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Abstract

The NIST definition of cloud computing has been accepted by the majority of the community as the best available
description to fully capture the variety of factors which determine how different stakeholders create, use or interact
with cloud computing. With the breadth of the cloud computing landscape there is a need being expressed from
within different cloud activities to consider how it may be best segmented so that the diversity might be more easily
understood by the different stakeholders. The NIST definition considers four different deployment models (Private,
Public, Hybrid, Community Cloud), three different service models (IaaS, PaaS, SaaS), and a number of characteristics
(five in the final published version, but 13 in previous unpublished drafts). Exploring the definition further, this study
aims to answer two questions: first, how can we use the affinity that different activities have with the definition’s
characteristics and second, how well does the definition describe the whole cloud ecosystem? We find that utilising a
quantitative methodology shows a clustering of different cloud projects and activities that are technically aligned and
therefore likely to benefit from interactions and shared learning, and that the final (short-list) definition is more robust
than the draft (long-list) definition. Finally, we present a segmentation of the cloud landscape that we believe can best
support a sharing of learning between projects in individual clusters.

Keywords: Cloud computing, Cloud ecosystem, NIST definition of cloud computing

Introduction
Since the emergence of cloud computing as a distinct
paradigm within distributed computing, and as an impor-
tant emerging market for ICT based services, there have
been a number of efforts to support and encourage the
adoption of cloud computing, as well as to foster a more
geographically diverse cloud computing provider com-
munity. This has resulted in a large number of research
and innovation projects receiving European Commission
(EC) support over the past five years through the FP7 and
H2020 programmes.
As part of the methodology to ensure success of

supported projects there have been regular funder led
attempts to bring projects together to share learning.
Using the domain description as the key differentiator it
was thought that synergistic clusters of projects similar
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enough to share learning on both technical and social best
practices would naturally emerge. Unfortunately, this has
resulted in only limited appeal, as it has been unclear to
participants exactly how the clusters are to be useful or
effective as they are only superficially similar but differ
widely in the cloud technologies and techniques in use.
Parallel to this European experience, in the US attempts

to characterise the diverse landscape of cloud computing
began at the National Institute of Standards and Tech-
nology (NIST). After years of development and 15 drafts,
the final version of the cloud computing definition was
published in September 2011 [5]. We describe this ref-
erence model more fully below but here we highlight a
key feature—the model defines a limited set of functional
characteristics that can be used to derive a quantitative
description of the emerging cloud computing landscape.
At a time when a large number of EC supported projects
are maturing, we take the opportunity to make a quantita-
tive assessment of their affinity to these functional charac-
teristics and to derive a robust quantitative description of
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the cloud landscape. We identify clusters of projects that
fully segment the landscape and provide a rational basis
for enhancing shared learning.
Finally, appreciating the diversity of cloud computing

activities is crucial to the process of deriving consistent
and useful standards for cloud adoption and interoperabil-
ity. We present a segmentation of the landscape of cloud
computing that we believe can best inform this process.

ISO published cloud standards
The International Standards Organization and the Inter-
national Electrotechnical Commission, together with the
International Telecommunication Union, have recently
released a new International Standard for cloud com-
puting, ISO/IEC 17788, Cloud computing–Overview and
Vocabulary and ISO/IEC 17789, Cloud computing–
Reference architecture. These new standards provide def-
initions of common cloud computing terms, including
those for cloud service categories such as Software as a
Service (SaaS), Platform as a Service (PaaS), and Infras-
tructure as a Service (IaaS). They also specify the ter-
minology for cloud deployment models such as “public”
and “private” cloud. Crucially, both new standards draw
on previous developments by NIST, including SP 800-
145 [5] which has provided the primary dataset for this
study. In light of these evolving developments we regard
our present study as a timely appraisal of the founda-
tional work.

Defining amethodology
Cloud computing resides in a complicated ecosystem of
stakeholders with differing requirements and expecta-
tions. Even with a broad consensus that cloud computing
is a general term describing anything that delivers hosted
services over the Internet, interpretations of this vary
widely and the field is subject to excessive hyperbole. Con-
sequently, there is great latitude for interpretation on what
exactly constitutes cloud computing and there are many
approaches that might be adopted to gain insight into this
dynamic and difficult to grasp ecosystem.
We require our approach to produce repeatable, insight-

ful, and accurate information on the landscape and its
segmentation. We therefore require the method to be evi-
dence based rather than merely prescriptive. To this end,
we define a methodology as follows:

1. Adopt the NIST characteristics of cloud computing
as variables against which to make quantitative
assessments.

2. Engage with project participants in the quantitative
self-assessment of affinity to the characteristic
variables.

3. Apply repeatable unsupervised machine learning
techniques to these data as evidence-based

characterisation of the total cloud computing
landscape.

4. Test for the robustness of the landscape as defined by
the NIST characteristics.

5. Derive a clustering of cases (projects) along the
complex dimensions of cloud computing and thereby
facilitate the experience of shared learning.

6. Derive a segmentation of the landscape with respect
to interactions among the variables (characteristics)
to inform the process of standards development.

NIST defining characteristics of the cloud
The NIST model is the most commonly cited third party
definition of cloud computing. As previously noted this
definition took significant time and number of itera-
tions before final publication, indicative of the difficulties
associated with reaching a consensus on which even a
restricted set of experts in the field could agree.
By consensus agreement [5, p.2]
Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool
of configurable computing resources (. . . ) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction.
The NIST model intends to capture this complexity

in simple, understandable characteristics. The model is
composed of five essential characteristics, three service
models, and four deployment models. In earlier drafts
of the definition NIST included a further eight common
characteristics. These were dropped in the final published
version. At the time of writing the earlier draft had been
replaced in all on-line references that we could find. How-
ever, we were able to collect self-assessment data on the
full set of 13 characteristics. We present analyses of both
the NIST long- and short-lists.
Here we provide short explanations of each of the 13

characteristics:

Essential characteristics (1-5)
(Note that these descriptions of the five essentials are
intended to be similar, but not necessarily identical to the
NIST published descriptions. This was due to the need for
brevity to give projects with which we engaged succinct
and easy to understand and rate definitions.)

1 On-demand self-service
Consumers can log on to a website or use web services
to access additional computing resources on demand,
whenever they want, without human interference in the
process.

2 Broad network access
Because they are web-based, you can access cloud-
computing services from any internet-connected device.
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With a web browser on a desktop machine, or even a thin
client computer terminal, you can do any computing that
the cloud resources provide.

3 Resource pooling
In multi-tenanted computing clouds the customers share
a pool of computing resources with other customers, and
these resources, which can be dynamically reallocated,
may be hosted anywhere.

4 Rapid elasticity
Cloud computing enables computing resources or user
accounts to be rapidly and elastically provisioned or
released so that customers can scale their systems up and
down at any time according to changing requirements.

5Measured service
Cloud computing providers automatically monitor and
record the resources used by customers or currently
assigned to customers, which makes possible the pay-
per-use billing model that is fundamental to the cloud-
computing model.

Common characteristics (6-13)
6Massive Scale
A cloud platform may, depending on the resources
offered, provide individual users with access to large-scale
or even massive-scale computing.

7 Homogeneity
In many situations, it is advantageous to both customers
and providers to have essentially homogeneous systems
at their disposal. Where requirements are particularly dif-
ficult or unusual, a cloud platform may be built out of
non-homogeneous systems and components.

8 Virtualisation
Virtualisation of machines as software systems massively
increases the scale of cloud resources that can be made
available. Virtualisation is not an essential characteristic
but it is becoming the only way that scale demands can
be met by providers; customers generally don’t care either
way as the virtualisation is entirely transparent.

9 Low cost Software
If increased scale reduces per-unit, or per-use cost, then
cloud-computing offers a drive towards lower- cost soft-
ware. It is important to note that this may not be the case
across all sectors and activities.

10 Resilient computing
In some sectors, continuous availability of computing with
zero-downtime is crucial to the sectors requirements,
for example, emergency and financial systems. In these

sectors, requirements for resilient, rather than just fail-
safe computing will be the norm.

11 Geographic distribution
Some sectors have legal requirements that physical data
stores are in particular geographical jurisdictions. This
places certain restrictions on providers favouring a cloud-
anywhere model. More commonly, the user is not con-
cerned about location per se.

12 Service orientation
The design of the services that run and operate on
the cloud frameworks are normally operated as services
such they can take advantage of other factors that give
resilience. This includes the ability to scale different com-
ponents within the system depending on their load and
capability.

13 Advanced security
There may be the capability to perform both system and
network level security within the cloud system.

Data collection by quantitative self-assessment
Our final sample used in this analysis includes as many
of the projects funded under the EC FP7-ICT-2013-10
calls 5, 7, 8 and 10 from which we were able gather data.
We approached authoritative project representatives and
asked them to self-asses their project’s affinity to the 13
characteristics based on the descriptions given above on
an ordinal scale from 0-9, with 0 indicating no affinity (the
project is indifferent to considerations of this feature) and
9 indicating the strongest affinity (the project regards this
feature to be crucially important).
Wewere able to compile responses from 37 projects (the

SeaClouds project supplied two scorings independently
from two different representatives). Table 1 gives a com-
plete list of project names and self-assessed scores on the
13 variables.

Goals and techniques of analysis
Faced with a cases-by-variables data matrix (as in Table 1)
the analyst seeks to summarise, simplify and explain.With
high-dimensional data, there are a number of issues of
interest:

• What are the relationships among the cases?
• What are the relationships among the variables?
• What insights may be gained from a summarized

joint representation?
• Is the summary robust against possible variations and

errors of case sampling?

Specifically for this analysis, the relationships among
cases (cloud projects) lets us propose a clustering of
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projects that are technically aligned and therefore likely
to benefit from interactions and shared learning. The
relationships among variables (NIST characteristics) lets
us present a segmentation of the cloud landscape that
we believe can inform where different projects may find
examples of best practice or technology choices suitable
in those type of projects. The joint representation informs
projects about their position in the landscape, and informs
standards developers about the relevant cloud activities
when considering the landscape characteristics. Finally,
measuring robustness for different partitions of the vari-
ables (all 13 characteristics; 5 essentials; 8 common) lets
us reach conclusions about which of these partitions may
be more meaningful and in that sense better.

Dimension reduction
For any high-dimensional dataset, the statistical tech-
niques of dimension reduction are indispensable to the
aim of summarizing, simplifying and explaining meaning
contained in the dataset. Here we give a brief description
of the linear algebra exploited by the family of multivari-
ate dimension-reduction methods that includes princi-
pal component analysis (PCA), log-ratio analysis (LRA),
correspondence analysis (CA), and various forms of dis-
criminant analysis. All of these methods are basic decom-
positions (or factorizations) of a target matrix into left-
and right-vector matrices representing respectively the
cases (rows) and the variables (columns) of the original
data matrix.
What distinguishes the various methods is the form of

normalization and differential weighting of points, cho-
sen depending on the type of data, which is applied before
the decomposition into left- and right singular vector
matrices.
For ordinal survey data such as ours, CA is the appropri-

ate method [3]. The normalization in CA is the matrix of
standardized residuals T = D−1/2

r (P − rcT )D−1/2
c , where

P = N/n is the so-called correspondence matrix with N
being the original data matrix and n its grand total. Row
and column marginal totals of P are r and c respectively,
and Dr and Dc are the diagonal matrices of these. Singular
value decomposition (SVD) provides the appropriate fac-
torization of T, with convenient properties, such that T =
U�VT . The right singular vectors V, are the contribu-
tion coordinates of the variables. A further transformation
involving a scaling factor Dq, such that F = D−1/2

q U�

defines the principal coordinates of the cases.

Visualization and interpretation
The biplot [2, 3] is a joint display of the two sets of points
in V and F which, with the above transformation, can
often be achieved on a common scale thereby avoiding the
need for arbitrary independent scaling to make the biplot
legible. The dimensions (Dim 1, Dim 2, ... Dim N, i.e. the

columns) of V and F are arranged in decreasing order
of importance to the reduced-dimension solution. That
means that a biplot of the first two dimensions is showing
the most important relationships that can be represented
on a planar 2-d plot. Cases are arranged in approximately
Euclidean space so that proximity equates closely with
similarity. Cases further from the origin have a stronger
influence in the reduced-dimension solution; cases closer
to the origin have a lesser influence. Variables are repre-
sented as vectors; the angular distance between vectors
equates with correlation, and vector length again equates
with relative contribution to the solution. One aspect of
interpretation lies in identifying vectors with the same
orientation, vectors at right angles, and vectors in oppos-
ing directions, and then identifying peripheral cases and
how these are arranged with respect to the vectors. A sec-
ond aspect of interpretation is to identify vectors aligned
with the primary dominant dimension (Dim 1), and those
aligned with the secondary dimension (Dim 2).
An important shortcoming of the biplot is that only

two, or at most three, of the dimensions of the reduced-
dimension solution can be visualised together. However,
there may be more dimensions that are relevant for inter-
pretation. The singular values of the SVD decomposition,
in the description above, are the square roots of the
eigenvalues; these indicate the relative importance of a
dimension, i.e. its contribution to capturing information
content in the analysis. When the eigenvalues are scaled
so that their sum equals the number of variables, a con-
ventional rule is to regard at least all those dimensions
with eigenvalues>1 as relevant. This is the conventional
Kaiser-Guttman stopping rule [4, 6]. Scree plots below
show eigenvalues with the Kaiser-Guttman reference line.
Addressing this shortcoming, we develop additional

analytic displays in the form of hierarchical dendrograms
based on the cosine distances between vectors in any
number of dimensions. The hierarchical ordering of nodes
in the tree then indicates closeness of orientation in the
n-dimensional equivalent biplot.

Robustness testing
The robustness of a particular solution to possible errors
and variation in sampling can be assessed by the statisti-
cal technique of bootstrapping [1]. The technique involves
resampling rows from the data table, with replacement, to
construct a replicate dataset of the same size as the orig-
inal. The analysis is then repeated on the replicate, and
the whole process is repeated a large number of times
(typically 1000).

Computation
All analysis was performed on a standard desktop com-
puter using Matlab Version 9 (R2016a) and custom
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software we developed for CA and contribution biplots
based on [3].

Results
We performed separate analyses on three partitions of the
dataset in Table 1:

• 38-cases by 13-variables full dataset (NIST long-list).
• 38-cases by 5-variables essential characteristics

(NIST short-list).
• 38-cases by 8-variables common characteristics

(NIST residual-list).

Wepresent results of these analyses in a series of biplots,
scree plots and cluster trees as follows in Figs. 1, 2, 3, 4,
5, 6, 7, 8, 9 and 10. See the figure captions for detailed
descriptions and interpretation.

Summary of results
NIST long-list

• Figure 1: broad and roughly even spread of cases and
variables.

• Figure 2: there are at least four relevant dimensions.
• Figure 3: bootstrap values for all relationships are

<50%, some �50%.

NIST short-list
• Figure 4: well-clustered cases associated across an

even spread of variables.
• Figure 5: there are at least two relevant dimensions.
• Figure 6: bootstrap values for two distal nodes >50%,

one internal node ≈50%.
• Figure 7: cluster tree of cases with broadly even

bifurcations.

NIST residual-list
• Figure 8: broad and roughly even spread of cases and

variables.
• Figure 9: there are at least three relevant dimensions.
• Figure 10: bootstrap values for all relationships are

<50%.

Discussion and conclusions
The aims of this study were to characterise the abstract
landscape of cloud computing, determine if that charac-
terization is robust, and then to learn something from the
landscape to the benefit cloud participants and stakehold-
ers. The characteristics of the NIST definition of cloud
computing provided the framework for a quantitative

Fig. 1 2-dimensional biplot of the full 13-characteristic dataset. Advanced Security is the dominant variable (i.e. the vector with the greatest
magnitude) of the solution driven largely by cases 27, 6 and 33. Diametrically opposed to Advanced Security isMassive Scale and Low Cost Software,
driven largely by case 11. Virtualisation, Resource Pooling and Service Orientation contribute little to the solution. Other associations are evident,
e.g. orthogonal to these are Measured Service and Geographic Distribution driven by case 16, and opposed to this is Homogeneity driven strongly
by case 13
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Fig. 2 Scree plot showing eigenvalues of the decomposition of the full 13-characteristic dataset. The dotted line shows the Kaiser-Guttman reference
line for eigenvalues>1 indicating that at least four of the 13 dimensions are relevant. These account for 74.34% of the total variance in the
13-dimensional dataset. Error bars show standard errors for 1000 bootstrap replicates of the CA analysis

survey of participants. Standard multivariate dimension
reduction techniques provided the definition of the land-
scape which we visualise in biplots and cluster trees.
The robustness analysis of three partitions of the dataset

(NIST long-list, short-list and residual-list) is decisive: any

interpretations drawn from the cloud landscape depicted
in the analyses of the long- and residual-lists are essen-
tially meaningless if applied to the general cloud ecosys-
tem that these sample projects were drawn from. Only
the NIST short-list of 5 essential characteristics leads

Fig. 3 Hierarchical dendrogram of variables in a 4-dimensional representation of the decomposition of the full 13-dimensional dataset. Advanced
Security andMassive Scale are shown at opposite ends of the tree connected only by the deepest node, consistent with the view in the 2-d biplot.
Measured Service and Geographic Distribution, shown very close together in 2-d, are in fact very distant when considering more relevant dimensions.
Internal nodes are labelled with bootstrap percentages indicating the proportion of times in 1000 bootstrap replicates of the CA analysis that a node
is observed. All values are <50%, with many values much smaller, indicating that this solution is not robust to bootstrap resampling. i.e. no grouping
shown here is strongly supported by evidence
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Fig. 4 2-dimensional biplot of the 5-dimensional partitioned dataset of the Essential Characteristics. HereMeasured Service and Broad Network Access
are slightly dominant in the solution, but perhaps insignificantly. Broad Network Access is driven largely by cases 17, 21 and 23, Resource Pooling by
cases 27, 4 and 33,Measured Service and Rapid Elasticity jointly by a larger set of cases, in decreasing significance, 16, 2, 30, 1, 31, 25, 6 and 32. The
cluster of cases 13, 29, 9, 5, 36, 37, 26 and 22, drives OnDemand Self Service. The remaining cases close to the centre form a distinct cluster of
similarity, but do not contribute significantly to the 2-d solution

Fig. 5 Scree plot showing eigenvalues of the decomposition of the 5-dimensional partitioned dataset of the essential characteristics. The dotted line
shows the Kaiser-Guttman reference line for eigenvalues>1, indicating that at least two of the five dimensions are relevant. These account for
79.66% of the total variance in the 5-dimensional dataset. Error bars show standard errors for 1000 bootstrap replicates of the CA analysis
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Fig. 6 Hierarchical dendrogram of variables in a 2-dimensional representation of the decomposition of the 5-dimensional partitioned dataset for the
essential characteristics. Internal nodes are labelled with bootstrap percentages indicating the proportion of times in 1000 bootstrap replicates of
the CA analysis that a node is observed. The two distal nodes with values >50% indicate that no other arrangement occurred more often in the
bootstrap replicates, and that they are therefore strongly supported. The association of Broad Network Access with either distal node is then the only
remaining degree of freedom, and occurs roughly half of the time with each (45.5% vs. 54.5%). Looking again at the biplot in Fig. 4 we see that this
would result from only slight alterations to the angle of the vector towards either OnDemand Self-Service, or towardsMeasured Service. Overall, this is
a robust result and the two association of (i) Resource Pooling with OnDemand Self-Service, and (ii)Measured Service with Rapid Elasticity are both
stable and well supported by the evidence

to a stable and robust depiction of the landscape and
general interpretations should be made only against this
depiction.
Figure 4 (biplot) and Fig. 7 (cluster tree) provide the

interpretive mechanisms. Five groups of projects labelled
I-V in Fig. 7 are a useful focus for discussion, though
clusters at any level of the tree are equally meaningful.

Cluster I
• 23 MCN
• 21 LEADS
• 17 Embassy Cloud

These are the primary drivers of Broad Network Access,
which is also one of the two dominant features of the
landscape.

Cluster II
• 13 CloudTeams
• 26 OpenModeller
• 37 Varberg
• 36 Umea
• 22 Leicester
• 29 S-CASE
• 9 CloudCatalyst
• 5 BNCweb

The primary drivers of On Demand Self Service, with
CloudTeams being the most significant to this axis, and
Leicester being the least.

Cluster III
• 27 PaaSword
• 33 SUPERCLOUD
• 4 BigFoot

The primary drivers of Resource Pooling, with PaaSword
being the most significant.

Cluster IV
• 35 U-QASAR
• 34 Texel
• 19 INPUT
• 15 COMPOSE
• 18 GEMMA
• 14 CloudWave
• 12 CloudSpaces
• 8 CELAR
• 38 WeNMR
• 10 CloudLightning
• 24 Mobizz
• 7 Catania Sci. Gateway
• 28 PANACEA
• 20 IOStack
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Fig. 7 Cluster tree of cases in the 2-dimensional representation of the decomposition of the 5-dimensional partitioned dataset for the essential
characteristics. Ward’s agglomerative hierarchical method was used to form the clusters. Numbered groups are referred to in the “Discussion” section

• 11 CloudScale
• 3 BETaaS
The large central cluster not distinguished by a tendency

towards any of the NIST characteristics over any other.

Cluster V
• 16 DICE
• 30 SeaClouds(1)
• 2 ASCETiC
• 32 STORM CLOUDS
• 6 Broker@Cloud
• 1 ARTIST
• 31 SeaClouds(2)
• 25 MODAClouds

This cluster subtends the two remaining characteristics,
Measured Service and Rapid Elasticity, with DICE being
the most significant and leaning towards Rapid Elastic-
ity. As a final observation we note that althoughMeasured
Service is one of the dominant features of the landscape,
no projects identify significantly with this feature.
Finally, we suggest that this interpretation of project

clusters can provide the basis for enhanced shared
learning among projects that are technically aligned on
the axes of cloud characteristics, and that the further
development of standards for cloud implementation and
adoption can benefit from this depiction of the land-
scape and the association shown between projects and
characteristics.
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Fig. 8 2-dimensional biplot of the 8-dimensional partitioned dataset of the common characteristics. Service Orientation and Virtualisation appear
almost insignificant to this solution. There is a roughly even spread of cases, though similar inferences could be made as illustrated in Fig. 1

Fig. 9 Scree plot showing eigenvalues of the decomposition of the 8-dimensional partitioned dataset for the common characteristics. The dotted
line shows the Kaiser-Guttman reference line for eigenvalues>1, indicating that at least three of the eight dimensions are relevant. These account for
75.11% of the total variance in the 8-dimensional dataset. Error bars show standard errors for 1000 bootstrap replicates of the CA analysis
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Fig. 10 Hierarchical dendrogram of variables in a 3-dimensional representation of the decomposition of the 8-dimensional partitioned dataset for
the common characteristics. Internal nodes are labelled with bootstrap percentages indicating the proportion of times in 1000 bootstrap replicates
of the CA analysis that a node is observed. All values are <50%, with a few values much smaller, indicating that this solution is not robust to
bootstrap resampling. i.e. no grouping shown here is strongly supported by evidence

Responses to themethodology and future work
In this paper, we have presented a methodology for char-
acterising the landscape of cloud computing based on
the set of NIST defining features. The same methodol-
ogy identifies the location of a project or cloud enterprise
within the landscape. Taken together, the resulting biplot
and the cluster tree offer rich interpretive tools in defining
the current cloud computing landscape.
Presenting these results to partners in the support-

ing projects, and to the wider circle of EC-funded cloud
related projects, participants accepted the methodology
as sound and applicable, and they generally regarded the
characterisation of the landscape as useful. However, sev-
eral observations are noteworthy.

• In draft form, SP 800-145 defines characteristics of
cloud computing only, however, many more IT
service characteristics are applicable that are not
specific to cloud computing.

• Several of the characteristics in the draft form
subsume important aspects under a single term that
is too general to be meaningful, such as Privacy and
Data Protection being subsumed under the term
Advanced Security.

• Despite SP 800-145 having been published over five
years ago in 2011, participants disagree on
interpretation of certain characteristics. Measured
Service, for example, is frequently misinterpreted as
describing the monitoring of a cloud service system.

Several avenues of future work have emerged from this
activity.

• An automated web-hosted tool that allows the
self-assessment of new cloud enterprises and shows
their location within the existing landscape would be
informative to new enterprises.

• Exploring the impact of reducing the set of
characteristics from 13 to five may be instructive. For
instance, does the larger set define a much finer
grained landscape than the reduced set, or is the
information content of the reduced set sufficient?

• Does expanding the set of characteristics to include
more applicable IT service characteristics improve
the resolution of the landscape, or does this perhaps
significantly change the orientation of the existing
characteristics?
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