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Abstract

Cloud computing evolved from the concept of utility computing, which is defined as the provision of computational
and storage resources as a metered service. Another key characteristic of cloud computing is multitenancy, which
enables resource and cost sharing among a large pool of users. Characteristics such as multitenancy and elasticity
perfectly fit the requirements of modern data-intensive research and scientific endeavors. In parallel, as science relies
on the analysis of very large data sets, data management and processing must be performed in a scalable and
automated way. Workflows have emerged as a way to formalize and structure data analysis, thus becoming an
increasingly popular paradigm for scientists to handle complex scientific processes. One of the key enablers of this
conjunction of cloud computing and scientific workflows is resource management. However, several issues related to
data-intensive loads, complex infrastructures such as hybrid and multicloud environments to support large-scale
execution of workflows, performance fluctuations, and reliability, pose as challenges to truly position clouds as viable
high-performance infrastructures for scientific computing. This paper presents a survey on cloud resource
management that provides an extensive study of the field. A taxonomy is proposed to analyze the selected works and
the analysis ultimately leads to the definition of gaps and future challenges to be addressed by research and
development.
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Introduction
Cloud computing evolved from the concept of utility
computing, which is defined as the provision of com-
putational and storage resources as a metered service,
similar to traditional public utility companies [92]. This
concept reflects the fact that modern information tech-
nology environments require the means to dynamically
increase capacity or add capabilities while minimizing the
requirement of investing money and time in the purchase
of new infrastructure.
Another key characteristic of cloud computing is multi-

tenancy, which enables resource and cost sharing among
a large pool of users [91]. This leads to the centralization
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of the infrastructure and consequent reduction of costs
due to economies of scale [123]. Moreover, the consolida-
tion of resources leads to an increased peak-load capacity
as each customer has access to a much larger pool of
resources (although shared) compared to a local cluster of
machines. Resources are more efficiently used, especially
considering that in a local setup they often are under-
utilized [45]. In addition, multitenancy enables dynamic
allocation of these resources which are monitored by the
service provider.
Characteristics such as multitenancy and elasticity per-

fectly fit the requirements of modern data intensive
research and scientific endeavors [28]. These require-
ments are associated to the continuously increasing power
of computing and storage resources that in many cases
are required on-demand for specific phases of an experi-
ment, therefore demanding elastic scaling. This motivates
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the utilization of clouds by scientific researchers as an
alternative to using in-house resources [22].
In parallel, as science becomes more complex and relies

on the analysis of very large data sets, data management
and processing must be performed in a scalable and auto-
mated way.Workflows have emerged as a way to formalize
and structure data analysis, execute the required com-
putations using distributed resources, collect information
about the derived data products, and repeat the analysis
if necessary [115]. Workflows enable the definition and
sharing of analysis and results within scientific collabo-
rations. In this sense, scientific workflows have become
an increasingly popular paradigm for scientists to handle
complex scientific processes [150], enabling and acceler-
ating scientific progress and discoveries.
Scientific workflows, like other computer applications,

can benefit from virtually unlimited resources with mini-
mal investment.With such advantages, workflow schedul-
ing research has thus shifted to workflow execution in the
cloud [111], providing a paradigm-shifting utility-oriented
computing environment with unprecedented size of data
center resource pools and on-demand resource provi-
sioning [150], enabling scientific workflow solutions to
address petascale problems.
One of the key enablers of this conjunction of cloud

computing and scientific workflows is resource manage-
ment [6], which includes resource provisioning, alloca-
tion, and scheduling [72]. Even small provisioning ineffi-
ciencies, such as failure to meet workflow dependencies
on time or selecting the wrong resources for a task, can
result in significant monetary costs [22, 135]. Provisioning
the right amount of storage and compute resources leads
to decisive cost reduction with no substantial impact on
application performance.
Consequently, cloud resource management for work-

flow execution is a topic of broad and current interest
[127]. Moreover, there are few researches on scheduling
workflows on real cloud environments, and much fewer
cloud workflow management systems, which require even
further academic study and industrial practice [127].
Workflow scheduling for commercial multicloud environ-
ments, for instance, still is an open issue to be addressed
[32]. In addition, data transfer between tasks is not
directly considered in most existing studies, thus being
assumed as part of task execution. However, this is not
the case for data-intensive applications [127], especially
ones from the big data era, wherein data movement can
dominate both the execution time and cost.

Objectives and contributions
This paper surveys over 110 publications on cloud
resource management solutions including resource pro-
visioning and task scheduling. The publications were
selected from conferences and journals using a systematic

search methodology. Our contributions include the def-
inition of a taxonomy used to classify and analyze the
publications. The taxonomy was created based on the
typical aspects covered by cloud resource management
solutions, such asmakespan and cost, as well as on aspects
pointed by existing works as future challenges for the area,
such as reliability and data-intensive loads. Our analysis
shows that little to nowork is found for specific areas, such
as security and dynamic allocation of resources, espe-
cially when combined to other aspects such as complex
infrastructures and workflow execution. Finally, applying
the proposed taxonomy to the publications selected we
provide a quantitative assessment of existing solutions,
highlighting the future challenges for the execution of
large-scale applications on cloud infrastructures.

Document organization
This paper is organized in five main sections. First
section, Concepts and definitions, presents the concepts
related to cloud resource management, including sev-
eral definitions and their consolidation. Second section,
Resource management taxonomy, presents the taxonomy
created to analyze the references selected for the sur-
vey. Third section, Survey, presents the results of the
survey, including further analysis of specific works to
identify gaps and challenges in the field Fourth section,
Gaps and challenges, presents the gaps and challenges to
be addressed by future research. Fifth and last section,
Conclusion, presents the conclusion of this work focus-
ing on the four main problems to be solved in cloud
computing resource management.

Concepts and definitions
Cloud computing is a model for enabling on-demand
self-service network access to a shared pool of elastic con-
figurable computing resources [76]. The model is driven
by economies of scale to reduce costs for users [36] and to
allow offering resources in a pay-as-you-go manner, thus
embodying the concept of utility computing [7, 8].
In its inception, cloud computing revolved around virtu-

alization as main resource compartmentalization or con-
solidation strategy [63, 85] to support application isolation
and platform customization to suit user needs [17, 18],
as well as to enable pooling and dynamically assign-
ing computing resources from clusters of servers [147].
The significant performance improvement and overhead
reduction of virtualization technology [81] propelled its
adoption as key delivery technology in cloud comput-
ing [24]. Nevertheless, developments on Linux Containers
and associated technologies [34, 77] led to the imple-
mentation of cloud platforms using lightweight containers
[44] such as Docker [66, 110] with smaller overhead com-
pared to virtual machines as containers only replicate the
libraries and binaries of the virtualized application [53].
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Resource management in a cloud environment is a chal-
lenging problem due to the scale of modern data centers,
the heterogeneity of resource types, the interdependency
between these resources, the variability and unpre-
dictability of the load, and the range of objectives of differ-
ent actors in a cloud ecosystem [52]. Moreover, resource
management comprises different stages or resources and
workloads. Due to its importance as fundamental building
block for cloud computing, several definitions and con-
cepts are found in the literature. The next subsections
explore these definitions and provide a consolidated view
of cloud resource management.

Singh and Chana
For [108] resource management in cloud comprises three
functions: resource provisioning, resource scheduling,
and resource monitoring.
Resource provisioning is defined by the authors as the

stage to identify the adequate resources for a particular
workload based on quality of service (QoS) requirements
defined by cloud consumers. This stage includes the dis-
covery of resources and also their selection for executing
a workload. The provisioning of appropriate resources to
cloud workloads depends on the QoS requirements of
cloud applications [21]. In this sense, the cloud consumer
interacts with the cloud via a cloud portal and submits
the QoS requirements of the workload after authentica-
tion. The Resource Information Centre (RIC) contains the
information about all the resources in the resource pool
and obtains the result based on requirement of workload
as specified by user. The user requirements and the infor-
mation provided by the RIC are used by the Resource
Provisioning Agent (RPA) to check the available resources.
After provisioning of resources the workloads are sub-
mitted to the resource scheduler. Finally, the Workload
Resource Manager (WRM) sends the provisioning results
(resource information) to the RPA, which forwards these
results to the cloud user.
Resource scheduling is defined as the mapping, alloca-

tion, and execution of workloads based on the resources
selected in the resource provisioning phase [109]. Map-
ping workloads refers to selecting the appropriate
resources based on the QoS requirements as specified
by user in terms of SLA to minimize cost and execution
time, for instance. The process of finding the list of avail-
able resources is referred to as resource detection, while
the resource selection is the process of choosing the best
resource from list generated by resource detection based
on SLA.
Resource monitoring is a complementary phase to

achieve better performance optimization. In terms of ser-
vice level agreements (SLA) both parties (provider and
consumer) must specify the possible deviations to achieve
appropriate quality attributes. For successful execution of

a workload the observed deviation must be less than the
defined thresholds. In this sense, resource monitoring is
used to take care of important QoS requirements like
security, availability, and performance. The monitoring
steps include checking the workload status and verify-
ing if the amount of required resources (RR) is larger
than the amount of provided resources (PR). Depend-
ing on the result more resources are demanded by the
scheduler. On the other hand, based on this result the
resources can also be released, freeing them for other allo-
cations. Consequently, the monitoring phase also controls
the rescheduling activities.

Jennings and Stadler
For [52] resource management is the process of allocating
computing, storage, networking and energy resources to
a set of applications in order to meet performance objec-
tives and requirements of the infrastructure providers
and the cloud users. On one hand, the objectives of the
providers are related to efficient and effective resource uti-
lization within the constraints of SLAs. The authors claim
that efficient resource use is typically achieved through
virtualization technologies, facilitating themultiplexing of
resources across customers. On the other hand, the objec-
tives of cloud users tend to focus on application perfor-
mance, their availability, as well as the cost-effective scal-
ing of available resources based on application demands.
The cloud provider is responsible for monitoring the

utilization of compute, networking, storage, and power
resources, as well as for controlling this utilization via
global and local scheduling processes. In parallel, the
cloud user monitors and controls the deployment of its
applications on the virtual infrastructure. Cloud providers
can dynamically alter the prices charged for leasing the
infrastructure while cloud users can alter the costs by
changing application parameters and usage levels. How-
ever, the cloud user has limited responsibility for resource
management, being constrained to generating workload
requests and controlling where and when workloads are
placed.
The authors distinguish the roles of cloud user from

end user. The end user generates the workloads that are
processed using cloud resources. The cloud user actively
interacts with the cloud infrastructure to host applications
for end users. In this sense, the cloud user acts a broker,
thus being responsible for meeting the SLAs specified by
the end user. Moreover, the cloud user is mostly interested
in meeting these requirements in a manner to minimize
its own costs of leasing the cloud infrastructure (from the
cloud provider) while maximizing its profits.
From a functional perspective, the end user initiates

the process by providing one or more workload requests
to the workload scheduling component. The requests
are relayed to the workload management component
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provided by the cloud user (broker). The application is
submitted to a profiling process that dynamically defines
the pricing characteristics, also defining the metrics to be
monitored during execution and the objectives (SLAs) to
be observed. The cloud user defines the provisioning to be
obtained from the cloud provider. The provider receives
the requests via a global provisioning and scheduling com-
ponent that also profiles the requests in order to deter-
mine the pricing attributes (this time from cloud provider
to cloud user). Moreover, the application is characterized
in order to obtain monitoring metrics and objectives from
the cloud provider point of view. Finally, the global pro-
visioning and scheduling element submits requests for
the local handler, estimating the resource utilization and
executing the workloads.

Manvi and Shyam
For [72] resource management comprises nine compo-
nents:

• Provisioning: Assignment of resources to a workload.
• Allocation: Distribution of resources among

competing workloads.
• Adaptation: Ability to dynamically adjust resources

to fulfill workload requirements.
• Mapping: Correspondence between resources

required by the workload and resources provided by
the cloud infrastructure.

• Modeling: Framework that helps to predict the
resource requirements of a workload by representing
the most important attributes of resource
management, such as states, transitions, inputs, and
outputs within a given environment.

• Estimation: Guess of the actual resources required
for executing a workload.

• Discovery: Identification of a list of resources that are
available for workload execution.

• Brokering: Negotiation of resources through an agent
to ensure their availability at the right time to execute
the workload.

• Scheduling: A timetable of events and resources,
determining when a workload should start or end
depending on its duration, predecessor activities,
predecessor relationships, and resources allocated.

The authors did not explicitly defined the roles or actors
related to cloud management activities. The implicit roles
in this sense are the cloud provider (responsible for man-
aging the cloud infrastructure) and the cloud user (inter-
ested in executing one or more workloads on the cloud
infrastructure). QoS is regarded as fundamental part of
the resource management premises. In contrast, the SLAs
are not explicitly defined as building block for resource
management tasks.

Other definitions
For [80], resource management is a process that deals
with the procurement and release of resources. More-
over, resource management provides performance isola-
tion and efficient use of underlying hardware. The authors
state that the main research challenges and metrics of
resource management are energy efficiency, SLA viola-
tions, load balancing, network load, profit maximization,
hybrid clouds, and mobile cloud computing. No spe-
cific remark to cloud roles or to quality of service are
made, although the solutions covered by the survey might
present QoS related aspects.
For [75], resource management is a core function of

cloud computing that affects three aspects: performance,
functionality, and cost. In this sense, cloud resource
management requires complex policies and decisions for
multi-objective optimization. These policies are orga-
nized in five classes: admission control, capacity alloca-
tion, load balancing, energy optimization, and quality of
service guarantees. The admission policies prevent the
system from accepting workloads in violation of high-
level system policies (e.g., a workload that might prevent
others from completing). Capacity allocation comprises
the allocation of resources for individual instances. Load
balancing and energy optimization can be done either
locally or globally, and both are correlated to cost.
Finally, quality of service is related to addressing require-
ments and objectives concerning users and providers.
SLA aspects are not explicitly considered in this set of
policies.
For [125], resource management is related to predict-

ing the amount of resources that best suits each workload,
enabling cloud providers to consolidate workloads while
maintaining SLAs.
For [69], resource management comprises two main

activities: matching, which is the process of assigning a job
to a particular resource; and scheduling, which is the pro-
cess of determining the order in which jobs assigned to a
particular resource should be executed.

Intercorrelation and consolidation
Table 1 presents a summary of the resource manage-
ment definitions. The table presents the works analyzed
for the study of definitions of resource management, a
summary of the viewpoints from each work, which are
the actors identified in each work, and whether aspects
related to Quality of Service and Service Level Agree-
ments are mentioned and considered in the works or not.
The importance of identifying these aspects is to analyze
the similarities and disparities among the works to allow a
better understanding of the definitions.
Some works treat resource management and resource

scheduling as the same concept. For instance, [127]
present a survey focusing on resource scheduling that also
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Table 1 Summary of resource management definitions, actors, and QoS/SLA aspects considered in each definition

Work Summary Actors QoS SLA

[108] Three phases: provisioning, scheduling,
monitoring

Cloud provider (infra. and workload mgmt.)
and cloud consumer (end user)

Yes Yes

[52] Organized in three tiers (one per role) and
a total of 15 different stages, including
scheduling, provisioning, pricing, profiling,
and monitoring.

Cloud provider (infra. mgmt.), cloud user
(broker), end user (execute workload)

Yes Yes

[72] Nine components: provisioning, allocation,
adaptation, mapping, modeling, estimation,
discovery, brokering, and scheduling

No specific actors are identified; implicit
assumption of at least two roles: cloud
provider and cloud user

Yes No

[80] Two tasks: procurement and release of
resources. Two objectives: performance
isolation and efficient use of hardware. Seven
metrics: energy, SLA, load, network load,
profit, hybrid clouds, and mobile clouds.

No specific actors are identified; implicit
assumption of at least two roles: cloud
provider and cloud user

No Yes

[75] Three aspects affected: performance,
functionality, and cost. Five policy classes:
admission control, capacity allocation, load
balancing, energy optimization, and QoS.

Cloud provider and cloud user. Yes No

[125] Predicting workload to enable workload
consolidation while meeting SLAs.

No specific actors Yes Yes

[69] Two main activities: matching and
scheduling.

No specific actors Yes Yes

comprises several of the components proposed by [72],
such as provisioning, allocation, and modeling.
Three definitions were selected due to their clear defi-

nition of steps and components of resource management.
Table 2 provides a summary of the phases or steps pro-
posed by each definition.
While the definition from [72] proposes more steps

than the others, there is a natural correlation between the
phases proposed by each definition. Table 3 presents the
correlation between the phases from [108] and the other
two. The objective of this table is to fit the steps proposed
by [52] and by [72] into the steps from [108], which rep-
resents a simpler classification of resource management
tasks.
Comparing [52] to [108], the workload profiling (to

assess the resource demands), pricing, and provisioning
steps defined by [52] fit the provisioning step from [108],
which is essentially the phase to identify the resources for
a particular workload based on its characteristics and on
the QoS. This includes the selection of resources to exe-
cute the workload. These aspects fit the steps of discovery,
modeling, brokering, and provisioning from [72]. Note

Table 2 Explicit phases or steps proposed in each definition

Work Explicit phases or steps

[108] Provisioning, Scheduling, Monitoring

[52] Profiling, Pricing, Provisioning, Estimation, Scheduling,
Monitoring

[72] Provisioning, Allocation, Adaptation, Mapping, Modeling,
Estimation, Discovery, Brokering, Scheduling

that the brokering aspect is also implicitly included in the
definition from Jennings and Stadler, as they define a spe-
cific role for the brokering activity (the cloud user; the end
user is the actor that has a workload to be executed in the
cloud).
The scheduling phase from [108] are organized in esti-

mation and scheduling by [52]. Manvi and Shyam [72]
include an allocation step to these two. In summary, these
steps represent the mapping, allocation, and execution
of the workload based on the resources selected in the
provisioning phase.
Finally, the monitoring phase is present in [108] and in

[52]. For [72] the monitoring tasks are implicitly included
by the adaptation step, which is related to dynami-
cally adjusting resources to fulfill workload requirements.
Because it is necessary to monitor both resource avail-
ability and workload conditions in order to provide this
feature, this means that this step directly relies on some
form of monitoring.
In terms of consolidation, the common point of all defi-

nitions is the aspect of managing the life cycle of resources

Table 3 Correlation between steps defined in [52] and [72]
compared to [108]

[108] [52] [72]

Provisioning Profiling, Pricing,
Provisioning

Discovery, Modeling,
Brokering, Provisioning

Scheduling Estimation, Scheduling Estimation, Mapping,
Allocation, Scheduling

Monitoring Monitoring Adaptation
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and their association to the execution of tasks. This is the
central governing point of cloud resource management
which is independent of a specific phase of this life cycle.
While it is fundamental to distinguish each phase, they all
contribute to two ultimate purposes:

• Enable task execution; and
• Optimize infrastructural efficiency based on a set of

specified objectives.

These are the key points of interest of this work, there-
fore comprising not only the specific task of schedul-
ing resources (i.e., associating them to a task), but also
managing the resource from its initial preparation (e.g.,
discovery) to its utilization and distribution.

Resourcemanagement taxonomy
Because of its relevance, cloud computing resource man-
agement is a topic that not only has a lot of work and
research, but also existing surveys and taxonomies. This
section presents an analysis of existing taxonomies used
to classify the resource management solutions. Finally, we
present the taxonomy proposed for classifying the works
analyzed in this survey.

Relevant work
Bala and Chana [9] definee nine categories to classify
resource management and scheduling solutions: time,
cost, scalability, scheduling success rate, makespan, speed,
resource utilization, reliability, and availability. Among
these categories, time, speed, and makespan are directly
correlated. Resource utilization is related to the effi-
ciency of utilization of resources, which is a fundamen-
tal aspect of any algorithm. Reliability and availability
aspects, although defined as categories, were not identi-
fied in any of the solutions analyzed by the authors.
Sotiriadis et al. [112] classify the solutions in terms of

flexibility, scalability, interoperability, heterogeneity, local
autonomy, load balancing, information exposing, real-
time data, scheduling history records, unpredictability
management, geographical distribution, SLA compatibil-
ity, rescheduling, and intercloud compatibility. Several
properties are relevant for heterogeneous environments,
such as local autonomy and geographical distribution.
Others are correlated, such as scalability, unpredictability
management, and rescheduling.
Wu et al. [127] use nine categories to classify their

references:

• Best-effort : Optimize one objective while ignoring
other factors such as QoS requirements.

• Deadline-constrained : Scheduling based on the
trade-off between execution time and monetary cost
under a deadline constraint.

• Budget-constrained : The objective is to finish a
workflow as fast as possible at given budget.

• Multi-criteria: Several objectives are taken into
account.

• Workflow-as-a-service: Multiple workflow instances
submitted to the resource manager.

• Robust scheduling: Able to absorb uncertainties such
as performance fluctuation and failure.

• Hybrid environment: Able to address requirements
of hybrid clouds.

• Data-intensive: Data-aware workflow scheduling.
• Energy-aware: Able to save energy while optimizing

execution.

The authors also mention other properties such as
makespan (which fits the Best-Effort category). Moreover,
the multi-criteria category represents the convergence
of several objective functions, such as cost and perfor-
mance. Workflow-as-a-Service (WaaS) is the scheduling
of multiple workflows onto a cloud infrastructure. Robust
scheduling refers both to reliability and to performance
fluctuations, both factors that can affect the perfor-
mance and consequently the effectiveness of a schedule.
Finally, hybrid environments, data-intensive workflows,
and energy-aware scheduling represent the novel chal-
lenges in terms of cloud scheduling resource management
according to the authors.
Singh and Chana [108] define a taxonomy based on

twelve properties:

• Cost-based : Organized in multi-QoS,
virtualization-based, application-based, and
scalability-based.

• Time-based : Organized in deadline-based and
combination of deadline and budget.

• Compromised Cost-Time: Based either on workflows
or workloads.

• Bargaining-based : Organized in market-oriented,
auction, and negotiation.

• QoS-based : Based on several QoS aspects, including
security and resource utilization.

• SLA-based : Based on several SLA types, including
workload and autonomic aspects.

• Energy-based : Combined with deadlines and SLAs.
• Optimization-based : Optimization of several

combinations of parameters.
• Nature Inspired and Bio-Inspired : Including genetic

algorithms and ant colony approaches.
• Dynamic: Several combinations of aspects with

dynamic management.
• Rule-based : Special cases for failures and hybrid

clouds.
• Adaptive-based : Prediction-based and Bin-Packing

strategies.
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Several of the categories have direct correlations, and
some are used to combine the aspects covered in other
categories, such as optimization-based and the dynamic
category.

Proposed taxonomy
The consolidated taxonomy focuses on addressing the
requirements of heterogeneous environments composed
by multiple environments (e.g., hybrid clouds and mul-
ticloud scenarios), with data-intensive workflows and
high level of dynamic mechanisms. Also, properties from
prior work were selected by identifying the common-
alities between the works analyzed and also based on
future challenges for large-scale execution of applications
and workflows, such as data-intensive workflows, hybrid
and multicloud scenarios, performance fluctuation, and
reliability.

• Makespan/Time: encompasses all aspects related to
run time and time-based optimization.

• Deadline: encompasses aspects also related to time
but associated to predefined limits to finish a
workflow – the central idea is not to finish the
execution of a workflow as fast as possible, but simply
to address a specific deadline and possibly save
resources (i.e., reduce resource allocation) as long as
the deadline is met.

• Cost/Budget : encompasses all aspects related to
financial cost and benefits, such as cost minimization
and budget limitation.

• Data-Intensive: works that effectively encompass one
or more aspects inherent to data-intensive workflows.

• Dynamic: works that employ some form of dynamic
mechanism to continuously adjust the scheduling
decision. This is a typical method to address issues
related to unpredictability, such as performance
fluctuation.

• Reliability: works that encompass some form of
reliability-related aspect, such as selecting nodes in a
way to minimize the chances of failure, or providing
mechanisms to circumvent failures.

• Security: works that consider any aspect of security
(in the sense of confidentiality).

• Energy: energy-aware scheduling mechanisms.
• Hybrid/Multicloud : works that address requirements

of hybrid clouds and multicloud scenarios.
• Workload/Workflow: works that address

requirements for scheduling workflows on clouds.

Compared to the other taxonomies, the proposed one
encompasses some of the fundamental properties con-
nected to the QoS components that govern the scheduling
decisions, such as makespan, cost, deadline, energy, etc.
These properties are fully or at least partially covered by

the other taxonomies, such as [9], with cost, makespan,
and reliability; [112], with unpredictability management
(closely related to dynamic properties and reliability) and
rescheduling; [127], with deadline, budget, reliability, and
energy; and [108], with cost, time, and energy. In addi-
tion, the proposed taxonomy encompasses some of the
attributes of interest to this work, such as hybrid and
multicloud aspects, and workflow resource management.

Survey
The method used to identify the surveys and other
related work is based on searches performed in the fol-
lowing engines: IEEE Xplore, ACM Digital Library, Sci-
enceDirect, Scopus, and Google Scholar. Moreover, two
main search queries were used: “cloud scheduling survey”
and “cloud resource management survey” (both without
quotes). Some results were immediately discarded, such as
ones addressing mobile cloud computing or other specific
scenarios, such as Internet of Things and sensor networks.
The focus of this analysis is to identify the surveys and
taxonomies for cloud computing resource management
focusing on five aspects: data-intensive loads, dynamic
management, reliability, hybrid/multicloud scenarios, and
workflow management. Works that do not cover at least
one of these topics were not further analyzed, unless they
represent solutions that led to the creation of others that
do cover these aspects, such as DCP [57] and HEFT [117].
This led to selection of 113 works related to resourceman-
agement and task scheduling with the majority focusing
on cloud computing and a few works on distributed sys-
tems, such as [51] and [105]. The Table 4 shows the works,
their highlights (very brief summary of contributions or
main aspects addressed), and whether each category of
the taxonomy was addressed or not. For each category
three levels were considered:

• Fully addressed: The work provides a solution that
focuses on addressing the specific aspect, with clear
mechanisms to cover it and potentially with
experiments showing the effectiveness. For instance,
[15] explicitly defines mechanisms to address the
requirements of hybrid clouds.

• Partially addressed: The work provides mechanisms
that could be used to address the specific aspect, even
if not explicitly mentioned in the work. For instance,
[42] does not directly address deadline and cost
aspects, but the solution proposed could be used to
cover them with slight operational modifications.

• Not addressed: The work does not address the aspect.

The majority of the works focus on aspects related to
cost and time, such asmakespan deadline-based solutions.
Among them, makespan is addressed by 44 works (39%),
deadlines are addressed by 31 works (27%), and cost is
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Table 4 Summary of identified related work classified using the consolidated taxonomy
Work Highlights MK DL CT DT DY RL SC EN HM WL

[105] Dynamic level scheduling (DLS) x . . o x . . . . x

[126] Wide-area scheduling with dynamic load balancing . . . x x . . . o .

[57] Dynamic Critical Path (DCP) o . . . x . . . . x

[99] Integration to conventional schedulers. . . . . . . . . o .

[2] ELISA, decentralized dynamic algorithm . . . . x . . . o .

[51] Hierarchical scheduling o . . . . . . . . o

[27] Federation of resource traders . . . . . . . . o .

[117] HEFT (Heterogeneous Earliest Finish Time) x . . . . . . . . .

[113] Redundantly distribute job to multiple sites to increase back-
filling

. . . . . . . . o .

[30] Performance and reliability optimization x . x . x x . . . x

[16] Reduce maximum job waiting time in the queue x . . . . . . . o .

[3] Community of peers for brokering . . . . o . . . o .

[49] Fault-tolerant scheduling . . . . . x . . . x

[79] Dynamic, deadline, energy . x . . x . . x . x

[97] Rescheduling policies x . o . x . . . . x

[58] Auction-based scheduling. . . . . . . . . o .

[138] Deadline partitioning . x o . . . . . . x

[121] Dynamic voltage scaling . x o . o . . x . x

[137] Genetic algorithm to optimize cost with deadline constraint . x x . . . . . . x

[149] Merge multiple DAGs x . . . . . . . . x

[104] Makespan and robustness x . . . . x . . . x

[102] Load balancing on arrival . . . . o . . . o .

[98] LOSS and GAIN approaches x . x . . . . . . x

[43] Performance and reliability optimization x . . . . x . . . x

[31] Reliable HEFT x . . . . x . . . x

[139] Minimize execution time and cost x x x . . . . . . x

[71] Dynamic scheduling . . . . x o . . . x

[90] Dynamic storage mgmt. o . . x . . . . . x

[55] Energy and deadline . x . . o . . x . x

[145] Forecast prototype and SLA compensation . . x . . . . . . .

[146] Historical information, forecasting . . x . . . . . . .

[47] Delegated matchmaking, local vs remote usage . o . . o . . . o .

[29] Improve average response time o . . . . . . . o .

[142] Float time amortization . x o . . . . . . x

[142] Based on HEFT x . . . . . . . . x

[83] Bandwidth speedup, data-intensive o . . x . . . . . x

[89] Makespan and energy x . . . . . . x . x

[133] MQMW (Multiple QoS scheduling of Multi-Workflows) x . x . x . . . . x

[84] RASA (Resource-Aware Scheduling Algorithm x . . . . . . . . .

[59] Decentralized model that improves makespan x . . . . . . . o .

[35] Fuzzy approach for decentralized grids o . . . . . . . o .

[93] Backfilling strategy based on dynamic information x . . . x . . . o .

[23] Ant Colony Optimization x x x . . x . . . x

[140] Path-based deadline partition . x . . . . . . . x
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Table 4 Summary of identified related work classified using the consolidated taxonomy (Continued)

[141] Greedy time-cost distribution . . x . . . . . . x

[61] Optimize makespan and resource utilization x . . . x . . . . x

[114] Similar to YU et al., 2007 x x x . . . . . . x

[13] Data staging x o . x . . . . . x

[96] QoS-aware, cost and execution time x . x . . . . . . .

[153] Based on genetic algorithm; increase resource utilization . . . . x . . . . .

[100] Cost-based . . x . . . . . . .

[67] Time-cost-based, instance-intensive workflows x x x . . . . . . x

[82] Particle swarm optimization heuristic; . . . x x . . . . x

[94] Brokering for multiple grids. . . . . . . . . o .

[122] Bidding system for resource selection o . . . . . . . . .

[128] PSO to minimize cost with deadline constraint o x x . . . . . . x

[39] Optimize makespan and cost x . x . . . . . . x

[88] Dynamic programming x . x . . x . . . x

[25] Dynamic scheduling . . . . x o . . . x

[11] Energy efficiency . . . . o . . x . .

[131] Reputation-based QoS provisioning o o x . . . . . . .

[74] Deadline, budget, auto-scaling . x x . o . . . . .

[64] SHEFT (Scalable HEFT) x . . x x . . . . x

[119] OWS (Optimal Workflow Scheduling); x . . . . . . . . x

[132] Justice-based scheduling x . . . o . . . o .

[151] Budget-constrained HEFT . . x . x . . . . x

[62] CCSH to minimize makespan and cost x . x . . . . . . x

[19] Deadline optimization based on delaying . x . . x . . . . x

[73] Multiple DAGs; deadline-based o x o . x . . . . x

[15] Hybrid clouds; iteratively resch. tasks until mksp.; deadline x x o . x . . . x x

[60] Makespan and energy x . . . . . . x . x

[78] Makespan and energy x . . . o . . x . x

[116] MapReduce on public clouds . x x . . . . . . .

[50] Multi-tier applications o . o . . . . . . .

[143] Auction-based, cloud-provider viewpoint . . . . . . . . . .

[40] Heterogeneous workloads . x . . . . . . . .

[54] SLA management, improve resource utilization . o o . . . . . . o

[107] Multi-cloud, cost optimization . . x . . . . . x .

[37] Multi-objective, cost constraints . . x . . . . . x .

[144] Backtracking and continuous cost evaluation o . x . x . . . . x

[33] Multi-objective scheduling x . x o . x . x . x

[12] Pareto-based; execution time and cost x . x . . . . . . x

[118] Combination of DAG merging techniques x . . . . . . . . x

[70] Auto-scaling of resources o x x o . . . . . x

[124] Fault-tolerant scheduling . x x . o x . . . x

[120] Deadline-driven, scientific applications, hybrid clouds . x . . . . . . x o

[148] Energy-aware, scheduling delay . o . . o . . x . .

[20] Aneka platform; QoS-driven, hybrid . x . . o . . . x .

[48] Cost minimization, deadline . x x . . . . . . .

[26] Negotiation/bargaining . x x . . . . . . .
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Table 4 Summary of identified related work classified using the consolidated taxonomy (Continued)

[129] Market oriented x . x . . . . . . x

[46] Community-aware decentralized dynamic scheduling o . . . o . . . o .

[1] Partial Critical Path (PCP) o x o . . . . . . x

[65] Minimize end-to-end delay o . x . . . . . . x

[152] Monte Carlo approach x . o . x . . . . x

[103] Power aware scheduling x . . . o . . x . x

[134] Particle swarm optimization x . x . o . . x . x

[130] Data-intensive, energy-aware x . . x o . . x . x

[42] Rule-based . o o . . . . . x .

[38] Energy, deadline . x o . . . . x . .

[41] Bag of tasks, time and cost x . x . . . . . . .

[106] SLA-based cost model; power o . x . . . . o . .

[136] Cost management . . o . . . . . . .

[5] Predict Earliest Finish Time (PEFT) x . . o . . . . . x

[14] Cat Swarm Optimization . . x x . . . . . x

[95] PSO considering performance variation and VM boot time . x x . x . . . . x

[4] Aggregation-based budget distribution . . x . . . . . . x

[87] Critical-path heuristic x x x . . x . . . x

[86] Spot instances . x x . x x . . . x

[10] Fault-tolerance . . x . o x . . . .

[56] Behavioral-based estimation . . o . x . . . . .

[154] Multiple workflows, optimize time and cost x x x . . . . . . x

[68] Multi-cloud, enhanced workflow model o x x x . . . . x x

MK = Makespan/Time; DL = Deadline; CT = Cost/Budget; DT = Data-Intensive; DY = Dynamic; RL = Reliability; SC = Security; EN = Energy; HM = Hybrid/Multicloud;
WL = Workload/Workflow; . = Not addressed; x = Fully addressed; o = Partially addressed

addressed by 43 works (38%). In contrast, none of solu-
tions address security aspects related to confidentiality,
such as safe zones to execute code and to store sensitive
data.
Regarding support for workflows and workloads, 64

works (57%) provide some level of support to execute
workflows using the resource management solution pro-
posed. However, when combined to aspects related to
dynamic placement and replacement of resources and
tasks, only 19 (17%) provide support for both aspects
(dynamic execution of workflows). Combining workflow
support to data-intensive workflows leads to only 8 works
(7%). Finally, combining workflow support to hybrid and
multicloud scenarios, only 2 works (2%) address both
aspects. None of the works combine workflow sup-
port, data-intensive loads, hybrid and multicloud scenar-
ios, dynamic scheduling and rescheduling, and reliability
aspects.
Data-intensive loads are explicitly supported by only

9 works (8%). Hybrid and multicloud scenarios are
supported by 7 works (6%). This analysis reveals that
while there are works addressing these aspects in sep-
arate, none provide explicit support for all aspects

of interest and regarded as challenges for future
deployments.

Further analysis
This subsection presents the works that were selected for
further analysis to identify gaps and future challenges for
cloud resource management regarding the execution of
large-scale applications and workflows. The analysis of
these works is summarized by Table 5.
Pandey et al. [82] propose a heuristic based on PSO that

considers both computation and data transmission costs.
The workflow is modeled as a DAG. Transfer cost is calcu-
lated according to the bandwidth between sites. Average
cost of communication between two resources is consid-
ered to be applicable only when two tasks have file depen-
dency between them. For two or more tasks executing on
the same resource the communication cost is assumed to
be zero. This implies no cost relative to sequential accesses
to a file (e.g., the input file), but a rather uniform distri-
bution of content among nodes. On the other hand, for
a data-intensive workflow with large inputs and several
I/O-heavy intermediary phases, even the cost of access-
ing resources on the same node cannot be overlooked.
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Table 5 Summary of further analysis

Work Data transfers and
imbalance

Dynamic scheduling Hybrid and Multicloud Workflow support

PANDEY et al., 2010 Transfers are evaluated
via workflow DAG and
resource allocation;
transfer imbalance is not
addressed.

Only addresses
fluctuations in the
transfer costs. Other
aspects such as
performance fluctuations
and reliability are not
mentioned.

No explicit support or
experiments.

Modeled as DAGs;
richer characterizations
are not supported.

LIN; LU, 2011 Transfer capacity of nodes
in the same network are
assumed to be uniform.
Transfer imbalance is
discarded.

Not addressed. No explicit support or
experiments

Supported; no details
included.

XU et al., 2009 Transfers and data
properties are not
explicitly addressed.

Not addressed. No explicit support or
experiments.

Multiple workflows
supported via common
merging point; simple
DAG modeling.

WEISSMAN; GRIMSHAW, 1996 Data locality is a
scheduling constraint;
worker must be assigned
closer to data.

Two levels: local and
global. Rescheduling is
first handled on local level.
Details are not provided.

Design for wide-area
systems (pre-dates cloud
computing).

No explicit support.

CHEN; ZHANG, 2009 Data communication and
transfers are not explicitly
addressed.

Not addressed. No explicit support or
experiments.

Simplified DAG model
without edge costs.

RODRIGUEZ; BUYYA, 2014 Rigidly modeled; fixed
costs for transfers and no
cost for local I/O.

Not addressed. Not addressed. DAG with fixed transfer
costs and computation
costs based on FLOPS.

FARD et al., 2012 Transfers are considered
but contention effects are
not. Energy calculations
ignore transfer times.

Not addressed. No explicit support or
experiments.

DAG with fixed transfer
costs; not details on task
costs.

MALAWSKI et al., 2012 Algorithm does not
consider the size of input
data; transfer time is part of
computation.

Initial scheduling plus
periodic adjusting
depending on amount of
idle resources.

No explicit support or
experiments.

DAG with fixed transfer
costs and computation
costs with slight
variability.

SAKELLARIOU; ZHAO, 2004 Linear variation to amount
of input data size.

Immediately before
execution of tasks and
bound to a condition
to minimize number of
reschedules.

Not addressed; solution
originally designed for
grids.

DAG with computation
and transfer costs
modeled with linear
variation w.r.t. amount
of input.

WANG; CHEN, 2012 Not addressed. DAG does
not specify transfer costs.

Not addressed. No explicit support. DAG with tasks and
implicit costs. No
transfer
costs and no more
complex
characterization.

POOLA et al., 2014a Based on data size and one
value for network
bandwidth.

Not addressed. No explicit support. DAG with task cost
based on number of
instructions.

BITTENCOURT; MADEIRA, 2011 Based on data size and
fixed network bandwidth
values among nodes.

Two-step scheduling:
static, then including
public cloud to address
deadline.

Initial scheduling step
considers private
resources; public
resources are used if
necessary.

DAG with compute cost
based on number of
instructions.

VECCHIOLA et al., 2012 Not specified. Not addressed. Public resources used if
necessary.

Supported, but no
details provided.

In terms of dynamic scheduling the authors claim that
when it is not possible to assign tasks to resources due to
resource unavailability, the recomputation phase of PSO

dynamically balances other tasks’ mappings. However,
there is no explicit mention to dynamically (re)scheduling
based on other aspects, such as performance fluctuations
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and reliability issues. Workflow support is limited to the
usual DAG-based description wherein computation costs
of a task on a compute host is a known information and
edges represent the communication among phases. This
representation provides a limited amount of information
regarding the workflow, such as performance fluctuation
due to branches and other logic, requirements related to
memory and local storage, and the actual performance
observed when executing one of the phases on a node.
Lin and Lu [64] propose an algorithm named SHEFT,

Scalable HEFT (Heterogeneous Earliest Finish Time). The
authors claim that resources within one cluster usually
share the same network communication, so they have the
same data transfer rate with each other.While there might
be network utilization fluctuations during the execution
of a workflow (and even in idle state) that invalidate this
assumption, the fact is that even locally (in the same node)
there is data access imbalance due to contention – concur-
rency to access the same resources, in this case I/O. For
example, if two containers (or virtual machines) located
in the same node attempt to access a file or a network
stream, they will naturally compete for resources. There
is not clear support to dynamic scheduling to address
reliability-related issues or performance fluctuations. The
solution supports workflows but there are no details on
how workflows are modeled or mapped into execution
space.
Xu et al. [133] propose MQMW, a Multiple QoS con-

strained scheduling strategy of Multi-Workflows. Four
factors that affect makespan and cost are selected: avail-
able service number, time and cost covariance, time quota,
and cost quota. Workflows are modeled as DAGs but
no specific information about the modeling is provided.
The approach adopted by the authors to support multi-
ple workflows is based on the creation of composite DAGs
representingmultiple workflows. DAG nodes with no pre-
decessors (e.g., input nodes) are connected to a common
entry node shared by multiple workflows. In this sense,
newworkflows to be executed are joined via a singlemerg-
ing point. Finally, there is no explicit support to dynamic
scheduling or heterogeneous environments.
Weissman and Grimshaw [126] propose a schedul-

ing solution for heterogeneous environments (wide-area
systems) that encompasses data-intensive and dynamic
scheduling properties. The solution also maintains local
autonomy for scheduling decisions – remote resources
are explored only when appropriate. Moreover, accord-
ing to the authors the unpredictability of resource shar-
ing in large distributed areas requires scheduling to be
deferred until runtime. For data-intensive properties, it is
assumed that the system infrastructure is able to access
data and files independent of location. If data needs to be
transported (e.g., jobs scheduled in a site that does not
have direct access to needed data), the scheduling system

assumes that data transport cost can be amortized over
the course of job execution. This is not always possible as
even local transfers can be expensive, especially if multi-
ple local workers shared the same resources – a common
scenario for cloud environments, with a high density of
worker elements per physical node.
Chen and Zhang [23] use the Ant Colony Optimiza-

tion (ACO) metaheuristic that simulates the pheromone
depositing and following behavior of ants and it is
applied to numerous intractable combinatorial optimiza-
tion problems. QoS parameters are based on reliability,
makespan, and cost. Reliability is defined as the minimum
reliability of all selected service instances in the workflow.
The actual reliability aspects or metrics used in the calcu-
lations, however, are not disclosed. Data communication
and transfers are not explicitly addressed in the paper.
Rodriguez and Buyya [95] propose a resource provi-

sioning and scheduling solution for execution of scientific
workflows on cloud infrastructures. The solution is based
on particle swarm optimization aiming at minimizing exe-
cution cost while meeting deadline constraints. The gen-
eral approach adopted by the authors is similar to the one
from [82]. Virtual machines are assumed to have a fixed
compute capacity (measured in FLOPS), although some
degree of performance variation due to degradation is
considered in their model. In addition, the authors assume
that workflows are executed on a single data center or
region, and as a consequence the bandwidth between each
virtual machine should be roughly the same. However, this
might not be true even for a set of nodes connected to
the same switch, especially during phases wherein several
demanding data transfers are executed among nodes – for
example, when inputs are distributed to all worker nodes.
Finally, the transfer cost between two tasks being executed
on the same virtual machine is assumed to be zero, while
the actual communication can be much more expensive
than that, especially if it is via file I/O. The workflowmod-
eling is based on a DAG with fixed transfer costs (edges).
Task costs are calculated based on the size of the taskmea-
sured in FLOPS. The cost of a task, consequently, depends
on the computational complexity of this task instead of the
input data. Of course the number of FLOPS can be calcu-
lated based on the size of the input data, but no remarks
are made in that sense. No other properties are defined,
such as performance variation due to branching and input
sizes.
Fard et al. [33] propose a multi-objective scheduling

solution and present a case study comprising makespan,
cost, energy, and reliability. The workflow is modeled
as a very simple DAG with fixed size data dependen-
cies among tasks. Nodes are modeled as a mesh network
wherein each point-to-point connection has a different
bandwidth. Cost is modeled as a sum of computa-
tion, storage, and transfer costs. Energy consumption is
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modeled only after the compute phases of the workflow.
The authors state that their focus is on computational-
intensive applications, thus only the computation part
of the activities are considered in the energy consump-
tion calculation, while “data transfers and storage time are
ignored”. Finally, reliability is modeled using an exponen-
tial distribution representing the probability of successful
completion of a task.
Malawski et al. [70] investigate the management of

workflow ensembles under budget and deadline con-
straints on clouds. The authors state that although work-
flows are often data-intensive, the algorithms described
do not consider the size of input and output data when
scheduling tasks”. In other words, the scheduling cost is
uniquely based on computation time. The authors com-
plement by stating that data is stored in a shared cloud
storage system and that intermediate data transfer times
are included in task run times – transfer time is modeled
as part of computation time. It is also assumed that data
transfer times between the shared storage and the VMs
are equal for different VMs so that task placement deci-
sions do not impact the runtime of the tasks. It is clear,
then, that any issues related to contention, performance
variation due to network and I/O bandwidth utilization
shared among several worker nodes and virtual machines,
and the impact of sequentially distributing input among
workers are partially or entirely overlooked depending on
the case.
Sakellariou and Zhao [97] propose a scheduling

mechanisms that considers executing carefully selected
rescheduling operations to achieve better performance
without imposing a large overhead compared to solu-
tions that dynamically attempt to reschedule before the
execution of every task. While the proposal is designed
for grid computing, the ideas related to the selection of
points of interest to execute the rescheduling operation
is relevant also for cloud environments. The resource and
workflow models adopted by the authors imply a funda-
mental simplification of how computation and transfer
costs are calculated. Each task has a different cost for
each machine, expressed as time per data unit. Although
this attempts to model performance differences between
nodes, this implies that the computation cost of each task
linearly varies with the amount of input data. In con-
trast, if the assumption is that the costs are expressed
as a fixed amount, then they are simply fixed to a value
assuming a certain amount of input. Both cases do not
consider a more sophisticated workflow model in which
computation and communication costs vary according
to the size of input data not linearly, but expressed
as a general function that can be either predefined or
dynamically obtained. This modeling affects both the
initial static schedule and also subsequent rescheduling
operations.

Wang and Chen [124] propose a cost function that
considers the robustness of a schedule regarding the prob-
ability of successful execution. Based on the paper, failure
is considered to be any event that leads to abnormal ter-
mination of a task, and consequent loss of all workflow
progress thus far. Afterwards the cost function is used
in conjunction with a genetic algorithm to find an opti-
mized schedule that maximizes its robustness. However,
in the definition of the cost of failure function the authors
assume that the potential loss in the execution cost of each
task is independent of the other workflow tasks. In other
words, a failure always has a local scope, without possi-
bility of chaining impact outside the workflow. Moreover,
there is no workflow characterization in terms of data
transfers and task costs. Robustness or failure rates are
not specified or tied to a specific property such as MTBF
(Mean Time Between Failures).
Poola et al. [86] propose a fault-tolerant workflow

scheduling using spot and on-demand cloud instances
to reduce execution cost and meet workflow deadlines.
Workflow model is based on a DAG. Data transfer times
are accounted for with a model based on the data size
and the cloud data center internal bandwidth (assumed to
be fixed for all nodes). Task execution time is estimated
based on the information of number of instructions of
the task. For fault-tolerance the authors adopt checkpoint-
ing, which consists of creating snapshots of the data being
manipulated by the workflow and run time structures, if
necessary. The core idea is to store enough information to
restart computation in case of an error. One of the issues
with the approach adopted is how checkpointing is con-
sidered in the model. Checkpointing worst-case scenario
requires a full memory dump, meaning that 100% of the
memory contents have to be written to a persistent storage
(e.g., spinning disks). Depending on the memory footprint
of the workflow phase this amount surpass the order of
gigabytes. However, in the model proposed in the paper
the checkpointing cost is not considered “as the price of
storage service is negligible compared to the cost of VMs”.
Moreover, while checkpointing time was considered in
their model, the actual checkpointing time on spinning
disks, especially for cloud systems that are not specialized
for parallel I/O, can represent much more than 10% of
overhead, which is the value expected for very large-scale
machines such as APEX and EXASCALE. Thus, either the
checkpointing size adopted is much smaller than what is
observed for real scientific workflow or the checkpointing
mechanism is creating partial checkpoints. Nevertheless,
the results obtained by the authors show that having
checkpoints actually reduces the final cost. Yet, the fault-
tolerance provided by the method only covers the repair
part, not the fault avoidance part. There is no (explicit)
logic to predict the probability of occurrence of failures
due to some hardware or software property, for instance.
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Bittencourt and Madeira [15] propose HCOC, the
Hybrid Cloud Optimized Cost, a scheduling algorithm
that selects the resources to be leased from a public cloud
to complement the resources from a private cloud. The
objective of HCOC is to reduce makespan to fit a desired
execution time or deadline while maintaining a reason-
able cost. This cost constraint is introduced to limit the
amount of resources leased from the public cloud, oth-
erwise the public cloud would always be overutilized to
address the time constraints. Intra-node communication
is considered to be limitless, in the sense that the costs
of local communication are ignored. Communication cost
is calculated by dividing the amount of data by the link
bandwidth, which is modeled as a constant value. Com-
putation cost is based on the number of instructions and
the processing capacity of a node, which is measured as
instructions per time. There are several implicit assump-
tions in this model, such as fixed capacity for transferring
and computing. There is not a function that varies the
amount of computation based on the size of the input.
Vecchiola et al. [120] claim that scientific applications

require a large computing power that typically exceeds
the resources of a single institution. In this sense, their
solution aims at providing a deadline-based provisioning
mechanisms for hybrid clouds, allowing the combination
of local resources to the ones obtained from a pub-
lic cloud service. However, there are no specific details
on how workflows are internally handled by their solu-
tion, nor how resources are mapped to workflow phases
or how costs are calculated. Moreover, their solution
(named Aneka) focuses on meeting a specific deadline,
thus not addressing issues related to total execution time
(makespan) or reliability.

Gaps and challenges
This section discusses the gaps and challenges identified
in the investigation of related work.

Data-intensive loads
Regarding data-intensive loads, [82] states that they rep-
resent a special class of applications where the size and/or
quantity of data is large. As a direct result, transfer costs
are significantly higher and more prominent. While the
authors do address data transfers in their resource model,
several aspects of data access are not acknowledged. For
instance, accesses to the same resource leads to a com-
munication cost of zero. Transfer costs are calculated
based on average bandwidth between the nodes, with-
out regards to I/O contention, multiples accesses to the
same resource, containers and VMs co-located in the
same node sharing network and I/O resources, among
other factors. This is also observed in other works such as
[15, 33, 64, 95]. Other models consider transfers as part
of computation time, such as [70]. This is depicted as a

fundamental challenge by [127], which states that “in most
studies, data transfer between tasks is not directly con-
sidered, data uploading and downloading are assumed as
part of task execution”. Wu et al. [127] complements by
stating that this may not be the case for modern appli-
cations and workflows –in fact, data movement activities
might dominate both execution time and cost. For the
authors it is essential to design the data placement strate-
gies for resource provisioning decision-making. More-
over, employing VMs deployed in different regions inten-
sifies the data transfer costs, leading to an even more
complicated issue. This is correlated to having more com-
plex cloud environments in terms of resource distribution,
such as hybrid and multicloud scenarios.

Hybrid andmulticloud scenarios
Regarding hybrid and multicloud scenarios, [127] states
that it is necessary hybrid environments, heteroge-
neous resources, andmulticloud environments. Singh and
Chana [109] also highlights the importance of hybrid and
multicloud scenarios for future deployments of large-scale
cloud environments and reach performance comparable
to large-scale scientific clusters. On the other hand, most
of the scheduling solution still do not address hybrid
clouds nor multiclouds. The few ones that do implement
mechanisms that use the public part of a hybrid cloud to
lease additional resources if necessary – the hybrid com-
ponent of the setup is treated as a supporting element,
not as protagonist. For example, [15] and [120] propose
solutions that only allocate resources from the hybrid
cloud (the public part of it) if the private part is not able
to handle the workflow execution. Multicloud support is
even more scarce or not explicit. Several of the proposed
solutions could be adopted or adapted to multicloud envi-
ronments, but there still is a lack of experimental results
to match the predicted importance of such large-scale
setups.
The motivation for multicloud environments vary from

having more raw performance to match other large-scale
deployments to having more options in terms of avail-
able services. Simarro et al. [107], for instance, states that
resource placements across several cloud offers are use-
ful to obtain resources at the best cost ratio. The same
approach is adopted by [37] and [101]. Regarding the exe-
cution of large-scale applications on similar scale systems,
[68] suggest amulti-site workflow scheduling technique to
enhance the range of available resources to execute work-
flows. While their approach does consider data transfers
and the costs of sending data over expensive (slower) links
that connect different geographically distributed sites,
their approach does not consider 1) performance fluc-
tuations during execution of the workflow, which would
suggest the implementation of rescheduling and rebalanc-
ing mechanisms; 2) reliability mechanisms to cope with
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performance fluctuations due to failures; and 3) the influ-
ence of contention in the general I/O operations, such as
sequential accesses to the same data inputs.

Rescheduling and performance fluctuations
Performance fluctuations caused bymulti-tenant resource
sharing is one of the major components that must be
included in the definition of uncertainties associated to
scheduling operations [127]. The authors complement:
“The most important problem when implementing algo-
rithms in real environment is the uncertainties of task
execution and data transmission time”. Moreover, most
works assume that a workflow has a definite DAG struc-
ture while actual workflows have loops and conditional
branches. For instance, the execution control in several
scientific workflows is based on conditions that are calcu-
lated every iteration, meaning that branches are essential
to determine whether the pipelines must be stopped or
not. In this sense, rescheduling techniques are usually
adopted to correct potential deviations from an origi-
nal guess of the performance of a workflow on a system
[61, 127].

Reliability
Several authors and works highlight the challenges and
potential gaps in terms of cloud management and cloud
resource management in terms of reliability. Bala and
Chana [9] states that workflow scheduling is one of the
key issues in the management of workflow execution in
cloud environments and that existing scheduling algo-
rithms (at least at that time) did not consider reliability
and availability aspects in the cloud environment. Singh
and Chana [109] directly addressed this issue by stating
that the hardware layer must be reliable before allocat-
ing resources. While several subsequent works addressed
these aspects, there still are gaps in the methodology. For
instance, [23] implement a solution that considers a reli-
ability factor but there is no explicit model on how to
calculate this factor based on actual hardware and soft-
ware reliability related metrics, such as hardware failure
and software interruption rates.
Fard et al. [33] defines a reliability factor by assuming

a statistically independent constant failure rate, but this
rate only reflects the probability of successful completion
of a task – there is no clear connection between this con-
cept and a factual and measurable metric from hardware
and software point of view. Hakem and Butelle [43] also
proposes a reliability-based resource allocation solution
by defining a reliability model divided in processor, link,
and system. The model is based on exponential distribu-
tions which could be related to metrics such as mean time
between failures (MTBF) and failure in time (FIT).
Other solutions such as the one from [87] use reliability-

related methods such as checkpointing to decrease

application failures, but in this particular case, for
instance, the performance implications of having these
mechanisms is not fully appreciated. The I/O cost in terms
of storage and time to implement checkpointing are far
from negligible. Still on reliability, [124] state that the
main two strategies to calculate reliability factors is to
either establish a reputation threshold or to treat nodes
independently and multiply their probability of success.
Still, the reliability approach proposed by the authors does
not address measurable metrics to calculate these fac-
tors. Moreover, on one side there are the solutions only
address failures after their occurrence, not before. For
instance, [86] uses checkpointing to recover from failures
but there is no mechanism in place to calculate the prob-
ability of failures and attempt to avoid nodes with higher
probability of failure, or at least designate a smaller por-
tion of tasks to this node. On the other side, solutions
calculate reliability factors based on theoretical metrics
that might not reflect the specificities of each node and
there are no clear mechanism to combine prevention and
recovery. In that sense, [49] provides a deeper analysis of
fault-tolerance techniques for grid computing that could
be applied to cloud computing. The authors clearly state
that the requirements for implementing failure recovery
mechanisms on grids comprise support for diverse failure
handling strategies, separation of failure handling policies
from application codes, and user-defined exception han-
dling. In terms of task-level failure handling techniques
the authors consider retrying (straightforward and poten-
tially least efficient of the enlisted techniques), replica-
tion (replicas running on different resources), and check-
pointing. Checkpointing is actively used in real scientific
scenarios while replication usually leads to prohibitive
costs, as in several cases running one replica is expen-
sive enough in terms of resource demand. In addition,
in terms of workflow-level failure handling, the authors
propose mechanisms such as alternative task (try a dif-
ferent implementation when available), workflow-level
redundancy, and user-defined exceptions that are able to
fallback to reliable failure handling. In terms of evalua-
tion the authors propose parameters such as failure-free
execution time, failure rates, downtime, recovery time,
checkpointing overhead, among others. These are mea-
surable metrics that can be used to model and represent
the failure behavior of systems and workflows.

Conclusion
This paper provided an extensive investigation of existing
works in cloud resource management. The investigation
started by providing several definitions and associated
concepts on the subject, covering the rationale presented
by several authors and publications from the academia.
Three main works were selected in this sense, reflecting
the works that provided a clear definition of distinct steps



Gonzalez et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:13 Page 16 of 20

regarding cloud resource management. Among these
works the common point is the association of manage-
ment components to each phase of the resource lifecycle,
such as resource discovery, allocation, scheduling, and
monitoring.Moreover, the ultimate objective in all cases is
to enable task execution while optimizing infrastructural
efficiency. These are the two main points related to cloud
resource management.
The next step in this investigation was to identify rel-

evant works in the area, focusing on recent publications
and others not so recent but still important, for instance
covering a specific aspect of cloud resource management.
The results of this analysis led to the identification of over
110 works on cloud resource management. A taxonomy
was created based on the consolidation of characteristics
and properties used to classify the selected works. Fur-
ther analysis was provided to enhance the identification of
gaps and challenges for future research on cloud resource
management focusing on large-scale applications and
workflows. The final step of this investigation was the for-
malization of these gaps and challenges obtained during
the research. The challenges were organized in four topics:
a) challenges related to data-intensive workflows, includ-
ing lack of proper modeling of transfers, or modeling of
transfers as part of computation; b) hybrid and multi-
cloud scenarios, comprising large-scale deployments and
more complex setups in terms of resource distribution;
c) rescheduling and performance fluctuations, essentially
addressing the lack of mechanisms to adequately cope
with the inherent performance fluctuation of large scale
cloud deployments, and the effects of multi-tenancy and
resource sharing; and d) reliability, highlighting the lack
of proper factors based on actual and measurable metrics
such as failure rates. Based on these topics, four clear gaps
are identified to be addressed by future research:

• Lack of mechanisms to address the particularities of
data-intensive workflows, especially considering that
future trends point to the direction of I/O workflows
with intensive data movement and with
reliability-related mechanisms highly dependent on
I/O as well.

• Lack of mechanisms to address the particularities of
large-scale cloud setups with more complex
environments in terms of resource heterogeneity and
distribution, such as hybrid and multicloud scenarios,
which are expected to be the main drivers for
large-scale utilization of cloud – scientific workflows
being one important instance.

• Lack of mechanisms to address the fluctuations in
workflow progress due to performance variation and
reliability, both phenomena that can be partially or
even fully addressed by implementing controlled
rescheduling policies.

• Lack of reliability mechanisms based on actual and
measurable metrics that can be derived from
documentation and from collecting information of
the system.

The results of this analysis combined to the require-
ments identified for future workloads leads to the conclu-
sion that modern solutions aiming at providing resource
management for large-scale deployments and to execute
large-scale problemsmust providemechanisms to address
data movement in massive scale while adequately dis-
tributing resources to tasks, adjusting this distribution
depending on the fluctuations observed in the system.
Existing solutions can and should be adapted to address
the specific requirements related to the challenges identi-
fied, but further research and development are necessary
to cope with these requirements in a more comprehensive
and decisive way.
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