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Abstract

Computation offloading is a promising way to improve the performance as well as reducing the battery power
consumption of a mobile application by executing some parts of the application on a remote server. Recent
researches on mobile cloud computing mainly focus on the code partitioning and offloading techniques, assuming
that mobile codes are offloaded to a prepared server. However, the context of a mobile device, such as locations,
network conditions and available cloud resources, changes continuously as it moves throughout the day. And
applications are also different in computation complexity and coupling degree. So it needs to dynamically select
the appropriate cloud resources and offload mobile codes to them on demand, in order to offload in a more
effective way. Supporting such capability is not easy for application developers due to (1) adaptability: mobile
applications often face changes of runtime environments so that the adaptation on offloading is needed. (2)
effectiveness: when the context of the mobile device changes, it needs to decide which cloud resource is used for
offloading, and the reduced execution time must be greater than the network delay caused by offloading. This
paper proposes a framework, which supports mobile applications with the context-aware computation offloading
capability. First, a design pattern is proposed to enable an application to be computation offloaded on-demand.
Second, an estimation model is presented to automatically select the cloud resource for offloading. Third, a
framework at both client and server sides is implemented to support the design pattern and the estimation model.
A thorough evaluation on two real-world applications is proposed, and the results show that our approach can
help reduce execution time by 6–96% and power consumption by 60–96% for computation-intensive applications.
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Introduction
Current estimates indicate the number of mobile devices
(mostly smart phones, tablets, and laptops) around three
or four billions. This number is expected to grow to a
trillion in a few years [1, 2]. At the same time, hundreds
of thousands of developers have produced more than mil-
lions of applications [3]. Following the fast improvement
of smartphone hardware and increased user experience,
applications try to provide more and more functionality
and then they inevitably become so complex as to make
the two most critical limits of mobile devices worse. The
first limit is the diversity of hardware configurations,
which gives users very different experiences even running

the same applications [4]. Generally speaking, the low
hardware configuration of a mobile device implies the low
performance of the application running on the device, and
gives a poor experience to the user. The second limit is
the battery power. Complex applications usually have
intensive computations and consume a great deal of
energy [5, 6]. Although the battery capacity keeps growing
continuously, it still cannot keep pace with the growing
requirements of mobile applications [7].
Computation offloading is a popular technique to help

improve the mobile application performance and mean-
while reduce its power consumption [8–13]. Offloading,
also referred to as remote execution, is to make some
computation intensive code of an application executed
on a remote server, so that the application can take
advantage of the powerful hardware and the sufficient
power supply for increasing its responsiveness and
decreasing its battery power consumption.
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Recent researches on computation offloading mainly
focus on the code partitioning and offloading techniques,
assuming that mobile codes are offloaded to a prepared
server or a predefined Cloud [14–18]. But, in practice, it
needs to offload computation in a dynamic manner. On
one hand, applications are different in computation com-
plexity and coupling degree. So mobile codes need to be
executed on different places even if the device contexts
are the same. For instance, when the mobile device uses a
remote cloud with a poor network connection, some
computation-intensive codes need to be offloaded to the
server, but others are better executed locally. On the other
hand, the context of a mobile device, such as locations,
networks and available computing resources, changes
continuously as it moves throughout the day. So it needs
to select an appropriate cloud resource for offloading
according to the device context. For instance, when a mo-
bile device has a good network connection, it can use a re-
mote cloud to outsource the computation-intensive tasks,
in order to improve application performance and user ex-
perience. When the mobile device suffers from a poor net-
work connection, it can use a nearby cloudlet [19] instead.
In order to offload in a more effective way, it needs to

dynamically select the appropriate cloud resources and
offload mobile codes to them on demand. However, it is
not an easy matter for application developers to support
such capability, which can be broken into two parts.
First, mobile applications often face changes of runtime

environments so that the adaptation on offloading is
needed. It is usually decided at runtime whether mobile
codes need to be offloaded and which parts should be exe-
cuted remotely [20]. For instance, if the remote server
becomes unavailable due to unstable network connection,
the computation executed on the server should come back
to the device or go to another available server on the fly.
Second, when the device context changes, it needs to

decide which cloud resource is used for offloading. The
processing power of cloud resource decides the time spent
on the server-side processing. The quality of network con-
nections between the device and cloud resources decides
the time spent on network communication. The computa-
tion complexity and coupling degree of the application
should be also considered to assist in making a decision
and the trade-off is between the reduced execution time
and the network delay.
In this paper, we present a framework for context-

aware computation offloading, in order to dynamically
select the appropriate cloud resources and offload mo-
bile codes to them on demand, according to the device
context. Our paper makes three major contributions:

� We propose a design pattern, which implements the
adaptation on offloading and enables a mobile
application to offload computation on the fly.

� We present an estimation model, which calculates
the reduced execution time and the network delay,
and selects the appropriate cloud resource for
offloading.

� We implement a framework, which supports the
design pattern and the estimation model as
mentioned above.

We successfully applied our framework to support
context-aware computation offloading on two real-world
applications. The thorough evaluation is proposed and
the results show that our approach can help reduce
execution time by 6–96% and power consumption by
60–96% for computation-intensive applications.
We organize the rest of this paper as follows. Section

Approach overview overviews our approach with a mo-
tivating example. Section Design pattern for computation
offloading presents the design pattern for computation
offloading. Section Estimation model illustrates the esti-
mation model for cloud resource selection. Section Imple-
mentation gives the implementation of the framework.
Section Evaluation reports the evaluation on two real-
world applications. Section Related work introduces related
work and we conclude the paper in Section Conclusion
and future work.

Approach overview
In this section, we give an overview about our approach.
We first present a motivating example, which interprets
requirements for context-aware computation offloading.
Then we discuss how to leverage resources to offload
computation in a traditional way. Finally, we briefly
introduce our novel framework for context-aware
computation offloading.

A motivating example
The example is shown in Fig. 1. The upper part shows a
real-world Android application, Gobang, which is a mo-
bile game. There are three difficulty levels of games and
they are implemented by three algorithms with different
computation complexities. The high-level game is a
computation-intensive task, which needs to be offloaded
to a remote server, while the low-level game is better
executed locally in most of the time. The lower part
shows that the context of the smartphone changes con-
tinuously as it moves throughout the day. There are
several available cloud resources, such as the public
cloud service and the library cloudlet, which can be used
for offloading under different device contexts. For in-
stance, in the library, the smartphone can use the WIFI
connection to access the library cloudlet, the lab cloudlet
or the public cloud service, while it can just use the 3G
connection to access the public cloud service outside the
buildings. In order to improve application performance
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and user experience, it needs to decide which cloud
resource is used for offloading according to the device
context, and then offload mobile codes to it on the fly.

Context-aware computation offloading
In order to offload in a more effective way, it needs to
dynamically select the appropriate cloud resources and
offload mobile codes to them on demand. It is not an
easy matter for our motivating example, which mainly
comes from the following two aspects:
On one hand, it needs to be decided at runtime

whether mobile codes need to be offloaded and which
parts should be executed remotely. So when the
smartphone moves from one place to another, it needs to
re-configure the application and deploy parts of the appli-
cation onto the resource before using it for offloading.
On the other hand, it needs to dynamically select the

appropriate cloud resource for offloading, according to
the device context. There are several available cloud re-
sources that are different in the processing power and
the quality of network connection. So it will take a long
time to collect runtime status for comparison, and the
trade-off is between the reduced execution time and the
network delay.

Our framework
The core idea of our approach is that the issues above
can be solved automatically by the underlying frame-
work. We propose a design pattern and an estimation
model, and implement a framework to support them.
The design pattern can support an application to be off-

loaded on demand. The application is developed in the
service style and its different parts are able to be executed
locally or remotely. The service pool is introduced to

enable the application to use several cloud resources
at the same time, and improve the availability of off-
loading service.
The estimation model is used to automatically select

the appropriate cloud resource for offloading, according
to the device context. We model computation tasks,
network connections and processing power of cloud
resources, and propose an algorithm to calculate the
reduced execution time and the network delay, which
uses the history data as well as the device context.
The framework is implemented to support the design

pattern and the estimation model. On one hand, all parts
of the application, which are developed in the service style,
are able to be executed locally or remotely, through the
adapters at both client and server sides. The service pool
at the client side maintains a list of available services for
each part of the application. On the other hand, run data
of computation tasks, network connections and process-
ing power of cloud resources, is continually collected and
stored. The history data is modeled at the client side and
used in the estimation model.

Design pattern for computation offloading
A design pattern and a runtime mechanism are pro-
posed in this section. The design pattern enables a
mobile application to be computation offloaded. And the
runtime mechanism supports the application to be off-
loaded on the fly.

Design pattern
In our approach, mobile applications need to be devel-
oped, following a design pattern. As shown in Fig. 2, the
design pattern consists of a main module which must

Fig. 1 The motivating example
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stay on the device, and a mobile module which contains
a set of movable services.
When developing an application, developers first need

to classify the methods into two categories: Anchored and
Movable. The anchored methods are included in the main
module, which can be divided into three types: 1) methods
that implement the application’s user interface; 2) methods
that interact with I/O devices, such as the accelerometer
and the GPS; 3) methods that interact with external
services, such as e-commerce transaction. Besides these
anchored methods, other methods are movable, which can
run on either the mobile device or remote cloud resources.
The movable methods are encapsulated in the service style
and included in the service registry.
These services can be invoked by the main module,

based on a dynamic proxy mechanism. And it is trans-
parent to the developers whether the service is exe-
cuted locally or remotely. As shown in Fig. 3, the main
module does not invoke the services directly, but sends
a request to the adapter object instead. The adapter
object is a dynamic proxy which is used to invoke the
services in the service registry. It judges which service
to call and decides whether to offload.

Runtime mechanism
The runtime mechanism supports the adaptation on off-
loading. It allows the main module to effectively invoke
the services in the service registry, no matter they are
deployed on the client side or other cloud resources
across the network. The core of the mechanism is com-
posed of three parts: the local adapter, the remote
adapter and the service pool, as shown in Fig. 4.
For each service in the service registry, there is a

service pool. It consists of multiple candidate services
that provide the same function but are deployed on
different places. The services of the service pool can be
added or removed dynamically. And the service descrip-
tions, including their names, addresses, protocols and
qualities, are recorded by the service pool. For instance,
in Fig. 4, there are three services in the service pool. The
three services have the same function, and they are
separately deployed on Google App Engine, a nearby
cloudlet and the client side. In addition, the service pool
acts as a virtual service. When comes a request, the
service pool will give preference to the service with best
quality and return the corresponding service description.
The adapters are used to invoke the local and remote

services. When comes a request, the local adapter can get
the description of the service with best quality from the
service pool. If the service is a local one, the local adapter
invokes the service directly. And if the service is a remote
one, the local adapter forwards the request to the remote
adapter that is running on the remote server, across the
network. Then the remote adapter invokes the remote
service and sends the result back to the client side. In
addition, if the device context changes during remote
service invocation, the client side may fail to receive the
result and another invocation needs to be executed.

Estimation model
The estimation model consists of the information models
and the selection algorithm. The information models are
used to calculate the reduced execution time and the
network delay. And the selection algorithm is used to
decide the appropriate cloud resource for offloading.

Fig. 2 The design pattern for offloading

Fig. 3 The example code snippet for service invocation
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Information models
The response time for remote service invocation consists
of the server time and the network time, as shown in for-
mula (1). There are several factors that can influence the
response time, such as mobile services, cloud resources
and network connections, as shown in Table 1. In order to
predict the response time, we build three information
models to predict the server time and the network time,
including Network Connection model, Network Time
model and Server Time model. Network Connection model
is used to predict the quality of network connection.
Network Time model is used to calculate the network time
for the service with a network connection. Server Time
model is used to predict the service execution time on a
cloud resource. We detail these three information models
in the following paragraphs.

Tresponse ¼ Tserver þ Tnetwork ð1Þ

1) Network Connection model: The quality of network
connection changes continuously, as the device moves
throughout the day. The quality of network connection
includes the data transmission rate and the round trip
time from the device to the cloud resource. Network

Fig. 4 The runtime mechanism for offloading

Table 1 List of the factors that can influence the response time

Symbol Description

S the set of movable services

R the set of cloud resources

N the set of networks

V the expectations of the data transmission rate

vij the expectation of the data transmission rate between
the device in network i and cloud resource j

RTT the expectations of the round trip time

rttij the expectation of the round trip time between the
device in network i and cloud resource j

C the changing trends of networks that the device uses

cij the number of device movements from network i
to network j

E the expectations of the server time for service execution
on cloud resources

ekj the expectation of the server time for service k execution
on cloud resource j

D(sk) the average data traffic for a single invocation of service k

WT the weight factors
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Connection model is used to predict the quality of
network connection based on history data gathered by
the client. We let N = {n1, n2, …, nh} denote the set of
networks and R = {r1, r2, …, rm} demote the set of cloud
resources. And there are two matrices V and RTT
that record the expectations of the data transmission
rate and the round trip time respectively, as shown in
formula (2) and (3).

V ¼ ½ v11 v12 ⋯ v1m
v21 v22 ⋯ v2m
⋯ ⋯ ⋱ ⋯
vh1 vh2 ⋯ vhm

�
ð2Þ

RTT ¼ ½ rtt11 rtt12 ⋯ rtt1m
rtt21 rtt22 ⋯ rtt2m
⋯ ⋯ ⋱ ⋯
rtth1 rtth2 ⋯ rtthm

� ð3Þ

Each vij in the matrix V, represents the expectations
of the data transmission rate between the device in
network i and cloud resource j, and it takes a weighted
average of the history data Vij, as shown in formula (4).
Each rttij in the matrix RTT, represents the expecta-
tions of the round trip time between the device in
network i and cloud resource j, and it takes a
weighted average of the history data RTTij, as shown
in formula (5).

vij ¼ WT•Vij ¼ w1 w2 ⋯ wpð Þ
v1ij

v2ij

⋯
vpij

0
BB@

1
CCA

ð4Þ

rttij ¼ WT•RTTij ¼ w1 w2 ⋯ wpð Þðrtt1ij

rtt2ij

⋯
rttpij
Þ

ð5Þ
s:t: w1 þ w2 þ⋯þ wp ¼ 1

In addition, there is a matrix C that records the chan-
ging trends of networks that the device uses, as shown in
formula (6). Each cij in the matrix C, represents the num-
ber of device movements from network i to network j.

C ¼ ½ 0 c12 ⋯ c1h
c21 0 ⋯ c2h
⋯ ⋯ ⋱ ⋯
ch1 ch2 ⋯ 0

�
ð6Þ

2) Network Time model: There are three factors that
can influence the network time, including the service,

the data transmission rate and the round trip time. We
let S = {s1, s2, …, sg} denote the set of movable services.
The network time can be calculated by formula (7).
D(sk) represents the average data traffic for a single invo-
cation of service k. This average data traffic can be
obtained from training. When D(sk) is large, the network
time mainly depends on the data transmission rate.
Instead, when D(sk) is small, the network time mainly
depends on the round trip time. Thus, given the service
and the quality of network connection, we can calculate
the network time based on this model.

Tnetwork sk; v; rttð Þ ¼ maxfD skð Þ
v

; rttg ð7Þ

3) Server Time model: Mobile services have differences
in computation complexity and cloud resources are
different in processing power, so the server time for ser-
vice execution on server is not the same. The server
time cannot be directly monitored by the client, but it
can be calculate by formula (8). The response time for
service invocation can be monitored, and the network
time can be calculated based on Network Time model.

Tserver ¼ Tresponse−Tnetwork ð8Þ
There is the matrix E that records the expectations of

server time, as shown in formula (9). Each ekj in the
matrix E, represents the expectations of server time for
service k execution on cloud resource j, and it takes a
weighted average of the history data Ekj, as shown in
formula (10).

E¼½ e11 e12 ⋯ e1m
e21 e22 ⋯ e2m
⋯ ⋯ ⋱ ⋯
eg1 eg2 ⋯ egm

� ð9Þ

ekj ¼ WT•Ekj ¼ w1 w2 ⋯ wpð Þ
e1kj

e2kj

⋯
epkj

0
BB@

1
CCA

ð10Þ
s:t: w1 þ w2 þ⋯þ wp ¼ 1

Selection algorithm
When the device context, such as the network connec-
tion, changes, it needs to reselect the resource for off-
loading, in order to improve application performance. It
costs a lot of extra time and energy to deploy mobile
codes onto all available cloud resources, invoke these
services and compare their response time. So we need to
predict the response time for remote service invocation
and select the appropriate services. On one hand, the
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optimal service needs to be selected, in order to improve
application performance in the current network. On the
other hand, the standby service also needs to be selected,
in order to assure the quality of offloading service when
the device context changes.
1) Selection for the Optimal Service: The optimal ser-

vice is the one with the shortest response time in the
current network. We propose the decision algorithm to
select the optimal service based on information models,
as shown in Algorithm 1. There are three steps in the
decision procedure.

Step1: Obtain the context of the mobile device, such as
the service and the network connection.
Step2: Predict the response time for service execution
on different cloud resources, based on information
models.
Step3: Select the optimal service and check it.

2) Selection for the Standby Service: When the device
context changes, it takes a long time to reselect the
cloud resource and deploy the service. In order to
ensure application performance during this period of
time, there needs to be a standby service that is not only
available in the current network, but also in next pos-
sible networks. There are two considerations for select-
ing the standby service. On one hand, the service should
be available in as many networks as possible. On the
other hand, the total time saved by offloading should be
as much as possible. The two aspects need to be traded
off, as shown in formula (11), and the weights can be
tuned according to different requirements.

Value r j
� � ¼ w1 � Valuea rj

� �þ w2 � Valuee rj
� � ð11Þ

We propose the decision algorithm to select the
standby service based on information models, as shown

in Algorithm 2. There are three steps in the decision
procedure.

Step1: Obtain the context of the mobile device, such as
the service and the network connection.
Step2: Predict availability and effectiveness of services
on different cloud resources, based on information
models.
Step3: Select the standby service and check it.

Implementation
The proposed framework is divided into two parts, in-
cluding the client framework and the server framework,
as shown in Fig. 5. The client framework is deployed on
mobile devices, and the server framework is deployed on
cloud resources.
The client framework is used to dynamically select the

appropriate cloud resources and offload mobile codes to
them on demand. It consists of three modules, including
the service selection module, the computation offloading
module and the runtime management module. The ser-
vice selection module collects runtime data, builds infor-
mation models and selects appropriate cloud resources,
as mentioned in Section 4. The data collection manager
records history data about runtime status, such as the
response time, the data transmission rate and the round
trip time. The information modeling manager builds the
three information models based on the history data, in-
cluding the Network Connection model, the Network
Time model and the Server Time model. The service se-
lection manager predicts the response time for remote

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:1 Page 7 of 17



service invocation and selects the appropriate cloud re-
sources based on the information models. The computa-
tion offloading module establishes connections to cloud
resources, manages available mobile services and helps
invoke remote services, as mentioned in Section 3. The
resource registration manager establishes connections to
servers and deploys services onto them. The service
manager consists of the service registry and the service
pools, which manages available mobile services. The
adaptor is the dynamic proxy and it supports the adapta-
tion on offloading. The runtime management module
monitors the device context and schedules different
tasks of framework.
The server framework is used to support offloading,

and it mainly works with the computation offloading
module on the client side, as mentioned in Section 3.

Evaluation
The goals of the evaluation are to (1) validate whether
our framework is feasible to offload real-world applica-
tions; (2) compare the performance of offloaded applica-
tions with original ones; (3) compare the battery power
consumption of offloaded applications with original
ones.

Case study
In this case study, there are two tested devices, five loca-
tions with different wireless networks, and five cloud re-
sources, as following.
First, the two tested devices are an HTC M8St [21]

with 2.5GHz quad-core CPU, 2GB RAM, and a SAM-
SUNG GT-N7000 [22] with 1.4GHz dual-core CPU,
1GB RAM.

Second, we simulate five locations, with their names
from location1 to location5, as shown in Fig. 6. There
are free WIFI connection services in all of these loca-
tions except location2. And each connection performs
differently in speed.
Third, there are multiple options of cloud resources,

including four nearby cloudlets and one public Cloud
service, which can be used for offloading in different
networks. The details of these cloud resources are listed
as follows. The location1 Cloudlet is a device with
3.6GHz octa-core CPU and 32GB RAM, which can be
publicly accessed using 3G and WIFI; the location3
Cloudlet is also a device with 3.6GHz octa-core CPU
and 32GB RAM; the location4 Cloudlet is a device with
3.2GHz dual-core CPU and 4GB RAM; the location5
Cloudlet is a device with 2.2GHz dual-core CPU and
2GB RAM; in addition, the device running in Ali Cloud,
with 2.6GHz dual-core CPU and 4GB RAM, serves as a
public Cloud Service.
We apply our framework to support context-aware

computation offloading on two real-world mobile applica-
tions. The first application is the Gobang game with three
difficulty levels. It is an interactive app that human and AI
players place chess pieces in turns. When it is the turn of
AI player, all the chess piece positions on the chess board
will be transferred to the AI module that plans the move.
The second application is the Face Finder that is to find
out how many faces are in the picture. Each picture is of a
fixed size of 1288 KB and is transferred to the Finder
module that counts faces. The two applications are devel-
oped following the design pattern described in Section 3.
The Gobang game is of three movable services that are
used to plan moves for different difficulty levels, including

Fig. 5 The framework overview
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the Low-level AI service, the Mid-level AI service and the
High-level AI service. These three AI services are imple-
mented by three algorithms with different computation
complexities. The Face Finder is of just one movable ser-
vice, named the Finder service. The Finder service is used
to count faces in the picture, and it is a computation in-
tensive service.
In our framework, the runtime data is collected from

the monitoring activities, in order to build the informa-
tion models that are used to calculate the server time
and the network time. In this case study, the three infor-
mation models are as follows.
1) Network Connection model: The information about

network connections is collected when the mobile device
moves during the day. The Network Connection models of
the two tested devices are shown in Tables 2 and 3. The
two models are almost the same. The reason is that the Net-
work Connection model mainly reflects the quality of
network connections between the device in different net-
works and cloud resources, including the data transmission
rate and the round trip time. Thus, there is no great differ-
ence between different devices. As shown in Tables 2 and 3,
there are five networks and five cloud resources. Both of the
Public Cloud Service and location1 Cloudlet can be used
for offloading in any network. But other cloud resources
can just be available in the WIFI networks that are limited

to their own locations. For instance, the location3 Cloudlet
can only be used when the device is in the location3 WIFI
network. In addition, each connection performs differently
in terms of the data transmission rate and the round trip
time, the details of which are shown in Tables 2 and 3.
2) Network Time model: The average data traffic for

service invocation can be obtained from training. The
Network Time models of mobile services are shown in
formula (12). The data traffic of the Finder service is
much more than AI services for a single invocation.

Tnetwork Finder; v; rttð Þ ¼ maxf1288KB
v

; rttg
Tnetwork AI; v; rttð Þ ¼ maxf3KB

v
; rttg

ð12Þ

3) Server Time model: The server time of services
cannot be directly monitored by the client, but it can be
calculated as described in Section 4.1. The Server Time
models of the two tested devices are shown in Tables 4
and 5. The two models are almost the same. The reason
is that the Server Time model reflects the remote execu-
tion time that mainly depends on computation complex-
ity of mobile services and processing power of cloud
resources, thus, there is no great difference in the server
time between different devices. Compared with local
execution, it takes much less time to execute the same
service remotely. The more powerful the hardware of
cloud resource is, the less the server time should be.
Based on the above information models, our frame-

work can automatically compare the response time of
services on different cloud resources and use appropriate
cloud resources for offloading. Tables 6 and 7 show the
cloud resource selection of two tested devices for each
service in different networks. The trade-off is between
the reduced execution time and the network delay. For
instance, when the mobile device runs applications in
the location5 WIFI network, the framework can use the
location5 cloudlet or the public cloud for offloading, as
shown in Tables 2 and 3. The network connection to the

Table 2 The network connection model of the htc device

Resource location1
Cloudlet

Public Cloud
Service

location3
Cloudlet

location4
Cloudlet

location5
CloudletNetwork

WIFIlocation1 RTT = 40 ms
V = 1200 KB/s

RTT = 150 ms
V = 500 KB/s

× × ×

3G RTT = 480 ms
V = 12 KB/s

RTT = 340 ms
V = 20 KB/s

× × ×

WIFIlocation3 RTT = 400 ms
V = 140 KB/s

RTT = 150 ms
V = 500 KB/s

RTT = 40 ms
V = 1200 KB/s

× ×

WIFIlocation4 RTT = 600 ms
V = 25 KB/s

RTT = 230 ms
V = 300 KB/s

× RTT = 60 ms
V = 1024 KB/s

×

WIFIlocation5 RTT = 650 ms
V = 15 KB/s

RTT = 400 ms
V = 240 KB/s

× × RTT = 75 ms
V = 800 KB/s

Fig. 6 The location sketch
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location5 cloudlet is better than the public cloud, but
the hardware of the public cloud is more powerful than
the location5 cloudlet. For the Finder service and the
High-level AI service, the framework uses the public
cloud for offloading, because the two services are compu-
tation intensive ones and the powerful hardware can re-
duce a lot of execution time. For the Mid-level AI service,
the framework uses the location5 cloudlet for offloading,
because the reduced execution time of two cloud re-
sources is almost the same, but the network delay of the
public could is higher than the location5 cloudlet. For the
Low-level AI service, the framework invokes the local ser-
vice, because the reduced execution time cannot be
greater than the network delay caused by offloading. In
addition, due to the difference in processing power be-
tween two devices, the frameworks on them are possible
to make different decisions whether to offload, for the
same service and in the same network. For instance, when
the devices run the Gobang game with Mid-level AI in the
3G network, the framework on the HTC device invokes
the local service, while the framework on the SAMSUNG
device uses the public cloud for offloading, as shown in
Tables 6 and 7. The reason is that the reduced execution
time for the SAMSUNG device is greater than the net-
work delay caused by offloading, while the reduced execu-
tion time for the HTC device is less than the network
delay, as shown in Tables 4 and 5.
Overheads of the estimation model can be broken into

two parts. On one hand, some extra service invocations
are needed to gather sufficient runtime data. For instance,

when running the High-level AI service in the location5
WIFI network, the framework not only uses the public
cloud service for offloading, but also occasionally invokes
the services provided by the location 1 and 5 cloudlets in
order to collect information such as server time. However,
the execution frequency can be controlled and the frame-
work can invoke these services during idle time, thus, the
overhead of gathering runtime data is acceptable. On the
other hand, the framework needs to calculate and com-
pare the response time of services on different cloud re-
sources, in order to select the appropriate cloud resources
for offloading. Figure 7 shows the execution time of selec-
tion algorithm in different locations. Compared with ser-
vice invocation, the overhead of service selection is
acceptable.

Comparison of App performance
We evaluate our approach in performance from two as-
pects. On one hand, we compare the response time of
context-aware offloaded applications with original and
traditional offloaded ones for the same services, when
the devices stay in different locations. On the other
hand, we compare the response time of our offloaded
applications with ones without the standby service for
the same services, when the devices move between
different locations.

Staying in different locations
There are three types of applications in this experiment,
including the original one, the traditional offloaded one

Table 3 The network connection model of the samsung device

Resource location1
Cloudlet

Public Cloud
Service

location3
Cloudlet

location4
Cloudlet

location5
CloudletNetwork

WIFIlocation1 RTT = 45 ms
V = 1190 KB/s

RTT = 150 ms
V = 500 KB/s

× × ×

3G RTT = 480 ms
V = 11 KB/s

RTT = 350 ms
V = 20 KB/s

× × ×

WIFIlocation3 RTT = 410 ms
V = 142 KB/s

RTT = 155 ms
V = 498 KB/s

RTT = 43 ms
V = 1195 KB/s

× ×

WIFIlocation4 RTT = 600 ms
V = 25 KB/s

RTT = 230 ms
V = 300 KB/s

× RTT = 60 ms
V = 1020 KB/s

×

WIFIlocation5 RTT = 650 ms
V = 15 KB/s

RTT = 405 ms
V = 240 KB/s

× × RTT = 75 ms
V = 796 KB/s

Table 4 The server time model (solid line) and processing power (dotted line) of the samsung device

Resource location1
Cloudlet

Public
Cloud
Service

location3
Cloudlet

location4
Cloudlet

location5
Cloudlet

Local

Service

Finder 1953 ms 6987 ms 1952 ms 5455 ms 11269 ms 34801 ms

Low-level AI 0 ms 4 ms 0 ms 4 ms 11 ms 15 ms

Mid-level AI 17 ms 43 ms 18 ms 58 ms 110 ms 835 ms

High-level AI 175 ms 297 ms 176 ms 246 ms 840 ms 5818 ms
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and the context-aware offloaded one. The original appli-
cation runs entirely on the phone; the traditional off-
loaded application just uses the public cloud service for
offloading; the context-aware offloaded application can
use any of the above cloud resources for offloading. We
compare their performance for each service in five
different networks, using SAMSUNG and HTC devices
respectively, as shown in Figs. 8 and 9.
The computation complexity of service impacts the

offloading effect significantly. If the service has a high
computation complexity, it is worth offloading. Instead,
if the service has a low computation complexity, it is
better to be executed locally. For instance, when using
the SAMSUNG device to invoke the High-level AI ser-
vice in the location3 WIFI network, the response time
for the original application is 5818 ms on average, while
the time for the context-aware offloaded one is 245 ms
or reduced by 96%, and the traditional offloaded one is
447 ms or reduced by 92%. The reason for the great per-
formance improvement is that the computation inten-
sive code is executed on a more powerful processor of
the server other than the phone’s own processor. How-
ever, when using the SAMSUNG device to invoke the
Low-level AI service in the location3 WIFI network, the
response time for the original application is 15 ms on
average, while the time for the context-aware offloaded
one and the traditional offloaded one is separately 45 ms
and 154 ms. The reason for the negative impact of off-
loading is that the network delay is greater than the re-
duced execution time caused by offloading. In addition,
the context-aware offloaded application executes the
Low-level AI service locally as same as the original one,

but with an overhead of 30 ms. The slight increase of
execution time is due to that service invocation will be
forwarded by the adapter.
The quality of network connection impacts the off-

loading effect a lot. If the RTT value becomes larger or
the data transmission rate becomes lower, the perform-
ance of the traditional offloaded application will get de-
creased due to the fact that more time will be spent on
network communication. For instance, when using the
SAMSUNG device to invoke the Finder service in the
location1 WIFI network (RTT = 150 ms, V = 500 KB/s),
the response time for the original application is
34801 ms, while the time for the traditional offloaded
one is 9589 ms or reduced by 72%. However, when using
the SAMSUNG device to invoke the Finder service in
the 3G network (RTT = 340 ms, V = 20 KB/s), the re-
sponse time for the traditional offloaded application is
72181 ms or increased by about one time. The reason for
the performance degradation of offloading is that the aver-
age data traffic for a single invocation of the Finder service
is great, so a lot of time will be spent on network commu-
nication if the speed of network connection is slow.
The processing power of device also impacts the

offloading effect. If the device has a lower computing
capability, the mobile service is more worth offloading.
For instance, when using the SAMSUNG device to in-
voke the Mid-level AI service in the 3G network, the re-
sponse time for the original application is 835 ms, while
the time for the traditional offloaded one is 379 ms or
reduced by 55%. However, when using the HTC device
to invoke the Mid-level AI service in the 3G network,
the response time for the original application is 272 ms,

Table 5 The server time model (solid line) and processing power (dotted line) of the htc device

Resource location1
Cloudlet

Public
Cloud
Service

location3
Cloudlet

location4
Cloudlet

location5
Cloudlet

Local

Service

Finder 1946 ms 6981 ms 1946 ms 5457 ms 11272 ms 13168 ms

Low-level AI 0 ms 4 ms 0 ms 4 ms 10 ms 2 ms

Mid-level AI 16 ms 39 ms 16 ms 53 ms 112 ms 272 ms

High-level AI 175 ms 297 ms 175 ms 246 ms 840 ms 2396 ms

Table 6 The cloud resource selection of the samsung device for each service and in different networks

Network WIFIlocation1 3G WIFIlocation3 WIFIlocation4 WIFIlocation5

Service

Finder location1 Cloudlet Local location3
Cloudlet

location4
Cloudlet

Public Cloud Service

Low-level AI Local Local Local Local Local

Mid-level AI location1 Cloudlet Public Cloud Service location3
Cloudlet

location4
Cloudlet

location5
Cloudlet

High-level AI location1 Cloudlet Public Cloud Service location3
Cloudlet

location4
Cloudlet

Public Cloud Service
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while the time for the traditional offloaded one is still
379 ms or increased by 39%. The reason for the dif-
ference in the offloading effect is that the HTC M8St
is much better than the SAMSUNG GT-N7000 in
processing power, so the local execution time of the
HTC device is much less than the SAMSUNG device
for the same service.
We can see that, the computation complexity of the

service, the quality of the network and the performance
of the device can all impact the offloading effect. It
needs to dynamically decide whether the service is exe-
cuted locally or remotely and which cloud resource is
used for offloading according to the device context. As a
whole, our approach can help reduce execution time by
6–96% for computation-intensive applications.

Moving between different locations
There are two types of applications in this experiment,
including our context-aware offloaded ones and modi-
fied ones without the standby service. We constantly in-
voke the High-level AI service while we move between
different locations in sequence, remaining in each loca-
tion for three minutes. Figure 10 shows each invocation
time of the two applications for the High-level AI service
on the SAMSUNG device during this process.
For the modified applications, it takes a much longer

time to invoke the service when the device just enters a
new location. For instance, it takes 667 ms for our off-
loaded application to invoke the High-level AI service
while 5818 ms for the modified one, when the device
just enters location2 from location1. The reason for the

Table 7 The cloud resource selection of the htc device for each service and in different networks

Network WIFIlocation1 3G WIFIlocation3 WIFIlocation4 WIFIlocation5

Service

Finder location1 Cloudlet Local location3
Cloudlet

location4
Cloudlet

Public Cloud Service

Low-level AI Local Local Local Local Local

Mid-level AI location1 Cloudlet Local location3
Cloudlet

location4
Cloudlet

location5
Cloudlet

High-level AI location1 Cloudlet Public Cloud Service location3
Cloudlet

location4
Cloudlet

Public Cloud Service

Fig. 7 The execution time of selection algorithm in different locations

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:1 Page 12 of 17



performance difference is that when the device context
changes, it takes a long time to reselect the cloud re-
source and deploy the service. During this period of
time, our offloaded application can use the standby ser-
vice that ensures application performance, while the
modified one can just use the original service or the
local service. So our offloaded application outperforms
the one without the standby service.

Comparison of App power consumption
We evaluate our approach in power consumption, using
the three versions of the same application that are men-
tioned in Section 6.2.1. As shown in Figs. 11 and 12, for
each service and under different networks, we measure
their power consumption on SAMSUNG and HTC de-
vices by the PowerTutor Android application [23] that
gives the details of the power consumption for each tar-
geted service.
When running the service locally, the power consump-

tion of our context-aware offloaded applications will in-
crease slightly compared with the original ones, because
the adapters in our offloaded ones cost energy to run.
For instance, when invoking the Low-level AI service on
the SAMSUNG device, the power consumption of the

original application and our offloaded one is separately
14.57 Joules and 14.87 Joules.
When running the computation-intensive service, the

energy consumption of two offloaded applications is
often reduced, as offloading makes some computation
intensive code be executed on the server. For instance,
when invoking the High-level AI service and the Finder
service, the power consumption of our offloaded appli-
cations can be reduced by 60–96% compared with the
original one.
What should be noted is that, the power used on net-

work communication can makes the total power con-
sumption of offloaded applications be greater than that
of the original ones. For instance, when invoking the
Finder service on the SAMSUNG device under the 3G
network, the power consumption for offloading is in-
creased by 25% compared with running locally.
We can see that, our offloaded applications outper-

form the other two applications in power consumption
in most of the time.

Related work
The idea of using a strong server to enhance the pro-
cessing capabilities of a weak device is not new [24].

Fig. 8 The performance comparison of running four services on the SAMSUNG device in five locations
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Fig. 9 The performance comparison of running four services on the HTC device in five locations

Fig. 10 The effect of standby service
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Many early researches [25–27] have tried to automatic-
ally partition a standalone desktop app to have some
parts of it executed remotely on the server. J-Orchestra
[27] and JavaParty [25] are the early work on offloading
standalone desktop Java applications. J-Orchestra works
on the Java byte code level, while JavaParty works on the
source code level. They both require developers to
manually tell the offloading tool about which class can
be offloaded. Then the compiler provided by these tools
will compile these selected classes to generate the RMI
stubs/skeletons for them, so that the application is
turned to be a client/server one by using RMI as the
communication channel. The work of J-Orchestra and
JavaParty cannot be directly used for offloading Android
applications.
The researches on mobile cloud computing then lever-

age such an idea to realize computation offloading on
mobile devices [28–32]. Cuckoo [28] and MAUI [29]
provide method-level computation offloading. Cuckoo
requires developers to follow a specific programming
model to make some parts of the application be off-
loaded. MAUI requires developers to annotate the can-
be-offloaded methods of a .Net mobile application by
using the “Remoteable” annotation. Then their analyzers
will decide which method should really be offloaded

through runtime profiling. ThinkAir [30] also provides
method-level computation offloading, but it focuses on
the elasticity and scalability of the cloud and enhances
the power of mobile cloud computing by parallelizing
method execution using multiple virtual machine im-
ages. CloneCloud [31] provides thread-level computation
offloading. It modifies the Android Dalvik VM to pro-
vide an application partitioner and an execution runtime
to help applications running on the VM offload tasks to
execute on a cloned VM hosted by a Cloud server.
DPartner [32] provides class-level computation offload-
ing. It can automatically refactor Android applications to
be the ones with computation offloading capability and
generates two artifacts to be deployed onto an Android
phone and the server, respectively. The above works
mainly focus on the code partitioning and offloading
techniques, assuming that mobile codes are offloaded to
a prepared server or a predefined Cloud.
Some recent works also consider the mobility issue

[33–35], which provide context-aware offloading schemes
for mobile cloud computing. The work proposed by Lin et
al. [33], provides a context-aware decision engine that
takes into consideration signal strength, transmission
time, geographical location and the time slots of the
offloading opportunities to decide whether to offload a

Fig. 11 The power consumption comparison of running four services on the SAMSUNG device in five locations
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given method to the cloud server. The work proposed by
Ravi and Peddoju [34], provides a multi criteria decision
making (MCDM) algorithm for choosing the best possible
resource to offload the computation tasks, and a handoff
strategy to offload the tasks between different resources.
Similarly, the work proposed by B Zhou et.al. [35], pro-
vides a context-aware offloading decision algorithm that
takes into consideration context changes such as network
condition, device information and the availability of mul-
tiple types of cloud resources to provide decisions on the
selection of the wireless medium to utilize and the cloud
resource to offload at runtime. The above works mainly
focus on context-aware offloading decision algorithms, as-
suming that these algorithms can work with the mobile
cloud offloading system.
Our framework can dynamically select the appropriate

cloud resources and offload mobile codes to them on
demand, according to the device context. It is different
from the above works mainly in two aspects. First, our
framework introduces the service pool that enables the
device to use several remote servers for offloading at the
same time and improves the availability of offloading
service, while few of the existing works can support such
a feature. Second, our framework uses the history data

as well as the context to decide whether to offload and
which cloud resource to offload, while most of the existing
works need to monitor lots of runtime status in order to
calculate the reduced execution time and the network delay.
In addition, the client side of our framework is independent
from the server side, that is, builds information models and
selects appropriate services independently. Therefore, our
framework is capable to interwork with the game-theoretic
model [36, 37] and be extended to the multi-user case.

Conclusion and future work
In this paper, we present a framework for context-aware
computation offloading to select the appropriate Cloud
resource and then offload mobile codes to it in a dy-
namic manner, which makes use of both remote cloud
computing services and nearby cloudlets. First, a design
pattern is proposed to enable an application to be com-
putation offloaded on-demand. Second, an estimation
model is presented to automatically select the cloud
resource for offloading. Third, a framework is imple-
mented to support the design pattern and the estimation
model. Then we apply our framework to support
context-aware computation offloading on two real-world
applications and the evaluation results show that our

Fig. 12 The power consumption comparison of running four services on the HTC device in five locations

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:1 Page 16 of 17



approach can help significantly reduce the app execution
time and battery power consumption.
Our framework for context-aware computation offload-

ing will be further validated and improved as follows. On
one hand, more experiments with real-world mobile appli-
cations will be done. On the other hand, more rules and
algorithms will be explored and applied in the estimation
model in order to achieve better results.
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