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Abstract

In cloud computing environments guarantees, consistency mechanisms, (shared) state and transactions are
frequently traded for robustness, scalability and performance. Based on this challenge we present CMQ, a UDP-based
inherently asynchronous message queue to orchestrate messages, events and processes in the cloud. CMQ’s
inherently asynchronous design is shown to perform especially well in modern Layer 2 switches in data center
networks, as well as in the presence of errors. CMQ’s lightweight edge-to-edge design, which is somewhat similar to
Unix Pipes, makes it very composable. By presenting our work, we hope to initiate discussion on how to implement
lightweight messaging paradigms that are aligned with the overall architectures and goals of cloud computing.

Introduction
Cloud computing has two perspectives: first, an outward-
looking perspective that embodies an elastic application
executed in a secure container and accessible over the
internet, as seen by developers and end users; Secondly, an
inward-looking perspective that describes the large scale
distributed cloud computing platform and its middleware
as implemented and operated by the provider [1]. CMQ
presents a message passing model (that is a middleware
abstraction) implemented in Haskell that addresses the
reality of both perspectives.

The inward-looking perspective
The physical cloud nodes in computing clouds are orga-
nized into “Points of Delivery”a and interconnected via
equipment that either switches at line rate, or that uses
lossless Ethernet fabricb technologies. In switched data
center networks, all Ethernet (RFC 894) based networking
protocols are switched without discrimination. Conges-
tion and packet loss are extremely unlikely in such data
center networks. The overhead of TCP/IP in 10Gbps data
center fabrics has led to CPU performance issues ([2-4])
and has given rise to new connectionless Ethernet pro-
tocols, such as RDMA over converged Ethernet (RoCE)
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and the Internet Wide Area RDMA Protocol (iWARP).
However, both protocols require specialized hardware
(network cards, switching gear) that is not in line with the
trend to build clouds from commodity hardware [5], and
accept occasional failures rather than preventing failure at
any cost [6].
In CMQ, UDP is used as the transport protocol for the

following reasons:

• It is connectionless.
• It is the protocol that adds the least overhead to the

ethernet network: it adds only 28 bytes overhead to
every packet (20 byte IPv4c header + 8 byte UDP
header).

• It is accessible to guest systems on hypervisors and
clouds and is readily available to (Haskell) developers
via standard modules.

Above all, the design of the UDP protocol fits the above-
mentioned notion of cloud computing well, that is, to
accept occasional failure and manage it, rather than strug-
gling to prevent it.

The outward-looking perspective
The guest systems in clouds often have to cope with
the suboptimal network conditions caused by software
devices, a problem that the VEPAd standard tried to solve
in 2009. The software devices, such as vswitches and
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vrouters, are responsible for regulating network traffic
inside the cloud nodes and are guest systems themselves.
Depending on the virtualization ratio, one virtual switch
could be responsible for up to 64 guest systems. Guest
systems frequently have to cope with packet loss [7] that,
when using TCP/IP costs many CPU cycles on systems
that are themselves billed according to the available CPU
cycles. Packet loss in TCP/IP can easily cause guest sys-
tems to grind to a halt.
Furthermore, ubiquitous computing is becoming

increasingly important and prevalent: according to [8], “7
trillion wireless devices [will be] serving 7 billion people
by 2017”. Considering that packet loss is very common in
radio transmission wireless networks, reliable network
transmission protocols such as TCP suffer undesirable
performance reduction due to the congestion avoid-
ance algorithm used in TCP, while protocols based on
UDP and the like, with optimized data transmission and
performance advantages, are becoming more attractive
for mobile devices that experience significant packet
loss. Therefore, it is reasonable to assume that future
(cloud) services, most of which will be dependent on
one of the 7 trillion wireless devices, require protocols
that are significantly better than TCP in the presence
of errors.

Related work
According to [1], “the cloud demands obedience to [its]
overarching design goals”, and “failing to keep the broader
principles in mind” leads to a disconnection of cloud
computing research from real world computing clouds.
Furthermore, scientists “seem to be guilty of fine-tuning
specific solutions without adequately thinking about the
context in which they are used and the real needs to which
they respond”. One overarching design goal however is
to avoid strong synchronization provided by locking ser-
vices. Wherever possible, all building blocks of a comput-
ing cloud should be inherently asynchronous. CMQ, being
designed to meet the real needs of cloud computing, is
strictly asynchronous and is the combined research result
from many different research fields, including network-
and data- center design, network protocols, message
oriented middleware and functional programming lan-
guages.

UDP Protocol
The increasingly wide adaptation of the UDP protocol
indicates the suitability of the UDP protocol as an effi-
cient transport protocol for supporting distributed appli-
cations. For example, UDP is used for data transportation
in Network File System (NFS) and for state and event
transportation in Massive Multiplayer Online Games
(MMOGs) [9,10]. EverQuest, City of Heroes, Asheron’s
Call, UltimaOnline, Final Fantasy XI, etc. are amongmany

MMOGs that use UDP as its transport protocol. The fact
that MMOG applications are by nature of large, but elas-
tic scale make them ideal customers for IaaS and PaaS
offerings. By using cloud computing and storage facilities,
not only cost and risks, that are usually linked to building
new MMOGs, reduced [11], but also over-provisioning
MMOG hardware to be on standby for peak times will be
avoided [12]. However, whether computing clouds can ful-
fil the stringent real-time requirements of MMOGs is still
an open issue [13].
In contrast to MMOGs that are largely event driven

where the size of individual messages is expected to be
small [14], NFS is data driven with larger packet sizes
and higher throughput. NFS, according to [15], the most
successful distributed application ever, has been using
UDP as underlying transport protocol for more than
two decades and was a stateless protocol up to NFSv3e.
Compared with a large-scale cloud environment, NFS is
arguably designed for a limited scale. The UDP based Data
Transfer Protocol (UDT), described in [16], has showed
the applicability of using the UDP-based UDT proto-
col for “cloud span applications” and won the bandwidth
challenge at the International Conference for High Per-
formance Computing, Networking, Storage, and Analysis
2009 (SC09). Furthermore, [17] also discovers that reli-
able transport protocols that outperform TCP transport
protocols can be designed in the basis of UDP.

Message Oriented Middleware (MOM)
If we view computing clouds from the inward-looking per-
spective mentioned above, it can be seen that the cloud
framework itself is a distributed application that in turn
supports distributed guest applications, for the reasons
listed below.

• Computing clouds have an inherent distributed
character.

• The cloud framework enables elasticity, and
parallelization (through distribution) of guest
applications. The guest application should be
distributable so that it has the flexibility to be
distributed to other resources when the limits of the
current available cloud resources are reached.

The relevance of message passing for computing clouds
stems from the distributed programming model that is
chosen to code either the cloud platform or the guest
application. [18] sees the Actor concurrency model [19]
as the foundation of cloud computing. The Actor model
enables “asynchronous communication and control struc-
tures as patterns of passing messages” [20]. Two well-
known implementations of the actor model are e.g. the
functional programming language Erlang [21] and the
Akka toolkit [22].
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Whilst a UDP message queue for Actors is a new idea,
UDP-based MOM (Message-Oriented Middleware) is
not. The open source Light Weight Event System (LWES)
[23] is a UDP-based MOM that is described as having a
strong position in large scale, real-time systems that need
to be non-blocking and is also described by Yahoo! as part
of US Patent 2009/0094073 “Real Time Click (RTC) Sys-
tem and Methods”. LWES is also described as being useful
(for transporting large data to computing nodes) for par-
allel batch processing with Hadoop [24], which is an open
source implementation of Google’s Map Reduce [25]. In
fact, MapReduce and Hadoop are posited, in [26], as the
right cloud computing programming models.

Functional programming languages
The functional programming language Haskell is cho-
sen as the programming language to implement CMQ
because of the following reasons:

• It is independent from any third-party platform or
runtime (e.g., Clojure and Scala are built on top of
JVM, F# on top of the .NET platform).

• It is being actively researched and has an ever
increasing large research community. According to
the popularity tracking website langpop.com [27], in
2011, it was ranked fifth out of the 32 most
talked-about programming languages on the internet.

• It supports a wide range of concurrency paradigms
[28].

• It is very powerful in list manipulation. Lists are used
in CMQ to provide lightweight data structure that
holds messages in sequence. List manipulation is
useful to implement selective receives of messages
with defined characteristics (rather than accepting
messages in FIFO sequence) in an Erlang-like fashion.

With regard to the question whether functional pro-
gramming languages are at all the right tool for the
implementation of CMQ, we share the opinion stated in
[29] that it is best to start with a programming language
“whose computational fabric is by-default parallel” and
that in the future “parallel programming will increasingly
mean functional programming”. Notably, MapReduce and
Hadoop are frameworks that are eventually based on the
functions map and fold (aka reduce) of functional pro-
gramming languages.
Cloud Haskell, proposed in [30], aimed to further

develop Haskell as a programming language for develop-
ing distributed applications. It was influenced by Erlang,
and was intended to provide support for the actor model,
message passing, and the mobility (with limitations) of
functions with co-located data (closures). Coutts states
[31] that protocols, as the centre of distributed systems,
are playing amain part in the future development of Cloud

Haskell. A proprietary protocol suite and protocol flexi-
bility are among the considerations in the future of Cloud
Haskell.
Although CMQ shares a similar goal to Cloud Haskell

of providing a mechanism for distributed applications,
it has adopted a different approach. Cloud Haskell,
targeting language-level support for distributed appli-
cations, explores a lower, compiler-level implementa-
tion, while CMQ, is intented for a higher-level support.
CMQ takes advantage of the current Haskell language
to explore an implementation at the protocol level and
above. The benefit of a higher-level implementation is
the flexibility that the approach used in CMQ, since it
is language-independent, can be easily adapted to other
languages and environments, and thus serve the ultimate
goal: finding appropriate communication approaches
for cloud computing and the ubiquitous computing
paradigm.

CMQ implementation
CMQ is a lightweight message queue implemented in
Haskell. CMQ provides a polymorphic data type Cmq
a where a is the content type of the queue. CMQ has
currently three primitives: newRq (to initialize the queue
and data structures), cwPush (to push a message into the
queue), and cwPop (to pop a message from the queue).
The code is published on github.com and available at
https://github.com/viloocity/CMQ.

cwPush
Messages for remote processes are identified by a key
tuple consisting of the IP address of the remote system and
an integer which is reserved for future use, for example,
it can be used to specify the PID of the remote pro-
cess. When a message is pushed with cwPush two things
happen:

• The key-tuple and the data are stored in a map,
implemented using the Haskell library Data.Map (a
dictionary that is implemented as a balanced binary
tree).

• The key-tuple and the creation time are stored in a
priority search queue (PSQ), implemented using the
Haskell library Data.PSQueue [32] and used as a
pointer to the corresponding binding in the map.

Figure 1 shows how CMQ works on the side of the
sender. When cwPush is called to push a new message,
a key-tuple k is built that consists of the IP address of
the destination and a unique identifier (i.e. the PID). If
the given key is not already a member of the PSQ, then a
new binding (k, p) is inserted where the priority p is the
creation-time of the binding. At the same time a new key-
value pair (k, a) is inserted into the map, where a is a finite

https://github.com/viloocity/CMQ
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Figure 1Map and PSQ pointer in CMQ. cwPush is called when the key for the recpient process is not present (a), cwPush is called when the key
for the recipient process is already present (b), the timeout for a key has been reached (c), cwPush is called when the key for the recipient process is
present and the data length amounts to qthresh (d).

list that contains the pushed messages (Figure 1(a)). Mes-
sage queues are stored in the map structure and the map
structure stores key-value pairs. The value of each key-
value pair is a reference to a separate queue for a specific
destination process.
If at the time when a new message is pushed its key

k is already a member of the PSQ, the new message
is appended to the end of the queue that corresponds
to k (Figure 1(b)). When the total amount of messages
in a queue (the gross length of all messages) for a spe-
cific key-tuple exceeds a set threshold (qthresh) then
the whole queue will be serialized and transmitted to
the recipient (Figure 1(d)). In order to ensure that mes-
sages only stay in the queue for a short time, a timeout
threshold is used. No matter whether the data thresh-
old qthresh is reached or not, once the timeout threshold
is reached, all the messages in the queue will be seri-
alized and sent once the timeout threshold is reached
(Figure 1(c)). The function sendAllTo from the Haskell
library Network.Socket.ByteString is used to bring the

UDP datagrams onto the wire. The function sendAllTo
guarantees that all data is successfully brought onto the
wire and that there were no errors on the local network
interface.
Since CMQ is implemented in a pure functional pro-

gramming language (Haskell), and pure functional data
types are immutable, updating a node by writing directly
to memory is not supported. The actual appending oper-
ation (++), which appends a new message to the end of
a queue, does not update the tail node by changing its
pointer so that it points to the new added message node,
but recreates recursively each node in the queue, so that
instead of writing a small node and a pointer to mem-
ory, the function returns, a complete new queue with
the newly-added message returns [33,34]. This operation
takes O(n) time.
It is observed that, while the appending operation has

time complexity O(n), adding a new message to the head
of a queue, by consing (cons :) the new message node
directly to the head of queue, takes O(1) time. So an
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alternative method for the appending operation is to add
a new message node to the head of a queue instead of the
tail. The queue created using such a method maintains a
reverse ordering of a FIFO queue. Before transmission of a
particular queue, a reverse operation is performed on the
queue to reverse the queue back to its normal FIFO form.
The reverse operation takes O(n) time.
cwPush is implemented using two parallel threads,

where thread1 enqueues messages and checks the total
amount of messages; thread2 surveys whether the timeout
for a particular queue is reached. By using time profiling
(see section on Messaging passing performance) it was
discovered that thread2 was very costly and could use up
70% of the CPU time. As a result, a function called thread-
Delay was introduced to control and limit the maximum
number of times that the PSQ is checked.
From the above discussion, we see that CMQ can

be tuned using two parameters: qthresh (the maximum
amount of messages in bytes allowed in the queue) and
the timeout (the maximum waiting time a message stays
in the queue before it is sent).
All map queries that are used in CMQ, including

insertion and deletion, have a complexity of O(log
n). A function called findMin is used to check the
PSQ for any queues that have exceeded the time-
out threshold. The findMin function is implemented
with a complexity of O(1), which is an attractive fea-
ture, considering it is one of the most frequently used
functions.
An alternative design solution is to use a more conven-

tional method. Such a method, instead of using a map
data structure with a PSQ as pointer, uses a sequence
[35] of tuples (creationtime, message-queue) with each
sequence data structure being responsible for a specific
destination of messages. However, this method does not
scale well. Although it is possible to examine the right
(viewR) and left (viewL) end of a sequence with O(1)
complexity, all sequence data structures require identifi-
cation and organization, which will increase the complex-
ity of queries and insertions to up to O(n) time. Thus,
this method becomes inefficient when the number of
sequences become very large, which unfortunately is a
common case in cloud or large scale computing environ-
ments. Aiming for better scalability, CMQ is implemented
in a way such that the identification information is main-
tained in the key k that associates queues with their
creation time (in the PSQ) and recipients with their spe-
cific queues (in the map). Using the identification infor-
mation, the system can quickly identify the queue for
a newly pushed message. Since all map related queries
take O(log n) time and all PSQ related queries take O(1)
time, comparing with a sequence based solution, CMQ
demonstrates a clear advantage in terms of its efficiency
and scalability.

cwPop
On the recipient the serialized data structure with all its
messages is received, deserialized, and transferred onto a
transactional channel (TChan). TChan is an unbounded
FIFO channel implemented in Software Transactional
Memory (STM, [36]). Once the messages are transferred
into TChan, they are ready to be consumed. The func-
tion cwPop is used to pop an individual message from the
queue. cwPop is a non-blocking function that examines
the TChan to check whether there are messages before
attempting to read messages from the TChan. If there are
waitingmessages they are returned having the typeMaybe
String whereas in a blocking implementation the returned
messages would have the type String. The Maybe type in
Haskell represents optional values making e.g. null point-
ers obsolete. In this case a String can be present in the
queue or the queue can be empty.
Whilst in Erlang processes communicate with each

other via mailboxes that are identified by the PID of the
mailbox owner, in Haskell the preferred method for inter-
process communication (IPC) are transactional channels
TChan. TChan is created whenever it is needed. It has
no dedicated owner and is not associated with any iden-
tifiers or addressing scheme. As a consequence, TChan
is created by the developer and its identifier needs to be
propagated. There have been some attempts to add addi-
tional layers of abstraction to TChan to make it work
similar to Erlang mailboxes (e.g., Epass [37]) and more
applicable to actor-based approaches. The majority of the
attempts that are actually working and publicly available
work only in local environment. Thus, they cannot send
messages to a remote TChan. CMQ removes this limita-
tion by allowing messages to be transmitted to a remote
TChan via a CMQ queue.

The use of cwPush and cwPop
Figures 2 and 3 give a simple example that demonstrates
how cwPush and cwPop are used in a real application.
Figure 2 shows an example of a sender application which
sends 10000 messages each of which contains a 4-byte
string. The message type can be any Haskell data type that
is a member of the Haskell serialize class. The application
developer specifies the UPD port number (here UDP port
4711) to create the socket for UDP data transport. Figure 3
shows the example of the receiving application that uses
cwPop to retrieve messages.

Where is the queue?
There are two queues involved for every recipient process:
the queue stored in the map on the sender and the TChan,
which is in fact a simple STM-based FIFO queue on the
remote recipient host. However, the detailed implemen-
tation is completely hidden from the users, who can see
the CMQmessage queueing system as a single distributed
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{−# LANGUAGE OverloadedStrings #−}

import  System.CMQ
import  Network . Socket hiding (send , sendTo , recv , recvFrom)
import  Control . Monad

main = withSocketsDo  $  do
qs  <−  socket  AFINET  Datagram  default  Protocol
hostAddr  <−  inetaddr  ”192.168.35.84”
bindSocket  qs  (SockAddrInet  4711  hostAddr)
(token)  <−  newRq  qs  512  200−−initializes  the  queue  with  the  desired  parameters

−−qlength  =  512B  and  max  delay  time  in  the  queue  is  200ms  (minimum  is  40ms)
−−token  is  the  queue  identifier  where  messages  are  sent  to  or  poped  off
forM_  [0..10000]  $  \i  −>  do

cwPush  qs  (”192.168.35.69”  ,  0)  (”ping”  ::  String)  token  −−send message  ”ping”  to
−−ipv4  address  192.168.35.69  using  the  queue  specified  in  token

Figure 2 Example of a sending application that uses cwPush.

queue with two functions cwPush and cwPop. The func-
tion cwPush is called when a message is needed to be sent
to a recipient, and the function cwPop is called when the
recipient process reads a message.

Zero Copy vs Functional Data Structures
TCP and UDP sockets need to copy received data from
kernel space to the user space and vice versa. iWARP
and RoCE address this and use zero copy implementa-
tions where the kernel shares buffers with the application
rather than copying the data. Although this is not directly
addressed in CMQ, there are two interesting aspects
worth noticing: first, system calls are expensive and thus
the number of send operations (which are systems calls)
should be kept to a minimum; secondly, copying data,
even in user space without involvement of system calls,
is also far from optimal. Instead of invoking a send sys-
tem call each time when a message is sent, CMQ reduces
the number of send system calls by storing messages tem-
porarily in a queue and sending the stored messages when
either the total size of messages in the queue meets the
size threshold, or the waiting time of the current oldest
message in the queue meets the timeout limit. Accord-
ingly, the number of receive system calls on the receiving
end is also reduced.

import  System.CMQ
import  Network.Socket  hiding  (send ,  sendTo ,  recv ,  recvFrom)
import  Control.Monad
import  Data.Maybe

main  =  withSocketsDo  $  do
qs  <−  socket  AF_INET  Datagram  defaultProtocol
hostAddr  <−  inet_addr  ”192.168.35.69”
bindSocket qs  (SockAddrInet  4711  hostAddr)
token  <−  newRq  qs  512  200
forever  $  do

msg  <−  cwPop  token  ::  IO  (Maybe  String)
print  msg

Figure 3 Example of a receiving application that uses cwPop.

However, functional data structures are by definition
immutable. When bindings in a Map or PSQ are inserted,
deleted or modified, strictly speaking, the returned data
structure is not the original data structure but a data
structure that is identical with the previous data struc-
ture but containing the alteration. The Map and PSQ data
structures used in CMQ are pure functional data struc-
tures that are immutable, so their insert, update and delete
operations involve some degree of copying as opposed to
typical mutable data structures where changes are writ-
ten directly to the memory. To be more precise, a Map
or PSQ insertion involves the copy of O(log n) amount
of data for a data structure with n elements [38] plus
some additional logarithmic overhead [39]. It remains to
be shown by future research whether or not a pure lazy
language (e.g., Haskell) and its data types can retain the
same asymptotic memory use as an impure strict one (e.g.,
Erlang) in all situations. However, in return functional
data structures make it easier to keep multiple modified
versions of the same data structure without storing whole
copies.
By reducing the number of send and receive system

calls, the data copying between kernel and user space is
also reduced. Pure functional data structures may on the
one hand be a slight drawback in terms of performance,
but on the other hand give low cost access to data that
needs to be replayed.

UDP as amessage passing paradigm
The Haskell benchmarking library Criterion [40] is used
for all the tests and a garbage collection was performed
after every test. The CMQ testbed was setup in a client-
server model where at first the client and the server would
alternately send and receive messages similar to the ping
pong test of the INTEL MPI benchmarks (IMB) [41]. In
order to investigate the benefits of asynchronous message
exchange (fire-and-forget messaging) and queuing, CMQ
itself was allowed to use asynchronous non-blocking send
operations (which means CMQ was allowed to send the
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next message before a reply to the previous message had
been received) similar to the IMB ping ping test.
The testbed consisted of a cloudstack [42] POD imple-

mented on data centre grade hardware (listed in Table 1)
analogous to commercial computing clouds. Figure 4
shows a logical diagram of two cloud computing nodes
from our POD. The guest virtual machines (VMs) used
for CMQ testing were resident on two separate comput-
ing nodes. Direct networking based on VLAN tagging is
configured between the VMs and the physical network-
ing gear. The VMs on our POD communicate via VLAN
ID 2012, which is part of a VLAN trunk terminated on
the computing nodes. The cloudstack (CS) virtual router
is used to provide DHCP functionality and provide IP
addressing to the VMs but, in this configuration, does not
actually take part in routing and forwarding of packets.
The code that was used for benchmarking is published

on github.com and is available at https://github.com/
viloocity/Haskell-IPC-Benchmarks.

Message passing performance
MessagePack and 0MQ
Rather than doing strictly competitive benchmarks, it
would be more beneficial to investigate and compare sev-
eral paradigms. For this reason, MessagePack [43] and
0MQ [44] are chosen in the CMQ performance evalu-
ation. MessagePack and 0MQ are two IPC systems that
provide Haskell bindings. MessagePack is a library that is
based on RPC and focuses on object serialization. 0MQ
provides a framework that focuses solely onmessage pass-
ing and queuing.
MessagePack uses RPC to transfer messages which in

fact are all serialized objects, and was initially described
as IPC to “pass serialized objects across network con-
nections” [45]. Although the most recent descriptions of
MessagePack focus mainly on its outstanding object seri-
alization capabilities, it serves also as a general message
passing mechanism. Since every message has to be seri-
alized before it is sent, providing an effective serialization
method is one of the major concerns involving message
passing.
In CMQ a message queue that consists of multiple mes-

sages is serialized before it is sent. The messages used
in the tests are composed of only 8-bit ASCII charac-
ters and the Haskell library Data.Bytestring.Char8 is used

for the serialization. For messages or objects with other
character encodings, the Haskell Data.Bytestring library
or even MessagePack may be used for the serializationf.

Mean performance
Figure 5 presents the mean performance of UDP Sock-
ets, MessagePack, 0MQ and CMQ for exchanging 1000
messages with message sizes between 4 B and 16 KB.
UDP Sockets are not included in Figure 6 for the reason
that the benchmarking application used for UDP sockets
supports only synchronous operations in lossless environ-
ments. The test results show that when message sizes are
less than 1 KB UDP sockets perform comparable to TCP-
based messaging queues; when message sizes are larger
than 1 KB, UDP sockets outperform all tested TCP queu-
ing methods. As for CMQ, it, in general, outperforms all
other messaging queuing methods. CMQ demonstrates a
clear advantage for small to medium sized messages up
to 4KB. It shows a speed increase of up to 100 times for
the transmission of small messages such as integers (e.g.
error codes), flags or applications that need only a single
request - response [46], since TCP messaging requires the
establishment of a TCP connection which would incur a
60% overhead for a small sized message. From the tests it
was discovered that CMQ achieves its best performance
with a qthresh of 512 B (a value that is also used by the
DNS protocol) and a queue timeout threshold of 200ms.

Performance in the presence of errors
TCP is a reliable protocol that provides reliable, connection-
oriented delivery of data. It detects for example packet
loss, delay, congestion and replays lost packets when
required. However, the reliability causes a significant
overhead, especially for messages of small sizes. This is
one of the disadvantages of using TCP. More seriously,
when delay or packet loss are detected, TCP assumes
congestion and slows down the rate of outgoing data
[46-48] propose formulae to calculate the effective band-
width of TCP connections in the presence of errors
where, for example, a 0.2% packet loss eventually slows
down and limits the effective connection speed to 52.2
Mbps irrespective of the nominal bandwidth. In practice,
retransmitting packets is very costly since it also involves
queuing and reordering packets that arrive until the re-
transmit is complete, thus stopping time-sensitive data

Table 1 CMQ testbed setup

Hardware Software

2 Server HP DL 580 G5 4 quad core Intel Xeon E5450 @ 3GHz 32GB RAM Citrix XEN 5.6

2 Linux VMS on separate XEN Server ARCH Linux 2011.8, Haskell GHC 7.0.4 2 vCPUs @ 2GHz 4GB RAM

2 Fabric extenders Cisco Nexus 2248TP-E

1 Core switch Cisco Nexus 7000 NXOS 5.1(2)

https://github.com/viloocity/Haskell-IPC-Benchmarks
https://github.com/viloocity/Haskell-IPC-Benchmarks
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Figure 4 Logical diagram of the testbed configuration.

from going through in the meantime [49]. Furthermore
CPU usage spikes when TCP retransmissions are needed
and applications frequently become unresponsive.
In the CMQ testbed, where we test CMQ in the pres-

ence of data loss, in order to simulate packet data loss,
iptables [50] (see command listed below) is used on
one of the Linux VMs to drop incoming packets with
1.4% probability:

iptables -A INPUT -m statistic –mode random –
probability 0.014 -j DROP
and it was found that CMQ is largely unaffected and

produces the same performance results (within the stan-
dard deviations) as if there were no errors on the network.
All other benchmarked queuing methods show an overall
delay of approximately a factor of 4. It was also discov-
ered that in the presence of errors the benchmark results

Figure 5Message passing performance on a lossless data center network.
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Figure 6Message passing performance in the presence of errors.

of CMQ still show a narrow standard deviation. For exam-
ple, for a message of 512 Bytes, the standard deviation
of CMQ stayed at 52 ms whilst the standard deviation of
MessagePack increased from 54 ms (with no simulated
data loss) to 820 ms.

CMQ scalability at large
Birman and Chockler [1] state that currently “Not enough
is known about stability of large-scale event notifica-
tion platforms, management technologies, or other cloud
computing solutions” and identifies the development of
testing methods that can validate the relevance and
demonstrate the scalability of any new solution “... with-
out working at some company [e.g. Yahoo, Google,
Amazon] that operates a massive but proprietary infras-
tructure” as an item on the cloud computing research
agenda.
In the absence of established “cloud scale” testing

methods, conventional tests and checks were used to
examine CMQ and to demonstrate that nothing obvious
is limiting its scalability:

• Haskell Program Coverage (HPC) [51] was used to
determine which areas of the source code and
boolean controls were actually exposed to testing.

• Space (Heap) Profiling was used to investigate
whether any cost centre of the application may
consume too much memory because of excessive
laziness (also called “space leak”). Time profiling was
used to identify functions that are possible CPU hogs.

• The criterion test suite was used to do the actual
testing and produce additional data about the
accuracy and repeatability of tests.

Although the areas of code that executed are dependent
on the parameter settings for timeout and qthresh, over-
all all areas of code were exposed to the testing. The heap
profile Figure 7 showed that the memory consumption of
80K is very moderate and we find that the memory con-
sumption related to serialization cost (the band labelled
as “PINNED”) is the most prominent feature. Although
for the performance tests we send messages composed of
8-bit ASCII characters, CMQ is internally built with poly-
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Figure 7 Graph for memory usage on the heap. The heap is split into the 20 most prominent cost centres as inserted by the compiler. qthresh
was set to 512K and timeout to 200ms. The maximum length tested was five hours where the pattern could be sustained.

morphic functions and can transfer arbitrary Haskell Data
Types under the condition that they can be serialized. In
order to achieve polymorphism, CMQ must compare the
queue length to qthresh when the queue is serialized, since
functions that can determine the length of an ASCII based
queue do not fire any more under these circumstances.
Thus, more serialization activities are necessary com-
pared to an implementation that would be limited to the
data type String. Overall, there was no evidence of space
leaks.
In the time profile we observe that half of the time

is consumed in the benchmarking application that pops
the ping messages from the queue after they have been
received - this is a wrapper application for the non-
blocking cwPop function. Having cwPop non-blocking,
in the performance testing application amounts to using
a continuous loop to pop incoming messages from the
queue as they arrive. It seems natural to ask whether
this overhead could be reduced. However, the key is that
CMQ is architected in depth to retain “the core prin-
ciple of [cloud]scale: decoupling” and avoid even minor
blocking operations [1]. Whilst in our testing applica-
tion this feature might not appear to be an advantage, we

are convinced that asynchronous operation is required in
large scale computing clouds.
Based on the findings above, we conclude that nothing

is hindering the scalability of CMQ.

Message passing strategies.
Replace vs Replay
Although message loss is very rare in switched data cen-
ter networks (no message loss is detected in our testbed),
the question of how to deal with message loss is always
present. Although in switched data center networks it
is unlikely that packets are lost in transit, there are still
conditions existing where UDP packets will be discarded,
for example, the exhaustion of the internal buffers or
(un)-bounded message queues.
When using IPC that is based on UDP, the application

needs to detect lost or partially ordered messages and,
if required, will need to deal with it. One possibility is
to replace lost messages rather than to replay them. This
paradigm requires the application to replace a lost packet
if necessary with either a message with the same data or
with new data. The application would need to resubmit
it to CMQ where it gets queued and delivered as every
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other new message without holding up any time critical
messages that need to be sent at the same time.

Request - Response
(RR) message exchange patterns (MEP), for example as
described in the OASIS SOAP over UDP standard [52],
are an application-level means to detect packet loss and to
act on it. Using this paradigm the application would main-
tain its own store to record sent requests and wait for a
matching answer before a predefined timeout occurs. If a
response is received the store is updated; if no response
is received and the timeout is met, either the request
is resent or the user is alerted of a failure. However,
already the SOAP envelope that wraps the actual mes-
sage is approximately 512 B in size, thus making SOAP
envelopes less effective for smaller message sizes.

Multicast IPC
The publish/subscriber paradigm, where subscribers are
notified when a message that is interesting to them
has arrived, is a very popular means to achieve asyn-
chronous message passing communication, although the
underlying protocols (e.g. TCP or RPC) are strictly syn-
chronous. Using conventional message queues, asyn-
chronous communication is usually supported by a broker
to decouple the sender and receiver and by maintaining
publish/subscriber channels. However, because of the
inherent asynchronous nature of CMQ, Multicast Mes-
saging is easily supported without the need to maintain
publish/subscriber channels and additional infrastructure
for the broker.
Use cases for multicast IPC are connectionless servers

that propagate information to the (local) network [53] e.g.
simultaneous updates of databases (replication), the prop-
agation of intermediate results in grids, multiplayer games
or realtime news [54]. Multicast messaging has also been
found applicable to Map Reduce where it can be used to
propagate tasks and results [55].
To illustrate, conventional message queues are fre-

quently deployed to enable parallelism by using a broker to
decouple the sender and receiver. The publish/subscriber
paradigm where subscribers are notified when a message
that is interesting to them has arrived is a very popular
means to achieve asynchronous message passing commu-
nication although the underlying protocols (e.g. TCP or
RPC) are strictly synchronous. CMQ instead is inherently
asynchronous and offers multicast Messaging without the
need to maintain publish/subscriber channels.

Future typemessage passing
As described by [56], is a further message passing strategy
that fits the nature of CMQ. Future Type Message Pass-
ing utilizes future objects that should behave like a queue
similar to TChan. Analogue to concurrent programming

with explicit futures [57], the future object is looked at by
the time it is required. In case of CMQ, if cwPop returns
Nothing by the time the result is required, the original
message might be lost, and accordingly, the recipient pro-
cess may have become unavailable or may have failed, and
thus trigger some remedial action. The remedial action
can be either replacing the missing message, re-sending it
with a new future, or restarting the receiving process. A
future object can be either a result of computation repre-
sented by an actor or as simple as a flag such as received?
With CMQ, Future Type Message Passing can be eas-
ily implemented using the primitive newRq that creates a
queue and a TChanwhere the TChan is subsequently used
to represent the future message.

Conclusion and future work
CMQ is a lightweight message queue in Haskell. The con-
cept to use UDP instead of TCP is motivated by our
understanding that, in Cloud Computing, omnipresent
off-the-shelf technologies (both in hard- and software)
are encouraged, and if preventing errors from occurring
becomes too costly, dealing with the errors may be a bet-
ter solution. This paper has demonstrated the capability
of using UDP for message queuing in the presence of
errors, and has shown the stability of UDP messaging in
such conditions. Methods that deal with packet loss at
the application level are also discussed. The implemen-
tation of CMQ is a Haskell Module that utilizes pure
functional data structures. The implementation of CMQ
is available as module System.CMQ from the hackageDB
at http://hackage.haskell.org/packages/hackage.html, and
also it can be installed automatically via the Haskell pack-
age manager cabal on every Haskell Platform.
Although CMQ is a message queue oriented commu-

nication approach, CMQ is different than the conven-
tional MOM approach because it challenges a number of
assumptions under which conventional MOM is built. For
instance, in conventional MOM, messages are “always”
delivered, routed, queued and frequently follow the pub-
lish/subscriber paradigm. It is often accepted that this
requires an additional layer of infrastructure and software
where logic is split form the application and configured
in the additional layer. On the contrary, CMQ does just
enough. It does not offer guarantees, thus is very light
weight with low overhead and fast speed. Although it does
not offer guarantees, it appears to be stable in the presence
of errors.
CMQ is a starting point for future research on dis-

tributed applications. It will serve as a message queuing
mechanism for a lightweight cloud computing framework
named CWMWL that we are currently developing. One
of the main goals of CMQ is to make the use of per-
vasive asynchronous parallelism easy and with minimal
effort. Furthermore, we are also interested in developing

http://hackage.haskell.org/packages/hackage.html
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an optional reliability layer that supports reliable virtual
connections, protocol-driven and/or application driven
securitymechanisms, and “persistent” templates for work-
loads that pre-distributes code and data to the target sys-
tems to enhance the performance and reduce the run-time
distribution cost.

Endnotes
a physical unit of scale in a cloud, e.g. a standardized rack
of interconnected servers
b e.g. IEEE 802.3× PAUSE frames or vendor specific tech-
nologies
c IPv6 would be 40 bytes
d IEEE 802.1Qbg
e NFSv4 preserves state and is no longer built to deal with
packet loss, thus requires the TCP protocol.
f An interesting detour would be to investigate whether
MessagePack can better support
serialization of arbitrary functions and closures in order
to transmit data, code and state over the wire.
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