
Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12
http://www.journalofcloudcomputing.com/content/1/1/12

RESEARCH ARTICLE Open Access

Increasing virtual machine security in cloud
environments
Roland Schwarzkopf*, Matthias Schmidt, Christian Strack, Simon Martin and Bernd Freisleben

Abstract

A common approach in Infrastructure-as-a-Service Clouds or virtualized Grid computing is to provide virtual machines
to customers to execute their software on remote resources. Giving full superuser permissions to customers eases the
installation and use of user software, but it may lead to security issues. The providers usually delegate the task of
keeping virtual machines up to date to the customers, while the customers expect the providers to perform this task.
Consequently, a large number of virtual machines (either running or dormant) are not patched against the latest
software vulnerabilities. The approach presented in this article deals with these problems by helping users as well as
providers to keep virtual machines up to date. Prior to the update step, it is crucial to know which software is actually
outdated or affected by remote security vulnerabilities. While these tasks seem to be straightforward, developing a
solution that handles multiple software repositories from different vendors and identifies the correct packages is a
challenging task. The Update Checker presented in this article identifies outdated software packages in virtual
machines, regardless if the virtual machine is running or dormant on disk. The proposed Online Penetration Suite
performs pre-rollout scans of virtual machines for security vulnerabilities using established techniques and prevents
execution of flawed virtual machines. The article presents the design, the implementation and an experimental
evaluation of the two components.

Introduction
Infrastructure-as-a-Service (IaaS) Clouds [1] and virtual-
ized Grid computing are based on the idea that users build
individual virtual machines as execution environments for
their tasks, allowing them to provide the required soft-
ware stack without having to deal with Cloud or (multiple)
Grid site administrators [2].
While the use of virtual machines is beneficial for ser-

vice and infrastructure providers (users and providers
in the Cloud nomenclature), by lowering the costs for
the former and improving utilization and management
capabilities for the latter, there are also some drawbacks.
Since virtual machines are cheap and easy to create, users
tend to create distinct virtual machines for different tasks.
Users can branch new virtual machines based on old
ones, snapshot machines or even rollback machines to a
previous state. While these features provide great flexi-
bility for users, they pose an enormous security risk for
providers. A machine rollback, for example, could reveal

*Correspondence: rschwarzkopf@mathematik.uni-marburg.de
Department of Mathematics and Computer Science, University of Marburg,
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany

an already fixed security vulnerability [3]. What makes
the task of keeping the software stack up-to-date even
more time-consuming is the the increasing number of
virtual machines, a phenomenon called virtual machine
sprawl [4].
More problems arise because some of the virtual

machines are likely to be dormant (not running) at some
point in time. These virtual machines cannot be easily
kept up-to-date, because typically this would require the
virtual machines to be started, updated and shut down
again, which is not only time-consuming, but may also
be a tedious process. Different solutions [4-6] have been
developed to solve the maintenance problem of (dormant)
virtual machines. While these solutions can be used to
update dormant machines, they suffer from a potential
compatibility problem. They “forcibly” install updates,
either by changing an underlying layer [5] or by replac-
ing files [4,6], and there is no guarantee that the updates
can be safely applied and that they are compatible to the
software stack and the configuration of all affected virtual
machines.
Moreover, all of these solutions lack the ability to prop-

erly identify which applications are truly outdated. Since

© 2012 Schwarzkopf et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 2 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

this information is a prerequisite for the actual update
process, it is a crucial step in the process of keeping (dor-
mant) virtual machines in a Cloud or a virtualized Grid
computing environment up-to-date. While such a check
is easy to perform for running virtual machines, because
of the commonly used package management systems on
Linux platforms and automatic update facilities on Win-
dows platforms, it is again a problem with dormant virtual
machines. Even if virtual machines are kept up to date,
the installed software might still contain design flaws or
software vulnerabilities not fixed with the latest update.
Thus, only checking for updates alone is not sufficient.
Furthermore, machines used in a public IaaS environ-
ment are subject to external attacks, i.e., they might be a
selected or random target chosen by scripts. Therefore,
it is indispensable to continuously analyze the used vir-
tual machines and take proactive countermeasures such
as patching the revealed flaws.
In this article a combined approach that checks for

software updates and scans virtual machines for known
security vulnerabilities is presented. The first component
called Update Checker is proposed to check a potentially
huge number of Linux-based virtual machines for the
necessity of updates. Since the Update Checker copies the
information about installed packages to a central database,
the check can be executed on the central instance without
booting the virtual machine beforehand and shutting it
down afterwards, which is the most time-consuming part
of checking for updates of a virtual machine. Thus, the
check is independent of the status of the virtual machine
(running or dormant). Both apt/dpkg and yum/rpm are
supported and therefore all major Linux distributions.
The solution allows easy checking of all registered vir-
tual machines, returning either the number of available
updates or details about each of the available updates. The
second component called Online Penetration Suite (OPS)
is proposed to perform periodic or pre-rollout online-
scanning of virtual machines. While periodic scans can be
done in idle times, pre-rollout scans are executed before
machines go live, delaying the start of a machine but
using the latest version of the scanners for up-to-date
results. Virtual machines are scanned for software vul-
nerabilities, using a combination of well-known security
products.
Furthermore, the proposed solutions can inform the

owners about relevant findings via e-mail. Using an API,
other management tools can utilize the results. To lever-
age existing software, our proposal is based on the Xen
Grid Engine (XGE) [2] and the Image Creation Station
(ICS) [7] introduced in previous publications. The XGE is
a software tool to create either virtualized Grid environ-
ments on-demand or to act as a Cloud IaaS middleware.
The ICS offers an easy way for users to create, main-
tain and use virtual machines in the previously mentioned

environments. An exemplary integration into the ICS,
marking virtual machines that contain obsolete packages
in virtual machine lists and providing details about avail-
able updates in detail views, and the XGE, preventing
virtual machines containing obsolete packages from being
started, is provided. The OPS scan process is triggered
either by the ICS as a periodic maintenance operation or,
if the additional overhead is acceptable, by the XGE as
a pre-rollout check that might prevent a virtual machine
from being started. As an alternative to preventing vir-
tual machines from being started, those virtual machines
can be started as usual and the owner is informed that
his/her running machine is potentially unsafe. This can
help administrators by giving them an overview of their
dormant virtual machines, but also users without experi-
ence in the area of systemmaintenance (e.g. scientists that
build custom virtual machines to execute their jobs), by
making them aware of the problem.
The article is organized as follows. The next section

presents the proposed design. Then, its implementation
is discussed, followed by the presentation of experimen-
tal results. Afterwards, related work is discussed. The final
section concludes the article and outlines areas for future
research.

Design
The following sections present the design of the proposed
approach. The first section outlines the Update Checker, a
solution for checking for updates in virtual machines. The
second section describes the Online Penetration Suite, an
approach for online-scanning virtual machines for known
software vulnerabilities.

Update checker
Since the primary goal of the Update Checker is detect-
ing obsolete software in (dormant) virtual machines, the
term virtual machine is used throughout this article. Nev-
ertheless, the solution is applicable to physical machines
as well.
The concept of the Update Checker is to build a cen-

tral database that contains all the information required
for the task of checking for updates. This includes the list
of installed packages, including the exact version of the
installed package as well as the list of repositories that
are used for each virtual machine. This information has
to be imported into the central database when the virtual
machine is first registered, and updated after each change
of the virtual machine, i.e., after the installation of new
software or the update of already installed software.
Since the Update Checker is not targeted at a sin-

gle Linux distribution (compared to, e.g., Landscape for
Ubuntu [8]), at least the two prevalent software manage-
ment solutions are supported: apt/dpkg, used for example

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 3 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

in Debian and Ubuntu, as well as yum/rpm, used for
example in Red Hat and Fedora as well as SuSE. Both
solutions use a specific package database format as well
as a specific repository format. While apt/dpkg uses the
same plaintext file format both as package database and as
repository database, yum/rpm uses a Berkeley database as
package database and an XML file as repository database.
Nevertheless, this has no influence on the structure of
the database used to store the required information, since
both systems have the concept of distinct package names
and a consistent versioning scheme in common.
The design of the solution is shown in Figure 1. There

are specific importers for the package databases and for
the repository databases of the different software man-
agement solutions. This makes the Update Checker easily
adaptable to other software management solutions. Infor-
mation about the installed packages of a virtual machine
is stored in the Package DB. Metadata about the VM,
i.e., the time stamp of the import, the repositories used,
etc., is stored in the Metadata DB. Information about the
available packages on the different repositories is stored
in the Repository Cache. When invoked, the Update
Checker takes the information from these databases and

Remote Importer

Update Checker Client
Data

Collector

Update Checker

API

Package
DB

Repo.
Cache

Metadata
DB

Result
Cache

Repository
Importer

CLI

Machine
Importer

Scan Engine

Figure 1 Update Checker architecture. The architecture of the
Update Checker.

the Repository Cache and matches installed and available
packages to detect obsolete software and stores the results
in the Result Cache.
When a query for the state of one or more virtual

machines is issued, the Update Checker first checks to see
if the result of that query is already available in the Result
Cache and returns the cached result if it is not obsolete.
Cached results are considered obsolete after a config-
urable amount of time, depending on factors such as the
frequency of updates or the need for security. Otherwise,
it checks if the package lists of all repositories assigned
to the virtual machine are available in the Repository
Cache and not obsolete, i.e., the configured validity period
has not yet expired. If this is not the case, the package
lists are downloaded from the software vendor’s reposi-
tory, parsed and stored in the Repository Cache for future
use. When using the Repository Cache instead of the real
repositories, there is the chance that the Update Checker
fails to identify an outdated package. Nevertheless, the
Repository Cache is very useful for checking many vir-
tual machines and by using a small validity period, the
risk can be minimized. Finally, the actual check of the vir-
tual machine is started, comparing the version of each
installed package with the version available at the reposi-
tory. Information about outdated packages is then stored
in the Result Cache, so that subsequent queries regarding
the same virtual machine can be answered faster.
To help the user to judge whether the identified out-

dated software poses a risk to the virtual machine, the
Update Checker infers information about the priority of
an update. Unfortunately, there is no common way to
do this for multiple distributions. As a first approach,
the source repository of the updated packages is evalu-
ated, since distributions like Debian or Ubuntu use special
repositories for security updates. The source of an update
can therefore be used as a hint of its significance.
The Update Checker allows to query for the number of

available updates for a single or multiple virtual machines
as well as for details about the outdated packages and
available updates for a single virtual machine. The former
query allows a good estimation of the state of the virtual
machine, where zero means the virtual machine is up to
date, while a number greater than zero means that there
are updates available. If significance information is avail-
able, individual numbers for each level of significance as
well as the sum of the numbers are returned. This can
either be used in situations where an overview over a
number of virtual machines is required, e.g. , a list of vir-
tual machines in a management tool like the ICS, or as a
status check for a specific virtual machine, e.g., before it is
started by the XGE.
Since the availability of updates itself allows no judg-

ment about the threat resulting from the outdated pack-
ages, even when significance information is available, the

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 4 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

latter query allows a detailed examination of the status of a
virtual machine, by giving a list of outdated packages. This
allows the user of the virtual machine to do a threat anal-
ysis based on the outdated packages and decide whether
immediate action is required or not. The described func-
tionality is used as an example of the integration of the
Update Checker with other components. The complete
solution is shown in Figure 2.
Two different interfaces are provided by the Update

Checker: a command line interface (CLI) and an API for
use by other software. The former can be used, when an
administrator manually wants to execute an update check
or register a virtual machine. The latter is provided for
other tools like the ICS or XGE, allowing them to easily
access the status information. This interface is provided
using the language-independent protocol XML-RPC [9],
to be available to tools written in any language.
The Update Checker can also be configured to run

the checks at regular intervals, e.g., daily or weekly. This
speeds up queries by other tools, because the information
is already available. Users can be informed about obsolete
software in their virtual machines via email. Addition-
ally, administrators can also be informed about all virtual
machines using obsolete software, to get an overview
of the security of all virtual machines running on their
infrastructure.
To ease the registration of virtual machines, the remote

importer is provided (see Figure 1). It uses software man-
agement solution specific Data Collectors to gather the
information required for the Update Checker, sends it
to the machine the Update Checker is running on and
triggers the registration process.
It might seem cumbersome to manually re-register vir-

tual machines after every change, but with the remote
importer it is merely a single command. Furthermore, it

can be easily automated when software for management
and maintenance of virtual machines is used.

Online penetration suite
This section presents the Online Penetration Suite (OPS)
to scan an arbitrary number of virtual machines for
security vulnerabilities utilizing multiple security scan-
ners. The OPS combines and interprets the different
results and generates a machine-readable and a human-
readable report. Furthermore, the OPS is able to man-
age (start, stop, migrate, etc.) virtual machines if neces-
sary. This allows automatic testing of virtual machines
in a virtualized infrastructure to detect known security
vulnerabilities. Once the vulnerabilities are known, the
administrators and users can fix them to protect their
systems with respect to unwanted attacks.

Architecture
The OPS is divided into two parts: the logic part, con-
taining the flow control and the report generator, and the
backend part, operating the registered vulnerability scan-
ners and the virtual machines. The architecture of the
OPS is shown in Figure 3, containing two adapters for
OpenVAS [10] and Nessus [11].
The OPS Logic module controls the processes of the

OPS. It configures the security scanners, boots the vir-
tual machines to test (if required) and starts the actual
scans. Since the vulnerability scanners are basically third-
party products with individual characteristics and modes
of operation, they are abstracted by Adapters that hide the
differences and provide an unified interface to start and
monitor the vulnerability scanners. They allow the OPS
not only to start the actual scans, but also to watch the
scanners during the execution to detect any failures and
react accordingly.

ICS

Resources

node node nodenode nodenode

XGE II

Update Checker Repo-
sitory

Repo-
sitory

reads DB
maintains

provides images

registers and
checks VMs

checks VMs

Pool of
VM

Images

Figure 2 Usage scenario. The architecture of a complete system for virtualized Grid computing, consisting of the ICS, the XGE and the Update
Checker. The figure shows the XGE deploying and starting a virtual machine, after the Update Checker has attested the virtual machine as being
up-to-date.

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 5 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

Online Penetration Suite

Logic Backend

Adapters

Nessus

OpenVAS

VM Controller LibVirt

OpenVAS CLI

Nessus API

XML RPC

OPS Logic

Report Generator

Summary

Combined
Report

Tool
Invocation

OPS Report OpenVAS Report Nessus Report

Figure 3 Online Penetration Suite architecture. The architecture of the Online Penetration Suite.

For a scan, the OPS needs two input parameters: the
names of the target virtual machines and the name(s) of
one or more vulnerability scanners. If no scanners are
provided, the OPS chooses all scanners by default. A
name uniquely identifies a virtual machine and allows the
OPS to obtain further information like the IP and MAC
address, path to the disk image(s), etc.
The Report Generator module collects the reports from

the different scanners and generates the final result: a
summary, containing the number of detected vulnerabil-
ities categorized by a risk factor, and a combined report,
containing the results from the security scanners in a uni-
fied format. To enable the Report Generator to analyze
and understand the reports, the adapters have to convert
the reports from the native format of the scanner to the
unified OPS format.
The backend part of OPS consists of adapters to the

required tools and libraries. It provides a module to con-
trol virtual machines using the libvirt [12] library as
well as the vulnerability scanner adapters. Currently, the
OPS supports two different scanners: OpenVAS [10] and
Nessus [11], both well-known and established security-
products.

Running vulnerability scans
OpenVAS is built as a client-server-architecture. The
server is divided into three parts: administrator, man-
ager and scanner. All clients communicate with either the
manager or the administrator that both call the scanner.
The OPS uses omp, a tool from the OpenVAS command
line client for interaction. In order to guarantee a seam-
less scan, some of the countless options of OpenVAS are

preset by the OpenVAS adapter module using a configu-
ration file. This prevents the user from choosing wrong
options that could possibly lead to false results. Never-
theless, by modifying the adapter configuration file it is
possible for an administrator to enable/disable tests or
set/unset options.
Nessus, being the ancestor of OpenVAS, is also built as

a client-server-architecture. To control it, an XML-RPC
interface is used. Nessus needs a number of parameters
to start the scan process: the IP address of the server,
authentication data and a scan configuration. Similar to
the OpenVAS adapter, the Nessus adapter module presets
a number of options to guarantee a seamless scan process.

Structure of the reports
The combined report generated by the Report Generator
is hierarchically divided into several parts. It starts with
a summary of all reports and contains the results of each
scanner structured by each tested virtual machine. Finally,
the machine-specific report contains the vulnerabilities of
this host. This includes a detailed description of the vul-
nerability, the severity level and if applicable, port number
and transport protocol. The following paragraph shows an
excerpt of a report:

<vulnerability>

<title>Microsoft Outlook SMB
Attachment
Remote Code Execution Vulnerability
(978212)</title>

<port>general/tcp</port>

<risk factor>HIGH</risk factor>

<description>

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 6 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

Overview: This host has critical
security
update missing according to Microsoft
Bulletin MS10-045.
[...]
CVE : CVE-2010-0266
BID : 41446
</description>

</vulnerability>

Implementation
In this section, the implementation of the Update Checker
and the OPS is outlined.

Update checker
This section describes important parts of the imple-
mentation of the Update Checker, working from the
top to the bottom of Figure 1. First, the machine and
repository importers and their sources of information
are described using the Debian Package Manager (dpkg)
and the Advanced Packaging Tool (apt) of Debian and
its derivates as an example. Afterwards, the internal
databases and caches, the Scan Engine and the different
interfaces are described. This section is concluded with
details about the remote importer and the integration with
other components. Further implementation details can be
found in a previously published paper [13] of the authors.
The implementation of the Update Checker has been done
using the Ruby programming language.

Machine importer
Amachine importer is responsible for importing the list of
installed packages and enabled repositories of a machine
into the Package DB and Metadata DB, respectively. This
information is collected from the package database, that
keeps track of installed packages, versions, files belonging
to each package, etc., and from the configuration files of
the software management solution.
The package database of dpkg is stored in /var/

lib/dpkg and consists of several text files, of which the
file status is of particular interest, because it contains
the metadata for each package that has ever been installed
on the system. For each package it contains about a dozen
key-value-pairs, of which three are required to extract
the information: Package, which contains the package
name, Status, which contains the state of the package
(installed or not installed), and Version, which contains
the exact version of the package. The following snippet
shows the parsed parts of a dpkg package management
database entry:

Package: openssh-server
Status: install ok installed
Version: 1:5.1p1-5

The repositories used by apt are stored in /etc/apt/
sources.list. This file contains multiple definitions,
one per line, in the following format:

deb ROOT ARCHIVE COMPONENT
(COMPONENT...)

The meaning of these fields is explained in the next
section. They are required to build the URL for the actual
repository that is required to load the list of available
packages.

Repository importers
A repository importer is responsible for importing the list
of available packages in a repository into the Repository
Cache. This information is gathered from the reposi-
tory database of the software management solution. The
repository database of an apt repository can be found
using the following URL that is built using information
from the fields in the config file.

ROOT/dists/ARCHIVE/COMPONENT/'
binary-ARCHITECTURE/Packages.TYPE

The ROOT field contains the root URL of the repository
or mirror. The next two fields partition the repository:
Debian and Ubuntu use ARCHIVE to divide the reposi-
tory by the release (e.g. stable or testing) and COMPO-
NENT to divide by license type and level of support (e.g.
main, contrib or non-free). The last two fields specify the
system architecture and the compression format of the
repository database.
The repository database uses the same format as the

package database of dpkg. Thus, parsing can be done
using the same technique.

Internal databases and caches
The Package DB is used to store a name-version-pair
for each installed package on every machine. Its coun-
terpart is the Repository Cache that stores a name-
version-pair for each available package on every repos-
itory. Initially, it was planned to store this informa-
tion in a database. Unfortunately, importing a virtual
machine or updating the list of available packages of
a repository was very slow using this technique. As a
faster alternative, a hash encoded in JSON [14] was cho-
sen, written to an individual file per virtual machine
or repository, respectively. This was faster by a fac-
tor of more than 23 when measured for the import of
two Debian repositories (2.16 sec using the hash ver-
sus 50.02 sec using the database). The equivalent to the
database snippets shown above in the internal format is
the following:

...,“openssh-server′′:“1:5.1p1-5′′,...

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 7 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

Information about outdated packages is stored in the
Result Cache. It stores name-old version-new version-
priority-quadruplets in a JSON encoded list, written to an
individual file per virtual machine.
The Metadata DB stores a list of all registered vir-

tual machines and repositories as well as the mapping
between them. Furthermore, it stores the names of all files
that build the Package DB, Repository Cache and Result
Cache, together with an expiration date for each file of the
two caches.

Scan engine
In this component, the actual identification of outdated
packages takes place. Whenever a query for available
updates of a virtual machine is submitted and there is no
current result in the result cache, the Update Checker first
determines the required repositories using the Metadata
DB. If the repository cache does not contain current ver-
sions of the required repositories, a repository importer is
used to update the cache. Afterwards, the list of installed
packages is retrieved from the Package DB and the version
of each package is compared with the version of that pack-
age stored in the repository cache. Outdated packages are
stored in the result cache with installed and available ver-
sion, so that subsequent queries can be handled faster.
Finally, the number of outdated packages or the list of
outdated packages is returned to the issuer of the query.
One particular problem discovered during the imple-

mentation of the Update Checker is the format of the ver-
sion numbers used by the different package management
systems or distributions, respectively. While most of the
distributions use versions composed of the fields epoch,
version and release, there are subtle differences between
the distributions, e.g., separators, format of the release
field, etc. Even the versionomy gem, a Ruby library espe-
cially designed for version comparisons, failed to correctly
compare Debian version numbers.
One possibility is the use of the dpgk binary which pro-

vides an option to compare versions. This is very slow,
since each comparison requires forking a new process. A
Ruby library named dpkg-ruby implements version com-
parison using a native library. An old version of this library
contains a Ruby-only version of the version comparison.
Although slower, this solution is preferred to be inde-
pendent of native libraries. By using an additional string
comparison beforehand, performance losses can be cut
down. Except for some minor tweaks, this version com-
parison library worked with all version numbers that were
encountered in Debian and Fedora.
A daemon is used to provide some automation. All vir-

tual machines can be checked for updates automatically
at regular intervals. As described above, this frequently
updates the cached repository databases and caches the
results for all virtual machines. Queries using the API or

the command line interface can then be served from the
cache, requiring almost no time (only a file has to be read).
The daemon also allows to notify users by email about out-
dated packages in their virtual machines. Additionally, the
daemon can be configured to send emails about the status
of all virtual machines to administrators.

Online penetration suite
The Online Penetration Suite is implemented in the Java
programming language. Virtual machines are controlled
using the Java binding of the libvirt library, the Nessus
scanner is invoked using the Apache XML-RPC library
and the reports of the vulnerability scanners are processed
and converted using the Java API for XML Processing
(JAXP).
Depending on the test configuration specified via the

command line, the OPS frontend selects the required
vulnerability scanners, starts their server components (if
required), boots the virtual machines to scan (if they
are not running already) and finally initiates and moni-
tors the actual scan processes. All of these operations are
hidden behind an interface that is implemented by the
adapters, making the OPS easily extensible with new scan-
ners. Since the report generation process is based entirely
on reports in the unified OPS format, no vulnerability
scanner dependent code is required for this step in the
frontend.
The adapters use different techniques to control and

monitor the actual vulnerability scanners. OpenVAS pro-
vides a command line interface, so its adapter needs to
create a test configuration in the form of an XML file and
pass it as an argument to the omp binary. Monitoring of
OpenVAS requires analyzing the output of its client. For
Nessus, the provided XMLRPC API is used. It contains
methods to start and monitor the actual scan process.
Both adapters contain code to convert the proprietary
report formats into the unified OPS format.

Experimental results
The following section presents an evaluation of the pre-
sented components.

Update checker
Measurements have been conducted to evaluate the
Update Checker on an Intel Xeon E5220 machine with 1
GB memory. The first measurement is a local measure-
ment testing all components of the Update Checker, i.e.,
machine import, repository import and update checking.
Three Debian and three Fedora virtual machines have
been used in this test, with varying numbers of installed
packages and enabled repositories. Each test has been exe-
cuted 20 times and average values have been calculated.
The results are shown in Table 1.
In the first part of this evaluation, the different machine

importers were tested. All required files were copied to the

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 8 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

Table 1 Update Checker component benchmark

Distribution Installed Machine Repository Update

packages import import import

Debian 563 0.04 secs 2.39 secs 0.44 secs

Debian 867 0.06 secs 2.80 secs 0.44 secs

Debian 1493 0.07 secs 2.68 secs 0.78 secs

Fedora 591 0.03 secs 13.59 secs 0.38 secs

Fedora 1063 0.04 secs 14.84 secs 1.00 secs

Fedora 2159 0.05 secs 15.38 secs 2.10 secs

Benchmark of all individual components of the Update Checker.

machine the test was executed on prior to the evaluation,
thus no network communication is involved. Further-
more, before the measurement rpm -qa was executed
on the source machine to generate a list of installed pack-
ages including their version. This is required to work
around incompatibilities (i.e., the rpm binary on Debian
squeeze could not read the rpm database of a Fedora 15
installation).
The growing import times can be explained with the

growing number of installed packages that must be
parsed.
The second part of the test measured the time required

to download and parse all repository databases for the vir-
tual machines (each machine had between 2 and 4 reposi-
tories configured) without using the repository cache. The
times measured are thus artificial and are only of little
relevance for actual usage, but allow evaluating the repos-
itory import and update checking. While the times for the
Debian machines are quite stable, the increase of the time
for Fedora is caused by the number of repositories used
(2, 3 and 4, respectively). The very bad performance of the
Fedora repository import is caused by the use of XML in
the repository database.
The last part of the test evaluates the algorithm that

actually checks for updates. Again, the increase in the
times is caused by the growing number of packages.
The reason for the worse results for Fedora are proba-
bly the longer and more complex version numbers used
in Fedora, making the comparison harder and more time-
consuming.
The measured values are promising. Checking for

updates is a very fast process with the Update Checker.
Because of the individual files used for the Package
DB and Repository Cache, we do not expect perfor-
mance degradation when the number of virtual machines
increases. The relatively long time required for importing
yum repositories is compensated by the repository cache,
that results in every repository being downloaded and
parsed only once during the configurable validity period of
the cache.

To evaluate the influence of the repository cache,
another measurement has been conducted that represents
a more realistic scenario: checking all imported virtual
machines for updates. The six machines from the last
measurement were checked at once, taking advantage of
the repository cache. The experiment was repeated 20
times and the average times are shown in Figure 4. The
results indicate that the repository cache is very effec-
tive in cutting down the time required to check multiple
virtual machines for updates.
To evaluate the scalability (and applicability for physi-

cal machines) of the Update Checker, 115 physical nodes
from our compute cluster were imported. All machines
were checked at once using the repository cache. The
experiment was repeated 20 times and the time required
to check all virtual machines was calculated. The results
shown in Figure 5 provide evidence for the scalability of
the Update Checker. The average check time was 34.53
seconds for all 115 machines, that is 0.30 seconds per
machine.
Another measurement was conducted to evaluate the

import time of the virtual machines, when the remote
importer is used. This involves gathering all required
files, executing rpm -qa in the case of rpm based dis-
tributions, sending everything to the Update Checker and
starting the import process. For each virtual machine, 10
imports were executed. The results are shown in Figure 6.
As expected, the amount of time the import pro-

cess requires grows with the number of packages in
the database. Generally, the import process is faster for
apt/dpgk based virtual machines than for yum/rpm based
virtual machines. The source of this problem seems to be
the use of the rpm binary to extract the information from
the database.

0

2

4

6

8

10

12

14

1 2 3

tim
e

in
 s

ec
on

ds

virtual machine

Debian
Fedora

Figure 4 Update checking performance. Benchmark of the update
checking process for multiple virtual machines using the repository
cache.

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 9 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

34

34.375

34.75

35.125

35.5

1 3 5 7 9 11 13 15 17 19

tim
e

in
 s

ec
on

ds

trials
Figure 5 Results of the scalability evaluation. Benchmark of the
update checking process for 115machines using the repository cache.

Online penetration suite
The following section presents measurements related to
the OPS. All tested systems are Xen domainU virtual
machines running Debian Squeeze and located on Pen-
tium IV systems with 1 GB memory. The OPS node is an
Intel Xeon E5220 machine and 1 GB memory. All systems
are interconnected with switched fast Ethernet.
The first experiment measures the total runtime of

the OPS depending on the number of virtual machines.
Figure 7 shows the results. The OPS used both vulner-
ability scanners in parallel while the number of target
virtual machines was increased with every run. To get
a robust mean, 100 trials were performed. Testing one
virtual machine took 684 seconds on average, testing
two machines took 859 seconds, testing three machines

1056 seconds, and it took 1279 seconds to test all four
machines. Obviously, the measurement reveals that the
runtime increases linearly with the number of tested sys-
tems. Furthermore, it reveals that it is more efficient to test
multiple targets in parallel instead of scanning one after
another.
In order to test the efficiency of the OPS, multiple

tests against virtual machines running different versions
of the Debian operating systems were conducted. The
unpatched release version of Debian Etch (released April
2007), Lenny (released February 2009), Squeeze (released
February 2011) and Wheezy (current unstable version)
were used. The results of the tests are shown in Table 2.
The OPS successfully revealed a number of security vul-

nerabilities in all tested versions, including two high-risk
flaws in each version. Debian Etch is the oldest release and
contains the lowest number of vulnerabilities because it
contains less features (in terms of installed services) than
all other versions. Other flaws are related to the installed
kernel version. The flaws appeared with newer kernel
versions and thus, only in newer Debian versions.

Related work
The Cloud computing risk report written by ENISA [15]
mentions the failure of customer hardening procedures as
one of the research problems needed to be solved. Cus-
tomers failing to secure the computing environment may
pose a vulnerability to the Cloud infrastructure.
Automation of system administration, including system

administration and updating systems is one of the relevant
research topics mentioned in the Expert Group Report
[16] created by the European Commission.

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

tim
e

in
 s

ec
on

ds

trials

Debian (563) Debian (867)
Debian (1493) Fedora (592)
Fedora (1064) Fedora (2283)

Figure 6 Remote import performance. Total time required to import each of the 6 virtual machines using the remote importer.

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 10 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

tim
e

in
 m

in
ut

es

trials

1 vm 2 vms 3 vms 4 vms
Figure 7 Results of the OPS evaluation. Benchmark of the runtime of the OPS depending on the number of tested systems.

An image management system, called Mirage, is pre-
sented by Wei et al. [6]. Mirage addresses security con-
cerns of a virtual machine image publisher, customer
and administrator. To reduce the publisher’s risk, an
access control framework regulates the sharing of virtual
machines images. Image filters remove unwanted infor-
mation (e.g., logs, sensitive information, etc) from images
prior to publishing. The authors also present amechanism
to update dormant images and apply security updates.
While Mirage offers a complete solution for virtual disk
image maintenance, it lacks the features presented in
this article. Mirage cannot show whether the packages in
a system are outdated and work with multiple package
management systems.
Based on Mirage, Reimer et al. [4] present the Mirage

image format (MIF), a new storage format for virtual
machine disk images. MIF solves the problem of virtual
machine image sprawl, i.e., the complexity of maintain-
ing disk image content that changes continuously due
to cloning or snapshotting. MIF stores the disk image
content in a central repository and supports searching,
installing and updating applications in all images. By using
a special storage device, disk images share common blocks

Table 2 OPS results for Debian

Risk level Risk level Risk level Risk level

Distribution none Low medium high

Debian Etch 14 2 0 2

Debian Lenny 43 2 3 2

Debian Squeeze 44 2 3 2

Debian Wheezy 43 2 3 2

Number of security vulnerabilities the OPS detected in different versions of
Debian Linux.

and thus take up only a fraction of the actual disk space.
Using MIF it is also possible to update packages on a
system although the update procedure is quite complex.
At first, it is quite unclear how the system determines
whether there is a need for an update. Furthermore, the
system needs a modified version of dpkg, thus, it is not
usable with off-the-shelf installations or other package
management solutions. The authors state that “the opti-
mized Dpkg does not support some of Dpkg’s features”.
A system for unscheduled system updates, called Auto-

Pod, was presented by Potter et al. [17]. AutoPod is based
on system call interposition and the chroot utility and is
able to create file system namespaces, called pods. Every
process in a pod can be offline-migrated to another phys-
ical machine by using a checkpoint mechanism. Unfortu-
nately, AutoPod is bound to Debian Linux and cannot be
used with other package managers. Furthermore, it also
updates a system automatically, which could lead to prob-
lems in case of an incomplete update. In contrast to the
presented solution, AutoPod is based on chroot, which is
known for having several major security flaws in the past.
Sapuntzakis et al. [18] developed a utility, called the

Collective, which assigns virtual appliances to hardware
dynamically and automatically. By keeping software up to
date, their approach prevents security break-ins due to
fixed vulnerabilities. While their approach allow updat-
ing whole virtual machine appliances, it does not allow
the update of certain packages within the appliance. Fur-
thermore, it is not possible to determine whether certain
packages are outdated.
Layered virtual machines [5] can be used to solve the

maintenance problem of dormant virtual machines. These
machines are split up in different layers, such as a common
base layer, containing a base system with some commonly
required libraries and tools, an user layer containing

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 11 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

specific applications required by the user and potentially
other layers. Besides benefits when it comes to storage and
transfer of those virtual machines, considering shared lay-
ers that need to be stored and transferred only once and
reused by many virtual machines, this architecture also
helps with the problem of keeping machines up-to-date.
Because a base layer is shared by many virtual machines,
updating the base layer will affect all virtual machines
built on top. Although not the complete software stack
is affected by those updates, some of the most important
parts of the system (e.g., the SSH libraries, which were
affected by a serious bug in the Debian implementation
back in 2008 [19]) can be fixed this way.
Canonical, the company behind Ubuntu Linux, offers a

commercial product called Landscape [8]. Landscape can
be used to manage Ubuntu (virtual) machines, including
package management and monitoring. While Landscape
is able to detect and update outdated applications within
virtual machines, it can only handle the Debian package
format and is not able to update dormant machines. How-
ever, Landscape can update outdated machines once they
are live the next time.
SAVEly, a tool to check Amazon Machine Images

(AMIs) for vulnerabilities was presented by Bleikertz et
al. [20]. The authors construct an attack graph based on
the security polices used in EC2. These policies are used
to group machines while restricting the communication
between them. Based on the graph, the authors use the
OpenVAS scanner to check the AMI for remote vulnera-
bilities. Their approach is tightly coupled to Amazon’s EC2
and cannot be used with other IaaS implementations or in
virtualized Grid environments.
Yoon and Sim [21] present an automated network vul-

nerability assessment framework. It uses a combination
of a scan manager, message relay server and scanners to
check the hosts in a network for vulnerabilities. Their
approach uses similar techniques as the ones presented,
but it lacks the ability to work in a Cloud computing envi-
ronment. It is neither able to control virtual machines, nor
to instrument an IaaS solution like the XGE.

Conclusions
In this article, a new approach to increase the security
of virtual machines in either virtualized Grid or Cloud
computing environments has been presented. It is based
on two components: a first component called Update
Checker to identify outdated packages can check either
running or dormant virtual machine images efficiently. It
supports the twomajor Linux software management solu-
tions, namely apt/dpkg and yum/rpm, and thus all major
Linux distributions currently used in Grid or Cloud envi-
ronments. Due to its flexible design, plugins for other soft-
ware management solutions can be easily added. The use
of multiple caches speeds up the check process, resulting

in a time less than a second for a complete check of
an average virtual machine. A second component called
Online Penetration Suite scans virtual machines for soft-
ware vulnerabilities using established security techniques.
It can identify flaws in software components listening on
the network. Both components are integrated into two
already existing solutions (XGE and ICS) that leverage
their capabilities to deny running too outdated machines
or provide the user with the ability to update his or her
machines.
There are several areas for future work. For example, the

current implementation of the Update Checker only sup-
ports software installed using the package management
systems of current Linux distributions. Nevertheless,
there are cases where software is installed in other ways,
either by compiling it manually or by installing software
from binary packages that are not available in repositories.
The idea of a generic framework with software specific
plugins that can determine the installed version seems to
be promising. Problems to solve are binaries without a
version parameter and even more locating the software
that was installed without using the package management
system. Furthermore, the current approach to infer the
significance of updates is a very basic approach. Compar-
ing the list of outdated packages to the security advisories
of the distribution, if available, seems to be promising.
This would require distribution specific parsers for the
advisories, since there is no unified advisory format, and
manual configuration of the advisory sources for each dis-
tribution. The OPS currently controls two vulnerability
scanners. In the future, it would be desirable to support a
larger number of scanners.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally. All authors read and approved the final
manuscript.

Acknowledgements
This work is partly supported by the German Ministry of Education and
Research (BMBF) (D-Grid Initiative and HPC-Call) and the Hessian Ministry of
Science and Art (HMWK).

Received: 30 January 2012 Accepted: 5 June 2012
Published: 17 July 2012

References
1. Armbrust M, Fox A, Griffith R, Joseph A (2009) Above the Clouds: A

Berkeley View of Cloud Computing, Technical Report UCBEECS200928
53(UCB/EECS-2009-28). EECS Department University of California Berkeley

2. Smith M, Schmidt M, Fallenbeck N, Dörnemann T, Schridde C, Freisleben
B (2009) Secure On-demand Grid Computing. J Future Generation
Comput Syst 25(3): 315–325

3. Garfinkel T, Rosenblum M (2005) When Virtual is Harder than Real:
Security Challenges in Virtual Machine Based Computing. In 10th
Workshop on Hot Topics in Operating Systems
121–126

Schwarzkopf et al. Journal of Cloud Computing: Advances, Systems and Applications 2012, 1:12 Page 12 of 12
http://www.journalofcloudcomputing.com/content/1/1/12

4. Reimer D, Thomas A, Ammons G, Mummert T, Alpern B, Bala V (2008)
Opening Black, Boxes: Using Semantic Information to Combat Virtual
Machine Image Sprawl. In Proceedings of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments 111–120. Seattle: ACM

5. Schwarzkopf R, Schmidt M, Fallenbeck N, Freisleben B (2009)
Multi-Layered Virtual Machines for Security Updates in Grid Environments.
In Proceedings of 35th Euromicro Conference on Internet Technologies,
Quality of Service and Applications (ITQSA) 563–570. Patras: IEEE Press

6. Wei J, Zhang X, Ammons G, Bala V, Ning P (2009) Managing Security of
Virtual Machine Images in a Cloud Environment. In Proceedings of the
2009 ACMWorkshop on, Cloud Computing Security, CCSW ’09 91–96.
New York: ACM

7. Fallenbeck N, Schmidt M, Schwarzkopf R, Freisleben B (2010) Inter-Site
Virtual Machine Image Transfer in Grids and Clouds. In Proceedings of the
2nd International ICST Conference on Cloud Computing (CloudComp
2010) 1–19. Barcelona: Springer, LNICST

8. Canonical Inc (2011) Ubuntu Advantage Landscape. http://www.
canonical.com/enterprise-services/ubuntu-advantage/landscape

9. Winer D (2003) XML-RPC Specification. http://www.xml-rpc.com/spec
10. OpenVAS Developers (2012) The Open Vulnerability Assessment System

(OpenVAS). http://www.openvas.org/
11. Tenable Network Security (2012) Nessus Security Scanner. http://www.

nessus.org/products/nessus
12. Libvirt Developers (2012) Libvirt - The Virtualization API. http://libvirt.org/
13. Schwarzkopf R, Schmidt M, Strack C, Freisleben B (2011) Checking

Running and Dormant Virtual Machines for the Necessity of Security
Updates in Cloud Environments. In Proceedings of the 3rd IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom) 239–246. Athens: IEEE Press

14. Crockford D (2006) The application/json Media Type for JavaScript Object
Notation (JSON). http://www.ietf.org/rfc/rfc4627

15. ENISA European Network and Information Security Agency (2009) Cloud
Computing Risk Assessment. http://www.enisa.europa.eu/act/rm/files/
deliverables/cloud-computing-risk-assessment

16. Lillard TV, Garrison CP, Schiller CA, Steele J (2010) The Future of Cloud
Computing. In Digital Forensics for Network, Internet, and Cloud
Computing 319–339. Boston: Syngress

17. Potter S, Nieh J (2005) AutoPod: Unscheduled System Updates with Zero
Data Loss. In Autonomic Computing, International Conference on
367–368

18. Sapuntzakis C, Brumley D, Chandra R, Zeldovich N, Chow J, Lam MS,
Rosenblum M (2003) Virtual Appliances for Deploying and Maintaining
Software. In Proceedings of the 17th USENIX Conference on System
Administration 181–194. Berkeley: USENIX Association

19. Debian Security Advisory 1576-1 OpenSSH (2008) Predictable Random
Number Generator. http://www.debian.org/security/2008/dsa-1576

20. Bleikertz S, Schunter M, Probst CW, Pendarakis D, Eriksson K (2010)
Security Audits of Multi-tier Virtual Infrastructures in Public Infrastructure
Clouds. In Proceedings of the 2010 ACMWorkshop on Cloud Computing
Security, CCSW ’10 93–102. Chicago

21. Yoon J, Sim W (2007) Implementation of the, Automated Network
Vulnerability Assessment Framework. In Proceedings of the 4th
International Conference on Innovations in Information Technology
153–157. Dubai: IEEE

doi:10.1186/2192-113X-1-12
Cite this article as: Schwarzkopf et al.: Increasing virtual machine security
in cloud environments. Journal of Cloud Computing: Advances, Systems and
Applications 2012 1:12.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.canonical.com/enterprise-services/ubuntu-advantage/landscape
http://www.canonical.com/enterprise-services/ubuntu-advantage/landscape
http://www.xml-rpc.com/spec
http://www.openvas.org/
http://www.nessus.org/products/nessus
http://www.nessus.org/products/nessus
http://libvirt.org/
http://www.ietf.org/rfc/rfc4627
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment
http://www.debian.org/security/2008/dsa-1576

	Abstract
	Introduction
	Design
	Update checker
	Online penetration suite
	Architecture
	Running vulnerability scans
	Structure of the reports

	Implementation
	Update checker
	Machine importer
	Repository importers
	Internal databases and caches
	Scan engine

	Online penetration suite

	Experimental results
	Update checker
	Online penetration suite

	Related work
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

