
Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7
http://www.journalofcloudcomputing.com/content/3/1/7
RESEARCH Open Access
Development of template management
technology for easy deployment of virtual
resources on OpenStack
Yoji Yamato*, Masahito Muroi, Kentaro Tanaka and Mitsutomo Uchimura
Abstract

In this paper, we describe the development of template management technology to build virtual resources
environments on OpenStack. In recent days, Cloud computing has been progressed and also open source Cloud
software has become widespread. Authors are developing cloud services using OpenStack. There are technologies
which deploy a set of virtual resources based on system environmental templates to enable easy building,
expansion or migration of cloud resources. OpenStack Heat and Amazon CloudFormation are template deployment
technologies and build stacks which are sets of virtual resources based on templates. However, these existing
technologies have 4 problems. Heat and CloudFormation transaction managements of stack create or update are
insufficient. Heat and CloudFormation do not have sharing mechanism of templates. Heat cannot extract templates
from existing virtual environments. Heat does not reflect actual environment changes to stack information.
Therefore, we propose a new template management technology with 4 improvements. It has a mechanism of
transaction management like roll back or roll forward in case of abnormal failure during stack operations. It shares
templates among end users and System Integrators. It extracts templates from existing environments. It reflects
actual environment changes to stack information. We implemented the proposed template management server
and showed that end users can easily replicate or build virtual resources environments. Furthermore, we measured
the performance of template extraction, stack create and update and showed our method could process templates
in a sufficient short time.

Keywords: OpenStack; Cloud computing; IaaS; Template management server; Heat; CloudFormation
Introduction
In recent days, Cloud computing technologies such as
virtualization and scale-out have been progressed and
many providers have started Cloud services. Cloud services
are divided into SaaS, PaaS and IaaS (Infrastructure as
a Service). IaaS service provides hardware resources of
CPU or Disk via a network. For examples, Amazon EC2
(Elastic Computing Cloud) [1] and Rackspace Cloud Servers
[2] are production IaaS services. As IaaS infrastructure,
RackSpace uses open source software OpenStack [3].
OpenStack and CloudStack [4] are major open source IaaS
software and adoptions of open source IaaS software are in-
creasing. Because OpenStack community is very active and
open, we are also developing IaaS services on OpenStack.
* Correspondence: yamato.yoji@lab.ntt.co.jp
NTT Software Innovation Center, NTT Corporation, 3-9-11 Midori-cho,
Musashino-shi 180-8585, Japan

© 2014 Yamato et al.; licensee Springer. This is
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
With a spread of cloud services, technologies which
deploy a set of virtual resources based on system envir-
onmental templates to enable easy building, expansion,
migration of cloud virtual resources have emerged.
For example, OpenStack Heat [5] and Amazon Cloud-
Formation [6] are template deployment technologies and
build stacks which are sets of virtual resources based on
templates. However, these existing technologies have 4
problems. Heat and CloudFormation transaction manage-
ments of stack create or update are insufficient. Heat and
CloudFormation do not have sharing mechanism of tem-
plates. Heat cannot extract templates from existing virtual
environments. Heat does not reflect actual environment
changes such as virtual machine deletion by OpenStack
Nova API to stack information.
Therefore, we propose a new template management tech-

nology which has a mechanism of transaction management
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:yamato.yoji@lab.ntt.co.jp
http://creativecommons.org/licenses/by/2.0

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 2 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
like roll back or roll forward in case of abnormal failure
during stack operations, template sharing among end users
and System Integrators, template extraction from existing
environments and reflection of actual environment change
to stack information. We implemented the proposed tem-
plate management (TM) server and showed that end users
can easily replicate or build virtual resources environments.
Furthermore, we measured the performance of template
extraction, stack create and update and showed our method
could process templates in a sufficient short time.
The rest of this paper is organized as follows. In Problems

of existing template technologies, we review OpenStack
architecture and clarify problems of existing template tech-
nologies for business use. In Proposal of template manage-
ment technology, we propose a new template management
technology which mediates users and OpenStack, and show
how to resolve existing problems. In Template manage-
ment server evaluation, we implement the TM server,
confirm our proposed methods feasibility and evaluate the
performance. We compare our work to related works in
Related works. We summarize the paper in Conclusion.

Problems of existing template technologies
Outline of OpenStack
OpenStack, CloudStack and Eculayptus [7] are major
open source IaaS software, and among them OpenStack
community is active because many providers contribute
developments and adopted services are rapidly increasing.
Figure 1 shows architecture of OpenStack.
OpenStack is composed of the function blocks which

manage logical/virtual resources deployed on physical
resources, the function block which provides Single
Sign On authentication among other function blocks
and the function block which orchestrates a set of vir-
tual resources. Neutron controls virtual networks. OVS
Cinder

Swift

Nova

REST AP

K
ey

st
o
n
e

Horizon

C
ei
lo
m
et
er

Neutron

program

Glanc

browser

OpenSt

Figure 1 OpenStack architecture.
(Open Virtual Switch) [8] and other software switches
can be used as a virtual switch. Nova controls virtual
machines (VMs). KVM (Kernel based Virtual Machine)
[9], Xen [10] and others can be used as hypervisors of
VMs. Cinder manages block storages and can attach a
logical volume to a VM like a local disk. Swift manages
object storages. Glance manages Image files. Keystone
is a base which performs Single Sign On authentica-
tions of these function blocks. Heat is an orchestration
deployment function to create or update virtual resource
instances using Nova, Cinder or other blocks based on a
text template. Ceilometer is a metering function of vir-
tual resource usage. The functions of OpenStack are
used through REST (Representational State Transfer) APIs.
There is also Web GUI called Horizon to use the functions
of OpenStack.
OpenStack major version is released once a half-year.

Henceforth Havana which is the latest version in Feb of
2014, the new functions to catch-up Amazon EC2 will
be added.

Clarification of existing template technologies problems
OpenStack Heat and Amazon CloudFormation are tech-
nologies which deploy virtual resource instances based on
templates which contain information of virtual resource
environment and are described by JSON, YAML or other
text format. The scope of Heat and CloudFormation are
same and Heat supports CloudFormation-compatible API
and template format. Both call a set of virtual instances
which are deployed based on a template “stack” and pro-
vide APIs to operate stacks. However, these APIs provide
primitive CRUD (Create, Read, Update and Delete) opera-
tions of stack and there are some insufficient points for
business use. Here, we clarify 4 major problems of existing
template technologies.
I

H
ea

te

storage

Virtual
Machine

Virtual
Network

ack

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 3 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
Insufficient transaction management of stack create,
update or delete
Heat and CloudFormation transaction managements of
stack create, update or delete are insufficient. When we
create a stack, all resources need to be deployed success-
fully for business use. But Heat and CloudFormation
sometimes fail some resources deployment and there
is a possibility of end up with a half-finished stack cre-
ation. Moreover, when we update a stack, Heat and
CloudFormation also fail some resources update and
there is a possibility of end up with a half-finished
stack update.

There is no template sharing mechanism
Templates sharing or re-use by other users are out of
scope of Heat and CloudFormation. Users of Heat and
CloudFormation need to describe and manage templates
by themselves. However, users who do not have IT
knowledge such as small business owners cannot create
a template easily. It is preferable that System Integrators
or distributers describe and verify templates, and end
users only select templates and build virtual resource
environments for their business demands.

Heat cannot extract templates from existing environments
Heat has a “template-show” API which gets a template
from a stack but cannot extract a template from a non-
stack environment. Thus, when users would like to
replicate existing environments, they need to describe
templates from the first. And because each resource
belongs to only one stack in Heat specification, a tem-
plate extraction is difficult for shared resources such as
logical routers which connect VPN or the Internet not
to belong multiple stacks.

Actual environment change is not reflected to stack information
Heat does not reflect non-Heat API operations to stack
information. For example, when users shut down a VM
via console or delete a VM via Nova API, there is a
difference between an actual environment and stack
information. When users call a stack update API, Heat
checks a difference between a new template and a previous
template. But in this example case, an actual environment
is different from a previous template, so that there is a
possibility of unexpected behavior.

Proposal of template management technology
To provide orchestration functions of OpenStack IaaS
services to users, we propose a TM server which have a
mechanism of transaction management like roll back or
roll forward in case of abnormal failure during stack op-
erations, template sharing among end users and System
Integrators, template extraction from existing environ-
ments and reflection of actual environment change to
stack information. The TM server interprets Heat JSON
or HOT (Heat Orchestration Template) format templates
and calls OpenStack APIs such as Nova or Cinder. The TM
server has a stack operation function, template sharing
function, template extraction function and environmental
change reflection function. Here, we explain how to resolve
1–4 problems by the TM server.

Transaction management of stack create, update and delete
Heat and CloudFormation transaction managements of
stack create, update and delete are insufficient and may
end up with a half-finished stack processing. It is not ac-
ceptable for some business users because some resources
failures may lead critical problems. For example, if a VM
creation is successful but a logical router security setting
is failed, the VM may have a risk of abuse.
Therefore, when we create a stack, it is necessary to

delete and roll back all resources in case of any failures
of resource creation (All resources roll back). And when
we delete a stack, it is necessary to retry and delete all
resources in case of any failures of resource deletion
(All resources roll forward).
When we update a stack, orchestration functions check a

difference between previous template and new template,
then create, delete or update resources to fill up the differ-
ence. Specifically, a resource which is in previous template
and is not in new template is deleted, a resource which is
not in previous template and is in new template is created,
a resource which is changed from previous template to new
template is created after deletion or updated. In OpenStack,
some resources can be updated but some cannot be. (e.g.
network connection change can be updated but VM RAM
size change needs to delete VM once, then create new one).
In stack update case, individual resource creation,

deletion and update may be operated, so that there may
be a case we cannot roll back all operations. For example,
a volume is deleted successfully then a VM creation is
failed, we cannot roll back because the volume is already
deleted. Therefore, in stack update case, the TM server
tries to roll back or roll forward for each OpenStack API
transaction (not all API transactions) when each OpenStack
API processing is failed.
Figure 2 shows the transaction managements of stack

create, delete and update. In stack create case, when
there is a problem in logical router creation, the TM
rolls-back all created resources. In stack delete case,
when there is a problem in logical router deletion, the
TM retries and deletes all resources. In stack update
case, when there is a problem in logical load balancer
deletion, the TM rolls-back the logical load balancer
operation because it is a creation operation.
Heat template does not describe an order of each re-

source processing. Our TM server interprets Heat tem-
plates and process following orders for stack create,

Figure 2 Transaction managements of stack operations.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 4 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
delete and update. Regarding to stack create, the TM
server creates resources in the following order; volume,
virtual Layer 2 network, VM, logical router and logical
load balancer. Regarding to stack delete, the order is
logical load balancer, logical router, VM, virtual Layer
2 network and volume. Regarding to stack update, the
TM server firstly deletes resources in the order same as
stack delete case, secondly creates resources in the order
same as stack create case and lastly updates resources in
the order same as stack create case. Figure 2 also shows
the orders of stack create, delete and update.
Following these orders, we can guarantee the precondition

of resource creation in stack create case (e.g. a VM needs at
least one volume). We can also prevent name duplication
error or other precondition error in stack update case.
To follow these policies, the stack operation function

of TM server manages orders of OpenStack API calls
and those transactions. Because most of OpenStack APIs
are asynchronous, the TM server retries a API or calls a
purge API, or reverse API to decide state of OpenStack
resource when a API transaction is failed. Note that a
reverse API means the reverse process of each API
(e.g. volume deletion API is a reverse API for volume
creation). In this way, we can prevent a half-way state
of stack during stack operations.
The function of stack transaction management can be

generalized for deployment management with multiple
resources. Resource deployment needs Create, Update and
Delete transaction managements and also needs a valid
order of each resource operation. Our proposal of stack
transactions in case of failure and orders of each resource
operation can be used also CloudStack, Eucalyptus and
other Cloud platforms multiple resources provisioning
because a virtual resource dependence (e.g. VM needs
at least one volume) is almost same in IaaS platforms.

Template sharing
CloudFormation and Heat do not have a mechanism of
template sharing. Our TM server provides a function to
share templates and facilitate templates re-use. For ex-
ample, when a small business owner would like to build
a shopping site, a System Integrator provides a verified
Web 3-tier structure template, then the small business
owner selects the template and build the environment
with one or two clicks. If we share templates uncondi-
tionally, there is a risk of malicious template spreading.
Thus, it is necessary to limit a range of template sharing
within contractual relationships. Here, we explain logics
of template sharing.

– There are two methods to register a template:
template extraction and template upload. The
function described in Template extraction from
existing tenant extracts a valid template in an
extraction case. In the other side, the template
sharing function validates a template in a template
upload case because a template described by a user
may have format or logical errors.

– Each template creator can set a scope of disclosure
for each template. There are 3 options for
disclosure; only the creator-self, all users who have
contract with the creator and users selected by the
creator. Service providers or System Integrators can
share templates to subordinate users by setting a
scope of disclosure. If System Integrators have
multiple tier contractual relationships, there are
2nd tier subordinate users. In this case, 1st tier
subordinate System Integrator downloads a template
of upper tier System Integrator and registers it as
its template. This is to restrict scope of disclosure
within direct contractual relationships. Because
each System Integrator prefers to sell its own
brand, the template sharing function conceals
templates upper than two tiers. Figure 3 shows an
image of template sharing relations. A Cloud
provider A creates and shares the template a to all
users which have contracts. A System Integrator B
and an End User C can use the template a. B also

System
Integrator

B

End User
C

Cloud
provider

A

End User
E

System
Integrator

D

End User
G

End User
F

Template a

Template b

These users can
use template a

These users can
use template b

Template d

Figure 3 Template sharing among service providers, System
Integrators and end users.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 5 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
creates and shares the template b to users, so that
D and E can use the template b.

– Users within scope of disclosure can download a
template or create a stack using a template. If a
template describes a reference of image ID to create
a volume from the image, users also need to be able
to use the image. Thus, template sharing function
also manages a scope of disclosure for images.
Specifically, when a user requests to create a stack,
template sharing function represents to get Keystone
token as upper System Integrator and create a user
volume from an image of System Integrator.

In this way, users who do not have enough IT knowledge
can select a shared template and build virtual resources
environments easily.
The function of template sharing function shares a

template among users. In Cloud services or hosting
services, many System Integrators or resellers build and
manage services for end users. The function of template
sharing is generalized for multi-tier sharing model of
cloud or hosting services. This can be used not only a text
template file sharing but also restricted sharing of software
with license such as OS images or restricted codes sharing
for multi-vendor developments.

Template extraction from existing tenant
Heat main targets are operations of stacks and Heat cannot
extract a template from non-stack environment. And there
is a restriction that each virtual resource belongs to only
one stack. Based on them, we propose logics to extract a
template from an existing tenant.

– We extract whole virtual resources on an existing
tenant to a template. If there is unnecessary
resource in an extracted template, a user edits the
template after downloading. This is because there is
no stack that we cannot restrict corresponding
resources for extraction.

– Target resources to extract are volumes, virtual
Layer 2 networks, VMs, logical routers and logical
load balancers. Floating IPs are IP address resources
that relate logical routers which connect the
Internet. The Internet connected resources are
shared by multiple stacks in general and VMs or
logical load balancers which are assigned floating IPs
may be shared by multiple stacks. Because a virtual
resource only belongs to one stack, we do not
include a floating IP to a template in extraction
phase. Users can assign floating IPs after stack
creation based on the extracted template. In the
same way, shared virtual Layer 2 networks or logical
routers (e.g. VPN connected routers) are out of
scope for extraction because those are used by
multiple stacks.

– When users extract a template, they also can select
whether to acquire images from volumes of tenant
or not. When users create a stack, these images are
used to replicate volumes.

– During template extraction time, we block virtual
resources operations in the tenant to prevent a
change of target resources for extraction.

– Extracted templates are held in the template sharing
function described in Template sharing. Extracted
templates can be used for stack create, update or
download to edit.

In this way, we can extract a template from an existing
tenant and replicate an environment easily.
The function of template extraction extracts a tem-

plate from an existing environment. Our implementation
extracts JSON or HOT template and the extracted tem-
plate can be deployed both by Amazon CloudFormation
and OpenStack Heat because a template is abstract text
information and does not depend on IaaS platform. To
generalize and adapt extracted template format to other
IaaS platforms, we can use this function for Cloud mi-
gration to another platform or Cloud federation on
plural platforms.

Reflection of environment change to stack information
In case of stack update, orchestration functions check a
difference between previous template and new template,
then create, delete or update virtual resources to fill up
the difference. However, Heat can only recognize an
environment change by Heat API and does not know
actual environment status.
Therefore, we reflect an environment change to stack

information to guarantee stack update or delete behaviors
as users expect.
There are four methods to change environments.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 6 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
a) Stack create, update, delete by Heat Stack API
b) Individual resource create, update, delete by other

OpenStack API (Nova, Cinder and so on)
c) Resource deletion by user’s manual operation.

(e.g. VM shutdown via console)
d) Resource deletion by unintentional physical or

virtual server down.

Regarding to a), we do not have to care it because
templates of Stack API are matched to actual environments
after API process.
Regarding to b), when users call OpenStack API

(not Heat API), the TM server hooks the requests as
OpenStack API proxy and reflects the environment
change to stack information. If proxy model is difficult, the
TM server may poll OpenStack DB to confirm environ-
ment changes. But each OpenStack API does not have a
parameter of stack ID so that individual resource creation
is not reflected to stack information. If a user would like to
add a resource to a stack, a user needs to call Heat stack
update API including the resource.
Regarding to c), main case is a VM shutdown by user’s

manual operation. VM is operated by Libvirt [11] on KVM.
Therefore, the TM server can reflect the VM down status
to stack information by receiving notifications of Libvirt or
other monitoring agents.
Regarding to d), the TM server reflects resources down

to stack information by receiving a notification of each
resource monitoring agent like c) case.
Based on reflected stack information on a)-d), the TM

server can update or delete stacks as users expect. Table 1
shows a comparison of reflection of actual environment
change to stack information in Havana Heat case and our
TM server case. Havana Heat updates environment
changes to stack information only in Stack API use. Our
TM updates environment changes to it except for resource
create by individual OpenStack API call.
The function of environment change reflection func-

tion is generalized to a difference resolve function of ac-
tual environment and management layer. The difference
has a problem not only in a stack update case but also
Table 1 Reflection of actual environment change to stack info

Operation type

Heat stack API stack creat

stack upda

stack delet

Other OpenStack API (Nova, Cinder and so on) resource cr

resource u

resource d

User manual operation (e.g. VM shutdown) resource d

Physical or virtual server down resource d

A tick mark means that a corresponding operation result is reflected to stack inform
in an individual resource provisioning case. For example,
OpenStack Neutron manages a resource state in OpenStack
DB and does not care an actual completion of resource
provisioning after it has written the requests to DB. Thus,
there is a possibility that a VM is active but access con-
trol setting of a logical router to the VM is not available.
Because a Cloud provider business is charging fees for
provisioned resources, it is fatal to charge a resource
not created yet. The function can be used for resolving
these differences to collect actual environment information
by monitoring modules such as Libvirt and Pacemaker or
by hooking requests as a proxy.

Template management server evaluation
We implement the TM server with proposed 1–4 functions
and confirm that it can be used for carrier IaaS ser-
vices. We also evaluate the performance of implemented
TM server.

Template management server implementation
Figure 4 shows function blocks of the TM server,
OpenStack and related systems. The TM server has
three outer interfaces, Web GUI, API and OpenStack
communication process. Users can extract and share
templates via Web GUI. API provides Heat stack operation
APIs which receive requests of stack operations and other
OpenStack APIs. OpenStack communication process
calls individual OpenStack API such as Nova or Cinder,
confirms the request status and asks roll-back or roll-
forward in case of abnormal failure. The TM server has
a stack information DB which manages stack informa-
tion and a template sharing DB which manages shared
templates. Proposed 3.1-3.4 functions are implemented
on the function blocks 1)-4) described in Figure 4.
The stack operation function receives requests of stack

create, delete and update via API, makes an order of
OpenStack API calls and calls individual OpenStack
API via OpenStack communication process. It manages
transactions of stack operations, judges to roll-back or roll-
forward and calls purge or reverse APIs via OpenStack
communication process in case of a abnormal failure. The
rmation

Havana heat Our TM server

e ✓ ✓

te ✓ ✓

e ✓ ✓

eate

pdate ✓

elete ✓

elete ✓

elete ✓

ation.

Figure 4 Function blocks of template management servers and
related systems.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 7 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
template sharing function retains templates which are ex-
tracted from existing environments or uploaded by users in
template sharing DB. It also controls scope of disclosures
of templates for users to search available templates. The
template extraction function receives a request of template
extraction via GUI, gathers information of current virtual
resources from OpenStack DB and registers information
of extracted template to template sharing DB. The envir-
onmental change reflection function behaves as a proxy
for non-Heat OpenStack API such as Nova or Neutron
API and reflects each resource status change to stack in-
formation DB. It also reflects virtual resources down to
stack information DB when it receives a resource down
notification from a monitoring system.
OpenStack has OpenStack DB, OpenStack modules such

as Nova and OpenStack API. OpenStack receives a request
via OpenStack API and controls a virtual resource using
OpenStack modules like Nova or Neutron and retains
virtual resource information in OpenStack DB. OSS
(Operation Support System) and BSS (Business Support
System) supports an operation of Cloud services. Mon-
itoring system of OSS monitors virtual or physical re-
source availability and it sends a notification to the TM
server when it detects a resource down.
We implemented the TM server on OpenStack Folsom.

We implemented it on Ubuntu 12.04 OS and Apache
Tomcat 6.0.36 by Java language (JDK1.6.0.38) and Python.
We confirmed 1–4 functions validity on a test envir-
onment of Figure 5. It is confirmed that stack is updated
based on actual environment information and if there is
an failure during stack operation, the TM server roll
back or roll forward as expected. And it is also con-
firmed that System Integrators can extract a template
from an existing tenant, share a template among users
who have contracts to System Integrators and replicates
a virtual resource environment to a user tenant using
the template.

Performance evaluation of proposed method
The TM server mediates a user and OpenStack and
manages a template processing. We measure the processing
time of 3 type processings and confirm that an overhead of
our proposed method is sufficient low. The graph values of
processing time are average of 3 times measurements.

Performance measurement conditions
This subsection describes measurement conditions of what
time is measured, what and how much resources are used
and number of concurrent processing number in the mea-
surements. We extract a template from a stack in the 1st
measurement, create s stack using the extracted template
in the 2nd measurement and update a stack by a new tem-
plate in which some virtual resources are changed in the
3rd measurement.
The 1st measurement is a template extraction.

– Measured time: Template extraction processing time
from a tenant.

– Extracted template: A tenant has 2 VMs, 4 volumes,
2 virtual Layer 2 networks, 1 logical router and 1
logical load balancer.

– Concurrent processing numbers: 1 and 3.

Note that processing time of Image acquisition from a
volume is out of scope because it depends on network
bandwidth between Cinder and Glance.
The 2nd measurement is a stack create.

– Measured time: Stack creation processing time.
– Template for stack creation: A template has 2 VMs,

4 volumes, 2 virtual Layer 2 networks, 1 logical
router and 1 logical load balancer. (the same
template in 1st measurement)

– Concurrent processing numbers: 1 and 3.

Note that processing time of volume creation from an
image is out of scope because it depends on network
bandwidth between Cinder and Glance.
The 3rd measurement is a stack update.

– Measured time: Stack update processing time.

Figure 5 Performance measurement environment.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 8 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
– Differences between a previous template and a new
template: virtual resources numbers are same but 1
VM, 1 virtual Layer 2 network and 1 logical router
in a previous template are removed and 1 VM, 1
virtual Layer 2 network and 1 logical router are
newly added. Figure 6 shows parts of templates
which are used for this measurement. Both
templates have a VM but VM properties are
different, so that a VM is deleted firstly and another
VM is created secondly in stack update.

– Concurrent processing numbers: 1 and 3. Because
concurrent update of one stack is blocked by the
TM, we measure parallel 3 different updates in this
experiment.
"Resources" : {
"vm-1" : {

"Type" : "OS::Nova::Server",
"Properties" : {

"networks" : [{
"port" : { "Ref" : "vm-1-port-1" }

}],
"availability_zone" : { "Ref" : "vm-1-az" },
"description" : { "Ref" : "vm-1-description" },
"name" : { "Ref" : "vm-1-name" },
"flavor" : { "Ref" : "vm-1-flavor" },
"image" : { "Ref" : "vm-1-image" },
"block_device_mapping" : [{

"volume_id" : { "Ref" : "volume-a" },
"delete_on_termination" : "0"

},{
"volume_id" : { "Ref" : "volume-b" },
"delete_on_termination" : "0"

}]
}

}
}

Previous template

VM is changed

Figure 6 Parts of sample templates of performance measurement.
Performance measurement environment
Figure 5 is a performance measurement environment. It
shows physical and virtual servers and modules in each
server. For example in TM server case, a TM server is a
virtual server, is in both Internet segment and Control
segment and has modules of API, Web GUI, OpenStack
communicate process, tomcat and apache. Two servers
are for redundancy. Other servers are a user terminal
and an operator terminal, Glance application servers for
image upload, a NFS storage for image, OpenStack API
servers, a DB for OpenStack and TM, OpenStack servers
for virtual resources such as network, volume or VM
and iSCSI storages and load balancers for load balancing.
Figure 5 omits maintenance servers such as syslog or
"Resources" : {
"vm-2" : {

"Type" : "OS::Nova::Server",
"Properties" : {

"networks" : [{
"port" : { "Ref" : "vm-2-port-1" }

}],
"availability_zone" : { "Ref" : "vm-2-az" },
"description" : { "Ref" : "vm-2-description" },
"name" : { "Ref" : "vm-2-name" },
"flavor" : { "Ref" : "vm-2-flavor" },
"image" : { "Ref" : "vm-2-image" },
"block_device_mapping" : [{

"volume_id" : { "Ref" : "volume-a" },
"delete_on_termination" : "0"

},{
"volume_id" : { "Ref" : "volume-b" },
"delete_on_termination" : "0"

}]
}

}
}

New template

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 9 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
backup servers and redundant modules such as heart-
beat. These servers are connected with Gigabit Ethernet.
Table 2 shows each server specification and usage. For

example in DB case (6th row), the hardware is HP ProLiant
BL460c G1, the server is a physical server, the name is
DB, the main usage is OpenStack and TM DB, CPU is
Quad-Core Intel Xeon 1600 MHz*2 and Core number
is 8, RAM is 24 GB, assigned HDD is 72 GB and NIC
(Network Interface Card) number is 4.

Performance measurement results
Template extractions need only DB checks and we can
extract templates about 1–3 sec when concurrent pro-
cessing numbers are 1 and 3. Because the design of sys-
tem environment takes much time in general, we think
quick template extraction is effective to replicate virtual
resources environment.
Figure 7(a) shows the processing time of stack create.

When concurrent processing number is 1, we can create
a stack about 300 sec and when it is 3, it takes about
350 sec. Figure 7(b) shows divisions of resource creation
times when concurrent processing number is 1. TM server
processing takes 90 sec in orchestration and other times
are OpenStack resources creation times (load balancer and
VM creation take almost all time of OpenStack processing).
Proposed TM server manages transactions of all virtual
resources creation. We think an overhead of TM server
transaction management is sufficient low. Note that
actual stack create may need volume creation from an
image and data transfer from Glance to Cinder may
take 10–30 minutes.
Figure 8(a) shows the processing time of stack update.

When concurrent processing number is 1, we can update a
stack about 210 sec and when it is 3, it takes about 270 sec.
Figure 8(b) shows divisions of resource update times when
concurrent processing number is 1. TM server processing
takes 90 sec in orchestration and other times are Open-
Stack resources update times (VM creation take much time
of OpenStack processing). Proposed TM server manages
transactions of updating virtual resources and judges roll
back or roll forward for each OpenStack API processing.
We think an overhead of TM server differential checks and
transaction management is sufficient low. Note that actual
stack update may need volume deletion and take 10–30
minutes because Cinder overwrites all data with zero for
volume deletion.

Related works
Like OpenStack, OpenNebula [12], Ecalyptus [7] and
CloudStack [4] are open source IaaS software. OpenNebula
is a virtual infrastructure manager of IaaS building.
OpenNebula manages VM, storage, network of com-
pany and virtualizes system resources to provide Cloud
services. Eucalyptus characteristic is an interoperability
of Amazon EC2, and Xen, KVM or many hypervisors
can be used on Eucalyptus. Our group also contributes
to developments of OpenStack itself. Functions of load
balancer and some bug fixes of OpenStack are our
group contributions.
Amazon CloudFormation [6] and OpenStack Heat [5]

are two major template deployment technologies on IaaS
platform. Our work has resolved 4 problems of these
technologies. The paper [13] is a work of OpenStack fed-
eration using Heat and users need to describe a Heat tem-
plate first. Because our work can extract templates from
existing environments and reflects actual environment
changes to stack information, users can replicate or feder-
ate virtual resource environments more easily. The paper
[14] is a work to construct multitier cloud-based ser-
vices. Our work provides a mechanism of template
sharing in multi-tier contracts, so that end users can
build virtual resource environments using templates of
upper tier System Integrators. The paper [15] is a work
to realize a transitional implementation of meta cloud
(cloud abstraction layer) for solving cloud vendor lock-
in problems. Our work also targets Cloud migration or
transition and template extraction or template sharing
function support it. Our work also faces transaction
managements of resource deployment.
RightScale is a product for cloud service management

which enables automatic operations of system monitoring,
alert, auto scaling. ServerTemplates of RightScale [16]
is an abstract template approach. When a user deploys
a template to a Cloud such as Amazon Web Services or
RackSpace Cloud Servers, RightScale sets a configuration
adapting to each component of deployed Cloud. This
concept is similar to our template extraction to enable
easy Cloud migration or replication. However, RightScale
ServerTemplates transaction managements or reflections
of environment change depend on each Cloud and remain
unresolved. Our work resolves them by the TM server.
Amazon OpsWorks [17] is also a technology for cloud
service management such as automatic scaling, scheduling,
monitoring and deployment. Amazon recommends
using OpsWorks in high layer management and using
CloudFormation for low layer deployment. Support range of
OpsWorks is limited in application oriented Amazon Web
Services resources and support range of CloudFormation is
much larger. Our work scope is low layer deployment
and we will use current management technologies such
as RightScale for high layer management.
The paper [18] is a research of dynamic resource allo-

cation on OpenStack. As same as [18], our work is also
a resource deployment technology on OpenStack but
our work targets to resolve problems of plural resources
deployment like stack operation transactions. There are
some works of resource arrangement on hosting services
to use physical server resources effectively [19]. We have

Table 2 Each server specification and usage

Hardware Physical
or VM

Name Main usage CPU RAM (GB) HDD NIC

Model name Core Logical (GB)

HP ProLiant BL460c G6 Physical KVM host Quad-Core Intel Xeon 2533 MHz x 2 8 48 300 4

VM OpenStack API server OpenStack stateless process such as API assign: 4 assign: 8 assign: 60

VM Template management server Proposed template management server assign: 4 assign: 8 assign: 60

HP ProLiant BL460c G6 Physical KVM host Quad-Core Intel Xeon 2533 MHz x 2 8 48 300 4

VM Glance application server Received requests related to glance assign: 8 assign: 32 assign: 150

HP ProLiant BL460c G1 Physical DB (OpenStack & TM) OpenStack and TM DB Quad-Core Intel Xeon 1600 MHz x 2 8 24 72 4

HP ProLiant BL460c G1 Physical OpenStack-Network Used for OpenStack logical network resources Quad-Core Intel Xeon 1600 MHz x 2 8 18 72 6

HP ProLiant BL460c G1 Physical OpenStack-Volume Used for OpenStack logical volume resources Quad-Core Intel Xeon 1600 MHz x 2 8 18 72 6

HP ProLiant BL460c G1 Physical OpenStack-Hypervisor Used for OpenStack VM resources Quad-Core Intel Xeon 1600 MHz x 2 8 24 72 4

IBM HS21 Physical DMZ-Load Balancer Load Balancer for internal access Xeon E5160 3.0GHz x 1 2 2 72 1

IBM HS21 Physical Internal Load Balancer Load balancer for internal access Xeon E5160 3.0GHz x 1 2 2 72 1

IBM HS21 Physical KVM host Xeon E5160 3.0GHz x 1 2 2 72 1

VM User VM VM for user terminal assign: 1 assign: 1 assign: 20

VM Operator VM VM for operator terminal assign: 1 assign: 1 assign: 20

EMC VNX 5300 Physical iSCSI storage iSCSI storage for user volume 500

EMC VNX 5300 Physical NFS storage NFS storage for Image 500

Yam
ato

et
al.Journalof

Cloud
Com

puting:A
dvances,System

s
and

A
pplications

2014,3:7
Page

10
of

12
http://w

w
w
.journalofcloudcom

puting.com
/content/3/1/7

(a) (b)

P
ro

ce
ss

in
g

tim
e

(s
ec

)

P
ro

ce
ss

in
g

tim
e

(s
ec

)

0

100

200

300

400

1 thread 3 thread
0

100

200

300

400

1 thread

orchestration

load balancer create

logical router create

virtual machine create

virtual L2 network create

volume create

Figure 7 Stack create processing time. (a) Total processing time. (b) Divisions of resource creation times.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 11 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
already developed a scheduler which determines an ap-
propriate physical server for virtual resource deploy-
ment [20]. Because a stack has many virtual resources
and need effective allocations to enhance total system
performances, we will combine [20] and this work in
the future.

Conclusion
In this paper, we proposed the template management
technology for end users or System Integrators to build
virtual resources environments on OpenStack. To resolve
existing technologies problems, we designed the TM server
which had a mechanism of roll back/roll forward in case of
abnormal failure of stack operations, shared templates
among end users and System Integrators, extracted tem-
plates from existing environments and reflected actual en-
vironment change to stack information. We implemented
the proposed TM server on OpenStack Folsom, confirmed
functions feasibilities and measured performances.
It was confirmed that the TM server prevented a half-

finished stack because it rolled back all operations in
case of abnormal failure of stack create and rolled back
or rolled forward each operation in case of abnormal
(a) (b)

P
ro

ce
ss

in
g

tim
e

(s
ec

)

P
ro

ce
ss

in
g

tim
e

(s
ec

)

0

100

200

300

1 thread 3 thread

Figure 8 Stack update processing time. (a) Total processing time. (b) D
failure of stack update. Template sharing to end users
who have contracts to System Integrators or providers
can replicate virtual resource environments on new
tenants easily. Our server extracted a template from
non-stack environment except for shared resources.
Users could update stack as expected because our ser-
ver reflected actual environment change such as VM
shut down or other OpenStack API operations to stack
information. Moreover, we showed the effective per-
formance of template management. Template extrac-
tion took 1–3 sec, stack create took 300 sec and stack
update took 210 sec through experiments of sample
templates with 10 virtual resources.
In the future, we will modify the TM server for OpenStack

new versions. IceHouse or Juno is a new major version
of OpenStack and provides new functions to catch up
Amazon Web Services. We will also propose our tech-
nologies of transaction managements and reflections
of actual environment change to stack information to
community Heat. Furthermore, we will improve the
software quality of the TM server and verify the feasi-
bility of existing OSS / BSS interconnections to provide
production carrier IaaS services based on OpenStack.
0

100

200

300

1 thread

orchestration

logical router create

logical router delete

virtual machine create

virtual machine delete

virtual L2 network create

virtual L2 network delete

ivisions of resource update (delete and create) times.

Yamato et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:7 Page 12 of 12
http://www.journalofcloudcomputing.com/content/3/1/7
Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YY carried out the template management technology studies, participated in
the design and implementation of the template management server,
evaluated it, surveyed the related technologies and drafted the manuscript.
MM, KT, MU participated in the design and implementation of the template
management server. All authors have read and approved the final
manuscript.

Authors’ information
Yoji Yamato received his B. S., M. S. degrees in physics and Ph.D. degrees in
general systems studies from University of Tokyo, Japan in 2000, 2002 and
2009, respectively. He joined NTT Corporation, Japan in 2002. Currently he is
a RESEARCHER of NTT Software Innovation Center. There, he has been
engaged in developmental research of Cloud computing platform, Peer-to-Peer
computing, Service Delivery Platform. Dr. Yamato is a member of IEICE, Japan.
Masahito Muroi is a RESEARCHER of NTT Software Innovation Center, NTT
Corporation.
Kentaro Tanaka is a RESEARCHER of NTT Software Innovation Center, NTT
Corporation.
Mitsutomo Uchimura received his Bachelor's degree in Mechanical
Engineering from University of Tokyo, Japan in 1997. He joined NTT
Corporation, Japan in 1997. Currently he is a senior research engineer of NTT
Software Innovation Center. There, he has been engaged in Cloud SE Project.

Acknowledgements
We thank Hiroshi Sakai and Hikaru Suzuki who are managers of this development.

Received: 24 January 2014 Accepted: 15 May 2014

References
1. Amazon Elastic Compute Cloud web site. http://aws.amazon.com/ec2/.

Accessed 24 Jan 2014
2. Rackspace public cloud powered by OpenStack web site. http://www.

rackspace.com/cloud/. Accessed 24 Jan 2014
3. OpenStack web site. http://www.openstack.org/. Accessed 24 Jan 2014
4. CloudStack web site. http://CloudStack.apache.org/. Accessed 24 Jan 2014
5. OpenStack Heat web site. https://wiki.openstack.org/wiki/Heat. Accessed 24

Jan 2014
6. Amazon CloudFormation web site. http://aws.amazon.com/cloudformation/.

Accessed 24 Jan 2014
7. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,

Zagorodnov D (2009) The Eucalyptus Open-source Cloud-computing
System. In: Proceedings of Cluster Computing and the Grid, 2009
(CCGRID ‘09). 9th IEEE/ACM International Symposium on., p 124

8. Pfaff B, Pettit J, Koponen T, Amidon K, Casado M, Shenker S (2009)
Extending Networking into the Virtualization Layer. In: Proceedings of 8th
ACM Workshop on Hot Topics inNetworks (HotNets-VIII), Oct. 2009

9. Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) kvm: the Linux virtual
machine monitor. In: Proceedings of OLS ‘07: The 2007 Ottawa Linux
Symposium. p 225

10. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A (2003) Xen and the art of virtualization. In: Proceedings of the
19th ACM symposium on Operating Systems Principles (SOSP‘03). p 164

11. Libvirt web site. http://libvirt.org/. Accessed 24 Jan 2014
12. Milojicic D, Llorente IM, Montero RS (2011) OpenNebula: a cloud

management tool. IEEE Internet Comput 15(2):11–14
13. Castillo L, Angel J, Mallichan K, Al-Hazmi Y (2013) OpenStack Federation in

Experimentation Multi-cloud Testbeds. In: Technical reports of HP
Laboratories, HPL-2013-58

14. Bahga A, Madisetti VK (2013) Rapid prototyping of multitier cloud-based
services and systems. IEEE Comput 46(11):76–83

15. Satzger B, Hummer W, Inzinger C, Leitner P, Dustdar S (2013) Winds of change:
from vendor lock-in to the meta cloud. IEEE Internet Comput 17(1):69–73

16. RightScale ServerTemplates web site. http://www.rightscale.com/blog/
cloud-management-best-practices/rightscale-servertemplates-explained.
Accessed 13 Apr 2014
17. Amazon OpsWorks web site. https://aws.amazon.com/opsworks/. Accessed
13 Apr 2014

18. Wuhib F, Stadler R, Lindgren H (2012) Dynamic resource allocation with
management objectives - Implementation for an OpenStack cloud. In:
Proceedings of Network and service management, 2012 8th international
conference and 2012 workshop on systems virtualiztion management., p 309

19. Liu X, Zhu X, Padala P, Wang Z, Singhal S (2007) Optimal Multivariate
Control for Differentiated Services on a Shared Hosting Platform. In:
Proceedings of the IEEE Conference on Decision and Control., p 3792

20. Yamato Y, Yokozeki D, Hirai T, Yuhara M, Muroi M, Tanaka K (2013) Japanese
patent application No. 2013–244205

doi:10.1186/s13677-014-0007-3
Cite this article as: Yamato et al.: Development of template
management technology for easy deployment of virtual resources on
OpenStack. Journal of Cloud Computing: Advances, Systems and Applications
2014 3:7.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/
http://www.openstack.org/
http://cloudstack.apache.org/
https://wiki.openstack.org/wiki/Heat
http://aws.amazon.com/cloudformation/
http://libvirt.org/
http://www.rightscale.com/blog/cloud-management-best-practices/rightscale-servertemplates-explained
http://www.rightscale.com/blog/cloud-management-best-practices/rightscale-servertemplates-explained
https://aws.amazon.com/opsworks/

	Abstract
	Introduction
	Problems of existing template technologies
	Outline of OpenStack
	Clarification of existing template technologies problems
	Insufficient transaction management of stack create, update or delete
	There is no template sharing mechanism
	Heat cannot extract templates from existing environments
	Actual environment change is not reflected to stack information

	Proposal of template management technology
	Transaction management of stack create, update and delete
	Template sharing
	Template extraction from existing tenant
	Reflection of environment change to stack information

	Template management server evaluation
	Template management server implementation
	Performance evaluation of proposed method
	Performance measurement conditions
	Performance measurement environment
	Performance measurement results

	Related works
	Conclusion
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	References

