
Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6
http://www.journalofcloudcomputing.com/content/2/1/6
RESEARCH Open Access
Fair Benchmarking for Cloud Computing systems
Lee Gillam*, Bin Li, John O’Loughlin and Anuz Pratap Singh Tomar
* Correspondence: l.gillam@surrey.
ac.uk
Department of Computing,
University of Surrey, Guildford,
Surrey GU2 7XH, UK
©
A
m

Abstract

The performance of Cloud systems is a key concern, but has typically been assessed
by the comparison of relatively few Cloud systems, and often on the basis of just
one or two features of performance. In this paper, we discuss the evaluation of four
different Infrastructure as a Service (IaaS) Cloud systems – from Amazon, Rackspace,
and IBM – alongside a private Cloud installation of OpenStack, using a set of five
so-called micro-benchmarks to address key aspects of such systems. The results from
our evaluation are offered on a web portal with dynamic data visualization. We find
that there is not only variability in performance by provider, but also variability,
which can be substantial, in the performance of virtual resources that are apparently
of the same specification. On this basis, we can suggest that performance-based
pricing schemes would seem to be more appropriate than fixed-price schemes, and
this would offer much greater potential for the Cloud Economy.
Introduction
The potential adoption of Cloud systems brings with it various concerns. Certainly for

industry, security has often been cited as key amongst these concerns, although

performance and response, and uptime are apparently deemed of greater importance

to some in the Service Level Agreement (SLA) a. Whilst there are various technical

offerings and possibilities for Cloud security, and plenty to digest in relation to those

identified as having succeeded in ISO 27001, SAS 70 Type II, and other successful se-

curity audits, the question of value-for-money is often raised but not so often well an-

swered. And yet this is a key question that the Cloud user needs to have in mind. With

Cloud resources provided at fixed prices on an hourly/monthly/yearly basis – and here

we focus especially on Infrastructure as a Service (IaaS) – the Cloud user supposedly

obtains access to a virtual resource with a given specification. For IaaS Clouds, such re-

sources include virtualized machines that are broadly identified by amount of memory,

speed of CPU, allocated disk storage, machine architecture, and I/O performance. So,

for example, a “Small Instance” (m1.small) from Amazon Web Services is offered with

1.7 GB memory, 1 EC2 Compute Unit (described elsewhere on the Amazon Web Services

website b), 160GB instance storage, running as a 32-bit machine, and with “Moderate”

I/O performance. If we want an initial understanding of value-for-money, we might

look at what an alternative provider charges for a similar product. At the Rackspace

website c we might select either a 1GB or 2GB memory machine, and we need to be

able to map from “Moderate” to an average for the now separated Incoming and Out-

going bandwidth – difficult to do already if we don’t have an available definition of

Moderate with respect to I/O, and also if we’re unclear about how this might meet
2013 Gillam et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
ttribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
edium, provided the original work is properly cited.

mailto:l.gillam@surrey.ac.uk
mailto:l.gillam@surrey.ac.uk
http://creativecommons.org/licenses/by/2.0

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 2 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
our likely data requirements in either direction. As we add more IaaS Cloud providers,

so it becomes more difficult to readily attempt such a comparison. And yet, what we

need to understand goes beyond this.

The Fair Benchmarking project, funded by the EPSRC (EP/I034408/1), was conducted

at the University of Surrey between 1st April 2011 and 31st January 2012 to attempt to

address this vexed question of value-for-money. The project aimed at the practical

characterisation of IaaS Cloud resources by assessing the performance of three public

Cloud providers and one private Cloud system. Performance was assessed in relation

to a set of established, reasonably informative, and relatively straightforward to run,

benchmarks (so-called micro-benchmarks). Our intention was not to create a single

league table in respect to “best” performance on an individual benchmark, d although

we do envisage that such data could be constructed into something like a Cloud Price-

Performance Index (CPPI) which offers at least one route to future work. We were

more interested in whether Cloud resource provision was consistent and reliable, or

whether it presents variability – both initially and over time - that would be expected

to impact on any application running on such resources. This becomes a matter of

Quality of Service (QoS), and leads further to questions regarding the granularity of

the Service Level Agreement (SLA). Arguably, variable performance should be matched

by variable price - you get what you pay, in contrast to paying for what you get – but there

would be little gain for providers already operating at low prices and margins in such a

market. Given an appropriate set of benchmark measurements as a means to under-

take a technical assessment, and deliberately making no attempt to optimize perform-

ance against such benchmarks, we consider it should become possible for a Cloud

Broker to rapidly assess provisioned resources, and either discard those not meeting

the QoS required, or retain them (for the present payment period) in case they become

suitable for lesser requirements. Whilst it may be possible to make matches amongst

similar “labels” on virtual machines (advertised memory of a certain number of GB,

advertised storage of GB/TB, and so on), such matching can rapidly become meaning-

less with many appearing above or below some given value or within some given price

range. The experiments undertaken were geared towards obtaining better insights

about differences in performance across providers, but also indicated several areas

for further investigation. These insights could also be of interest to those setting up

private Clouds - in particular built using OpenStack - in terms of sizing such a sys-

tem, to users to obtain an understanding of relative performance of different systems,

and to institutions and funding councils seeking to de-risk commitments to Cloud

infrastructures.

This paper offers an overview of findings from the Fair Benchmarking project, and is

geared towards a reasonably broad audience as might be interested in comparing the

capabilities and performance of Cloud Computing systems. The resulting web portal

may also be of interest to this audience, offering as it does a dynamic comparison

amongst both benchmarks and providers.

In section 2, we discuss the technical background to such work, including offering a

broad coverage of Cloud benchmarking. In section 3 we discuss the experimental setup,

from Clouds assessed, through the selection of available benchmarks, to what we are

measuring. Section 4 offers discussion of an example set of results obtained from these

experiments, with the presentation of these results on our web portal, for use by others

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 3 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
wishing to dynamically produce charts of these data, discussed in Section 5. Section 6

concludes the paper and offers avenues for future investigation.
Background
Compute resource benchmarks are an established part of the high performance com-

puting (HPC) research landscape, and are also in general evidence in non-HPC settings.

A reasonable number of such benchmarks are geared towards understanding performance

of specific simulations or applications in the presence of low-latency (e.g. Infiniband,

Myrinet) interconnects e. Because Clouds tend to be built with a wide range of possible

applications in mind, many of which are more geared towards the hosting of business

applications, most Cloud providers do not offer such interconnects. Whilst it can be

informative to see, say, the latency of 10 Gigabit Ethernet and what kinds of improve-

ments are apparent in network connectivity such that rather lower latency might just

be a few years away, running tens or hundreds of very similar benchmarks will largely

give us similar bad performance for fundamentally the same reason. As Cloud becomes

more widely adopted, there will be an increasing need for well-understood benchmarks

that offer fair evaluation of such generic systems, not least to determine the baseline from

which it might be possible to optimize for specific purposes. And so, pre-optimized per-

formance is initially of interest. The variety of options and configurations of Cloud sys-

tems, and efforts needed to get to the point at which traditional benchmarks can be run,

has various effects on the fairness of the comparison. This impacts also on the ques-

tion of value-for-money. Cloud Computing benchmarks need to offer up comparability

for all parts of the IaaS, and should also be informative about all parts of the lifecycle

of cloud system use. Individually, most existing benchmarks do not offer such compar-

ability. At minimum, we need to understand what a “Moderate” I/O performance means

in terms of actual bandwidth and ideally the variation in that bandwidth such that we

know how long it might take to migrate data to/from a Cloud, and also across Cloud

providers or within a provider. Subsequently, we might want to know how well data is

treated amongst disk, CPU, and memory since bottlenecks in such virtualized resources

will likely lead to bottlenecks in applications, and will end up being factored in to yet other

benchmarks similarly.

Our own interests in this kind of benchmarking come about because of our research

considerations for Cloud Brokerage [1-3]. Prices of Cloud resources tend to be set, but

Cloud Brokers might be able to offer an advantage not in price pressure, as many might

suggest in an open market, but in being able to assure performance at a given price.

Such Cloud Brokers would need to satisfy more robust service level agreements (SLAs)

by offering a breakdown into values at which Quality of Service (QoS) was assured over

a set of Key Performance Indicators (KPIs) and below which there was some penalty

paid to the user. Indeed, such Cloud Brokers might even offer apparently equivalent,

but lower performance, resources cheaper than they buy them from the Cloud providers

if subsidised by higher-paying users who are receiving assured levels of quality of service.

Clearly, at large-scale, the Brokers would then be looking to offset the risk of failing to

provide the assured level, and somehow insuring themselves against risks of breaching

the SLA; this could offer a derivative market with costs having a relationship with per-

formance rather than being fixed. Pricing for such derivatives could take inspiration

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 4 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
from financial derivatives that also factor in consideration of failure (or “default”) of

an underlying instrument. Credit derivatives offer us one such possibility [4-6]. This

project offered the opportunity to explore such variation, which we had seen indications

of in the past, so that it might be possible to incorporate it into such an approach.

There are a number and variety of (micro-) benchmark results reported for Cloud

CPU, Disk IO, Memory, network, and so on, usually involving Amazon Web Services

(AWS) [7-13]. Often such results reveal performance with respect to the benchmark

code for AWS and possibly contrast it with a second system – though not always. It

becomes the task of the interested user, then, to try to assemble disparate distributed

tests, potentially with numerous different parameter settings – some revealed, some

not – into a readily understandable form of comparison. Many may balk at the need

for such efforts simply in order to obtain a sense of what might be reasonably suitable

for their purposes – in much the same way as they might simply see that a physical

server has a decent CPU and is affordable to them. Gray [14] identified four criteria

for a successful benchmark: (i) relevance to an application domain; (ii) portability to

allow benchmarking of different systems; (iii) scalability to support benchmarking

large systems; and (iv) simplicity so the results are understandable. There are, however,

benchmarks that could be considered domain independent – or rather the results

would be of interest in several domains depending on the nature of the problems to be

solved – as well as those that are domain specific. Benchmarks measuring general

characteristics of (virtualized) physical resources are likely feature here. Portability is

an ideal characteristic, and there may be limitations to portability which will affect

the ability to run on certain systems or with certain type of Cloud resources. In terms

of scalability, we can break these into two types – horizontal scaling, involving the

use of a number of machines running in parallel, and vertical scaling, involving differ-

ent sizes of individual machines. In terms of the performance of each Cloud instance,

vertical scaling is more of interest here. In addition, understandable results depend, in

part, on who needs to understand them. However, the simpler the results are to

characterize, present, and repeat, the more likely it is that we can deal with this.

Consider, then, how we can use Gray to characterise prior benchmark reports. The

Yahoo! Cloud Serving Benchmark project [15] is setup to deliver a database benchmark

framework and extensions for evaluating the performance of various “key-value” and

Cloud serving stores. An overview of Cloud data serving performance, and the YCSB

benchmark framework are reported [16], covering Yahoo!’s PNUTS, Cassandra, HBase

and a shared implementation of MySQL (as well as BigTable, Azure, CouchDB and

SimpleDB). The application domain is web serving, in contrast to a scientific domain

or subject field as some may think; source code is available and, being in Java, relatively

portable (depending, of course, on the availability and performance of Java on the target

system), and appears to offer support for both horizontal and vertical scaling in differ-

ent ways. As to ease of understanding, the authors identify a need for a trade-off on

different elements of performance, so it is up to the user to know what they need first.

In addition, it is unclear whether benchmarks were run across the range of available

servers to account for any variance in performance of the underlying hardware, and here

storage speeds themselves would be of interest not least to be able to factor these out.

A series of reports on Cloud Performance Benchmarks [17] covers networking and

CPU speed for AWS and Rackspace, as well as Simple Queue Service (SQS) and Elastic

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 5 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Load Balancing (ELB) in AWS. Their assessment, for example, of network performance

within AWS f is interesting, since it takes a simple approach to comparison, considers

variability over time to some extent, and also shows some very high network speeds (in

the hundreds of Mbps). In this particular example, the domain is generic in nature, and

portability of Iperf is quite reasonable – modulo the need for appropriate use of firewall

rules. Scaling is geared towards horizontal, since only one type of machine is used –

m1.small – which has “I/O Performance: Moderate” readily suggesting higher figures

should be available. In terms of ease of understanding, results are readily understand-

able but the authors did not provide details about the parameters used nor whether

these are for a single machine over time, averages across several, or best or worst values.

Jackson et al. [18] analysed HPC capabilities in AWS using NERSC – which needs

MPI - to find that “the more communication, the worse the performance becomes”.

However, Walker had already shown that latency was higher for EC2 previously – cited

in passing by the authors – so this would be expected. Application/subject domains

reported are various, but there is a question of portability given that three different

compilers and at least 2 different MPI libraries were used across 4 machine types. Fur-

ther, the reason for selecting a generic EC2 m1.large, as opposed say to a c1.xlarge

(“well suited for compute-intensive applications”) is unclear: the other types all boasted

2+Ghz quad-core, whilst an m1.large offers 4 ECUs (4 lots of 1-1.2 Ghz, which cpuinfo

reports as a dual core). Hence vertical scaling did not get considered here. Napper et al.

[19], using High Performance Linpack (HPL), have also concluded that EC2 does not

have interconnects suitable (for MPI) for HPC, and many others will doubtless find the

same. Until the technology changes, there seems to be little value in asking the same

question yet again.

There is always a danger, in our own work, of leaving ourselves open to a similar

critique – however, such a critique will be valuable for future efforts, and we hope

that others will pick up on any lapses or omissions. We intend to select benchmarks

that are largely domain independent such that results should be of interest to a wide

audience. We are largely concerned with vertical scaling, so are interested in com-

parison amongst instances of different machine types, although some consideration

in relation to vertical scaling will be made. Codes must be portable and easily com-

piled and run amongst the systems we select, and we will rely wherever possible on

“out of the box” libraries. Parameters used will, where relevant, be those offered by

default or should be stated such that similar runs can be undertaken. Finally, we in-

tend to offer a visualisation of results that gives contrast to a “best” performer for

that benchmark. In short, we are trying to keep it simple – and so we have no

intention of getting involved with system-specific performance optimizations.
Related resources

There are many other websites, including commercial web services, that claim to

offer comparisons of Cloud systems, including the Cloud providers themselves. In-

deed, there are also Cloud providers who will be happy to report on how their sys-

tems are faster/cheaper/better than those of a competitor. Of note amongst those

who at least appear to be agnostic, there are three websites, two of which offer spe-

cific visualisations of Cloud performance – CloudHarmony and CloudSleuth – and a

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 6 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
third that features benchmark results. These sites provide certain kinds of overviews,

and may or may not be aesthetically pleasing, but they do not really offer the kinds

of characterisation we have in mind. We discuss these below.

CloudHarmony

CloudHarmony [20] has been monitoring the availability of Cloud services (38 in total)

since late 2009. Providers monitored range from those offering IaaS such as GoGrid,

Rackspace and Amazon Web Services, and PaaS services such as Microsoft Azure

and Google App Engine.

After consuming an initial offering of 5 tokens in exploring benchmarks, use of the site

relies on the purchase of additional tokens priced in various multiples (50, 150, 350 and 850

credits for $30, $85, $180 and $395 respectively). With the right amount of tokens, bench-

mark reports can be generated for, one benchmark at a time, the regions of the various

Cloud providers. The user must decide upon one benchmark to look at, and wait a short

time whilst the system populates the set of available Cloud providers (broken into regions –

see Figure 1). Results for that benchmark can then be tabulated or displayed on a graph.

The website offers results for a set of regularly used benchmarks for users to explore,

from CPU (single-core and multicores), Disk IO (e.g. bonnie++, IOzone) and Memory

IO (e.g. STREAM), to Application (e.g. various zip compressions) as well as an Aggre-

gate for each of these categories. Performance is tested from time to time, and stored

as historical information in a database, so when a user requests a report it is returned

from the database for the sake of expediency rather than being run anew. There is a

good number of both results and providers listed.

Aside from only being able to look at one benchmark – or, indeed one part of a

benchmark (for example, the Add, Copy, Scale or Triad parts of Stream) – at a time,

which has an associated cost in tokens per provider, many of the results we looked at

were offered as an average of at most 2 data points. In a number of cases, both data

points are near to, or more than, a year old, so it is possible that present performance

is better than suggested (see, for example, Figure 2). Furthermore, there is no indication

of whether each data point has been selected as an average performance, or represents
Figure 1 Cloudharmony benchmark and provider selection.

Figure 2 Cloudharmony STREAM (copy) results with test dates between April 2010 and March 2011
[accessed 10 October 2012].

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 7 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
best or worst for that machine size for that provider. Also, on the dates tried, graphs

could not be displayed and linkage through to Geekbench – supposed to show the

expected characteristics of an equivalent physical machine – did not work. We envisage

being able to see performance in respect to several benchmarks at the same time, to

offer wider grounds for comparison, instead of on part per time.

CLOUDSLEUTH

CLOUDSLEUTH [21] offers visualisation of response times and availability for Cloud

provider data centres, overlaid onto a World map. Figure 3 shows an example for response

times and how a Content Distribution Network might improve a response time for a re-

gion. However, no specific benchmarks are reported, and we do not obtain a sense of the

network I/O as might be helpful amongst the providers. We would be unable, for, to deter-

mine how much data we might be able to move into or out of a provider’s region – which

can be quite important in getting started.

OpenBenchmarking.org

The OpenBenchmarking [22] website offers information from benchmark runs based

around the Phoronix Test Suite. Test results are available for various systems, including

those of AWS and Rackspace. However, presentation of results can lack information

and is not readily comparable. Consider, for example, a set of results identified as

“EC2-8G-iozone” g. The Overview presents several numbers but we have to refer to

subsequent graphs to interpret them. And whilst CPU information as reported by the

instance is reported, along with memory and disk, we do not know the base image

from which this was built, nor in which region the test was run. Such a presenta-

tion does not readily assist us to repeat the test. It might be interesting, however,

in future efforts to assess whether the Phoronix Test Suite offers a ready means for

rapid assessment.

Figure 3 CLOUDSLEUTH Cloud Performance Analyzer service.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 8 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Cloud resources
Cloud providers

Based largely on predominance in mention of IaaS in both academic research and in

industry, and as the apparent market leader in Cloud with a much wider service offer-

ing than many others, Amazon Web Services [23] was the first selection for running

benchmarks on. And, since various comparisons tend to involve both Amazon and

Rackspace [24] we decided to remain consistent with such a contrast. The third Cloud

provider was timely in offering a free trial, so the IBM SmartCloud [25] joined our set

from October 2011. Since we were also in the process of setting up a private Cloud

based on OpenStack [26], and especially since having such a system meant that we

could further explore reasons for variability in performance - and running such tests

would help to assess the stability and performance of the system - our last Cloud

provider was, essentially, us.

The OpenStack Cloud used for benchmark experiments at Surrey was composed

of one cloud controller and four compute nodes. The controller is a Dell R300 with

8GB of RAM and a quad core Intel Xeon. The compute nodes are two Dell 1950s

with 32GB of RAM and one quad core Intel Xeon, and two SunFire X4250s each

with 32GB of RAM and two quad core Intel Xeons. We used the OpenStack Diablo

release on top of Ubuntu 10.10. The controller runs the following services: nova-api,

nova-scheduler, nova-objectstore, Rabbit-MQ, MySQL, and nova-network. The com-

pute nodes are nova-compute, The network model used is FlatDHCP, which means

that the private IP space for the instance comprises one subnet, 10.0.0.0/22, and the

gateway instances go through nova-network on the controller. We set up OpenStack

to offer several machine types broadly similar to those from Rackspace – upon

which the implementation is based – and to ensure effective use could be made of

this resource subsequently.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 9 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
For most Cloud providers, however, make, model and specification information is

largely unavailable. One provider, baremetalcloud (previously NewServers) [27], who

offer ‘bare metal’ on Dell machines, do provide information about server model.

Indeed, in their web-based management console they display the Dell asset tag such

that server configuration and even service contract information can be examined on

the Dell website.

Since there is a wide variety across regions, instance types, and OS distributions, we

limited our selections to Ubuntu and/or RHEL Linux, a selection of American and

European regions, and all generic instance types. Such a selection helps not least to

manage the costs of such an undertaking. An overview of these selections can be found

in Table 1. Prices as shown were current in January 2012, and for AWS we show prices

shown in USD for one US region and for Sao Paulo (other prices apply). Rackspace

prices are shown for UK and US (separate regions, which require separate registration).

The table does not account for differences in supported operating systems.
Table 1 Cloud instance types used for benchmark tests

AWS (us-east, eu-west, sa-east)

Ram(GB) CPU Instance Storage
(GB)

Architecture
(-bits)

I/O Price*
(per hour)

t1.micro 0.613 2 ECUs (upto) < 10 32/64 Low $0.02/$0.027

m1.large 7.5 4 ECU 850 64 High $0.34/$0.46

m1.xlarge 15 8 ECU 1690 64 High $0.68/$0.92

m2.xlarge 17.2 6.5 ECU 420 64 Moderate $0.5/$0.68

m2.2xlarge 34.2 13 ECU 850 64 High $1/$1.36

m2.4xlarge 64.8 26 ECU 1690 64 High $2/$2.72

c1.xlarge 7 20 ECU 1690 64 High $0.68/$0.92

m1.small 1.7 1 ECU 160 32 Moderate $0.085/$0.115

c1.medium 1.7 5 ECU 350 32 Moderate $0.17/$0.23

Rackspace (US, UK)

1 256 Unknown 10 64 Unknown £0.01/$0.015

2 512 Unknown 20 64 Unknown £0.02/$0.03

3 1024 Unknown 40 64 Unknown £0.04/$0.06

4 2048 Unknown 80 64 Unknown £0.08/$0.12

5 4096 Unknown 160 64 Unknown £0.16/$0.24

6 8192 Unknown 320 64 Unknown £0.32/$0.48

7 15872 Unknown 640 64 Unknown £0.64/$0.96

8 30720 Unknown 1200 64 Unknown £1.20/$1.80

IBM (US)

Copper 4096 2 vCPUs 60 64 Unknown £0.206

Openstack (Surrey, UK)

m1.tiny 512 1 vCPU 5 32/64 Unknown Unknown

m1.small 2048 1 vCPU 10 32/64 Unknown Unknown

m1.medium 4096 2 vCPUs 10 64 Unknown Unknown

m1.large 8192 4 vCPUs 20 64 Unknown Unknown

m1.xlarge 16384 8 vCPUs 40 64 Unknown Unknown

fullmachine 32768 16 vCPUs 80 64 Unknown Unknown

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 10 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Cloud APIs

The selection of providers brings with it the need to determine how to make best use

of them. Aside from the IBM SmartCloud, for which no API was available at the time,

it is possible to make use of Web Service APIs for AWS, Rackspace and OpenStack to

automate many of the tasks involved with setting up, running, and closing down Cloud

instances. However, these APIs are not standardized, and other issues may need to be

addressed such as the management of credentials for use with each API, variability in

the mechanisms required to undertake the same task, and the default security state of

different Cloud instances in different providers.

Several open source libraries are available that are intended to support capability

across multiple Cloud providers, amongst which are Libcloud [28], Jclouds [29], and

deltaCLOUD [30]. These open source offerings are variously equivalent to the reported

capabilities of Zeel/I - a proprietary software framework developed by the Belfast

e-Science Centre, taken up by EoverI, and subsequently folded into Mediasmiths – though

we have been unable to evaluate this claim.

Libcloud, an Apache project, attempts to offer a common interface to a number of

Clouds. The implementation, in Python, requires relatively little effort in configuration

and requires few lines of code to start Cloud instances. Jclouds claims to support some

30 Cloud infrastructures’APIs for Java and Clojure developers but requires substantially

more effort to setup and run than libcloud. deltaCLOUD, developed by RedHat and

now an Apache project, offers a common RESTful API to a number of Cloud providers,

but does not seem to be quite as popular as either of the previous two.

Although such libraries claim to support major providers, all had various shortcomings –

probably due to the relative immaturity of the libraries. This meant that beyond rela-

tively stock tasks such as starting up instances, which in itself became awkward to

manage through such libraries, we were largely adapting to Cloud provider-specific

differences. With increasing number of differences, it became increasingly difficult to

retain compatibility with these libraries. In addition, changes to provider APIs meant

we ended up working more and more closely to the provider APIs themselves. In

short, working with each provider’s API directly became a simpler and more

manageable proposition.
Benchmark selection

Cloud Computing benchmarks need to be able to account for the components of the

Cloud “machine”. Typically, in IaaS, the components are the virtualized resources being

provided to a virtual machine. Different applications will have different and sometimes

inter-related requirements covering data moving into and out of the virtual machine

(network), reliance on processor speed, extent of memory and storage (disk) use, and in

the connectivity amongst these. Large memory systems with fast storage are likely to

be preferred where, for example, large databases are involved, and there will be a cost

to putting large volumes of data onto such a system in the first place. Elsewhere, data

volumes may be substantially lower and CPU performance may be of much greater

interest, but this can still be limited by factors other than its clock speed.

Traditional benchmarking involves the benchmark application being ready to run,

and information captured about the system only from the benchmark itself. Results of

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 11 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
many such benchmarks are offered in isolation – e.g. LINPACK alone for Top500

supercomputers. Whilst this may answer a question in relation to performance of applica-

tions with similar requirements to LINPACK, determination for an arbitrary application

with different demands on network/CPU/memory/disk requires rather more effort.

For our purposes, we want to understand performance in terms of what you can get

in a Cloud instance and require a set of benchmarks that tests different aspects of such

an instance. Further, we also want to understand an underlying cost (in time and/or

money) as necessary to achieve that performance. Put another way, if two Cloud in-

stances achieved equal performance in a benchmark, but one took equally as long

to be provisioned as it did to run the benchmark, what might we say about the

value-for-money question? Raw performance is just one part of this. Additionally, if

performance is variable for Cloud instances of the same type from the same provider,

would we want to report only “best” performance? We can also enquire as to whether

performance varies over time – either for new instances of the same type, or in relation

to continuous use of the same instances over a period. There may be other dimensions

to this that would offer valuable future work.

The selected benchmarks are intended to treat (i) Memory IO; (ii) CPU; (iii) Disk IO;

(iv) Application; (v) Network. This offers a relationship both to existing literature and

reports on Cloud performance, and also keys in to the major categories presented by

CloudHarmony. There are numerous alternatives available, and reasons for and against

selection of just about any individual benchmark. We are largely interested in broad

characterisation – and, ideally, in the ready-repeatability of the application of such

benchmarks to other Cloud systems.

Memory IO

The rate at which the processor can interact with memory offers one potential system

bottleneck. Server specifications often cite a maximum potential bandwidth, for ex-

ample the cited maximum for one of our OpenStack Sun Fire x4250s is 21GB/s, (with

a 6MB L2 cache). Cloud providers do not cite figures for memory bandwidth, even

though making effective use of the CPU for certain types of workload is going to be

governed to some extent by whether the virtualisation system (hypervisor), base operat-

ing system or hardware itself can sufficiently separate operations to deal with any con-

tention for the underlying physical resources.
STREAM STREAM [31] is regarded as a standard synthetic benchmark for the meas-

urement of memory bandwidth. From the perspective of applications, the benchmark

attempts to determine a sustainable “realistic” memory bandwidth, which is unlikely to

be the same as the theoretical peak, using four vector-based operations: COPY a=b,

SCALE a=q*b, SUM a=b+c and TRIAD a=b+q*c.

CPU

There are various measures to determine CPU capabilities. We might get a sense of the

speed (GHz) of the processor from the provider – which for Amazon is stated as a

multiple of the “CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor”

although this gives us no additional related information regarding the hardware. On

the other hand, we might find such information entirely elusive, and only be able to

find out, for example for Rackspace, that “Comparing Cloud Servers to standard EC2

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 12 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
instances our vCPU assignments are comparable” or that the number of vCPUs

increases with larger memory sizes, or see a number of vCPUs as offered to Windows-

based systems h. Rackspace also suggest an advantage in being able to ‘burst’ into spare

CPU capacity on a physical machine – but since we cannot readily discover informa-

tion about the underlying system we will not know whether we might be so fortunate

at any given time.

When we start a Cloud instance, we might enquire in the instance as regards

reported processor information (for example in /proc/cpuinfo). However there is a

possibility that such information has been modified.
LINPACK LINPACK [32] measures the floating point operations per second (flop/s)

for a set of linear equations. It is the benchmark of choice for the Top500 supercom-

puters list, where it is used to identify a maximal performance for a maximal problem

size. It would be expected that systems would be optimized specifically to such a

benchmark, however we will be interested in the unoptimized performance of Cloud

instances since this is what the typical user would get.

Disk I/O

Any significantly data-intensive application is going to be heavily dependent on various

factors of the underlying data storage system. A Cloud provider will offer a certain amount

of storage with a Cloud instance by default, and often it is possible to add further storage

volumes. Typically, we might address three different kinds of Cloud storage: 1. instance

storage, most likely the disk physically installed in the underlying server; 2. attached stor-

age, potentially mounted from a storage array of some kind, for example using ATA over

Ethernet (AoE) or iSCSI; 3. “object” storage. Instance storage might or might not be

offered with some kind of redundancy to allow for recovery in the event of disk failure,

but all contents are likely to be wiped once the resource is no longer in use. Attached

storage may be detachable, and offers at least three other opportunities (i) to retain images

whilst not in use just as stored data, rather than keeping them live on systems – which

can be less expensive; (ii) faster startup times of instances based on images stored in this

way; (iii) faster snapshots than for instance storage. Attached storage may also operate to

automatically retain a redundant copy. Object storage (for example S3 from Amazon, and

Cloud Files from Rackspace) tends to be geared towards direct internet accessibility of

files that are intended to have high levels of redundancy and which may be effectively

coupled with Content Distribution Networks. Consequently, Object storage is unlikely to

be suited to heavy I/O needs and so our disk I/O considerations will be limited to instance

storage and attached storage. However, while the Cloud providers will say how much

storage, they do not typically state how fast. We selected 2 benchmarks for storage to

ascertain whether more or fewer metrics would be more readily understandable.

Bonnie++ Bonnie++ [33] is a further development of Bonnie, a well-known Disk IO

performance benchmark suite that uses a series of simple tests to derive performance

relating to:

i. Data read and write speeds;

ii. Maximum number of seeks per second;

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 13 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
iii. Maximum number of file metadata operations per second (includes file creation,

deletion or gathering of file information).
IOzone IOzone [34] offers 13 performance metrics and reports values for read, write,

re-read, rewrite, random read, random write, backward read, record re-write, stride

read, Fread, Fwrite, Fre-read, and Fre-write.

Application (compression)

A particular application may create demand on various different parts of the system.

The time taken to compress a given (large) file is going to depend on the read and

write operations and throughput to CPU. With sufficient information obtained from

other benchmarks, it may become possible to estimate the effects on an application of

a given variability – for example, a 5% variation in disk speed, or substantial variation

in available memory bandwidth.
Bzip2 bzip2 [35] is an application for compressing files based on the Burrows-Wheeler

Algorithm. It is a CPU bound task with a small amount of I/O and as such is also

useful for benchmarking CPUs.

A slightly modified version is included in SPEC CPU2006 benchmark suite [35] and

the standard version, as found on any Linux system, is used as part of the phoronix test

suite. There is also a multi threaded version, pbzip2, which can be used to benchmark

multi-core systems.

Network

CloudHarmony does not offer us information regarding network speeds. CloudSleuth

offers response times, but not from where we might want to migrate data to and from,

and also does not indicate bandwidth. If we were thinking to do “Big Data” in the

Cloud, such data is very useful to us. Our interest in upload and download speeds will

depend on how much needs to move where. So, for example, if we were undertaking

analysis of a Wikipedia dump, we’d likely want a fast download to the provider and

download of results from the provider to us may be rather less important (costs of an

instance will be accrued during the data transfer, as well as the costs of any network

I/O if charged by the provider). It is worth noting that some providers offer a service

by which physical disks can be shipped to them for copying. Amazon offers just such

a service, and also hosts a number of data volumes (EBS) that can be instanced and

attached to instances i.

Depending on the nature of work being done, there is potential interest also in at least

three other aspects to network performance: (i) general connectivity within the provider

(typically within a region); (ii) specific connectivity in relation to any co-located instances

as might be relevant to HPC-type activities; (iii) connectivity amongst providers and

regions such that data might be migrated to benefit from cost differences. The

latter also offers a good indication general network bandwidth (and proximity) for

these providers.
Iperf Iperf [36] was developed by NLANR (National Laboratory for Applied Network

Research)/DAST (Distributed Applications Support Team) to measure and test network

bandwidth, latency, and transmission loss. It is often used as a means to determine overall

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 14 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
quality of a network link. Use of Iperf should be suited to tests between Cloud pro-

viders and to/from host institutions. However it will not offer measurements for

connections to data hosted elsewhere.
MPPTEST MPPTEST [37], from Argonne National Labs (ANL), measures perform-

ance of network connections used for message passing (MPI). With general network

connectivity assessed using Iperf, MPPTEST would offer suitability in respect to HPC-

type activities where Cloud providers are specifically targeting such kinds of workloads.
Simple speed tests For general download operations, such as that of a Wikipedia

dump, applications such as scp, curl, and wget can be used to obtain a simple indica-

tion of speed in relation to elapsed time. Such a download, in different Cloud provider

regions, can also indicate whether such data might be being offered via a CDN.
The Cloud instance sequence

A Cloud resource generally, and a Cloud machine instance in particular has several

stages, all of which can take time and so can attract cost. We will set aside the uncosted

element of the user determining what they want to use, for obvious reasons of compar-

ability. If we now take AWS as an example provider, the user will first issue a request

to run an instance of a specific type. When the provider receives the request, this will

start the boot process for a virtual machine, and charging typically begins at receipt of

the request. After the virtual machine has booted, the user will need to setup the sys-

tem to the point they require, including installing security updates, application depend-

encies, and the application (e.g. benchmark) itself. Finally, the application can be run.

At the end, the resource is released. The sequence from receipt of request to final release,

which includes the time for shutdown of the instance, incurs costs. It is interesting to note

that we have seen variation in boot times for AWS depending on where the request is

made from. If issued outside AWS, the acknowledgement is returned within about 3 sec-

onds. Otherwise, it can take 90 seconds or so. This has an impact to total run time and

potentially also to cost depending on how instances are priced. We will take external times

for all runs.

Costs are applicable for most providers once a request has been issued, which means

that boot time has to be paid for even though the instance is not ready to use – this

might be thought of as akin to paying for a telephone call from the moment the last

digit is pressed; indeed, we can extend this analogy further as you may also end up pay-

ing even if the call fails for any reason and, indeed, may pay the minimum unit cost for

this (more about this later in this paper). Subsequently, applying patches will be a factor

of the number to be applied and the speed of connection to relevant repositories, and

so will also have an associated cost.
Benchmark results – a sample
Our selected benchmarks are, typically, run using Linux distributions in all 4 infrastruc-

tures - if it is possible to do so and it makes sense to do so – with the obvious exception

of network benchmarks.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 15 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
We use Cloud provider images of Ubuntu 10.04 where available, but since the trial of

IBM Smart Cloud offered only RHEL6 we also use a RHEL6 image in EC2 to be able to

offer comparisons (Table 2). The AWS instances are all EBS backed, which offers faster

boot times than instance backed. Use of different operating systems leads to variation

in how updates are made, but since we consider this “out of the box” the Ubuntu

updates occur through apt-get whilst for RHEL we used yum. In addition, we have

to account for variation in access mechanisms to the instances: Amazon EC2 and

Openstack API provide SSH key based authentication by default, but the SSH service

needs to be reconfigured for IBM and Rackspace. After this small modification to

our setup phase, we snapshot running instances which gives us a slightly modified

start point but otherwise retains the sequence described above.

A benchmark can be set up and run immediately after a new (modified) instance is

provisioned. We account for the booting time of an instance, and the remaining time

taken to setup – applying available patches – the instance appropriately for each bench-

mark to be run.

Also as part of setup, each benchmark is downloaded, along with any dependencies

and, if necessary, compiled – again, costs will be associated to connection speed to the

benchmark source, and time taken for the compiler – and run. Once the benchmark is

complete, results are sent to a server and the instance can be released. The cost of run-

ning a benchmark is, then, some factor of the cost of the benchmark itself and the

startup and shutdown costs relating to enabling it to run. This will be the case for any

application unless snapshots of runnable systems are used – and these will have an as-

sociated cost for storage, so there will be a trade-off between costs of setup and costs

of storage for such instances, with the number of instances needed being a multiplier.

So, performance of a particular benchmark for a provider could be considered with

respect specifically to performance information from the benchmark, or could alterna-

tively be considered with respect to the overall time and cost related to achieving that

performance – better benchmark performance may cost more and take longer to

achieve, so we might think to distinguish between “system” and “instance” and spread

performance across cost and time.

All but one of the benchmarks was run across all selected Cloud providers within

selected regions on all available machine types. 10 instances of each type were run to

obtain information about variability. Due to the sheer number of results obtained, in

this section we limit our focus primarily to one set of (relatively) comparable machine

types across the four providers (three public, one private). Since only one machine

type was available in the IBM Smart Cloud trial, we select results from other

providers as might approximate these. The selection is shown in Table 3.
Table 2 Cloud image ids used for benchmark tests

aws-us-east aws-us-west
oregon

aws-sa-east Rackspace
UK

Rackspace
US

IBM

Ubuntu_64(10.10) ami-2ec83147 ami-c4fe73f4 ami-ec3ae5f1 15099429 10318018 n/a

Ubuntu_32(10.10) ami-2cc83145 ami-defe73ee ami-6235ea7f n/a n/a n/a

RHEL_64(6.1) ami-31d41658 n/a n/a n/a n/a available RHEL 6.1

RHEL_32(6.1) ami-3ddb1954 n/a n/a n/a n/a n/a

Table 3 VM flavours used: similar specifications across infrastructures

Ram (MB) Virtual CPU (#) Instance
Storage (GB)

Architecture
(-bits)

Price
(per UHR, £)

IBM (Copper) 4096 Intel-based, 2 60 RHEL6, 64 0.206

Rackspace (5) 4096 AMD-based, not stated. 160 Ubuntu10.04 64 0.16

Openstack
(m1.medium)

4096 2 10 Ubuntu10.04 64 –

AWS (m1.large) 7680 (7.5GB) 4 850 Ubuntu10.04 /
RHEL6 64

0.34

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 16 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Memory bandwidth Benchmarking with STREAM

The STREAM site recommends that each array must be the maximum number of,

either 4 times of last-level CPU cache size or 1 Million elements [38]. We compile the

STREAM package from the source package and set problem size to 5,000,000, which

should be suitable for testing L2 cache sizes up to 10MB (we do not attempt to

discover the L2 cache size, and expect that machines with larger caches will simply

show greater improvement in performance). STREAM is run 50 times to put load onto

the system and rule out general instabilities, and the last result is collected from each

instance. For public Cloud providers, we do not account for multicore systems, but for

our private Cloud we do show the impact on the underlying physical system of running

the benchmark in multiple virtual machines.

As shown in Figure 4 for STREAM copy, there are significant performance variations

among providers and regions. The average of STREAM copy in AWS is about 5GB/s

across 3 selected regions. The newest region (Dec, 2011) in AWS, Sao Paulo, has a peak

at 6GB/s with least variance. The highest number is obtained in Openstack at almost

8GB/s, but with the worst variance. Results in Rackspace look stable in both regions,

though there is no indication of being able to ‘burst out’ in respect to this benchmark. The

variance shown in Figure 4 suggests potential issues either with variability in the underlying

hardware, contention on the same physical system, or variability through the hypervisor.

It also suggests that other applications as might make demands of a related nature

would suffer from differential performance on instances that are of the same type.

CloudHarmony shows higher numbers for STREAM, but we cannot readily find

information about the problem size N used. However, results from CloudHarmony

(Figure 2) did also show variance among infrastructures (3407 to 8276 MB/s), regions

(2710 to 6994 MB/s), and across time (3659 to 5326 MB/s).

Further STREAM testing in AWS

To determine whether numbers of instances or instance sizes made a difference, we

ran STREAM on AWS in one region for 1 to 64 instances on each machine type.

Results, shown in Appendix A, indicate that bandwidth generally increases with larger

machine types towards 7GB/s. Memory bandwidth results are also more stable for

larger machine types than for smaller. It however reflects the AWS description of

micro machine as the numbers of ECU can be varying from time to time. For smaller

machine types, minimums are also more apparent when larger numbers of instances

are requested. In addition, we seem to experience an increased likelihood of instance

Figure 4 STREAM (copy) benchmark across four infrastructures. Labels indicate provider (e.g. aws for
Amazon), region (e.g. useast is Amazon’s US East) and distribution (u for Ubuntu, R for RHEL).

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 17 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
failures when requesting more instances. There were occasions when 2 or 3 of 32/64

instances were inaccessible but would still be incurring costs.

Further STREAM testing in OpenStack

In contrast to EC2, we have both knowledge of and control of our private Cloud infra-

structure, so we can readily assess the impact of sizing and loading and each machine

instance can run its own STREAM, so any impacts due to contention should become

apparent. The approach outlined here might be helpful in right-sizing a private Cloud,

avoiding under- or over- provisioning.

We provisioned up to 64 instances simultaneously running STREAM on compute

node 1, and up to 128 instances in compute node 2. Specifications of these nodes are

listed in Table 4.

To run STREAM, we set the machine type to an m1.tiny (512MB, 1 vCPU,

5GB storage). Figure 5 and Figure 6 below indicate total memory bandwidth con-

sumed (average result multiplied by number of instances, see Table 5). Both com-

pute notes show that with only one instance provisioned, there is plenty of room
Table 4 Openstack compute nodes specifications

compute node 1
(compute01)

Intel(R) Xeon(R) CPU E5205 @ 1.86GHz dual core,
2 threads/core

16G DDR2 Max Memory
Bandwidth 21.3GB/s

compute node 4
(compute04)

Intel(R) Xeon(R) CPU E5540 @ 2.53GHz 8 cores
(dual quad-core), 2 threads/core

32G DDR3 Max Memory
Bandwidth 25.6GB/s;

Figure 5 STREAM (copy) benchmark stress testing on Nova compute node 1, showing diminishing
bandwidth per machine instance as the number of instances increases, and variability in
overall bandwidth.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 18 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
for further utilization but as the number of instances increases the bandwidth

available to each drops. In both cases, a maximum is seen at 4 instances, with

significant lows at 8 or 16 instances but otherwise a general degradation as numbers

increase. The significant lows are interesting, since we’d probably want to configure a

scheduler to try to avoid such effects.
Figure 6 STREAM (copy) benchmark stress testing on Nova compute04, showing diminishing bandwidth
per machine instance as the number of instances increases, and variability in overall bandwidth.

Table 5 STREAM stress testing result on Openstack (averages)

Compute node 1 Compute node 4

Copy scale add triad number of instances copy scale add triad

2826.26 2790.97 2968.25 2982.70 1 7673.09 7472.32 8289.68 8209.64

2740.95 2693.60 2886.90 2902.68 2 6974.19 7034.63 7529.23 7605.17

1885.45 1758.32 1896.78 1930.60 4 5283.30 5184.28 5508.37 5531.99

830.64 796.23 824.86 734.66 8 1817.38 1766.83 1811.94 1965.30

345.13 377.65 368.12 394.20 16 998.74 1006.68 1068.74 1075.52

193.80 199.79 184.27 206.65 32 586.01 587.10 627.57 628.07

96.51 84.66 90.11 98.94 64 285.05 288.00 308.76 306.60

128 127.12 126.54 137.78 137.22

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 19 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Disk I/O performance Benchmarking with bonnie++ and IOZone

Bonnie++

We use the standard package library of Bonnie++ from the Ubuntu multiverse reposi-

tory with no special tuning. However, disk space for testing should be twice the size of

RAM. All the machine types used could offer this, so /tmp was readily usable for tests.

Figure 7 shows results for Bonnie++ for sequential creation of files per second (we

could not get results for this from Rackspace UK for some reason). Our Openstack

instances again show high performance (peak is almost 30k files/second) but with
Figure 7 Bonnie++ (sequential create) benchmark across four infrastructures.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 20 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
high variance. The distance of best-performed boxes among EC2 regions is about

10000 apart, but the averages are much closer.

Results shown on the CloudHarmony website are much higher, but this could

be because they are using a file size of 4GB, whereas our test is using the default

setting (double size of the memory) in EC2 for the more accurate results as sug-

gest by Bonnie++ literature.

IOzone

IOzone is also available from the Ubuntu multiverse repository. We use automatic

mode, file size of 2GB, 1024 records, and output for Excel.

The results shown Figure 8 show wide variance but better performance for Rackspace

(and worst for our Openstack Cloud with average less than 60 MB/Sec).
CPU performance Benchmarking

LINPACK

We obtained LINPACK from the Intel website, and since it is available pre-compiled,

we can run it using the defaults given, which test the problem size and leading dimen-

sions from 1000 to 45000.

Rackspace is based on AMD, and although it is possible to configure LINPACK for

AMD, we decided the efforts would be best put elsewhere. Results for Rackspace are
Figure 8 IOzone (write, file size: 2G, records size: 1024) benchmark across four infrastructures.

Figure 9 LINPACK (25000 tests) benchmark across tested infrastructures.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 21 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
therefore absent from Figure 9, and we dropped the use of LINPACK for the AWS US

East region because we assumed by this stage that figures would be largely comparable

to the other two regions.

AWS instances produce largely similar results, without significant variance. Our

OpenStack Cloud again suffers in performance – perhaps a reflection on the age of

the servers.

Application (compression) performance with Bzip2

Since variance was clearly an issue, we would already anticipate similar variance to

occur in applications. We therefore changed strategy to see whether performance

variation was significant over longer time periods.

We launched three AWS m1.small instances from ami-6936fb00 in the US East

region. For this test, we created a tarball out of the root file system and used bzip2

to compress this file. After 3 minutes, the compressed file was deleted and the com-

pression operation repeated. We ran these instances for close to 2 weeks, collecting

timing information about the duration of the compression operation, and collected

1500 data points from each instance (Figure 10).

Across all three instances, the fastest time recorded was 382s whilst the slowest

was 896s. Results are summaries in Table 6 below.

Figure 10 Bzip2 compression test in EC2.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 22 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Despite all three instances being of the same type, machineA is consistently slower

than both machineB and machineC. We also see that machineA has greater variation

in performance over the first 50 data points and the standard deviation here is 82.96.

Interestingly, performance for all three improves by over 100 seconds over time –

however, there would be a cost associated with waiting for performance improvement!
Network Benchmarking

Iperf

With Iperf, we were interested in identifying preferred options for dealing with large

volumes of data. Previous benchmarks can account for various characteristics of the

machine instances running at Cloud providers, but with Iperf we are determining the

potential for pushing data to or pulling it from the Cloud providers.

As our IBM SmartCloud trial had ended, we decided that we might try to offer

further perspective on the data question by adding the National Grid Services (NGS) to

our considerations. Furthermore, since a user inside an institution might have a choice

between using a desktop system and a private Cloud (or other server), we wanted to

assess the capabilities of both. For our public Cloud providers, we used two regions of
Table 6 Bzip2 compression test results

A B C

min 438.25 502.51 381.58

avg 623.467 570.5648667 538.5978133

max 895.83 762.01 673.86

SD 55.74547111 51.78058942 47.86779689

Table 7 Iperf benchmark test environment comparison

Openstack
(m1.small,

Ubuntu 10.04)

Surrey local
workstation

(Ubuntu 10.04)

AWS EC2
(m1.small,

Ubuntu 10.04)

Rackspace
(2048M,

Ubuntu 10.04)

NGS
(ngs.rl.ac.uk,

RHEL 4)

2GB memory Intel Core 2 Duo
3.16GHz

1.7 GB memory 2GB memory AMD Dual-Core Opteron
880s (8 cores),

64-bit OS 2GB memory 1 virtual core
with 1 EC2

64-bit OS 2.4GHz

64-bit OS Compute Unit
32-bit OS

3GB memory

64-bit OS

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 23 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
AWS (us-east-1 and eu-west-1) and two of Rackspace (US and UK). Specifications of

machines used are show in Table 7.

The benchmark is tested in TCP mode across infrastructures in a simple client-

server manner, with transmit size of 50MB (“-n”), single directional test and default

TCP window size.

Firewall configurations at Surrey and NGS necessitated adjustments to how

the experiments might have been performed. At Surrey, iperf could only act as

a client. NGS could readily act as client, but could only act as server in the

GLOBUS_TCP_PORT_RANGE. Restrictions are illustrated in Figure 11.

Tests were conducted first with 10 clients contacting 1 server, then with 1 client

contacting 10 servers. Turns are evaluated at different times of the day to account for

variable network loads in different regions.

Figure 12 shows the bandwidth performance between the 2 regions of each of the 2

public Cloud providers, with interesting peak results when AWS is on the client side in

the same region, with peaks of some 250MB/s but a clear lack of reciprocity. Figure 13

shows connections between NGS and the public Clouds, with a single peak around

100MB/s with Rackspace UK – again with Rackspace acting on the server side. This
Figure 11 iperf benchmark testing work flow.

Figure 12 Bandwidth results between AWS and Rackspace of US and EU region using
iperf benchmark.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 24 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
(isolated) set of tests does suggest that migrating data across Clouds would be quicker

than migrating to and from Clouds from NGS.

Figure 14 shows yet more relatively disappointing results from Surrey’s OpenStack.

Performance problems were also experienced with desktop workstations and other

servers on which we tried iperf also. However, general download speed from the

web is reasonable (for example an average 2.98MB/s from Ubuntu.com). Further

understanding of the local network configuration is likely necessary to uncover the

reasons for this.
Network performance for HPC (in AWS)

We follow an evaluation (in 2008) of a cluster in AWS [39], and determine whether the

HPC capabilities of new AWS instances are yet suitable. Walker uses MPPTEST, to

assess MPI performance at NCSA and at AWS, In his tests, as the MPI message size

increases from 0 to 1024 bytes, throughput reaches a peak of just over 1.8E+09 bits/sec

(1800Mbps or 225MB/sec) with latency steady at less than 20 μs. In AWS, performance

grows much more slowly and latency between 100 and 250 μs. At the time, EC2s

networking (not low-latency) performed about an order of magnitude more slowly than

the InfiniBand networking used by NCSA. We repeat Walker’s evaluation on the latest

HPC nodes at AWS to see what the performance improvements are.

Figure 13 Bandwidth results between AWS, Rackspace of US/EU region and UK NGS using
iperf benchmark.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 25 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
We use the same benchmark package, MPPTEST, with a bisection test consisting of

32-CPU MPI jobs. The MPI message size is set from 0 to 1024 bytes, and runs across 5

cluster type nodes. We choose the only available Ubuntu Hardware Virtual Machine

ami (hvm, ami-4fad6a26, “Ubuntu 11.04 hvm”) in US East (Virginia).

AWS offers 3 instance types for high performance computing, the cluster compute

quadruple extra large (cc1.4xlarge), cluster compute eight extra large (cc2.8xlarge), and

the cluster GPU quadruple extra large (cg1.4xlarge) intended for GPGPU type work.

The specifications of these three cluster types are listed in Table 8. (The cg1.4xlarge is

not of interest to us in this benchmark)

Consistent with the previous reported evaluation, as the MPI message size increases,

the bandwidth increases (Figure 15) with a peak around 2.30E+08 bits/sec (230Mbps or

28.75MB/sec), though still nowhere near the 2008 NCSA peak. Latency is also some-

what improved (Figure 16), now in the 55 to 85 μs range. Such figures are still unlikely

to be entirely attractive to many involved with HPC. However, the next HPC offerings

might (or might not) change their minds.
Discussion

We have shown the results for a number of benchmarks run during the Fair

Benchmarking project. We have seen that there can be a reasonable extent of variation

Figure 14 Bandwidth results between NOVA (surrey), AWS, Rackspace of US/EU region and UK NGS
using iperf benchmark.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 26 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
amongst instances from the same provider for these benchmarks, and the range is more

informative than simply selecting a specific best or average result. Applications run on

such systems will also be impacted by such variation, and yet it is a matter hardly

addressed in Cloud systems. Performance variation is a question of Quality of Service

(QoS), and service level agreements (SLAs) tend only to offer compensation when en-

tire services have outages, not when performance dips. The performance question is,

at present, a value-for-money question. But the question may be one of whether we

are more or less lucky following our resource requests. Variation may be more signifi-

cant for smaller types as more can be put onto the same physical machine –larger

types may be more closely aligned with the physical resource leaving no room for

resource sharing. Potentially, we might see double the performance of one Cloud in-

stance in contrast to another of the same type – and such considerations are likely

to be of interest if we were introducing, for example, load balancing or attempting

any kind of predictive scheduling. Also, for the most part, we are not directly able

to make comparisons across many benchmarks and providers since the existing lit-

erature is usually geared to making one or two comparisons, and since benchmarks

are often considered in relative isolation – as here, though only because the large

number of results obtained becomes unwieldy.

Table 8 AWS Cluster Compute Instance Types

cc1.4xlarge cg1.4xlarge cc2.8xlarge

Compute 33.5 ECU* (2 x Intel Xeon X5570,
quad-core “Nehalem” architecture)

33.5 ECU* (2 x Intel Xeon X5570,
quad-core “Nehalem” architecture)

88 ECU* (Eight-core 2 x Intel Xeon)

* ECU: Amazon EC2 Compute Unit 2 x NVIDIA Tesla "Fermi" M2050 GPUs

Memory (GB) 23 22 60.5

Instance storage (GB) 1690 1690 3370

Architecture 64 bits

I/O performance Very High (10 Gigabit Ethernet.
Full-bisection bandwidth with Placement Groups)

Very High (10 Gigabit Ethernet)

Price (per CPU hour) $1.30 $2.10 $2.40

G
illam

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:6
Page

27
of

45
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/6

Figure 15 MPPTEST benchmark MPI bandwidth performance on current EC2 clusters (January, 2012)
compared to Walker’s results from 2008. Note that EC2 performance shows improvement above 2.0E+08,
highlighted on both charts.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 28 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
We have shown, also, that variation occurs over time, and with bzip2 it actually

improved over time. What we do not know from our tests is whether systems with

low initial performance ever catch up or whether we were simply unlucky to obtain

that resource in the first place.

Clearly the high performance computing capability available at AWS has improved

since 2008. Additions to the offerings should help. Two such additions are new

instance types (e.g. cc1.4xlarge in July 2010, and cc2.8xlarge in Dec 2011) that use

hardware-assisted virtualization (HVM) instead of paravirtualization (PVM), and the

Placement Group (July 2010) that tries to put instances in close (physical) proximity to

reduce network lag. We do not know, however, whether the NCSA cluster has also

been improved during this time, so cannot comment on possible convergence or diver-

gence of results. However, with HPC of interest to industry, the next iteration may yet

reach or even outperform such systems. There is, though, one significant limitation to

a UK user: HPC instances are only available in US-East (Virginia), so any large datasets

needed by the HPC work may take a bit longer to transfer.

Associated costs of Cloud Computing

An EPSRC/JISC project on the costs of Cloud ran in tandem with this benchmarking

work, with the first author of this paper contributing there also j. That report demon-

strates a broad view of Cloud in terms of how institutions might think about Cloud use,

how institutions might support Cloud users, and what funding bodies might want to
Figure 16 MPPTEST benchmark latency performance on EC2 clusters (January, 2012) compared to
Walker’s results from 2008. Note that EC2 latency has also improved towards 50 μs, highlighted on
both charts.

Figure 17 AWS billing – a charge for each hour in which an instance is used, irrespective of the
actual time for which it is used in that hour.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 29 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
consider. The costs report offers up a number of case studies, one of which also makes

use of the HPC instances discussed above. The work presented in this paper may also be

considered as a complementary case study to that report, although specific findings

presented here will tend to offer more detail than available in those case studies.

The costs project report discusses differences amongst annual, monthly, hourly,

reserved, and spot-priced billing. It also briefly mentions the “clock-hour” approach to

billing. It may be stated that using 1 server for 100 hours costs the same as using 100

servers for 1 hour. This should be true across providers, however it is also a convenient

rounding, as using 100 servers for 90 minutes may cost something different to using 90

servers for 100 minutes. The “clock-hour” approach means that in both cases, 2 hours

will be charged for per server, as partial instance hours are rounded up. This leads to a

price difference of some 20 hours. Prices may be even higher if a 90 or 100 minute

period happens to span 2 hour boundaries instead of 1 (2.45 to 3.15, say). This is true

for AWS, and is reflected by integer numbers in usage reports (Figure 17), and was also

confirmed to us by an AWS engineer. The longer the application runs for, the lower the

concern, however this has a clear impact on thinking that it would be better to get results

from 6 instances in 10 minutes than wait for 1 instance for an hour. For the speed-up, the

former will cost 6 times as much. So, cost-wise, it is better to strategise work to be done

in lumps of hours, and to time the start towards the beginning of the hour.

The above is not the case for Rackspace, who offer billing down to three decimal points

on the hour – the only rounding is up to the smallest unit of currency (Figure 18).
Figure 18 Rackspace billing, accurate to 3d.p.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 30 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Costs are also increased by instance failures, also charged hourly by AWS. Running

across 64 machines, then, could readily cost a minimum of 67 hours during our tests.

Value-for-money in Cloud Computing?

As discussed previously, benchmark information gives us an insight into the value for

money question – do we get what we pay for, or pay for what we get? We can consider

this question for the lifecycle of use of Cloud for a specific purpose, and since costs ac-

crue throughout this lifecycle we can relate price and performance more directly.

We consider six separate phases of our Cloud benchmarking (excluding network

benchmarks) and look at how time accumulates across these phases. Since releasing

the resources is relatively instantaneous in contrast, we therefore consider times for

booting and setup, and then benchmark run times for STREAM, Bonnie++, IOZone

and LINPACK. Instance booting time relates to the time between the user requesting

the instance and being able to connect (SSH) to it. The setup process includes system

updates, and install packages and dependencies for benchmarks (although network dis-

tance to the downloads is not accounted for). Results are shown in Table 9 and

Figure 19, although we omit LINPACK from totals to show comparable costs for

Rackspace. We use an exchange rate of $1.6-£ to equate values.

IBM Smart Cloud booting times are not particularly precise due to a lack of an API,

but after requests were sent from the web interface it typically took more than 15

minutes until the public IP was SSH-able (worst was about 40 minutes) so we have used

1000 seconds as the average. Also, we do not know how IBM prices relate to start-up so

we have applied a worst case of “clock hours”. Here we put an average 1000 seconds for

booting and clock-hour charging as a demonstration purposes. Other costs, associated to

IO transfer and data storage, are expected to be quite low so have been omitted for the

sake of simplicity. Prices will also vary according to taxes applied.

Excluding LINPACK, AWS US offers fastest completion times and so looks like the

most capable performer. However, since completion occurs within one hour it gets

charged as (at least) one full hour while Rackspace UK charges for the actual use.

If we look, instead, at the number of iterations that could be run, on average, in an hour

for each of the above, we can see variability in performance more clearly (Table 10).

Rackspace UK does well on boot times, and with Bonnie++, but AWS US West does bet-

ter for setup and with an unusually high value for IOZone – which we did not investigate

further. IBM just edges it over AWS Sao Paulo for STREAM. Our OpenStack system,

based on old hardware, only looks competitive on the runtime for LINPACK.

A capability offered by certain providers, AWS in particular, relates to being able to

take a snapshot of a running image. Such a snapshot can include both the machine

image itself and any added storage (EBS in the case of AWS). Hence, setup times need

only be considered once, and many instances can be booted from the snapshot and be

ready to run. If we wanted to run a cluster-on-demand, such a snapshot becomes a use-

ful means to achieve this – and whilst there is no demand we should incur data storage

costs for the snapshot alone. In addition, where vertical scaling is possible, we could re-

duce costs of setup by building on a small image and then migrating to the size re-

quired for the work to be done.

So, the answer to a question of value-for-money is going to be governed by how per-

formance relates to the number of hourly increments in costs, as well as the way in

which the work is planned. Put another way, it depends entirely on your priorities,

Table 9 Bench ark Running times (seconds) and costs

(sec) booting setup stream bonnie++ IOzone linpack Total
(without linpack)

Compute cost* Indicative compute cost (£)

aws-sa-east (m1 rge) min 47 77 42 711 3933 8196 4810 2*$0.46 0.63

avg 118.9 87.8 42.6 821.7 4790.7 8216.9 5862 2*$0.46 0.63

max 191 106 43 953 5494 8284 6787 2*$0.46 0.63

aws-us-west (m rge) min 68 58 70 785 79 10676 1060 1*$0.34 0.21

avg 131.7 60.8 70.6 882.3 84.8 10707 1230 1*$0.34 0.21

max 194 67 72 1000 93 10742 1426 1*$0.34 0.21

IBM-us (Cop r) min 747 40 117 800 14418 1704

avg 1000 809.1 41.6 393.9 1312.9 18972.8 4358 2*£0.206 0.42

max 910 44 1052 2042 26154 4048

rs-uk (4096 min 64 85 62 175 839 n/a 1225 0.34*£0.16 0.05

avg 76 87.2 64.4 199 973.2 n/a 1400 0.39*£0.16 0.06

max 94 97 67 274 1391 n/a 1923 0.53*£0.16 0.08

rs-us (4096 min 198 88 59 162 808 n/a 1315 0.37*$0.24 0.06

avg 242.5 249.5 63.8 371.3 2372.3 n/a 3299 0.92*$0.24 0.14

max 319 390 70 685 3754 n/a 5218 1.45*$0.24 0.22

openstack (m1.m ium) min 114 309 71 1190 5311 5862 6995 n/a n/a

avg 127.5 335 165.7 2248 8573.5 9898.2 11450 n/a n/a

max 141 366 237 3951 12104 14911 16799 n/a n/a

*Prices as at Janua 012.

G
illam

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:6
Page

31
of

45
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/6
m

.la

1.la

pe

M)

M)

ed

ry 2

Figure 19 Runtime decomposition (average).

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 32 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
efforts available, and the depth of your pockets. It is unlikely that there will be a single

answer based on such results and, as other commentators have put it, it can be like

“comparing apples to lizards” k and also depends on whether performance is limited to

the amount offered or whether good fortune should also be considered. l
A Web portal for comparing providers and benchmarks
Each benchmark produces one or more results, and with 10 runs, typically, per ma-

chine type, several machine types per provider, and also one or more regions, the quan-

tity of data collected begins to mount up quickly. It also becomes slightly tedious to

deal with such result sets in non-programmatic ways.

To allow us more quickly to generate comparisons, we embarked on the development

of a webpage that could offer dynamic visualisation of such data. From experiences in

another project, d3 m appeared to offer a suitably lightweight approach which did not
Table 10 Number of benchmark runs possible (average) per hour (best values in bold)

booting setup stream bonnie++ IOzone linpack

aws-sa-east (m1.large) 30.28 41.00 84.51 4.38 0.75 0.44

aws-us-west (m1.large) 27.33 59.21 50.99 4.08 42.45 0.34

IBM-us (Copper) 3.60 4.45 86.54 9.14 2.74 0.19

rs-uk (4096M) 47.37 41.28 55.90 18.09 3.70 n/a

rs-us (4096M) 14.85 14.43 56.43 9.70 1.52 n/a

openstack (m1.medium) 28.24 10.75 21.73 1.60 0.42 0.36

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 33 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
require substantial manipulation of the source data. The principal constraint for the

user would be the lack of support for older browsers – in particular, IE8 which makes

the data inaccessible to Windows XP users.

We store benchmark data in a directory structure based on benchmark, provider, oper-

ating system, region, date, and machine size. For each benchmark, we created scripts that

would be able to pull the separate data elements of interest out of the raw data and into a

distribution for that machine instance. For IOZone data, we first needed to convert Excel

data into plain text and made use of command-line based conversion capability from

Open Office. A metadata file is created, based on the directory structure, to make associa-

tions amongst the results. Each distribution can then be displayed by d3 as a BoxPlot,

similar to those shown in the figures in this paper, and annotated with relevant metadata.
Figure 20 A chart, as generated by the software, showing results for Bonnie++ on Rackspace and AWS.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 34 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
The webpage itself does not initially show any charts – a related example page

explains how these can be produced. The page allows for multiple charts to be generated

on-the-fly depending on the selections made by the user. One other key characteristic of

the chart is that the results of benchmarks can be displayed side-by-side, as all are scaled

to the maximum value for that particular benchmark. Relative performance, then, is

shown in contrast to best overall performance – by position in relation to the top of the

chart – and by position with respect to other types and other benchmarks. Each BoxPlot

is also coloured by provider.

A fragment of an example chart as can be displayed by the webpage is shown below

(Figure 20). Maximum and minimum values (16 and 904) are shown at the top and

bottom to offer a sense of overall scale. Each displayed chart is given a legend to show

what is being presented, and hovering the mouse over the display area that could be oc-

cupied by each BoxPlot, rather than needing to hit the BoxPlot specifically, reveals

metadata which includes information about the actual value ranges for the BoxPlot.

Clicking on the BoxPlot downloads a CSV file of the distribution used to generate

the BoxPlot.

Figure 20 is presented for (Table 11):

There are, as ever, numerous improvements that we would like to make to the

visualisation, and creating it has also led to suggestions for other ways in which we

might handle the data.
Conclusions and future work
In the Cloud pilot project reported in this paper, we set out to offer a web portal that em-

bodies searchable results of benchmark runs. We have developed a dynamic visualization

of benchmark data such that results across both providers and benchmarks can be

displayed, and these values are all scaled to the best performance in that benchmark. We

are also working on a simpler component that will return information about providers,

regions and machine types to satisfy enquiries regarding actual performance – so, for

example, we can explore sample results above a given threshold (each) for Bonnie and

LINPACK. This can lead towards negotiability over QoS for Service Level Agreements

(SLAs) – discussed below. We had planned, also, to offer bundled benchmark tests

(virtual machines containing such applications), but the configuration scripts that we

are using may be of more use to give a starting point in using such systems, and also
Table 11 A table, as generated by the software, showing results for both STREAM and
Bonnie++ on AWS

Selected
Benchmarks

Bonnie

Selected Providers rackspace,AWS

Selected
Distributions

Ubuntu1004,RHEL

Selected Regions UK,US,us-east-1a,us-west-2a,sa-east-1a

Selected Instances 15872M,1024M,8192M,2048M,256M,4096M,512M,t1micro,m24xlarge,m22xlarge,m1xlarge,
m1large,m2xlarge,c1medium,m1small,m1micro

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 35 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
because they tend to incur relatively little cost in comparison to keeping the bundles

stored at a Cloud provider.

In the near-term, we would like to perform a wider range of, and extend the coverage

of the current, benchmarks over a larger number of instances to obtain a better per-

formance distribution and more information about trends over extended periods of

time. We believe that there is also more that can be done in relation to the simi-

larities amongst extant benchmarks, and so correlated performance and weighted

contributions would be interesting to explore such that certain benchmarks might

readily offer inferences for others which could be verified with relatively lesser

efforts. This should subsequently feed in to Cloud Brokerage work. We would also

like to open up a site for contribution of benchmark data and to support the

automatic running of benchmarks based on user-provided credentials. However,

more immediately there are several issues to resolve in the underlying Javascript

implementation of our visualization.

Further directions from this work relate to use of provider monitoring, and lon-

ger term for automating SLA management. For the former, it is interesting to

note that Amazon offers a service called CloudWatch, which allows AWS users

to set alarms for various metrics such as CPUUtilization (as a percentage),

DiskReadBytes, DiskWriteBytes, NetworkIn, and NetworkOut, amongst others. An

alarm can be set when one of these metrics is above or below a given value for longer

than a specified period of time (in minutes). At present, unless an AutoScaling policy

has been created, alarms will be sent by email. The benchmarks we have explored are

highly related to this set of metrics, and so it is immediately relevant to consider how

the experiments presented here would inform the setting of such alarms – although

there would still be some effort needed on obtaining likely performance values per ma-

chine instance to begin with. For the automation of management of SLAs, we have in-

vestigated the use of WS-Agreement both in this project and in prior work referred to

earlier in this paper. The latest WS-Agreement specification (1.0.0) helpfully sepa-

rates the static resource properties – such as amount of memory, numbers of

CPUs, and so forth – from the dynamic resource properties – typically, limited

to response times. The dynamic properties are those that can vary (continuously)

over the agreement lifetime. WS-Agreement follows related contractual principles,

allowing for the specification of the entities involved in the agreement, the work

to be undertaken, and the conditions that relate to the performance of the con-

tract. Initially, WS-Agreement consists of two sections: the Context, which de-

fines properties of the agreement (i.e. name, date, parties of agreement); and the

Terms, which are divided into Service Description Terms (SDTs) and Guarantee

Terms (GTs). SDTs are used to identify the work to be done, describing, for ex-

ample, the platform upon which the work is to be done, the software involved,

and the set of expected arguments and input/output resources. GTs provide as-

surance between provider and requester on QoS, and should include the price of

the service and, ideally, the probability of, and penalty for, failure.

Introducing a Cloud Broker adds an element of complexity, although this may

be beneficial. If users demand detailed SLAs but Cloud providers do not offer

them, there is a clear advantage to the Broker if they can interpret/interrogate

the resources in order to produce and manage such SLAs. ServiceQoS offers

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 36 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
suggestions for how to add QoS parameters into SLAs n. The principal example

is through a Key Performance Indicator (KPI) Target (wsag:KPITarget) as a Ser-

vice Level Objective (wsag:ServiceLevelObjective), and relates to Response Time

(wsag:KPIName). Examples elsewhere use Availability, and a threshold (e.g. gte

98.5, to indicate greater than or equal to 98.5%). Cloud providers and frameworks

supporting this on a practical level are as yet not apparent, leaving the direct use

of QoS parameters in SLAs for negotiation via Cloud Brokers very much on our

future trajectory.
Endnotes
a See, for example, the Cloud Circle report: http://www.itsallaboutcloud.

com/sites/default/files/digitalassets/CloudCircle2ITRFull.pdf [accessed 5 February

2013]
b The Cloud Harmony website has a discussion of the ECU, and benchmarking

that suggests it to be a useful approximation in some ways: http://blog.

cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html

[accessed 5 February 2013]
c See the price calculator at: http://www.rackspace.co.uk/cloud-hosting/learn-more/

cloud-servers-cost-calculator/ [accessed 5 February 2013]
d Such as, for example, the Top500 supercomputers list using LINPACK: http://www.

top500.org/project/linpack [accessed 5 February 2013]
e In the November 2011 Top500 list, there were only two entries in the top 100 with

Gigabit Ethernet – and the first of those at position 42 is Amazon.
f http://web.archive.org/web/20120106132720/http://www.cs.sunysb.edu/~sion/research/

sion2011cloud-net1.pdf [accessed 5 February 2013]
g http://openbenchmarking.org/result/1103155-IV-EC28GIOZO86 [accessed 5 February

2013]
h See: http://www.rackspace.com/cloud/blog/2010/07/22/cloud-servers-for-windows-

beta-update/ [accessed 5 February 2013]
i See: http://aws.amazon.com/datasets/ for a list of such datasets [accessed 5 February

2013]
j http://www.epsrc.ac.uk/SiteCollectionDocuments/Publications/reports/CC497D002-

1_2FinalReportToEPSRCandJISC.pdf [accessed 5 February 2013]
k Consideration is made of what would be available for fixed monthly budgets of

$100, $200, $500 and $1000 per month, with Amazon appearing to have better CPU

and RAM offerings than GoGrid, Rackspace and VPS.net, though offering and actual

performance may vary. See: http://www.mrkirkland.com/cloud-computing-price-com

parison/ [accessed 10 October 2012]
l In comparing Rackspace and Amazon, the commentator suggests: “If your VM

is only getting the minimum guaranteed CPU, Rackspace is about 1.9 times more

expensive than an equivalent in EC2. However, in our experience, we can fre-

quently grab a much larger share of the CPU. Assuming you can grab the full 4

cores, the 256MB, 512MB, 1GB, and 2GB VMs are a great bargain, which are

17%, 31%, 55%, and 89% of the equivalent EC2 cost respectively.”. In two other

comparisons, against GoGrid and Terremark, the same commentator identifies

http://www.itsallaboutcloud.com/sites/default/files/digitalassets/CloudCircle2ITRFull.pdf
http://www.itsallaboutcloud.com/sites/default/files/digitalassets/CloudCircle2ITRFull.pdf
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://www.rackspace.co.uk/cloud-hosting/learn-more/cloud-servers-cost-calculator/
http://www.rackspace.co.uk/cloud-hosting/learn-more/cloud-servers-cost-calculator/
http://www.top500.org/project/linpack
http://www.top500.org/project/linpack
http://web.archive.org/web/20120106132720/http://www.cs.sunysb.edu/~sion/research/sion2011cloud-net1.pdf
http://web.archive.org/web/20120106132720/http://www.cs.sunysb.edu/~sion/research/sion2011cloud-net1.pdf
http://openbenchmarking.org/result/1103155-IV-EC28GIOZO86
http://www.rackspace.com/cloud/blog/2010/07/22/cloud-servers-for-windows-beta-update/
http://www.rackspace.com/cloud/blog/2010/07/22/cloud-servers-for-windows-beta-update/
http://aws.amazon.com/datasets/
http://www.epsrc.ac.uk/SiteCollectionDocuments/Publications/reports/CC497D002-1_2FinalReportToEPSRCandJISC.pdf
http://www.epsrc.ac.uk/SiteCollectionDocuments/Publications/reports/CC497D002-1_2FinalReportToEPSRCandJISC.pdf
http://www.mrkirkland.com/cloud-computing-price-comparison/
http://www.mrkirkland.com/cloud-computing-price-comparison/

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 37 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Amazon as cheaper until other factors are taken into account, further demon-

strating the difficulty of undertaking cost comparisons. See: http://huanliu.

wordpress.com/2011/01/25/rackspace-cost-comparison-with-amazon-ec2/ [accessed

10 October 2012]
m http://mbostock.github.com/d3/ [accessed 10 October 2012]
n ServiceQoS: http://serviceqos.wikispaces.com/WSAgExample [accessed 5 February 2013]

Appendix. A EC2, STREAM Testing Across Numbers of Instances
Setup: US-east-1a region, Ubuntu 10.04 (ami-2ec83147), STREAM problem size,

N=5,000,000.

Here we show results for AWS t1.micro (Table 12, Figure 21), m1.large (Table 13,

Figure 22), m1.xlarge (Table 14, Figure 23) m2.xlarge (Table 15, Figure 24),

m2.2xlarge (Table 16, Figure 25), m2.4xlarge (Table 17, Figure 26).
Table 12 Machine Type: t1.micro

instances avg max min

1

copy(a=b) 3347.41 3347.41 3347.41

scale(a=k*b) 3296.11 3296.11 3296.11

add(a=b+c) 3498.24 3498.24 3498.24

triad(a=b+k*c) 3501.79 3501.79 3501.79

2

copy(a=b) 3256.38 3302.11 3210.64

scale(a=k*b) 3263.77 3269.68 3257.87

add(a=b+c) 3428.23 3446.88 3409.59

triad(a=b+k*c) 3423.03 3444.71 3401.36

4

copy(a=b) 3889.48 4617.88 3104.62

scale(a=k*b) 3754.10 4359.19 3099.32

add(a=b+c) 4053.29 4809.43 3272.88

triad(a=b+k*c) 4016.36 4850.07 3137.16

8

copy(a=b) 3460.44 4563.86 2952.80

scale(a=k*b) 3425.01 4365.60 2954.20

add(a=b+c) 3657.65 4785.65 3153.75

triad(a=b+k*c) 3628.55 4888.56 2907.75

16

copy(a=b) 3758.26 4613.05 3094.54

scale(a=k*b) 3609.71 4422.86 2998.15

add(a=b+c) 3593.91 4864.61 93.08

triad(a=b+k*c) 3592.73 4933.80 81.85

32

copy(a=b) 2930.36 4571.14 78.76

scale(a=k*b) 3089.71 4345.70 81.00

add(a=b+c) 2892.38 4823.16 79.77

triad(a=b+k*c) 3063.40 4873.89 79.71

64

copy(a=b) 2916.52 4556.86 78.87

scale(a=k*b) 2956.92 4351.39 53.50

add(a=b+c) 2971.03 4916.64 79.07

triad(a=b+k*c) 3032.96 4868.14 80.82

http://huanliu.wordpress.com/2011/01/25/rackspace-cost-comparison-with-amazon-ec2/
http://huanliu.wordpress.com/2011/01/25/rackspace-cost-comparison-with-amazon-ec2/
http://mbostock.github.com/d3/
http://serviceqos.wikispaces.com/WSAgExample

Table 13 Machine Type: m1.large

instances avg max min

1

copy(a=b) 3264.37 3264.37 3264.37

scale(a=k*b) 3251.37 3251.37 3251.37

add(a=b+c) 3407.56 3407.56 3407.56

triad(a=b+k*c) 3419.20 3419.20 3419.20

2

copy(a=b) 4623.27 4642.80 4603.75

scale(a=k*b) 4383.99 4432.85 4335.14

add(a=b+c) 4807.09 4842.24 4771.95

triad(a=b+k*c) 4623.64 4891.36 4355.91

4

copy(a=b) 4286.35 4632.03 3400.91

scale(a=k*b) 4148.34 4460.07 3360.35

add(a=b+c) 4511.41 4851.80 3585.72

triad(a=b+k*c) 4537.32 4886.38 3614.56

8

copy(a=b) 3981.77 4632.61 3252.82

scale(a=k*b) 3869.15 4495.38 3232.32

add(a=b+c) 4190.23 4923.86 3406.08

triad(a=b+k*c) 4192.48 4868.94 3413.84

16

copy(a=b) 3926.88 4669.61 1966.51

scale(a=k*b) 3842.11 4459.53 1768.39

add(a=b+c) 4178.65 4881.83 2169.64

triad(a=b+k*c) 4183.60 4902.32 2216.97

32

copy(a=b) 4231.54 5956.34 2316.83

scale(a=k*b) 4062.66 5455.12 2674.06

add(a=b+c) 4379.40 6098.81 1978.86

triad(a=b+k*c) 4435.98 6046.28 2764.91

64

copy(a=b) 4285.80 6015.93 1624.73

scale(a=k*b) 4113.37 5516.82 1614.79

add(a=b+c) 4443.18 6241.52 1748.81

triad(a=b+k*c) 4473.59 6193.52 1752.10

Figure 21 STREAM performance for t1.micro.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 38 of 45
http://www.journalofcloudcomputing.com/content/2/1/6

Table 14 Machine Type: m1.xlarge

instances avg max min

1

copy(a=b) 5925.10 5925.10 5925.10

scale(a=k*b) 5428.11 5428.11 5428.11

add(a=b+c) 6065.22 6065.22 6065.22

triad(a=b+k*c) 6027.16 6027.16 6027.16

2

copy(a=b) 5872.99 6014.09 5731.88

scale(a=k*b) 5418.31 5520.64 5315.97

add(a=b+c) 6089.34 6220.16 5958.52

triad(a=b+k*c) 6063.30 6190.70 5935.90

4

copy(a=b) 5972.29 6034.10 5922.80

scale(a=k*b) 5469.24 5486.25 5443.70

add(a=b+c) 6173.25 6220.23 6143.40

triad(a=b+k*c) 6133.44 6153.54 6110.29

8

copy(a=b) 5834.03 6056.87 5504.34

scale(a=k*b) 5361.10 5569.48 5096.82

add(a=b+c) 6056.36 6289.96 5771.71

triad(a=b+k*c) 5996.72 6235.72 5767.55

16

copy(a=b) 5893.96 6080.90 5711.78

scale(a=k*b) 5412.49 5578.83 5256.93

add(a=b+c) 6053.13 6290.59 5865.95

triad(a=b+k*c) 6020.39 6258.52 5850.54

32

copy(a=b) 5828.79 6050.53 4131.61

scale(a=k*b) 5362.86 5575.68 3869.24

add(a=b+c) 6022.01 6287.60 4291.69

triad(a=b+k*c) 5996.93 6241.21 4301.85

64

copy(a=b) 5766.59 6063.32 4209.41

scale(a=k*b) 5307.68 5562.46 4111.46

add(a=b+c) 5950.40 6274.83 4980.72

triad(a=b+k*c) 5913.60 6234.41 5007.33

Figure 22 STREAM performance for m1.large.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 39 of 45
http://www.journalofcloudcomputing.com/content/2/1/6

Table 15 Machine Type: m2.xlarge

instances avg max min

1

copy(a=b) 6790.47 6790.47 6790.47

scale(a=k*b) 6451.66 6451.66 6451.66

add(a=b+c) 7130.95 7130.95 7130.95

triad(a=b+k*c) 7168.42 7168.42 7168.42

2

copy(a=b) 6653.82 6724.34 6583.30

scale(a=k*b) 6380.87 6383.17 6378.56

add(a=b+c) 6992.16 7110.30 6874.03

triad(a=b+k*c) 7065.16 7168.53 6961.79

4

copy(a=b) 6585.74 6704.72 6460.98

scale(a=k*b) 6324.09 6458.36 6220.81

add(a=b+c) 6851.72 6942.01 6712.86

triad(a=b+k*c) 6979.63 7172.71 6756.74

8

copy(a=b) 6180.62 6709.14 5185.03

scale(a=k*b) 5995.94 6420.06 5001.63

add(a=b+c) 6413.92 7034.77 5362.36

triad(a=b+k*c) 6556.06 7170.57 5410.55

16

copy(a=b) 6423.41 7001.59 5365.10

scale(a=k*b) 6109.55 6737.43 5266.25

add(a=b+c) 6733.81 7380.98 6189.41

triad(a=b+k*c) 6732.95 7309.48 6199.32

32

copy(a=b) 6166.81 6894.27 4762.20

scale(a=k*b) 5893.16 6627.91 4636.06

add(a=b+c) 6492.80 7206.40 5014.01

triad(a=b+k*c) 6541.16 7441.88 5020.31

64

copy(a=b) 6022.08 7026.81 4818.13

scale(a=k*b) 5729.27 6844.63 4695.95

add(a=b+c) 6262.72 7248.12 4899.98

triad(a=b+k*c) 6346.77 7215.08 4979.49

Figure 23 STREAM performance for m1.xlarge.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 40 of 45
http://www.journalofcloudcomputing.com/content/2/1/6

Table 16 Machine Type: m2.2xlarge

instances avg max min

1

copy(a=b) 6464.09 6464.09 6464.09

scale(a=k*b) 6183.78 6183.78 6183.78

add(a=b+c) 6857.92 6857.92 6857.92

triad(a=b+k*c) 6817.05 6817.05 6817.05

2

copy(a=b) 6713.72 6724.47 6702.98

scale(a=k*b) 6544.05 6678.96 6409.14

add(a=b+c) 7051.67 7163.73 6939.62

triad(a=b+k*c) 7106.18 7168.93 7043.43

4

copy(a=b) 6466.17 6527.34 6351.76

scale(a=k*b) 6174.91 6196.80 6159.04

add(a=b+c) 6604.13 6691.97 6468.62

triad(a=b+k*c) 6640.46 6753.75 6532.08

8

copy(a=b) 6567.52 6805.62 6460.48

scale(a=k*b) 6321.49 6615.49 6164.35

add(a=b+c) 6829.15 7103.97 6680.42

triad(a=b+k*c) 6927.17 7195.07 6747.23

16

copy(a=b) 6519.23 6945.07 6255.37

scale(a=k*b) 6295.93 6669.93 6070.23

add(a=b+c) 6796.20 7157.72 6461.31

triad(a=b+k*c) 6826.76 7131.35 6499.52

32

copy(a=b) 6605.41 6946.80 6234.33

scale(a=k*b) 6308.20 6656.04 5826.64

add(a=b+c) 6839.38 7296.66 6289.65

triad(a=b+k*c) 6880.77 7456.65 6301.14

64

copy(a=b) 6556.62 7485.82 6092.50

scale(a=k*b) 6274.04 7151.26 5874.58

add(a=b+c) 6817.12 7744.40 6297.91

triad(a=b+k*c) 6878.92 7831.89 6372.79

Figure 24 STREAM performance for m2.xlarge.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 41 of 45
http://www.journalofcloudcomputing.com/content/2/1/6

Table 17 Machine Type: m2.4xlarge

instances avg max min

1

copy(a=b) 6420.55 6420.55 6420.55

scale(a=k*b) 6119.05 6119.05 6119.05

add(a=b+c) 6745.33 6745.33 6745.33

triad(a=b+k*c) 7103.97 7103.97 7103.97

2

copy(a=b) 6646.44 6782.51 6510.37

scale(a=k*b) 6294.82 6317.56 6272.09

add(a=b+c) 6890.55 6953.23 6827.87

triad(a=b+k*c) 6910.60 6946.80 6874.41

4

copy(a=b) 6552.38 6620.84 6514.16

scale(a=k*b) 6361.01 6537.51 6228.66

add(a=b+c) 6860.84 6890.59 6838.35

triad(a=b+k*c) 6874.10 6889.46 6835.66

8

copy(a=b) 6753.39 7029.76 6541.34

scale(a=k*b) 6360.12 6546.18 6190.06

add(a=b+c) 7004.81 7238.94 6770.10

triad(a=b+k*c) 7062.83 7307.26 6729.82

16

copy(a=b) 6557.14 7005.83 5311.01

scale(a=k*b) 6267.66 6571.44 5004.02

add(a=b+c) 6882.33 7253.76 5509.64

triad(a=b+k*c) 7028.30 7328.64 6697.58

32

copy(a=b) 6675.15 6937.18 6387.18

scale(a=k*b) 6369.62 6577.88 6080.46

add(a=b+c) 6959.19 7263.91 6671.13

triad(a=b+k*c) 7018.29 7496.75 6658.15

64

copy(a=b) 6609.27 7004.66 6346.59

scale(a=k*b) 6309.86 6697.36 6093.38

add(a=b+c) 6907.98 7373.30 6627.21

triad(a=b+k*c) 6946.89 7390.52 6588.69

Figure 25 STREAM performance for m2.2xlarge.

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 42 of 45
http://www.journalofcloudcomputing.com/content/2/1/6

Figure 26 STREAM performance for m2.4xlarge.

G
illam

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2013,2:6
Page

43
of

45
http://w

w
w
.journalofcloudcom

puting.com
/content/2/1/6

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 44 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
LG, BL, JOL, and APST all contributed to the Fair Benchmarking for Cloud Computing Systems project, and
subsequently to this article presenting it. LG was the project’s principal investigator and responsible for the approach
taken. BL and JOL undertook the cloud benchmarking experiments, with BL largely responsible for benchmark runs on
AWS, Rackspace and IBM, and JOL setting up OpenStack and assisting BL to run there also. JOL also ran the bzip2
experiments. APST developed the web-based presentation that consumed the results of these experiments. All
contributed to this article from their respective responsiblities, with LG setting the paper’s structure and co-ordinating
contributions. All authors were subsequently involved with proofreading. All authors read and approved the final
manuscript.

Received: 19 November 2012 Accepted: 11 February 2013
Published: 7 March 2013
References

1. Li B, Gillam L, O'Loughlin J (2010) Towards Application-Specific Service Level Agreements: Experiments in Clouds and

Grids. In: Antonopoulos and Gillam (Eds.), Cloud Computing: Principles, Systems and Applications. Springer-Verlag, London
2. Li B, Gillam L (2009) Towards Job-specific Service Level Agreements in the Cloud, Cloud-based Services and

Applications, in 5th IEEE e-Science International Conference. UK, Oxford
3. Li B, Gillam L (2009) Grid Service Level Agreements using Financial Risk Analysis Techniques. In: Antonopoulos,

Exarchakos, Li and Liotta (Eds.), Handbook of Research on P2P and Grid Systems for Service-Oriented Computing:
Models, Methodologies and Applications. IGI Global, New York, pp 686–710

4. Deacon J (2004) Global securitisation and CDOs (The Wiley Finance Series). John Wiley & Sons, Hoboken, NJ
5. Jorion, P., & GARP (Global Association of Risk Professionals) (2007) Financial Risk Manager Handbook (Wiley

Finance), 4th edn. John Wiley & Sons, Hoboken, NJ
6. Tavakoli MJ (2003) Collateralized Debt Obligations & Structured Finance: New Developments in Cash and

Synthetic Securitization, 2nd edn. John Wiley & Sons, Hoboken, NJ
7. Shopping the Cloud: Performance Benchmarks., http://gevaperry.typepad.com/main/2010/08/shopping-the-

cloud-performance-benchmarks.html [accessed 5 February
8. Amazon EC2 Cloud Benchmarks., http://www.phoronix.com/scan.php?

page=article&item=amazon_ec2_round1&num=1 [accessed 5 February 2013]
9. Amazon EC2 Micro: Barely Faster Than A Nokia N900?., http://www.phoronix.com/scan.php?

page=article&item=amazon_ec2_micro&num=1 [accessed 5 February 2013]
10. Disk IO and throughput benchmarks on Amazon’s EC2., http://stu.mp/2009/12/disk-io-and-throughput-

benchmarks-on-amazons-ec2.html [accessed 5 February 2013]
11. Comparing a traditional cluster with Amazon’s EC2 on the NAS benchmarks and Linpack., http://insidehpc.com/

2009/08/03/comparing-hpc-cluster-amazons-ec2-nas-benchmarks-linpack/ [accessed 5 February 2013]
12. EC2 CPU benchmark: Fastest instance type (serial performance)., http://opinionatedprogrammer.com/2011/07/

ec2-cpu-benchmark-fastest-instance-type-for-build-servers/ [accessed 5 February 2013]
13. IOzone benchmark vs EC2., http://blog.dbadojo.com/2007/10/iozone-benchmark-vs-ec2.html [accessed 5 February 2013]
14. Gray J (1993) The Benchmark Handbook For Database and Transaction Processing Systems. Morgan Kaufmann,

San Mateo, CA
15. Yahoo! Cloud Serving Benchmark project., http://research.yahoo.com/Web_Information_Management/YCSB

[accessed 5 February 2013]
16. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving systems with YCSB”,

Proceedings of the 1st ACM symposium on Cloud computing, June 10-11, 2010., Indianapolis, Indiana, USA.
doi:10.1145/1807128.1807152

17. Sion R, Colleagues Cloud Performance Benchmark Series., available at http://web.archive.org/web/
20080827222935/http://www.cs.sunysb.edu/~sion/research/ [accessed 5 February 2013]

18. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, Wasserman HJ, Wright NJ (2010) "Performance
Analysis of High Performance Computing Applications on the Amazon Web Services Cloud", Proc. Cloud
Com:159–168

19. Napper J, Bientinesi P (2009) Can cloud computing reach the top500?”. Proc. of the combined workshops on
UnConventional high performance computing workshop plus memory access workshop. ACM International
Conference on Computing Frontiers, Ischia, Italy, pp 17–20

20. Cloudharmony., http://cloudharmony.com/ [accessed 5 February 2013]
21. CLOUDSLEUTH., https://cloudsleuth.net/ [accessed 5 February 2013]
22. Openbenchmarking., http://openbenchmarking.org/ [accessed 5 February 2013]
23. Amazon Web Services, EC2, S3., http://aws.amazon.com/ [accessed 5 February 2013]
24. Rackspace., http://www.rackspace.com/ [accessed 5 February 2013]
25. IBM SmartCloud., http://www.ibm.com/cloud-computing/us/en/; https://www-147.ibm.com/cloud/enterprise/

dashboard [accessed 5 February 2013]
26. Openstack., http://www.openstack.org/ [accessed 5 February 2013]
27. Bare Metal Cloud (was NewServers)., http://www.baremetalcloud.com/index.php/en/ [accessed 5 February 2013]
28. Apache libcloud., http://libcloud.apache.org/ [accessed 5 February 2013]
29. Jclouds., http://www.jclouds.org/ [accessed 5 February 2013]
30. DeltaCloud., http://deltacloud.apache.org/ [accessed 5 February 2013]
31. STREAM., http://www.cs.virginia.edu/stream/ [accessed 5 February 2013]

http://gevaperry.typepad.com/main/2010/08/shopping-the-cloud-performance-benchmarks.html
http://gevaperry.typepad.com/main/2010/08/shopping-the-cloud-performance-benchmarks.html
http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_round1&num=1
http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_round1&num=1
http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_micro&num=1
http://www.phoronix.com/scan.php?page=article&item=amazon_ec2_micro&num=1
http://stu.mp/2009/12/disk-io-and-throughput-benchmarks-on-amazons-ec2.html
http://stu.mp/2009/12/disk-io-and-throughput-benchmarks-on-amazons-ec2.html
http://insidehpc.com/2009/08/03/comparing-hpc-cluster-amazons-ec2-nas-benchmarks-linpack/
http://insidehpc.com/2009/08/03/comparing-hpc-cluster-amazons-ec2-nas-benchmarks-linpack/
http://opinionatedprogrammer.com/2011/07/ec2-cpu-benchmark-fastest-instance-type-for-build-servers/
http://opinionatedprogrammer.com/2011/07/ec2-cpu-benchmark-fastest-instance-type-for-build-servers/
http://blog.dbadojo.com/2007/10/iozone-benchmark-vs-ec2.html
http://research.yahoo.com/Web_Information_Management/YCSB
http://dx.doi.org/10.1145/1807128.1807152
http://web.archive.org/web/20080827222935/http://www.cs.sunysb.edu/~sion/research/
http://web.archive.org/web/20080827222935/http://www.cs.sunysb.edu/~sion/research/
http://cloudharmony.com/
https://cloudsleuth.net/
http://openbenchmarking.org/
http://aws.amazon.com/
http://www.rackspace.com/
http://www.ibm.com/cloud-computing/us/en/
https://www-147.ibm.com/cloud/enterprise/dashboard
https://www-147.ibm.com/cloud/enterprise/dashboard
http://www.openstack.org/
http://www.baremetalcloud.com/index.php/en/
http://libcloud.apache.org/
http://www.jclouds.org/
http://deltacloud.apache.org/
http://www.cs.virginia.edu/stream/

Gillam et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:6 Page 45 of 45
http://www.journalofcloudcomputing.com/content/2/1/6
32. Linpack., http://software.intel.com/en-us/articles/intel-linpack-benchmark-download-license-agreement/ [accessed
5 February 2013]

33. Bonnie++., http://www.coker.com.au/bonnie++/ [accessed 5 February 2013]
34. Iozone., http://www.iozone.org/ [accessed 5 February 2013]
35. Bzip2., http://bzip.org/; http://www.spec.org/cpu2006/Docs/401.bzip2.html; http://www.phoronix-test-suite.com/

[accessed 5 February 2013]
36. Iperf., http://iperf.sourceforge.net/ [accessed 5 February 2013]
37. MPPTEST., http://www.mcs.anl.gov/research/projects/mpi/mpptest/ [accessed 5 February 2013]
38. McCalpin JD STREAM: Sustainable Memory Bandwidth in High Performance Computers", a continually updated

technical report (1991-2007)., available at: http://www.cs.virginia.edu/stream/ [accessed 5 February 2013]
39. Walker E (2008) Benchmarking Amazon EC2 for high-performance scientific computing. USENIX Login 33(5):18–23
doi:10.1186/2192-113X-2-6
Cite this article as: Gillam et al.: Fair Benchmarking for Cloud Computing systems. Journal of Cloud Computing:
Advances, Systems and Applications 2013 2:6.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://software.intel.com/en-us/articles/intel-linpack-benchmark-download-license-agreement/
http://www.coker.com.au/bonnie
http://www.iozone.org/
http://bzip.org/
http://www.spec.org/cpu2006/Docs/401.bzip2.html
http://www.phoronix-test-suite.com/
http://iperf.sourceforge.net/
http://www.mcs.anl.gov/research/projects/mpi/mpptest/
http://www.cs.virginia.edu/stream/

	Abstract
	Introduction
	Background
	Related resources
	CloudHarmony
	CLOUDSLEUTH
	OpenBenchmarking.org

	Cloud resources
	Cloud providers
	Cloud APIs
	Benchmark selection
	Memory IO
	CPU
	Disk I/O
	Application (compression)
	Network

	The Cloud instance sequence

	Benchmark results – a sample
	Memory bandwidth Benchmarking with STREAM
	Further STREAM testing in AWS
	Further STREAM testing in OpenStack

	Disk I/O performance Benchmarking with bonnie++ and IOZone
	Bonnie++
	IOzone

	CPU performance Benchmarking
	LINPACK
	Application (compression) performance with Bzip2

	Network Benchmarking
	Iperf

	Network performance for HPC (in AWS)
	Discussion
	Associated costs of Cloud Computing
	Value-for-money in Cloud Computing?

	A Web portal for comparing providers and benchmarks
	Conclusions and future work
	Endnotes
	Appendix. A EC2, STREAM Testing Across Numbers of Instances
	Competing interests
	Authors’ contributions
	References

