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Abstract

The management strategy of a data center needs access to sufficient resources in order to handle different
requests of applications, while minimizing the consumed energy. With regard to high and varying resource
demands, Virtual Machines (VM) management necessitates dynamic strategies. Dynamic management of
VMs includes VM placement and VM migration. The management approach presented in this paper aimed
to reduce the energy consumption and the violation of service level agreements (SLA) simultaneously in
data centers. The simulation results indicate that proposed approach improved the VM management 40%
compared to the previous single-goal approaches based on the energy consumption and SLA violation rates.
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Introduction
Nowadays, computing tends to handle large-scale data
centers and provides the resources for client applications
as pay-per-use. The data center managers attempt to re-
duce the consumed energy while providing the required
resources to user applications.
The resource allocation can be handled statically by

assigning the peak number of required resources to the
application. However, such allocation may lead to over-
provisioning [1], which results in wasting of data centers’
resources. Virtualization technology enables a physical
machine to host multiple virtual machines. Each virtual
machine can handle different client applications. Even if
the peak amount of demanded resources is allocated to
the application, still some resources of physical machine
may be underutilized. Resource utilization can be im-
proved by allocating only necessary resources to handle
the typical demands. However, this may result in re-
source access competition between VMs in high demand
conditions.
The applications with high and variable require-

ments necessitate frequent changes in their VMs [2]
and dynamic management. By such manner of man-
agement, a running VM is migrated to another
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physical host (live migration). In a typical VM man-
agement solution, there are following operations as
coordinated: (1) VM Placement (Allocation): the
placement of a VM to a host machine in response to
a VM creation request; (2) VM Relocation: the migra-
tion of VMs from a host when their overall resource
requirements exceed the available resources of host;
and (3) VM Consolidation: the migration of VMs
from an under-utilized host so that the machine pow-
ers off in order to reduce the costs.
This paper focuses on two important issues in

dynamic management of virtual machines: SLA viola-
tions reduction, and energy consumption reduction.
These issues are often in contrast because reducing
the energy consumption is usually reached through
in-use (powered on) host reduction. But this leads
potentially to more SLA violations. This is because
that lower energy consumption can be achieved by
placing as many VMs as possible on each host.
However, sudden increasing of workload on a host
may result lack of resources and subsequently SLA
violations. Conversely, reducing the SLA violations
typically necessitates VMs to be spread across more
number of hosts, often each having a significant
amount of unused resources. This manner potentially
leads to more energy consumption. Designing a man-
agement strategy able to achieve both of the above
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goals is difficult, as getting better performance con-
sidering one of the goals typically leads to degrad-
ation of performance towards the other goal. The
management approaches often focus on a single goal, or
prioritize the goals as a primary goal and some secondary
goals [1, 3, 4, 5].
This paper proposes two single-goal approaches,

Energy-Reduction to reduce the energy consumption
and SLAV-Reduction to reduce the SLA violation
rates. It then presents a double-goal approach, ESDR,
achieving the above two goals simultaneously. The re-
mainder of this paper is organized as follows: Related
work section reviews the related work of VM Place-
ment, VM Relocation, and VM Consolidation. The
details of proposed approaches are described in The
proposed management approaches section. Implemen-
tation and evaluation section presents and discusses
the simulation results of the proposed approaches,
and Conclusion and future work section concludes
the paper.
Related work
The efficient allocation of VM to host machines while
ensuring sufficient access to computing resources for ap-
plications (a requirement of quality of service), has been
the subject of much attention in recent years. The
reviewed approaches in literature are categorized as
static and dynamic allocation. In static allocation, VMs’
service requests are issued as fixed, or they are variable
but a one-time mapping of some VMs into empty hosts
is performed.
Cardosa et al. [6] developed a VM placement algo-

rithm that leveraged the CPU allocation features
min, max, and shares which are presented in mod-
ern hypervisors. The algorithm aimed to make bal-
ance between VMs’ performance and overall energy
consumption. Four techniques were provided for
VM placement exploiting the inherent features of
virtualization technology (Max, Min, and Share).
Setting a min metric for a VM ensures that it re-
ceives at least the specified minimum amount of re-
sources when it powered on. Also, setting a max
metric for low-priority applications ensures no over-
flowed resource usage and keeping the resources
available for high-priority applications. The metric
Share enables distributing the resources between
contending VMs. Lack of continuous optimization
of data center during the live migration of virtual
machines can be mentioned as the weakness of this
algorithm.
Speitkamp and Bichler [7] proposed a static server

consolidation approach that analyses the data mathemat-
ically to characterize variations of real-world workload
traces. Linear programming was used for optimal map-
ping of VMs and host machines; however, the approach
was not easily adaptable to changes of data centers’
workloads.
Stillwell et al. [8] worked on mapping a set of

static workloads into hosts to optimize the VMs’ re-
source allocation in terms of fairness. They analyzed
different algorithms, and indicated that a vector (or
multi-dimensional) bin packing algorithm [9, 10, 11]
is able to reach almost optimal result for the
problem.
Bobroff et al. [1] presented the First Fit Decreasing

heuristic algorithm that periodically re-calculates map-
ping of VMs to a set of empty hosts, based on forecasts
of VMs’ demands. The aim was to keep average number
of active hosts as minimum while having probabilistic
SLA guaranty for VMs. But the relationship between
several resources such as CPU and I/O are not consid-
ered in the algorithm. It acts as static while considering
variable demands to re-calculate VMs mapping
periodically.
Khanna et al. [3] showed that the number of

servers can be reduced in VM relocation using
virtualization technology. VMs and hosts can be se-
lected for migration by developing a mathematical
optimization model. They presented a heuristic
method that sorts the VMs as ascending on CPU
and memory utilization to minimize the migration
costs. Then hosts list is sorted as ascending on
remaining capacity (i.e. available resources) to
maximize resource utilization. After that, the least
loaded VMs (in terms of CPU and memory usage)
are migrated to the highest loaded hosts. The First
Fit heuristic is used as selection algorithm with the
primary goal of energy consumption reduction. The
authors considered neither additional sorting strat-
egies, nor the impact of their heuristic on the num-
ber of migrations issued.
Verma et al. [5] relied on a First Fit Decreasing heuris-

tic that to place VMs in the most power efficient servers.
The main goal was reducing the migration costs and en-
ergy consumption in data centers while meeting the
QoS requirements; despite no reduction in SLA viola-
tions. The presented system is able to work in a hetero-
geneous environment that supports virtualization, and
VMs are allocated to a physical machine in terms of
consumed energy.
Wood et al. [7] presented a management system

named Sandpiper using the First Fit Decreasing heur-
istic [12, 13, 14]. The hosts are sorted in an increas-
ing order based on resource utilization, the workload
is balanced among the hosts, and SLA violations are
reduced subsequently. Also, monitoring and detection
of hotspot servers are performed automatically.
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Moreover, a new mapping to physical and virtual re-
sources is applied and essential migration in virtua-
lized data centers is set up.
Gmach et al. [15] developed a fuzzy logic based con-

troller as part of their proposed management system.
The controller does not distribute migrations when a
host became stressed or underutilized. The appropriate
host for migration is the least loaded one with enough
resources to fit the VM. However, VM selection for
migration is not clearly explained.
Keller et al. [16] studied variants of the First Fit heuris-

tic to address the VM relocation problem. They showed
that the order of VMs/hosts migration affects the per-
formance metrics of data centers, such as energy con-
sumption and SLA violations.
Beloglazov and Buyya [17] proposed Best Fit Decreas-

ing heuristic algorithm to deal with both stressed and
underutilized hosts. In the case of stressed hosts, the al-
gorithm selects VMs with the least memory allocation to
migrate, and selects as much VMs as needed in order to
reduce hosts’ CPU utilization to a specified value. When
hosts are underutilized, all hosts’ VMs are selected for
migration. The selection of target host is based on a Best
Fit Decreasing heuristic. The migrating VMs are sorted
as descending on CPU utilization. They are then placed
on the appropriate host having minimum energy
consumptions.
In [18], Foster et al. attempt to switch between two

single goal (minimizing SLA violations or energy con-
sumption) strategies dynamically. They aimed to get bet-
ter adaption of changing data center conditions. They
proposed three strategies to handle dynamic switching
between different strategies; however their situation
identification process to handle the replacements is time
consuming.
Zhen Xiao et al. [19] presented a system that uses

virtualization technology to allocate datacenter re-
sources dynamically based on application demands.
The system is adapted to green computing by opti-
mizing the number of servers in use. They intro-
duced skewness as a metric to measure unevenness
for multi-dimensional resource utilization of a ser-
ver. By minimizing the skewness, different types of
workloads are combined. Also, overall utilization of
server resources is improved. In overall, the system
is able to prevent overloads effectively while saving
the energy.
Ferdaus et al. [20] addressed the resource and en-

ergy related issues in datacenters by tackling through
datacenter level resource management. They focused
on high resource wastage and energy consumption.
To this aim, they proposed a method using the Ant
Colony Optimization (ACO) metaheuristic and a
vector algebra-based multi-dimensional resource
utilization model. Optimizing network resource
utilization is handled by an online network-aware VM
cluster placement strategy to localize data traffic
among VMs communication. By this manner, traffic
load in data center interconnects and subsequently
communication overhead in upper layer network
switches are reduced.
With regard to the above review of literature, allo-

cation of VMs to physical machines while keeping
the access to computing resources as efficient is
handled by many of recent researches. The provided
allocation approaches are categorized as static and
dynamic. Most of the algorithms aimed to make bal-
ance between VMs’ performance and overall energy
consumption. They try to allocate the minimum
amount of resources to low-priority applications and
keep the resources available for high-priority ones.
With regard to the dynamic nature of cloud environ-
ments, some approaches recalculate mapping of VMs
to a set of empty hosts periodically based on VMs’
demand forecasts. Such approaches are able to
minimize the number of active hosts while keeping
SLA for VMs in a reasonable level. Choosing VMs
and hosts for migration can be performed by a
mathematical optimization model. Also, heuristic
methods are used to sort VMs based on CPU/mem-
ory utilization in order to minimize the migrations
and reduce the consumed energy.
The dynamic behavior of cloud environment neces-

sitates having a dynamic and adapted strategy to
switch between SLA violation and energy consump-
tion dynamically in VM migrations. Most of the
existing algorithms have focused on one aspect of
efficiency. This paper provides three dynamic ap-
proaches (first one to reduce the energy consump-
tion, the second one to reduce SLA violations, and
third one to handle both of energy and SLA viola-
tions simultaneously) to manage the virtual machines
in data centers. With regard to changes of data cen-
ter’s state, the provided double-goal approach
switches between different policies at run-time if it is
necessary. SLA violation and power efficiency are
measured in order to decide for activate the appro-
priate approach.

The proposed management approaches
With regard to the dynamic nature of virtualized data
centers, designing a management system with differ-
ent goals is a challenging task. In this section, three
dynamic approaches are proposed to manage the vir-
tual machines in data centers. In the following, first
the terms and metrics of management approaches are
introduced. Then, two single-goal approaches (one to
reduce the energy consumption, and another to
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reduce SLA violations) are proposed. After that, a
double-goal approach is proposed achieving the above
two goals simultaneously.
i) The status SLA violation occurs when resources

required by a VM are not available. This status subse-
quently leads to performance degradation. It is typic-
ally defined by the percentage of a VM’s required
CPU time which is not available currently. ii) The
overall utilization of a data center is the percentage
of CPU capacity that is currently in use by data cen-
ter. Iii) A limited capacity of CPU’s processing cap-
abilities is specified as CPU_Shares. In our work, the
CPU_Shares assigned to each core, is related to its
frequency. For example, the CPU_Shares for a 1GHZ
CPU is assigned to 1000. iv) For a host h, the power
efficiency, perh, refers to in-use processing per con-
sumed energy, and it is measured by CPU-shares-per-
watt (CPU/W). The power efficiency of a single host
is calculated by Eq. 1:

perh ¼
Φh

Ψh
ð1Þ

Where Φh is the number of CPU_Shares currently is
in-use across all cores in the host, and Ψh refers to
current power consumption of the host in watts. More-
over, an active host consumes a significant amount of
power even if it has little or no CPU load (i.e., very low
power efficiency). Equation 2 calculates the power effi-
ciency for the entire data center, perdc:

perdc ¼
Σh∈hostsΦh

Σh∈hostsΨh
ð2Þ

Such that hosts indicates a collection of all hosts in
data center. v) Maximum Power Efficiency represents the
best amount of power efficiency a host can achieve. It is
calculated as power efficiency of the host at maximum
CPU utilization. vi) HostUtilization refers to the average
amount of CPU utilization for all hosts in the state
“On”. The higher value of host utilization leads to more
efficient usage of resources and energy consumption
reduction.
This paper supposes that each time a management op-

eration takes place, hosts are classified to three different
power states: power on, power suspended, and power off.
The powered on hosts are further classified to stressed,
partially-utilized, under-utilized, and empty based on
their CPU utilization. The state of hosts may be changed
according to workload changes of hosted VMs, or
migrations performed by management operations. To do
this, two threshold values are used as stresscpu and
mincpu. The classification is carried out based on average
CPU utilization of hosts. Hosts with average CPU
utilization ranged in (stresscpu, 1], (mincpu, stresscpu], and
[0, mincpu) are supposed as stressed, partially-utilized,
and under-utilized hosts respectively. Moreover, hosts
with no assigned VMs are empty ones; hosts in sus-
pended or power off state are also included in this
category.
Energy-reduction and SLAV-reduction approaches
Energy-Reduction and SLAV-Reduction are two
single-goal candidates. In the next subsections, the
process of VM Placement, VM Relocation and VM
Consolidation policies that form the above approaches
are explained. The placement management operation
runs each time a new VM creation request is re-
ceived, and selects a host in which to instantiate the
VM. Algorithm 1 shows the process of virtual ma-
chine placement policy for the proposed Energy-
Reduction approach.

Algorithm 1

The VM Placement policy for Energy-Reduction
approach (see Algorithm 1), first classifies hosts in
appropriate categories (line 1) as stressed (H!),
partially-utilized (H+), under-utilized (H−) or empty
(Hϕ). Each host category is then sorted (lines 2). H+,
and H− are sorted as descending on maximum
power efficiency and CPU utilization respectively.
The category Hϕ is also sorted as descending on
maximum power efficiency and power state respect-
ively. Such sorting ensures focus of placement on
power efficiency. Then a list of targets hosts is
prepared by concatenating (sort (H+), sort (H−), sort
(Hϕ)). Finally, following a First Fit approach, the pol-
icy assigns VM to the first host in targets with
enough capacity (lines 3-6). The method has_capa-
city (ht, VM) checks the ability of host to meet
resource requirements indicated in the VM creation
request (line 4) without becoming stressed.
The VM Placement policy for SLAV-Reduction ap-

proach differs from the Energy-Reduction policy in
the way that H+ and H− are sorted. H+ and H− are
sorted as ascending and descending respectively on
CPU utilization and then maximum power efficiency.
Such sorting causes the placement to be focused on
distributing the load across the hosts, and leaving
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spare resources to handle spikes in resource demand
over other considerations.
The VM relocation operation runs frequently over

short intervals of time in order to detect stress situa-
tions as soon as possible. For both approaches, the
interval is set to 10 min. The VM relocation deter-
mines which hosts are prone to be in a stress situ-
ation. Then it removes such hosts by migrating one
VM from a stressed host into a non-stressed one.
Algorithm 2 shows the process of virtual machine
relocation policy for the proposed approach Energy-
Reduction.

Algorithm 2

As shown in Algorithm 2, the VM Relocation pol-
icy for Energy-Reduction approach first classifies
hosts to appropriate categories (line 1) performing a
stress check on all hosts. A host is stressed if its
CPU utilization has remained above the stresscpu
threshold throughout the last CPU load monitoring
window. The hosts are categorized as stressed (H!),
partially-utilized (H+), under-utilized (H−), or empty
(Hϕ). Then each host category is sorted (line 3). H!

is sorted as descending on CPU utilization, H+ and
H− are sorted as descending on maximum power
efficiency and CPU utilization respectively. Hϕ is
sorted as descending on maximum power efficiency
and power state respectively. After that, a list of tar-
gets hosts is formed by concatenating (sort (H+), sort
(H−), sort (Hϕ)). Following the First Fit heuristic, one
VM is chosen from each host h in sources and a
corresponding host in targets to which one to mi-
grate VM (lines 4-13). For each host h in sources
(which is stressed), VMs with less CPU load are fil-
tered. The remaining VMs then are sorted as
ascending on CPU load (line 6). After that, all VMs
are sorted as descending on CPU load, and finally
the migration process is launched (line 10).
VM Relocation policy for SLAV-Reduction approach

differs from Energy-Reduction in the way of sorting
H! and H− (H! is sorted as ascending on CPU
utilization and maximum Energy-Reduction efficiency
respectively. H+ is sorted as descending on CPU
utilization and maximum power efficiency respect-
ively). In addition, SLAV-Reduction policy performs a
different stress check such that a host is considered
as stressed if its last two monitored CPU load values
are more than stresscpu threshold, or its average CPU
utilization throughout the last CPU load monitoring
window exceeds stresscpu.
The purpose of VM consolidation policy is to con-

trol the load that VM Placement and VM Relocation
have distributed across the data center. This is per-
formed by migrating VMs from under-utilized hosts
(through suspending or powering them off ) to
partially-utilized ones. This management operation
runs less frequently than VM Relocation. The inter-
val is set to 1 and 4 h for Energy-Reduction and
SLAV-Reduction strategies respectively. Algorithm 3
shows the steps of virtual machine consolidation
process for the proposed approach Energy-
Reduction.

Algorithm 3

As shown in Algorithm 3, the VM consolidation
policy for Energy-Reduction approach first classifies
hosts (line 1) as stressed (H!), partially-utilized (H+),
underutilized (H−), and power off (Hϕ). Host ma-
chines in Power-off state are grouped as Empty. The
policy then sorts H+ and H− as descending on power
efficiency and CPU utilization respectively, and



Table 1 The characteristics of used workload patterns

The workload
pattern

Description Monitoring
time period
(sec)

Measurement
time period
(sec)

ClarkNet Based on the Log file
prepared from the access
to ClarkNet during two
weeks

1,209,400 100

EPA The file prepared from
web Log based on EPA
during one day

86,200 100

SDSC The file prepared from
Log center of Santiago
supercomputers during
one day

86,200 100

Google cluster
data

Tracking 7 h the workload
of Google cluster with
different jobs

22,200 300
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creates new lists. Then it forms a list of targets hosts
by concatenating sort (H+), sort (H−) (line 3). After-
wards, H− is sorted again this time as ascending on
power efficiency and CPU utilization respectively.
Using a First Fit heuristic, the policy attempts to re-
lease all hosts h in sources by migration of their VMs
to hosts in targets (lines 6-14). For each host h in
sources, the policy sorts its VMs as descending on
overall resource capacity (memory, number of CPU
cores, and core capacity) and CPU load respectively.
It is necessary to avoid using a host both as source
and target for migrations.
The VM Consolidation policy for SLAV-Reduction

approach differs from Energy-Reduction in the way
that H+ and H− are sorted such that first, H+ is
sorted as ascending on CPU utilization and maximum
power efficiency respectively. Also, H−is sorted as
descending on CPU utilization and maximum power
efficiency respectively. Then, H− is sorted as ascend-
ing on CPU utilization to form the source host
machines.
The approaches use different values for stresscpu

threshold: Energy-Reduction uses 95% and SLAV-
Reduction uses 85%. The lower threshold for the
SLAV-Reduction approach allows additional re-
sources to be available for workload variations. Both
strategies use the mincpu threshold of 60%. Selected
Table 2 Default values of ESDR’s parameters

Parameter Normal Value Description

pernormal 71.817 Normal value for power eff

slavnormal 1.644 Normal value for SLA violat

Interval Running Approach 1 h Time interval for running E
values for the above thresholds have been obtained
experimentally and based on the average CPU
utilization of host machines. The characteristics of
workload patterns are shown in Table 1.

Energy-reduction and SLAV-reduction dynamic run-time
replacement (ESDR)
ESDR attempts to meet two objectives simultan-
eously. With regard to changes of data center’s state,
ESDR switches between different policies at run-time
if it is necessary. It checks data center metrics moni-
tored during different executions in order to deter-
mine if current in-use approach (ActiveApproach)
needs changes. It uses SLA violation and power effi-
ciency ratio metrics to evaluate whether the active
approach should be switched. The power efficiency
ratio is calculated as the ratio of optimal power effi-
ciency to current power efficiency [21]. The switch-
ing approach is triggered when the metric’s value
related to the goal of the active approach (i.e. slav

for the SLA violation, per for the Power efficiency
ratio) is less than the threshold value (slavnormal or
pernormal), while the metric related to inactive ap-
proach exceeds the threshold value. Algorithm 4
shows the steps used to change active approach in
ESDR.

Algorithm 4

The switching used in ESDR allows the data center to
respond to a situation in which performance in one
metric has deteriorated. Table 2 shows the default value
of ESDR’s parameters.
As shown in Table 2, choosing the best running inter-

val as well threshold values (slavnormal |pernormal) is per-
formed based on the results of Energy-Reduction and
SLAV-Reduction experiments. The default values are
Calculation method

iciency threshold The average value of energy efficiency in both
Energy-Reduction and SLAV-Reduction approaches

ions threshold The average value of SLA violation in both Energy-
Reduction and SLAV-Reduction approaches

SDR approach —



Table 3 The features of hosts used in data centers

Hosts Number of CPUs Number of cores Min CPU share Max CPU share Power consumption at
100% efficiency

Maximum power
efficiency

Memory capacity

Large 2 4 2500 20,000 W233 85.84 GB16

Small 2 2 3000 12,000 W258 46.51 GB8

Table 4 Properties of virtual machines in the data center

Type of VMs Number of
virtual cores

Min CPUShare Memory capacity

Small 1 1500 512 MB

Medium 1 2500 512 MB

Large 2 2500 1 GB
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obtained after 12 iterations of Energy-Reduction and
SLAV-Reduction process with 5 randomly generated
workload patterns. The average of 30% least values of
consumed energy and SLA violations are considered as
the default values.

Implementation and evaluation
In order to evaluate the performance of proposed algo-
rithms, they are implemented in DCSim [22] simulation
environment which is found as a common and efficient
simulation tool in the literature. Two metrics, power
efficiency (per) and SLA violation (slav), are considered
to evaluate the performance. Making decision only based
on the above metrics is difficult because if one approach
performs well with respect to SLA violations at the ex-
pense of high power (and vice versa), it is hardly possible
to conclude about the preferable approach [18, 23]. The
decision depends on relative changes in each area as well
as the importance assigned to each metric by data center
operators according to their business objectives, and
costs of energy and SLA violations.
To measure the performance of proposed double-

goal approach, an experiment is planned such that
the Energy-Reduction and SLAV-Reduction ap-
proaches are used as benchmarks. SLAV-Reduction
approach provides the bounds for the best SLA viola-
tion (slavbest = slavSLAV-Reduction) and the worst power
efficiency (perworst = perSLAV-Reduction). The Energy-
Reduction approach provides the bounds for worst
SLA violation (slavworst = slavEnergy-Reduction) and best
power efficiency (perbest = perEnergy-Reduction). The
values for selected approach i (Energy-Reduction,
SLAV-Reduction or ESDR), are then used to create
the normalized vector vi, represented as [pernorm,
slanorm]. The values of slavnorm and pernorm are calcu-
lated through the following equations [18]:

slavnorm ¼ slavi−sla
v
best

slavworst−sla
v
best

ð3Þ

pernorm ¼ perbest−peri
perbest−perworst

ð4Þ

vi ¼ pernorm; sla
v
normð Þ ð5Þ
pernorm and slavnorm indicate normalized power effi-
ciency and normalized SLA violation respectively. It is
noteworthy that perbest > perworst, but slavbest < slavworst.
By having the normalized vector vi, it is possible to
calculate L2-norm and use it as an overall score
(Scorei).

Scorei ¼ ∣vi∣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

slavnorm
2 ¼ þ

q

pernorm
2 ð6Þ

Equation 6 calculates the score of selected approach
i. Lower value for the score is considered as the bet-
ter one, as it is construed as a smaller distance to the
best bounds of each metric (defined by slavbest and
perbest). The Energy-Reduction and SLAV-Reduction
approaches always achieve the score 1, as each one
achieves the best score for one metric and the worst
score for the other one. Scores less than 1 indicate
that overall performance of the candidate approach
has improved relative to the baseline approaches. Dif-
ferent workload patterns of data center are consid-
ered, and the average amount of all tests’ score is
calculated to be used in comparisons.

Experimental setup for evaluation
In order to evaluate the proposed approaches, they are
simulated along with similar latest ones using DCSim
[22] that is an extensible simulator able to model the
multi-tenant virtualized data centers efficiently. Also,
DCSim includes virtualization features such as CPU
scheduling used in modern Hypervisors, resource alloca-
tion and virtual machine migrations. Moreover, it is able
to model a continuous and interactive workload that is
necessary in experiments.
The simulated data center consists of 200 host

machines of two types (small and large). The small
hosts are considered as HPProLiant DL380G5, with
2 dual-core 3 GHz CPUs and 8 GB of memory. The
large hosts are considered as HP ProLiantDL160G5,
with 2 quad-core 2.5 GHz CPUs and 16 GB of



Table 5 The best values of ESDR parameters

Parameter Value Description

pernormal 71.817 Normal value of power efficiency threshold

slavnormal 1.644 Normal value of SLA Violation threshold
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memory. Table 3 shows detailed features of the
above mentioned hosts used in performed
experiments.
The power consumption of both hosts is calcu-

lated by SPECPower benchmark [24] and results in-
dicate that maximum power efficiency of large
hosts (85.84 CPU/W) doubles the small host ones’
(46.51 CPU/W). Three different sizes are considered
for virtual machines in simulated data center as
shown in Table 4.
The hosts are able to use a work-conserving CPU

scheduler which is available in virtualization technol-
ogy. This means that each shared CPU that is not
used by a VM can be used by other ones. For CPU
contention, the shares are assigned to VMs as round-
robin until all the shares be allocated. The metrics
used by management policies (e.g. host CPU
utilization and SLA violation) are measured every
2 min from each host, and evaluated by the policy
over a sliding window of 5 measurements.

Workload pattern
Data centers experience a highly dynamic workload,
driven by frequent VMs’ arrivals/departures, as well
as resource requirements of VMs. In this paper, to
evaluate the proposed approach, random workload
patterns are generated each one having a set of VMs.
The VMs are assigned a specific start/stop time and a
dynamic trace-driven resource requirement. Each VM
is driven by one of the individual traces (ClarkNet,
EPA, and SDSC [25]), and two different job types
from the Google Cluster Data trace [26]. For each
workload pattern, incing requests are calculated with
100 s interval. The requests rate is used to define
current workload of each VM. The CPU requirement
of each VM is calculated through a linear function of
current input rate. Each VM starts its trace with a
random selected offset time.
The number of VMs in data centers varies during

simulation process frequently to form dynamicity of the
environment. Within first 40 h of activity, 600 VMs are
Table 6 The results of 5 workload patterns for each approach

Approach Host Unit Power (KWH) PwrEff (CPU/W

SLAV-Reduction 83.505 4531.190 68.811

Energy-Reduction 84.686 4094.201 74.695

ESDR 84.583 4404.442 70.712
created and remain as running throughout simulation
period in order to keep at least a low level of loads
existing. After 2 days of simulation, the rate of new ar-
rival VMs begins to change, and it stops changing after
about 1 day. The arrivals are generated as one per day.
The total number of VMs in data center is set by a
random generated number with normal distribution be-
tween the values of 600 and 1600. The reason to
choose value 1600 for maximum number of VMs is
that beyond this value, the SLAV-Reduction denies ad-
mission of some incoming VMs due to insufficient
available resources. The simulation continues for 10 days
and then the experiment finishes.

Evaluation of pernormal and slavnormal in ESDR
Switching between two approaches Energy-Reduction
and SLAV-Reduction in ESDR occurs when the metrics
related to the goal of active approach (slav for SLA
violations or per for power efficiency) is within the nor-
mal/acceptable range considering the threshold values
(slavnormal or pernormal). But the metrics of non-active ap-
proach exceeds its normal/acceptable threshold value.
ESDR uses {slavnormal|pernormal}threshold values. These
values are derived from the experiments performed on
different workload patterns for Energy-Reduction and
SLAV-Reduction approaches. Table 5 shows the best
values of above mentioned parameters.

Discussion and evaluation of the experimental results
The experiments with the same workload patterns are
repeated five times for each proposed approach and the
average values of results are obtained. Table 6 shows the
results of five different workload patterns for each
approach.
The columns of Tables 6 are evaluation metrics in-

troduced in Section III-I. The results show measured
values of different metrics as well the reported
normal values of Energy-Reduction and SLAV-
Reduction.
As shown in Fig. 1, the highest and lowest host

utilization values result from Energy-Reduction and
SLAV-Reduction approaches respectively.
Given that the Energy-Reduction and SLAV-Reduction

approaches use different values for stresscpu threshold
(95% in Energy-Reduction approach, and 85% in SLAV-
Reduction approach), lower threshold allows SLAV-
Reduction approach access to more resources while
) SLA Migration slavnormal pernormal Score

1.403 57,459 0 1 1

2.087 37,863 1 0 1

1.476 50,417 0.307 0.514 0.599



Fig. 1 Comparison of Host Utilization metric in different approaches
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workload changes. This subsequently leads to low
utilization of the active host. Figure 2 and Fig. 3 com-
pare the metrics power consumption and power effi-
ciency for different approaches.
With regard to primary goal of SLAV-Reduction and

Energy-Reduction approaches which are reducing SLA
violations and increasing energy efficiency respectively,
SLAV-Reduction approach consumes the highest
amount of power (its power efficiency is low) and
Energy-Reduction approach acts as contrary. Figure 4
compares the SLA violations of three proposed
approaches.
Corresponding to power consumption results, Fig. 4

shows that SLAV-Reduction approach has the lowest
amount of SLA violations while Energy-Reduction ap-
proach suffers from highest amounts of violations. The
Fig. 2 Comparison of power consumption metric in different approaches
number of migrations for different approaches is com-
pared in Fig. 5.
The results indicate that SLAV-Reduction approach

caused by the highest number of virtual machine migra-
tions while Energy-Reduction approach gained the least
ones. SLAV-Reduction approach attempts to reduce the
SLA violations through migration strategies, and thus
the resource requests of VMs rarely fail. On the other
hand, Energy-Reduction approach avoids migrations as
much as possible in order to increase the hosts’
utilization.
The migration overhead and its effects on SLA

violation and host utilization are also investigated.
Switching between Energy-Reduction and SLAV-
Reduction approaches with different stress thresholds
increases the migrations from ESDR to Energy-



Fig. 3 Comparison of power efficiency in different approaches
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Reduction as a side-effect. The value of stressed
threshold varies in different approaches. The Energy-
Reduction approach uses a large number of hosts ef-
ficiently while considering the stress threshold. It
switches to SLAV-Reduction approach close the
stress threshold, causing a large number of hosts be-
come stressed and migrations increasing.
In order to evaluate the success rate of ESDR ap-

proach considering both goals (SLA violation reduc-
tion and power efficiency), a new metric is
introduced named as score (see Eq. 6). The values
obtained for score of different approaches are com-
pared in Fig. 6.
As shown in Fig. 6, double-goal ESDR approach has

achieved fewer score compared to single-goal SLAV-
Fig. 4 Comparison of SLA violations for different approaches
Reduction and Energy-Reduction approaches. This
means difference reduction for best values of SLA viola-
tion and power efficiency. The graphical representation
vectors of score can be also useful to show and analyze
the results. L2-Norm (Euclidean) vector representation
in two-dimensional space is as the unit circle which is
shown in Fig. 7.
Both Energy-Reduction and SLAV-Reduction ap-

proaches that have been selected as benchmark,
gained the score 1. The smaller radius of the circle
gets better results because it means that the shorter
distance is created for the best values of SLA viola-
tion and power efficiency. As shown in Fig. 7, ESDR
has gained better score than other single-goal
approaches, Energy-Reduction and SLAV-Reduction.



Fig. 5 Comparison of the number of migrations in different approaches
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The ESDR improved the score about 40% compared
to Energy-Reduction and SLAV-Reduction. This is
due to regular calculations of SLA violations and
power efficiencies at specified intervals and then,
comparing them with pernormal and slavnormal

parameters.

Conclusion and future work
This paper aimed to manage virtual machines dy-
namically which is useful in cloud environment data
centers. The provided approaches handle both major
goals of dynamic management in data centers, maxi-
mizing power efficiency and minimizing SLA viola-
tions, considering the inherent trade-off between
these goals. It is difficult to manage data centers
with conflicting goals simultaneously. It becomes
worse by lack of an efficient method to do a
Fig. 6 Comparison of score in different approaches
straightforward comparison based on various metrics.
This paper provided two single-goal approaches
Energy-Reduction and SLAV-Reduction, and also
ESDR as a double-goal approach. The double-goal
approach reduces the consumed energy and SLA vio-
lations simultaneously.
All approaches are experimented in the same simula-

tion conditions. The experimental results indicated that
ESDR handles the mentioned goals more effectively
compared to other approaches. ESDR improved the
score about 40% compared to Energy-Reduction and
SLAV-Reduction.
Some directions can be chosen as future work. One

possible plan is to focus on a management approach able
to switch between two single-goal approaches consider-
ing entire efficiency of data center and according to its
current workload. Moreover, this paper relied only on



Fig. 7 Euclidean vector representation of scores for different approaches
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CPU loads to measure host or VM loads. In future
works, the memory and bandwidth loads can be taken
into account additionally.
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