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Abstract

MapReduce is a popular programming model for executing time-consuming analytical queries as a batch of tasks on
large scale data clusters. In environments where multiple queries with similar selection predicates, common tables,
and join tasks arrive simultaneously, many opportunities can arise for sharing scan and/or join computation tasks.
Executing common tasks only once can remarkably reduce the total execution time of a batch of queries. In this study,
we propose a Multiple Query Optimization framework, SharedHive, to improve the overall performance of Hadoop
Hive, an open source SQL-based data warehouse using MapReduce. SharedHive transforms a set of correlated HiveQL
queries into a new set of insert queries that will produce all of the required outputs within a shorter execution time. It is
experimentally shown that SharedHive achieves significant reductions in total execution times of TPC-H queries.
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Introduction
Hadoop is a popular open source software framework
that allows the distributed processing of large scale data
sets [1]. It employs the MapReduce paradigm to divide
the computation tasks into parts that can be distributed
to a commodity cluster and therefore, provides horizon-
tal scalability [2-9]. The MapReduce functions of Hadoop
uses (key,value) pairs as data format. The input is retrieved
in chunks from Hadoop Distributed File System (HDFS)
and assigned to one of the mappers that will process
data in parallel and produce the (k1,v1) pairs for the
reduce step. Then, (k1,v1) pair goes through shuffle phase
that assigns the same k1 pairs to the same reducer. The
reducers gather the pairs with the same k1 values into
groups and perform aggregation operations (see Figure 1).
HDFS is the underlying file system of Hadoop. Due to
its simplicity, scalability, fault-tolerance and efficiency
Hadoop has gained significant support from both indus-
try and academia; however, there are some limitations
in terms of its interfaces and performance [10]. Query-
ing the data with Hadoop as in a traditional RDBMS
infrastructure is one of the most common problems
that Hadoop users face. This affects a majority of users
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who are not familiar with the internal details of MapRe-
duce jobs to extract information from their data ware-
houses.
Hadoop Hive is an open source SQL-based distribu-

ted warehouse system which is proposed to solve the
problems mentioned above by providing an SQL-like
abstraction on top of Hadoop framework. Hive is an
SQL-to-MapReduce translator with an SQL dialect,
HiveQL, for querying data stored in a cluster [11-13].
When users want to benefit from both MapReduce
and SQL, mapping SQL statements to MapReduce tasks
can become a very difficult job [14]. Hive does this
work by translating queries to MapReduce jobs, thereby
exploiting the scalability of Hadoop while presenting a
familiar SQL abstraction [15]. These attributes of Hive
make it a suitable tool for data warehouse applications
where large scale data is analyzed, fast response times
are not required, and there is no need to update data
frequently [4].
Since most data warehouse applications are imple-

mented using SQL-based RDBMSs, Hive lowers the
barrier to moving these applications to Hadoop, thus,
people who already know SQL can easily use Hive. Sim-
ilarly, Hive makes it easier for developers to port SQL-
based applications to Hadoop. Since Hive is based on a
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Figure 1MapReduce tasks.

query-at-a-time model and processes each query inde-
pendently, issuing multiple queries in close time inter-
val decreases performance of Hive due to its execution
model. From this perspective, it is important to note
that there has been no study, to date, that incorporates
the Multiple-query optimization (MQO) technique for
Hive to reduce the total execution time of a batch of
queries [16-18].
Studies concerning MQO for traditional warehouses

have shown that it is an efficient technique that dramati-
cally increases the performance of time-consuming deci-
sion support queries [2,19-21]. In order to improve the
performance of Hadoop Hive in massively issued query
environments, we propose SharedHive, which processes
HiveQL queries as a batch and improves the total exe-
cution time by merging correlated queries before passing
them to the Hive query optimizer [6,15,22]. By analyzing
the common tasks of correlated HiveQL queries we merge
them to a new set of insert queries with an optimization
algorithm and execute as a batch. The developed model
is introduced as a novel component for Hadoop Hive
architecture.
In Related work Section, brief information is pre-

sented concerning the related work on MQO, SQL-to-
MapReduce translators that are similar to Hive, and
recent query optimization studies on MapReduce frame-
work. SharedHive system architecture Section explains
the traditional architecture of Hive and introduces our
novel MQO component. The next Section (Sharing scan
and computation tasks of HiveQL queries) explains the
process of generating a set of merged insert queries
from correlated queries. Experimental setup and results
Section discusses the experiments conducted to evalu-
ate the SharedHive framework for HiveQL queries that
have different correlation levels. The Section before
the conclusion presents the comparison of SharedHive
with the other MapReduce-based MQO methods. Our

concluding remarks are given in Conclusions and future
work Section.

Related work
The MQO problem was introduced in the 1980s and
finding an optimal global query plan using MQO was
shown to be an NP-Hard problem [16,23]. Since then,
a considerable amount of work has been undertaken
on RDBMSs and data analysis applications [24-26].
Mehta and DeWitt considered CPU utilization, mem-
ory usage, and I/O load variables in a study during
planning multiple queries to determine the degree of
intra-operator parallelism in parallel databases to mini-
mize the total execution time of declustered join meth-
ods [27]. A proxy-based infrastructure for handling data
intensive applications has been proposed by Beynon
[28]; however, this infrastructure was not as scalable
as a collection of distributed cache servers available
at multiple back-ends. A data integration system that
reduces the communication costs by a multiple query
reconstruction algorithm is proposed by [29]. IGNITE
[30] and QPipe [31] are important studies that use
the micro machine concept for query operators to
reduce the total execution time of a set of queries.
A novel MQO framework is proposed for the existing
SPARQL query engines [32]. A cascade-style optimizer
for Scope, Microsoft’s system for massive data analysis,
is designed in [33]. CoScan [34,35] shows how shar-
ing scan operations can benefit multiple MapReduce
queries.
In recent years, a significant amount of research and

commercial activity has focused on integrating MapRe-
duce and structured database technologies [36]. Mainly
there are two approaches, either adding MapReduce fea-
tures to a parallel database or adding database tech-
nologies to MapReduce. The second approach is more
attractive because no widely available open source parallel
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database system exists, whereas MapReduce is available
as an open source project. Furthermore, MapReduce is
accompanied by a plethora of free tools as well as hav-
ing cluster availability and support. Hive [11], Pig [37],
Scope [20], and HadoopDB [10,38] are projects that pro-
vide SQL abstractions on top of MapReduce platform
to familiarize the programmers with complex queries.
SQL/MapReduce [39] and Greenplum [21] are recent
projects that use MapReduce to process user-defined
functions (UDF).
Recently, there have been interesting studies that apply

MQO to MapReduce frameworks for unstructured data;
for example MRShare [40] processes a batch of input
queries as a single query. The optimal grouping of queries
for execution is defined as an optimization problem based
on MapReduce cost model. The experimental results
reported for MRShare demonstrate its effectiveness. In
spite of some initial MQO studies to reduce the exe-
cution time of MapReduce-based single queries [41], to
our knowledge there is no study similar to ours that is
related to the MQO of Hadoop Hive by using insert query
statements.

SharedHive system architecture
In this section, we briefly present the architecture of
SharedHive which is a modified version of Hadoop Hive
with a new MQO component inserted on top of the
Driver component of Hive (see Figure 2). Inputs to the
driver which contains compiler, optimizer and executer
are pre-processed by the added Multiple Query Opti-
mizer component which analyzes incoming queries and
produces a set of merged HiveQL insert queries. Finally,
the remaining queries that don’t have any correlation
with others are appended at the end of the correlated
query sets. The system catalog and relational database
structure (relations, attributes, partitions, etc.) are stored
and maintained by Metastore. Once a HiveQL statement
is submitted, it is maintained by Driver which controls
the execution of tasks in order to answer the query.
Compiler parses the query string and transforms the
parse tree to a logical plan. Optimizer performs several
passes over the logical plan and rewrites it. The physi-
cal plan generator creates a physical plan from the logical
plan.
HiveQL statements are submitted via the Command

Line Interface (CLI), the Web User Interface or the
thrift interface. Normally, the query is directed to the
driver component in conventional Hive architecture. In
SharedHive, the MQO component (located after the
client interface) receives the incoming queries before
the driver component. The set of incoming queries are
inspected, their common tables and intermediate com-
mon joins are detected, and merged to obtain a new set
of HiveQL queries that answer all the incoming queries.

The details of this process are explained in the next
Section.
The new MQO component passes the new set of

merged queries to the compiler component of Hive driver
that produces a logical plan using information from the
Metastore and optimizes this plan using a single rule-
based optimizer. The execution engine receives a directed
acyclic graph (DAG) of MapReduce and associated HDFS
tasks, then executes them in accordance with the depen-
dencies of the tasks. The new MQO component does
not require any major changes in the system archi-
tecture of Hadoop Hive and can be easily integrated
into Hive.

Sharing scan and computation tasks of HiveQL
queries
In order to benefit from the common scan/join tasks
of the input queries and reduce the number (i.e. total
amount) of redundant tasks, SharedHive merges input
queries into a new set of HiveQL insert queries and
produces answers to each query as a separate HDFS
file.
The problem of merging a set of queries can be formally

described as:
Input: A set of HiveQL queries Q={q1,...,qn}.

Output: A set of merged HiveQL queries Q′={q′
1,...,q

′
m},

wherem ≤ n.
Rewrite/combine the given input queries in such a way

that the total execution time of query setQ′ is less than the
total execution time of query set Q. If the execution time
of query qi is represented with ti then

m∑

i=1
(t

′
i) ≤

n∑

i=1
(ti)

Given q′
i is the merged insert query corresponding

to queries qj and qk then all of the output tuples and
columns required by both queries must be produced by
query q′

i preserving the predicate attributes of qj and
qk .
The existing architecture of Hive produces several jobs

that run in parallel to answer a query. The insert queries
merged by SharedHive can combine the scan and/or inter-
mediate join operations of the input queries in a new
set of insert queries and gain performance increases by
reducing the number of MapReduce tasks and the sizes of
read/written HDFS files.
Unlike the traditional SQL statements, HiveQL join

query statements are written in the FROM part of the
query [15] such as
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Figure 2 Architecture of SharedHive with newly addedmultiple query optimizer component.

SELECT SUM (L_EXTENDEDPRICE)
FROM LINEITEM L JOIN PART P ON P.P_PARTKEY =

L.L_PARTKEY;
instead of
SELECT SUM (L_EXTENDEDPRICE)
FROM LINEITEM L, PART P
WHERE L.L_PARTKEY = P.P_PARTKEY;

The example below shows how a merged HiveQL insert
query for TPC-H queries Q1 and Q6 is constructed.
Merging TPC-H Queries Q1 and Q6 :
QueryQ1
CREATE EXTERNAL TABLE LINEITEM
(L_ORDERKEY INT ,..., L_COMMENT STRING)
CREATE TABLE q1_pricing_summary_report
(L_RETURNFLAG STRING ,..., COUNT_ORDER INT);
INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG ,..., COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE ≤ ’1998-09-02’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;

QueryQ6
CREATE EXTERNAL TABLE LINEITEM
(L_ORDERKEY INT ,..., L_COMMENT STRING)
CREATE TABLE q6_forecast_revenue_change (REVENUE
DOUBLE);
INSERT OVERWRITE TABLE q6_forecast_revenue_change

SELECT SUM(...) AS REVENUE
FROM LINEITEM
WHERE L_SHIPDATE ≥ ’1994-01-01 AND

L_SHIPDATE < ’1995-01-01’ AND
L_DISCOUNT ≥ 0.05 AND
L_DISCOUNT ≤ 0.07 AND L_QUANTITY < 24;

Merged insert query for (Q1+Q6)
CREATE EXTERNAL TABLE LINEITEM
(L_ORDERKEY INT ,..., L_COMMENT STRING)
CREATE TABLE q1_pricing_summary_report
(L_RETURNFLAG STRING ,..., COUNT_ORDER INT);
CREATE TABLE q6_forecast_revenue_change(REVENUE
DOUBLE);
FROM LINEITEM
INSERT OVERWRITE TABLE q1_pricing_summary_report

SELECT L_RETURNFLAG ,..., COUNT(*)
WHERE L_SHIPDATE ≤ ’1998-09-02’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

INSERT OVERWRITE TABLE q6_forecast_revenue_change
SELECT SUM(...) AS REVENUE
WHERE L_SHIPDATE ≥ ’1994-01-01
AND L_SHIPDATE < ’1995-01-01’ AND L_DISCOUNT

≥ 0.05
AND L_DISCOUNT ≤ 0.07 AND L_QUANTITY < 24;

The underlying SQL-to-Mapreduce translator of Hive
uses one operation to one job model [22] and opens a new
job for each operation (table scan, join, group by, etc.)
in a SQL statement. Significant performance increases
can be obtained by reducing the number of MapReduce
tasks of these jobs. Figure 3 presents MapReduce tasks
of merged insert query (Q1+Q6) that reduces the scan
operations.
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Algorithm 1: Generating set of merged HiveQL
queries.

1 Input Qin= (q1,...,qn); // HiveQL queries
2 Output Qout= (q′

1,...,q
′
m), where (m<=n); // merged

HiveQL queries
3 Qout :={} //initial empty list of merged queries
4 //qmiq is amerged insert query;
5 for qi ∈ Qin do
6 if ∃qmiq ∈ Qout such that

isFullyCorrelated(qmiq, qi) then
7 MergeWithFullyCorrelatedInsertQuery(qmiq, qi);
8 Qin = Qin - {qi};
9 else if ∃qj ∈ {Qin − qi} such that

isFullyCorrelated(qi,qj) then
10 Qout = Qout ∪ MergedInsertQuery(qi, qj);
11 Qin = Qin − {qi, qj};
12

13 else if ∃qmiq ∈ Qout such that
isPartiallyCorrelated(qmiq, qi) then

14 MergeWithQuery(qmiq, qi);
15 Qin = Qin − {qi};
16

17 else
18 if ∃qj ∈ {Qin − qi} such that

isPartiallyCorrelated(qi,qj) then
19 Qout = Qout ∪ MergedInsertQuery(qi, qj);
20 Qin = Qin - {qi,qj};

21 MergeRemainingNonCorrelatedQueries(Qout ,Qin);

In the Appendix, three merged queries are presented to
explain the merging process of HiveQL queries that share
common input and output parts. The first one merges two
Q1 queries that have different selection predicates, the
second one merges two fully-correlated queries, Q14 and
Q19, that share a common join operation and the third
one merges two partially correlated queries Q1 and Q18
[42].
HiveQL statements have a preprocessing overhead for

MapReduce tasks that will be executed to complete a
query and this causes high latencies that could cause
short running queries to take longer time on Hive [43].
In addition to the emerging opportunities of using com-
mon table scan and join operations, SharedHive intends to
decrease the preprocessing period of uncorrelated query
MapReduce tasks.
In the merging process of SharedHive, each query is

classified according to the shared tables and/or join oper-
ations in the FROM clause of HiveQL statements. The

input queries are inserted into a data structure that main-
tains the groups of similar queries according to the largest
sharing opportunity they have with other queries.
While grouping the queries, the highest precedence is

given to (a) queries with fully-correlated FROM expres-
sions, (b) queries with partially-correlated FROM expres-
sions and (c) queries that have no correlation with the
other queries (which are appended to the end of the set
of merged queries) (see Algorithm 1). With this approach,
the common scan/join tasks in merged insert queries are
not executed repeatedly [15]. After the merging process,
the optimized set of insert queries are passed to the query
execution layer of Hive.

Experimental setup and results
In this section, experimental setup and the performance
evaluation of the merged HiveQL insert queries are pre-
sented. TPC-H is chosen as our benchmark database
and related decision support queries because they pro-
cess high amounts of data [44]. We believe this is a good
match for our experiments since Hadoop is also designed
to process large amounts of data. 11 query sets are pre-
pared from standard TPC-H queries to experimentally
analyze performance of SharedHive under different work-
load scenarios. These query sets define three correlation
categories for merged queries (uncorrelated, partially cor-
related, and fully correlated). Uncorrelated queries have
nothing in common, partially-correlated queries share
at least one table and zero or more join operations.
Fully-correlated queries have exactly the same list of the
tables/joins (where conditions have different selection
predicates). Table 1 gives the selected set of queries and
their correlation levels. Query sets 8 and 9 use single
queries that are submitted several times with different
selection predicates. Query set 8 executes no join opera-
tion so that it presents the performance gains of Shared-
Hive with intensive scan sharing, whereas query set 9
includes common join operations that require communi-
cation between datanodes. Query sets 10 and 11 include
queries that produce several merged insert queries.
Three different TPC-H decision support databases with

sizes 1GB, 100GB and 1TB are used. Similar experimental
settings are used in previous studies [22,40].
The experiments are performed on a private Cloud

server, 4U DELL PowerEdge R910 having 32 (64 with
Hyper Threading) cores. Each core is Intel Xeon E7-4820
with 2.0GHz processing power. The server has 128GB
DDR3 1600MHz virtualized memory and BroadcomNex-
treme II 5709 1Gbps NICs. Operating system of the
physical server is Windows Server 2012 Standard Edi-
tion. 20 Linux CentOS 6.4 virtual machines are installed
on this server as guest operating systems. Each virtual
machine has two 2.0GHz processors, 2GB RAM and
250GB disk storage. An additional master node is used
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Figure 3MapReduce tasks for merged insert query (Q1+Q6).

as NameNode/JobTracker (4 processors, 8GB RAM and
500GB disk storage). The latest stabilized versions of
Hadoop, release 1.2.1 and Hive version 0.12.0 are used
[1,11]. The splitsize of the files (HDFS block size) is
64MB, replication number is 2, maximum number of

Table 1 Sets of selected TPC-H queries and their
correlation levels

Set number TPC-H Query name Correlation level

1 Q11,Q12 none

2 Q17,Q22 none

3 Q1,Q17 partial

4 Q1,Q18 partial

5 Q6,Q17 partial

6 Q1,Q6 full

7 Q14,Q19 full

8 Multiple Q1s full

9 Multiple Q3s full

10 Q1,Q14,Q18 mixed

11 Q1,Q3,Q11,Q14,Q17,Q19 mixed

map tasks is 2, maximum number of reduce tasks is
2 and map output compression is disabled during the
experiments.
In order to remove noise in performancemeasurements,

the Cloud server is only dedicated to our experiment
during the performance evaluation. Therefore, we believe
that performance interference from external factors such
as network congestion or OS-level contention on shared
resources are minimized as much as possible. We observe
that there were only negligible changes in the response
time of the queries when we repeated our experiments
three times.
Table 2 presents the response times of TPC-H queries

(Q1, Q3, Q6, Q11, Q12, Q14, Q17, Q18, Q19, Q22) with
1GB, 100GB and 1TB database sizes. These results con-
stitute baselines to compare the results of the merged
HiveQL queries with single execution performance of
Hive.
Tables 3 and 4 show the performance increases for

the selected HiveQL query sets given in Table 1 that
are merged and run to observe the effect of SharedHive
on total response times. The percentage values show the



Dokeroglu et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:12 Page 7 of 11
http://www.journalofcloudcomputing.com/content/3/1/12

Table 2 Execution times (sec.) of single TPC-H queries

Query name 1GB 100GB 1TB

Q1 66 381 3,668

Q3 150 655 7,286

Q6 37 220 1,836

Q11 140 243 1,196

Q12 91 434 4,214

Q14 65 330 3,036

Q17 126 949 9,064

Q18 186 1,159 13,922

Q19 73 674 6,564

Q22 146 385 2,014

reduction of the response time. Significant performance
increases can be seen easily.
Although uncorrelated queries have nothing in com-

mon, their total execution times are observed to reduce by
0.2%-6.9% due to the improvement in HIVE query prepro-
cessing overheads. Merging uncorrelated queries does not
increase the performance when the database size reaches
terabyte scale. The reductions in total execution times
of partially correlated queries is higher than uncorrelated
query sets (between 1.5%-20.8%). The highest benefits
are observed in the fully correlated query sets (between
9.9%-39.9%). For query set 8 (single Q1 query submitted
8 times) the total query execution time is reduced from
26,716 to 3,985 seconds (85.1% reduction). The perfor-
mance of mixed query sets depends on the correlation
level of the queries they contain. Mixed query sets 10
and 11 execute their queries with 9.9% and 15.5% less
execution times, respectively. During these experiments,
the size of the intermediate tables that are written to the
disks is considered carefully by SharedHive. If predicted
overhead of writing intermediate results is larger than the
expected improvement in response time, then queries are

not merged. SharedHive is observed to reduce the number
of MapReduce tasks and the sizes of read/written HDFS
files as well. The results given in Table 5 present the effect
of SharedHive for the number ofMapReduce tasks and the
sizes of read/written files of the given insert queries (hav-
ing different correlation levels). As the correlation level of
queries increases the number of MapReduce tasks and the
sizes of read/written data also decreases substantially.
The optimization time of SharedHive on analyzing and

merging the queries is observed to be small. This is
because of the small number of input queries and exe-
cuting Algorithm 1 on them requires only examination of
their FROM clauses which are parsed to identify similar
expressions and rewriting the merged HiveQL query. This
optimization does not take more than a few milliseconds.
In the last phase of our experiments, SharedHive is run

on five different cluster sizes to observe its scalability
with increasing number of datanodes. First, the merged
insert query (Q14+Q19) is executed on the cluster using
three different database sizes (1GB, 10GB and 100GB).
It is observed that increasing the number of datanodes
in the cluster improves the performance of the merged
query reducing execution times by 29%, 81% and 88% in
the database instances when the number of datanodes is
increased from 1 to 20 (see Figure 4).
MQO component of SharedHive is an extension to Hive

and welcomes any performance increase that is achieved
on the HDFS layer either due to increase in the number of
datanodes or balanced distribution of data files.

Comparison with other MapReduce-basedMQO
systems
SharedHive can perform the execution of the
selected/correlated queries in shorter times than Hive by
reducing the number of MapReduce tasks and the sizes
of the files read/written by the tasks. The correlation
detection mechanism of SharedHive is simple and does
not find the number common rows and/or columns of

Table 3 Execution times of sequential andmerged queries in seconds

Query names Correlation
Execution time (sec.) Hive/SharedHive (reduction %)

1GB 100GB 1TB

11,12 (set 1) none 231/215 (6.9%) 676/666 (1.5%) 5,410/5,386 (0.4%)

17,22 (set 2) none 272/262 (3.7%) 1,382/1.323 (4,3%) 11,078/11,060 (0.2%)

1,17 (set 3) partial 192/185 (3.6%) 1,330/1,134 (14.7%) 12,300/11,386 (7.4%)

1,18 (set 4) partial 252/248 (1.6%) 1,540/1,396 (9.4%) 17,499/16,324 (6.7%)

6,17 (set 5) partial 163/160 (1.8%) 1,169/1,042 (10.9%) 10,430/8,636 (17.2%)

1,6 (set 6) full 103/90 (12.6%) 601/436 (27.5%) 5,057/3,936 (22.2%)

14,19 (set 7) full 138/83 (39.9%) 1,004/789 (21.9%) 8,989/7,178 (20.1%)

1,14,18 (set 10) mixed 317/299 (5.7%) 1,870/1,689 (9.7%) 20,425/18,590 (9.0%)

1,3,11,14,17,19 (set 11) mixed 620/524 (15.5%) 3,232/2,830 (12.4%) 30,069/26,024 (13.5%)
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Table 4 Execution times of sequential andmerged query sets (8 and 9) in seconds

Query name # of submitted queries
Execution time (sec.) Hive/SharedHive (reduction %)

1GB 100GB 1TB

Q1 (set 8)

2 123/70 (44.9%) 756/430 (43.1%) 6,833/3,843 (43.8%)

4 227/77 (66.1%) 1,435/442 (69.2%) 13,365/3,928 (70.6%)

8 444/79 (82.2%) 2,894/458 (84.2%) 26,716/3,985 (85.1%)

Q3 (set 9)

2 246/176 (28.5%) 1,334/999 (25.1%) 15,546/14,316 (7.9%)

4 470/307 (34.7%) 2,626/1,333 (49.2%) 27,712/14,645 (47.2%)

8 957/503 (47.4%) 5,486/1,466 (73.3%) 56,112/15,615 (72.2%)

queries with complex algorithms as in [19,29]. The exe-
cution time performance gains are observed to be within
the range of %1.5-85.1% in accordance with the corre-
lation level of the queries. For repeatedly issued similar
queries that have different predicates, SharedHive per-
forms well. SharedHive benefits from underlying HDFS
architecture therefore, its scalability is preserved and bet-
ter performance is obtained when additional datanodes
are introduced to Hadoop. The query results obtained by
SharedHive have been compared with those of Hive and
verified to be the same.
MRShare [40] is a recent MQO system developed

for benefitting from multiple queries containing similar
MapReduce tasks. It transforms a batch of queries into
a new batch that will be executed more efficiently by
merging jobs into groups and evaluating each group as
a single query. MRShare optimizes queries that work on
the same input table and does not consider sharing of join
operations. However, SharedHive can merge queries con-
taining joins into a new set of insert queries. MRShare
shares scan tasks by creating a single job for multiple
jobs and does not use temporary files (as it is done by
SharedHive).
YSmart [22] is a correlation-aware MQO system similar

to SharedHive. It detects and removes redundant MapRe-
duce tasks of single complex queries but does not optimize
multiple queries. The developers of YSmart present exper-
imental results that significantly outperform conventional
Hive for single queries. SharedHive does not provide
any performance increase for single queries unless they

are submitted several times (with different predicates).
SharedHive works in the application layer of Hive by
merging the query level operations, whereas MRShare
and YSmart explore and eliminate redundant tasks in the
MapReduce layer.
Apache Pig is the most mature MapReduce-based plat-

form that supports a large number of sharing mechanisms
among multiple queries [37]. Complex tasks consisting
of multiple interrelated data transformations are explic-
itly encoded as data flow sequences; however, its query
language, Pig Latin, is not compatible with standard SQL
statements like SharedHive.

Conclusions and future work
In this study, we propose a multiple query optimization
(MQO) framework, SharedHive, for improving the per-
formance of MapReduce-based data warehouse Hadoop
Hive queries. To our knowledge, this is the first work that
aims at improving the performance of Hive with MQO
techniques. In SharedHive, we detect common tasks of
correlated TPC-H HiveQL queries and merge them into a
new set of global Hive insert queries. With this approach,
it has been experimentally shown that significant per-
formance improvements can be achieved by reducing
the number of MapReduce tasks and the total sizes of
read/written files.
As future work, we plan to incorporate MQO function-

ality at MapReduce layer, similar to YSmart, into Shared-
Hive. In this way, it will be possible to eliminate even
more redundant MapReduce tasks in queries and improve

Table 5 Comparing the number of MapReduce tasks and the sizes of read/written HDFS files by Hive and SharedHive for
different correlation level 100GB TPC-H data warehouse queries

Query set (correlation level)
# Map tasks # Reduce tasks Read (GB) Written (GB)

Hive S.Hive Hive S.Hive Hive S.Hive Hive S.Hive

11,12 (set 1) (none) 463 463 116 116 123 123 20 20

6,17 (set 5) (partial) 1,568 663 326 89 51,561 51,561 504,975 34,806

14,19 (set 7) (full) 668 334 280 84 356 171 168 2

1,3,11,14,17,19 (set 11) (mixed) 2,149 1,150 452 288 636 404 291 206
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Figure 4 The effect of increasing number of datanodes for merged query (Q14+Q19) with 1GB, 10GB and 100GB database sizes.

the overall performance of naïve rule-based Hive query
optimizer even further.

Appendix
A. Merging two Q1 queries that have different select
predicates
First query

SELECT L_RETURNFLAG ,..., COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE ≤ ’1998-09-04’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;

Second query
SELECT L_RETURNFLAG ,..., COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE > ’1992-05-12’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;

Merged Query
FROM
(SELECT L_RETURNFLAG,...,COUNT(*), L_SHIPDATE
FROM LINEITEM
WHERE L_SHIPDATE ≤ ’1998-09-04’OR L_SHIPDATE>
‘1992-05-12’

GROUP BY L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE

ORDER BY L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE) temp

INSERT OVERWRITE TABLE q1_pricing_summary_
report_1
SELECT temp.L_RETURNFLAG ,..., COUNT(*)
WHERE temp.L_SHIPDATE ≤ ’1998-09-04’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS

INSERT OVERWRITE TABLE q1_pricing_summary_
report_2
SELECT temp.L_RETURNFLAG ,..., COUNT(*)
WHERE temp.L_SHIPDATE > ’1992-05-12’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;

B. Merging queriesQ14 and Q19 (Fully correlated FROM
clauses)
QueryQ14
SELECT ...
FROM LINEITEM L JOIN PART PON L.L_PARTKEY =
P.P_PARTKEY

AND L.L_SHIPDATE ≥ ‘1995-09-01’ AND
L.L_SHIPDATE <‘1995-10-01’;

QueryQ19
SELECT ...
FROM
LINEITEM L JOIN PART PON L.L_PARTKEY =
P.P_PARTKEY ;

WHERE ... ;

Merged Query (Q14 +Q19)
FROM LINEITEM L JOIN PART PON L.L_PARTKEY =
P.P_PARTKEY

INSERT OVERWRITE TABLE q14_promotion_effect
SELECT ...
WHERE L.L_SHIPDATE ≥ ’1995-09-01’ AND
L.L_SHIPDATE < ’1995-10-01’

INSERT OVERWRITE TABLE q19_discounted_revenue
SELECT ...
WHERE ...;

C. Merging queries Q1 and Q18 (Partially correlated FROM
clauses)
QueryQ1
SELECT L_RETURNFLAG ,..., COUNT(*)
FROM LINEITEM
WHERE L_SHIPDATE ≤ ’1998-09-02’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS;

QueryQ18
INSERT OVERWRITE TABLE Q18_TMP
SELECT L_ORDERKEY, SUM(L_QUANTITY) AS
T_SUM_QUANTITY

FROM LINEITEM
WHERE L_SHIPDATE≤’1993-01-01’
GROUP BY L_ORDERKEY;
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INSERT OVERWRITE TABLE Q18_LARGE_VOLUME_
CUSTOMER

SELECT C_NAME ,..., SUM(L_QUANTITY)
FROM CUSTOMER C JOINORDERS O
ON C.C_CUSKEY = O.O_CUSKEY JOINQ18_TMP TON
O.O_ORDERKEY = T.L_ORDERKEY AND T.T_SUM_
QUANTITY > 300

JOIN LINEITEM LONO.O_ORDERKEY =
L.L_ORDERKEY

GROUP BY C_NAME, C_CUSKEY, O_ORDERKEY,
O_ORDERDATE,O_TOTALPRICE

ORDER BYO_TOTALPRICE DESC, O_ORDERDATE;

Merged Query (Q1 +Q18)
FROM LINEITEM
SELECT L_RETURNFLAG ,..., COUNT(*)
WHERE L_SHIPDATE ≤ ’1998-09-02’
GROUP BY L_RETURNFLAG, L_LINESTATUS
ORDER BY L_RETURNFLAG, L_LINESTATUS
INSERT OVERWRITE TABLE Q18_TMP
SELECT L_ORDERKEY, SUM(L_QUANTITY) AS
T_SUM_QUANTITY

WHERE L_SHIPDATE≤’1993-01-01’
GROUP BY L_ORDERKEY;
INSERT OVERWRITE TABLE Q18_LARGE_VOLUME_
CUSTOMER

SELECT C_NAME ,..., SUM(L_QUANTITY)
FROM CUSTOMER C JOINORDERS O
ON C.C_CUSKEY = O.O_CUSKEY JOINQ18_TMP TON
O.O_ORDERKEY = T.L_ORDERKEY AND
T.T_SUM_QUANTITY > 300

JOIN LINEITEM LONO.O_ORDERKEY =
L.L_ORDERKEY

GROUP BY C_NAME, C_CUSKEY, O_ORDERKEY,
O_ORDERDATE, O_TOTALPRICE

ORDER BYO_TOTALPRICE DESC, O_ORDERDATE;
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