to data is preferred to provide a more pleasant
visualizer, so it should be efficiently accessible by a view
to dynamically display information to users. The struc-
ture will also need to provide a way to store and organize
the state of the whole system, while keeping information
relative to the different layers. For this reason, we need a

] demo/host
B Physical Cpus
PCPUO
PCPU 1
PCPU 2
PCPU 3
PCPU 4
PCPU S5
PCPU 6
PCPU 7
] Virtual Machines
E demo/vm1_
B Physical Cpus
PCPUO
PCPU 1
& Containers
B 4026532199
&l Physical Cpus
PCPUO
PCPU 1
] demo/vm2_
Bl Physical Cpus
PCPU 1

Fig. 11 Reconstruction of the full hierarchy in the FVS view

Page 7 of 14

design that can store information about diverse aspects of
the system.

As seen in Fig. 6, the structure contains information
relating to the state of the different threads but also of
the numerous CPUs, VMs and containers. Each CPU
of Lo will contain information concerning the layer that
is currently using it, like the name of the VM run-
ning and with which thread and which virtual CPU.
The Machine node will contain basic information about
VMs and Ly, like the list of physical CPUs they have
been using, their number of vCPUs or their list of con-
tainers. This node is fundamental since it is used to
recreate the full hierarchy of the traced systems, in addi-
tion to the hierarchy of all the containers inside each
machine.

Finally, the data model provides a time dimension
aspect, since the state of each object attribute in the
structure is relevant for a time interval. Those intervals
introduce the need for a scalable model, able to record
information valid from a few nanoseconds to the full trace
duration.

In this study, we chose to work with a State History Tree
(SHT) [21]. A SHT is a disk-based data structure designed
to manage large streaming interval data. Furthermore, it
provides an efficient way to retrieve, in logarithmic access
time, intervals stored within this tree organization [22].

Algorithm 1 constructs the SHT by parsing the events
in the traces. If the event was generated by the host, then
the CPU that created the event is directly used to handle
the event. However, if the event was generated by a vir-
tual machine, we need to recursively find the CPU of the
machine’s parent harboring the virtual CPU that created
the event, until the parent is Ly. Only then, the right pCPU
is recovered and we can handle the event. This process is
presented in Algorithm 2.

The fundamental aspect of the construction of the SHT
is the detection of the frontiers between the execution of

Algorithm 1 Handling multilayer kernel traces

Input: StateHistoryTree s, List <Event> list
1. for each event in list do
2. machine = Query the machine that generated event;

3: if machine is a VM then

4 // translation between virtual and physical CPU

5: cpu = Query the pCPU currently running
machine’s cpu;

6: else

7: /1 the event happened in Lg

8 cpu = Query the CPU that generated event;

9. endif

10: handleEvent(s, event, cpu);
11: end for

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Algorithm 2 Retrieving the physical CPU
Input: Machine machine, Cpu cpu
Output: The physical CPU harboring cpu
1: while machine is a VM do
2. /] cpuis avCPU
3 parent = Query machine’s parent;
4. cpu = Query parent’s CPU currently running cpu;
5. machine = parent;
6: end while
7: return cpu

the different machines and the containers. This detection
is achieved by handling specific events and the application
of multiple strategies.

Single layered VM:s detection

In the case of SLVMs, the strategy is straightforward. The
mapping is direct between the vCPUs of a VM in L; and its
threads in Lo, a VM will be running its vCPU immediately
after the recording of a VMEntry on its corresponding
thread. Conversely, Ly stops a vCPU immediately before
the recording of a VMEXxit.

Algorithm 3 describes the handling of a VMEntry event
for the construction of the SHT. In this case, we query
the virtual CPU that is going to run on the physical CPU.
Then, we restore the state of the virtual CPU in the SHT,
while we save the state of the physical CPU. The exact
opposite treatment is done for handling a VMEXxit event.

Algorithm 3 Handling vmentry event for Single Layered
VMs
Input: StateHistoryTree s, Event event, Cpu cpu
1. if event == vmentry then
2. vepu = Query the virtual CPU going to run on cpu;
3. Save the state of cpu contained in s;
4. Restore the state of vepu in s;
5: end if

Nested VMs detection

For VMs in Ly, the previous strategy needs to be extended.
Being a single-level virtualization architecture [23], the
Intel x86 architecture has only a single hypervisor mode.
Consequently, any VMEntry or VMEXxit happening at any
layer higher or equal than L, is trapped to L. Figure 7
shows an example of the sequence of events and the
hypervisors executions occurring on a pCPU when a VM
in L; wants to let its guest execute its own code, and when
L, is stopped by L. The dotted line represents the differ-
ent hypervisors executing while the plain line shows when
L, uses the physical CPU.

Page 8 of 14

This architecture supersedes the previous strategy used
for SLVMs. A VMEntry recorded in L; does not imply
that a vCPU of a VM in L, is going to run immediately
after. Likewise, Ly does not yield a pCPU shortly before an
occurrence of a VMExit in L;, but when the hypervisor in
Ly is running, preceded by its own VMEXxit.

The challenge we overcome here is to distinguish which
VMEntries in Ly are meant fora VM in L; or L. Knowing
thata VM of L, is stopped is straightforward, if the previ-
ous distinction is done. If a thread of Ly resumes a vCPU
of L; or Ly with a VMEntry, then a VMEXxit from this same
thread means that the vCPU was stopped.

We created two lists of threads in Ly. The waiting list
and the ready list. If a thread is in the ready list, it
means that the next VMEntry generated by this thread is
meant to run a vCPU of a VM in Ly. The second part of
Algorithm 4 shows that we retrieve the vCPU of Ly going
to run by querying it from the vCPU of L; associated to
the thread. The pairing between the vCPUs of L; and Ly
is done in the first part of the algorithm, during the pre-
vious VMEntry recorded on L;. It is also at this moment
that the thread of L is put in the waiting list.

Algorithm 4 Handling vmentry event for nested VMs

Input: StateHistoryTree s, Event event, Cpu cpu
1: if event == vmentry then
2. vepu = Query the virtual CPU going to run on cpu;
3. machine = Query the machine that generated event;

4. if machine is a VM then

5 // the vimmentry is from Ly and cpu is a vCPU
6: Mark cpu as wanting to run vepu;

7 Mark Lo’s thread running cpu as waiting;

8 return

9: endif

10: // the vmentry is from Lg

11: thread = Query the thread running on cpu;

12: if thread is ready for next layer then

13: /I Ly’s thread is ready to run Ly

14: /1 retrieve the real vCPU going to run

15: vepu = Query the vCPU that vepu wants to run;
16: end if

17: Save the state of cpu contained in s;
18: Restore the state of vepu in s;
19: end if

Algorithm 5 shows that the same principle is used for
handling a VMEXxit in Lo. If the thread was ready, then we
need again to query the vCPU of L, before modifying the
SHT.

When a thread of L is put in the waiting list, it means
that a vCPU of Lj is going to be resumed. However, at
this point, we don’t know for sure which VMEntry will

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 9 of 14

Algorithm 5 Handling vmexit event for nested VMs

Algorithm 7 Handling kvm_nested_vmexit_inject event

Input: StateHistoryTree s, Event event, Cpu cpu
1: if event == vmexit then
2. vepu = Query the virtual CPU stopped;
3. machine = Query the machine that generated event;

4. if machine is a VM then

5: // vmexits are not relevant for L;

6: return

7. end if

8: // the vmexit is from Ly

9. thread = Query the thread running on cpuy;
10: if thread is ready for next layer then
11: /! Ly’s thread is stopping a vCPU in Ly
12: // retrieve the real vCPU stopped
13: vepu = Query the vCPU that vepu was running;
14 endif

15 Save the state of vcpu contained in s;
16: Restore the state of cpu in s;
17: end if

resume the vCPU. The kvm_mmu_get_page event solves
this uncertainty by indicating that the next VMEntry of a
waiting thread will be for Ly. Algorithm 6 shows the han-
dling of this event and the shifting of the thread from the
waiting list to the ready list.

Algorithm 6 Handling kvm_mmu_get_page event

Input: Event event, Cpu cpu
1: if event == kvim_mmu_get_page then
2. machine = Query the machine that generated event;

3. if machine is a VM then

4 // kvm_mmu_get_page is not relevant for VMs
5 return

6: end if

7. thread = Query the thread running on cpu;

8 if thread is waiting then

9 Remove thread from the waiting list;

10: Mark thread as ready;
11: end if
12: end if

As seen in Fig. 7, it is possible to have multiple entries
and exits between Ly and Ly without going back to Lj.
This means that a VMEXxit recorded on Ly does not neces-
sarily implies that the thread stopped being ready. In fact,
the thread stops being ready when L; needs to handle the
VMEXxit. To do so, Lo must inject the VMExit into L; and
this action is recorded by the kvm_nested_vmexit_inject
event. Algorithm 7 shows that the handling of this event
consists in removing the thread from the ready list.

Input: Event event, Cpu cpu
1. if event == kvm_nested_vmexit_inject then
2. machine = Query the machine that generated event;

3: if machine is a VM then
4 // kvm_nested_vmexit_inject is not relevant for
VMs
return
end if
thread = Query the thread running on cpu;
Remove thread from the ready list;
end if

o N D

The process will repeat itself with the next occurrence
ofa VMEntry in L;.

Containers detection

The main difference between a container and a VM is
that the container shares it’s kernel with its host while
a VM has its own. As a consequence, there is no need
to trace a container since the kernel trace of the host
will suffice. Furthermore, all the processes in containers
are also processes of the host. Knowing if a container is
currently running comes down to whether the current
running process is from the said container or not.

The strategy we propose here is to handle specific events
from the kernel traces to detect all the PID namespaces
inside a machine. Then, we find out the virtual IDs of each
thread (vVI'1ID) contained in a PID namespace.

A kernel trace generated with LTTng contains at least
one state dump for the processes. A lttng_ statedump_
process_state event is created for each thread and any of
its instances in PID namespaces. Furthermore, as seen in
Fig. 8, the payload of the event contains the vI'ID and the
namespace ID (NSID) of the namespace containing the
thread.

Figure 9 shows how this information is added to
the SHT. The full hierarchy of NSIDs and vIIDs is
stored inside the thread’s node to be retrieved later
for the view. Moreover, each NSID and their contained
threads are stored under it’s host node. This allows to
quickly know in which namespaces a thread is contained
and, reciprocally, to known which threads belong to a
namespace.

The analysis also needs to handle the process fork
events to detect the creation of a new namespace or
a new thread inside a namespace. In LTTng, the pay-
load of this event provides the list of vTIDs of the new
thread, besides of the NSID of the namespace containing
it. Because the new thread’s parent process was already
handled by a previous process fork or a state dump, the

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 10 of 14

1 Fused Virtualized Systems View

2016 janv. 29 14:46:35 14:46:36 14:46:37

Select Machine ~ Machine CPU Process Container

14:46:40 14:46:41 14:46:42

©0129-144629/most
B Physical Cpus
BPCPUO
BPCPUL

@PCPU2
@PCPU3
@pcPUL
BPCPUS

BPCPUG
@PCPUT
B Virtual Machines

' Resources &

2016 janv. 29 14:46:35 14:46:36 14:46:37

gl MBI B~y ¢

14:46:38 14:46:39 14:46:40 14:46:41

B0125-144629/host
o<
ol <13
BcPu2 lif [}
BcPu3 L —
Bcrus . .
B e e

e e ——
i o0

EcPUS

acru7
[30129-144629/serverl -
BcPUo

Ul

[0129-144629/server2_
@cPuo

[E0129-144629/server3
BcPUo

Fig. 12 Comparison between FVS view and resources view

payload combined with the SHT contains enough infor-
mation to identify all the name spaces and vTIDs of a new
thread.

Visualization

After the fused analysis phase, we obtain a structure con-
taining state information about threads, physical CPUs,
virtual CPUs, VMs and containers through the traces
duration. Our intention at this step is to create a view
made especially for kernel analysis and able to manip-
ulate all the information about the multiple layers con-
tained inside our SHT. The objective is also to allow the
user to see the complete hierarchy of virtualized sys-
tems. This view is called the Fused Virtualized Systems
(FVS) view.

This view shows at first a machine’s entry represent-
ing Lo. Each machine’s entry of the FVS view can have at
most three nodes. A PCPUs node, displaying the physi-
cal CPUs used by the machine, a Virtual Machine node,
containing an entry for each of the machine’s VM, and a
Containers node, displaying one entry for each container.
Because VMs are considered as machines, their nodes can
contain the three previously mentioned nodes. However, a
container will at most contain the PCPUs and Containers
nodes. Even if it is possible to launch a VM from a con-
tainer, we decided to regroup the VMs only under their
host’s node.

Figure 10 is a high level representation of a multilayered
virtualized system. When traced and visualized in the FVS
view, the hierarchy can directly be observed, as seen in
Fig. 11.

The PCPUs entries will display the state of each phys-
ical CPU during a tracing session. This state can either
be idle, running in user space, or running in kernel space.

Those states are respectively represented in gray, green
and blue. However, there is technically no restriction on
the number of CPU states, if an extension of the view is
needed.

The Resources view is a time graph view in Trace
Compass that is also used to analyze a kernel trace. It
normally manages different traces separately and doesn’t
take into account the multiple layers of virtual execution.
Figure 12 shows the difference between the FVS view and
the Resources view displaying respectively a fused analysis
and a kernel analysis coming from the same set of traces.

In this set, servers 1, 2 and 3 are VMs running on the
host. All VMs are trying to take some CPU resources.

Trace
State USERMODE
> Machine demo/server1_
- .| >VCPU 1

! : I >Hover Time 14:04:52.762459707
>TID 4694
>VTID 584
>Container 4026532199
>Process highlight_me
Date 2016-04-29
Start Time 14:04:52.759395351
Stop Time 14:04:52.762701321
Duration 0.003305970s

Fig. 13 Tooltip displayed to give more information regarding a PCPU

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 11 of 14

[Fused Virtual Machine View

B demo
PCPU O
PCPU1

PCPU 2

PCPU3

PCPU4
PCPUS

@PCPUG

PCPU7

Fig. 14 VM server] real execution on the host

As should be, the FVS view shows all the traces as a
whole, instead of creating separate displays as seen in
the Resources view. The first advantage of this configu-
ration is that we only need to display the physical CPUs
rows instead of one row for each CPU, physical or virtual.
With this structure, we gain in visibility. The information
from multiple layers is condensed within the rows of the
physical CPUs.

To display information about virtual CPUs, VMs and
containers, the FVS view asks the data analyzer to extract
some information from the SHT. Consequently, for a given
time stamp, it is possible to know which process was run-
ning on a physical CPU, and on which virtual CPU and
VM or container it was running, if the process was not
directly executed on the host. Figure 13 shows the dis-
played tooltip when the cursor is placed on a PCPU entry.
These are part of the information used to populate the
entry.

We noticed that, in the Resources view, the information
is often too condensed. For instance, if several processes
are using the CPUs, it can become tedious to distin-
guish them. Therefore, this situation is worse in the FVS
view, because more layers come into play. For this reason,
we developed a new filter system in Trace Compass that
allows developers of time graph views to highlight any part
of their view, depending on information contained in their
data model.

Using this filter, it is possible to highlight one or more
physical or virtual machines, containers, some physical
or virtual CPUs, and some specifically selected processes.
In particular, this filter will display what the user doesn’t
want to see, as if it was covered with a semi opaque white
band. Selected areas will appear highlighted by compar-
ison. Consequently, it is possible to see the execution of
a specific machine, container, CPU or process directly in
that view.

Figure 14 shows the real execution location of a virtual
machine on its host. With this filter, we can distinctively
see when the CPU was used by another machine, instead
of the highlighted one.

In the FVS view, the states in the PCPUs entries of a
virtualized system are a subset of the states visible in the
PCPUs entries of the VS’s parent. Only the physical host

PCPUs display the full state history. The other entries
can be considered as permanent filters dedicated to dis-
play only a VS and its virtualized subsystems. Figure 15
shows a magnified part of Fig. 11 with all PCPUs nodes
expanded. We can see that their sum equals the physical
PCPUs entries.

Use cases and evaluation

Use cases

The concept of fusing kernel traces can have very inter-
esting applications. In this section, we expose multiple use
cases.

Our first use case is selecting a specific process, run-
ning in a container inside a virtual machine, in order to
observe with the FVS view when and where the process
was running.

Figure 16 shows that, from the point of view of the VM,
the process vm_forks was running without interruption

1 Fused Virtualized Systems View

2016 avr. 29 14:04:52.820

G demo/host

B Physical Cpus
PCPUO
PCPU 1
PCPU 2 | |
PCPU3
PCPU 4 | |
PCPUS5
PCPU 6 i i
PCPU7

[Virtual Machines
B demo/vm1_

O Physical Cpus
PCPUO
PCPU1

G Containers

4026532199
B Physical Cpus
PCPUO
PCPU1
E demo/vm2_

B Physical Cpus

PCPU 1

host_alter highligh m | vm_forks host_a

L highlight m] [lvm forks]

highligh m |
| vm forks |

Fig. 15 PCPUs entries of each virtualized system

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 12 of 14

= FusedVirtualized Systems View 5

Fig. 16 Highlighted process in the FVS view

& |3 G 3 Select Machine Machine CPU | Process | Container
2016 avr. 29 14:04:52.500 14:04:53.000 14:04:53.500 14:04:54.000 14:04:54.500 14:04:55.000
B demo/ost
& Physical Cpus
BPCPUO = RO v rriieeyrrEenmirenreet TREERIErCri e irr e ien i e e e rrirnwnnes e i
EPCPUL L 11
=i e SRS - = _— = e
@PCPU3
@PCPU4
EPCPUS [}
@PCPUG B T e [——— S ~i" - T T @il
@PcPU7
 Virtual Machines
2 = ENEI By ¢ OaAQ(N %=
14:04:52.500 14:04:53.000 14:04:53.500 14:04:54.000 14:04:54.500 14:04:55.000
s 4722 s

according to the Control Flow view. The Control Flow
view is a view listing all the threads that were running dur-
ing the tracing session, giving the state of those threads
(running, waiting for CPU, blocked...). However, when
we highlight the process in the FVS view, we clearly see
that the selected process was preempted. If we magnify
the view, we can even directly see which process from
which machine is preempting our highlighted process,
and when the process migrated to an other CPU.

Our next use case benefits from the fact that, by erasing
the bounds between virtualized systems and the physical
host, this analysis and view provide a tool to better under-
stand the execution of an hypervisor. With the FVS view,
it is possible to precisely see the interactions between the
hypervisor and the host, depending on the instrumenta-
tion used.

In our second use case, we propose to compare the time
needed to wake up a sleeping process in L; and in L.
In both L; and Ly, we created a process that sleeps for a
short amount of time and then yields a pCPU. For both
of them we examine the elapsed time between the wake
up of the hypervisor in Ly and the return to the VM’s
process. Figure 17 shows that resuming a VM in Ly neces-
sitates a lot of entries and exits between Ly and L; due
to trapped instructions. In our case, it took approximately
300 s to wake up the process in Ly while it took only 73

us to wake up the one in L;. This observed latency is a
reason why deeper nested VMs suffer a higher perceived
virtualization overhead.

Our third use case is observing how an interruption
is handled inside a VM. Figure 18 shows what occurred
during an I/O interruption happening in a VM running
on physical CPU 1. We highlighted the execution of the
VM to see when the hypervisor is involved. The hypervi-
sor stopped the VM, meaning that the thread went out of
guest mode, returned to kernel mode, then to user mode
to handle the I/O interruption, then back to kernel mode
and finally let the VM run by switching back to guest
mode. This behavior is completely consistent with what is
expected in [15].

The study of those situations was highly simplified by
the use of our tool. To determine if a thread of L, is cur-
rently running on a pCPU, someone not using our tool
should know the functioning of the hypervisor. He will
need to determine if one of the current threads running
on Ly is associated to a vCPU of L, itself running a
thread associated to a vCPU of Ly, executing the thread
of interest. This long process is tedious for a human
being. Our tool spares the user this waste of time by
showing clearly and directly what he wants without hav-
ing any knowledge of the internal functioning of the
hypervisor.

2016 mai 31 14:58:24.160800

14:58:24.160850 14:58:24.160900 14:58:24.160950

B nested_vms/LO
@ Physical Cpus

B Virtual Machines
B nested_vms/L2_
B Physical Cpus
PCPU7

Fig. 17 Process wake up time for Ly and L;

B PCPU3]
G Virtual Machines
Bl nested_vms/L1_
[Physical Cpus
PCPU 3 nan I
2016 mai 31 14:58:24.192200 14:58:24.192300 14:58:24.192400 14:58:24.192500 14:58:24.192600 14:58:24.192700
B nested_vms/LO
B Physical Cpus
EPCPU7 11 T O
B Virtual Machines
B nested_vms/L1_
B Physical Cpus.
PCPU7 | T Ll QU] I EEE O——

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

Page 13 of 14

CPUO
CPU1

vm_forks

Fig. 18 Handling of an ata_piix I/O interruption by the hypervisor on the physical CPU 1

Evaluation

SHT's generation time

If we compare the time needed to complete a fused anal-
ysis for a set of traces and the one needed to complete a
simple kernel analysis for the same set, we come to the
conclusion that the simple kernel analysis is faster. Let T;
be the time needed to analyze trace i. Since the simple
kernel analysis doesn’t consider the set of traces as a whole
but each trace independently, the analysis of the set can
be done in parallel, each core dedicated to one trace. If
we suppose that we have more cores than traces, then the
elapsed time during the analysis will be max; <;<,, T; where
n is the number of traces.

If the set is considered as a whole, then it is difficult to
process the traces in parallel. The elapsed time during the
fused analysis will consequently be >"7_; T;.

Figure 19 shows experimentally the time needed for the
fused analysis and a simple kernel analysis to build SHTs
for different sizes of trace sets. We see that the build time
for the fused analysis is directly related to the size of the
trace set.

SHT’s size on disk

To evaluate the space on disk necessary to realize the fused
analysis, we compared the size of the SHT we created
with the sum of the sizes of the SHTs created for each
trace by the kernel analysis. Figure 20 shows that our SHT
needs less space than the combined kernel analysis SHTs.

However, we expected the sizes to be nearly equal since
the fused analysis SHT can be seen as a combination of
the kernel analysis SHT’s. This gap is mainly explained by
the fact that the fused analysis starts to build the CPUs
attributes of the SHT only when all the machine’s roles
have been determined.

Those results were obtained with an Intel core i7-3770
and with 16GB of memory.

Conclusion and future work

In this paper, we presented a new concept of kernel trace
analysis adapted to cloud computing and virtualized sys-
tems that can help for the monitoring and tuning of such
systems and the development of those technologies. This
concept is independent of the kernel tracer and hyper-
visor used. By creating a new view in Trace Compass,
we showed that it was possible to display an overview of
the full hierarchy of the virtualized systems running on a
physical host, including VMs and containers. Finally, by
adding a new dynamic filter feature to the FVS view, in
addition to a permanent filter for any VS, we showed how
it is possible to observe the real execution on the host of a
virtual machine, one of its virtual CPUs, its processes and
its containers.

In the future, we can expect the concept of the fused
analysis to be reused and adapted for more specific utiliza-
tion like the analysis of I/O or memory usage. We could
also use the same principles to analyze more thoroughly

—— FusedVM Analysis
-%- Kernel Analysis
o
o
o
«©
z 8
E 8
@
E
B
8
E 9
T <
»
(=3
S
(=3
o~
o

T T T T T T T T
0 20 40 60 80 100 120 140

Size of the set of traces (MB)

Fig. 19 Comparison of construction time between FusedVS analysis
and Kernel analysis

o
< —— FusedVS Analysis
-%- Kernel Analysis

60 80 100 120
| 1 ! !

SHT size (MB)

40
!

20
1

T T T T T T T T
0 20 40 60 80 100 120 140

Size of the set of traces (MB)

Fig. 20 Comparison of the SHT's size between FusedVS analysis and
Kernel analysis

Biancheri and Dagenais Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:19

systems using applications and programs in virtual execu-
tion environments, such as Java or Python. Finally, we can
also extend our work to be able to visualize VMs’ inter-
actions between nodes to better understand the internal
activity of cloud systems.

Acknowledgements
The authors would like to thank Francis Giraldeau for resolving some intricated
bugs and Naser Ezzati Jivan for reviewing this paper.

Authors’ contributions

CB built the state of the art of the field, defined the objectives of this research,
did the analysis of the current virtual machine monitoring tools and their
limitations. He implemented the analysis tool presented in this paper, as well
as the experiments. MRD initiated and supervised this research, lead and
approved its scientific contribution, provided general input, reviewed the
article and issued his approval for the final version. Both authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 15 July 2016 Accepted: 23 November 2016
Published online: 01 December 2016

References

1. Vaughan-nichols SJ (2006) New approach to virtualization is a
lightweight. Computer 39(11):12-14

2. Dean DJ, Nguyen H, Gu X, Zhang H, Rhee J, Arora N, Jiang G (2014)
Perfscope: Practical online server performance bug inference in
production cloud computing infrastructures. In: Proceedings of the ACM
Symposium on Cloud Computing. ACM, New York, pp 1-13

3. Sambasivan RR, Zheng AX, De Rosa M, Krevat E, Whitman S, Stroucken M,
Wang W, Xu L, Ganger GR (2011) Diagnosing performance changes by
comparing request flows. In: Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation. NSDI'1 1. USENIX
Association, Berkeley, pp 43-56. http://dl.acm.org/citation.cfm?id=
1972457.1972463

4. Shao Z,He L, Lu Z, Jin H (2013) Vsa: an offline scheduling analyzer for xen
virtual machine monitor. Futur Gener Comput Syst 29(8):2067-2076

5. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Warfield A (2003)
Xen and the art of virtualization. In: ACM SIGOPS Operating Systems
Review. Vol. 37, No. 5. ACM, pp 164-177

6. Dean DJ, Nguyen H, Wang P, Gu X (2014) Perfcompass: toward runtime
performance anomaly fault localization for infrastructure-as-a-service
clouds. In: 6th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 14). USENIX Association, Philadelphia. https://www.usenix.org/
conference/hotcloud14/workshop-program/presentation/dean

7. Gebai M, Giraldeau F, Dagenais MR (2014) Fine-grained preemption
analysis for latency investigation across virtual machines. J Cloud Comput
3(1):1

8. Sharma S, Nemati H (2016) Low overhead hardware assisted virtual
machine analysis and profiling. In: IEEE Globecom Workshops. (GC
Workshops), Washington DC. http://globecom2016.ieee-globecom.org/

9. Nemati H, Dagenais MR (2016) Virtual cpu state detection and execution
flow analysis by host tracing. In: 2016 IEEE International Conferences on
Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications
(SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta, pp 7-14. http://
tinman.cs.gsu.edu/~bdcloud/

10. Merkel D (2014) Docker: lightweight linux containers for consistent
development and deployment. Linux J 2014(239):2

11. Process Containers. http://lwn.net/Articles/236038/. Accessed 04 July
2016

12. Soltesz S, Potzl H, Fiuczynski ME, Bavier A, Peterson L (2007)
Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors. In: ACM SIGOPS Operating
Systems Review. Vol. 41. ACM, New York. pp 275-287

20.
21

22.

23.

Page 14 of 14

Marouani H, Dagenais MR (2008) Internal clock drift estimation in
computer clusters. J Comput Syst Netw Commun 2008:9

Desnoyers M, Dagenais MR (2006) The Ittng tracer: A low impact
performance and behavior monitor for gnu/linux. In: Hutton AJ (ed). OLS
(Ottawa Linux Symposium). Citeseer, Linux Symposium, Ottawa Vol. 2006.
pp 209-224

Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the linux virtual
machine monitor. In: Proceedings of the Linux Symposium Vol. 1.

pp 225-230

Linux 2 6 20. http://kernelnewbies.org/Linux_2_6_20. Accessed 04

July 2016

Uhlig R, Neiger G, Rodgers D, Santoni AL, Martins FC, Anderson AV,
Bennett SM, Kagi A, Leung FH, Smith L (2005) Intel virtualization
technology. Computer 38(5):48-56

Jabbarifar M (2013) On line trace synchronization for large scale
distributed systems. PhD thesis, Ecole Polytechnique de Montréal,
Montreal

Poirier B, Roy R, Dagenais M (2010) Accurate offline synchronization of
distributed traces using kernel-level events. ACM SIGOPS Oper Syst Rev
44(3):75-87

Trace Compass. http://tracecompass.org/. Accessed: 04 July 2016
Montplaisir-Gongalves A, Ezzati-Jivan N, Wininger F, Dagenais MR (2013)
State history tree: an incremental disk-based data structure for very large
interval data. In: Social Computing (SocialCom), 2013 International
Conference On. IEEE, Whashington D.C, pp 716-724

Montplaisir A, Ezzati-Jivan N, Wininger F, Dagenais M (2013) Efficient
model to query and visualize the system states extracted from trace data.
In: International Conference on Runtime Verification. Springer, Rennes,
pp 219-234

Ben-Yehuda M, Day MD, Dubitzky Z, Factor M, Har'El N, Gordon A,

Liguori A, Wasserman O, Yassour BA (2010) The turtles project: Design and
implementation of nested virtualization. In: 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), vol 10. USENIX
Association, Vancouver, pp 423-436. https.//www.usenix.org/conference/
0sdi10/turtles-project-design-and-implementation-nested-virtualization

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dl.acm.org/citation.cfm?id=1972457.1972463
http://dl.acm.org/citation.cfm?id=1972457.1972463
https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/dean
https://www.usenix.org/conference/hotcloud14/workshop-program/presentation/dean
http://globecom2016.ieee-globecom.org/
http://tinman.cs.gsu.edu/~bdcloud/
http://tinman.cs.gsu.edu/~bdcloud/
http://lwn.net/Articles/236038/
http://kernelnewbies.org/Linux_2_6_20
http://tracecompass.org/
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization

	Abstract
	Keywords

	Introduction
	Related work
	Fused virtualized systems analysis
	Architecture
	Data model
	Single layered VMs detection
	Nested VMs detection
	Containers detection

	Visualization

	Use cases and evaluation
	Use cases
	Evaluation
	SHT's generation time
	SHT's size on disk

	Conclusion and future work
	Acknowledgements
	Authors' contributions
	Competing interests
	References

