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One feature of cloud storage systems is data fragmentation (or sharding) so that data can be distributed over multiple
servers and subqueries can be run in parallel on the fragments. On the other hand, flexible query answering can
enable a database system to find related information for a user whose original query cannot be answered exactly.
Query generalization is a way to implement flexible query answering on the syntax level. In this paper we study a
clustering-based fragmentation for the generalization operator Anti-Instantiation with which related information can
be found in distributed data. We use a standard clustering algorithm to derive a semantic fragmentation of data in the
database. The database system uses the derived fragments to support an intelligent flexible query answering
mechanism that avoids overgeneralization but supports data replication in a distributed database system. We show
that the data replication problem can be expressed as a special Bin Packing Problem and can hence be solved by an
off-the shelf solver for integer linear programs. We present a prototype system that makes use of a medical taxonomy
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Introduction

In the era of “big data” huge data sets usually cannot be
stored on a single server any longer. Cloud storage (where
data are stored in a cloud infrastructure) offers the advan-
tage of flexibly adapting the amount of used storage based
on the growing or shrinking storage demands of the data
owners. In a cloud storage system, a distributed database
management system (DDBMS) can be used to manage the
data in a network of servers. This allows for load balanc-
ing (data can be distributed according to the capacities
of servers) and higher availability (servers can process
user requests in parallel). In particular, when data are dis-
tributed over a wider area in different data centers, it is
important that only few servers have to be contacted to
answer user queries in order to reduce network delays; in
the ideal case, these servers are also geographically close
to the user.
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Depending on the data structure used in the DDBMS
a variety of distribution models are possible. For rela-
tional data, the theory of fragmentation has a long history
(see for example [1]) and several procedures have been
analyzed for splitting tabular data into fragments and sub-
sequently assigning fragments to servers. Other database
systems with key-based access (like key-value stores, doc-
ument databases, or column family stores) use range-
based partitioning or consistent hashing to distribute
data.

On the other hand, flexible query answering offers
mechanisms to intelligently answer user queries going
beyond conventional exact query answering. If a database
system is not able to find an exactly matching answer, the
query is said to be a failing query. Conventional database
systems usually return an empty answer to a failing query.
In most cases, this is an undesirable situation for the
user, because he has to revise his query and send the
revised query to the database system in order to get some
information from the database. In contrast, flexible query
answering systems internally revise failing user queries
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themselves and — by evaluating the revised query — return
answers to the user that are more informative for the user
than just an empty answer. Query generalization is one
way to implement flexible query answering.

This paper revises and extends the previous results
presented in [2]. In this paper we make the following
additional contributions:

e We study how a standard clustering heuristic on a
single relaxation attribute (that is, table column) can
induce a horizontal fragmentation of a database table;
in [2] a taxonomy-based fragmentation was used
instead of a clustering-based fragmentation.

e We formally study the data replication problem for
these fragments by representing it as a variant of the
bin packing problem and solve it using an integer
linear programming solver. This was not discussed in
[2].

e We present a detailed query rewriting and query
redirecting method that allows access to the
distributed fragments. This was discussed in [2] only
briefly.

The paper is organized as follows. Section Background
provides background on data fragmentation, query gener-
alization (in particular anti-instantiation) and data repli-
cation. Section Clustering-based fragmentation presents
the main contribution on clustering-based fragmenta-
tion and its management with a lookup table; whereas
Section Query rewriting talks about how to decom-
pose a query to be distributed among the servers.
Section Improving data locality with derived fragmenta-
tions extends the basic approach by allowing derived frag-
mentation in order to facilitate joins over multiple tables.
Section Implementation and example presents the com-
ponents of our prototype implementation. Section Related
work surveys related work and Section Discussion and
conclusion concludes the paper.

Background

In the following subsections we present prior work on
data fragmentation, flexible query answering (with a
focus on anti-instantiation) and data replication. These
three techniques will be combined to obtain an intelligent
distributed database system that can autonomously con-
figure its replication mechanism while at the same time
support users in finding relevant information by flexible
query answering.

Data fragmentation

As the basic data model, we consider the case of data
stored in relational tables. The relational data model is
still widely applied today although alternatives exist (like
tree- or graph-structured data or data stored in a simple
key-value format).
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Example 1. As a running example, we consider a hospital
information system that stores illnesses and treatments of
patients as well as their personal information (like address
and age) in the following three database tables:

I11 | PatientID | Diagnosis
8457 Cough
2784 Flu
2784 Asthma
2784 brokenLeg
8765 Asthma
1055 brokenArm
Treat | PatientID | Prescription
8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage
1055 Plaster bandage
Info | PatientID | Name | Address
8457 Pete Main Str 5, Newtown
2784 Mary | New Str 3, Newtown
8765 Lisa Main Str 20, Oldtown
1055 Anne | High Str 2, Oldtown

In relational database theory, several alternatives of
splitting tables into fragments have been discussed (see for
example [1]), for example:

e Vertical fragmentation: Subsets of attributes (that is,

columns) form the fragments. Rows of the fragments
that correspond to each other have to be linked by a
tuple identifier. A vertical fragmentation corresponds
to projection operations on the table.

e Horizontal fragmentation: Subsets of tuples (that is,
rows) form the fragments. A horizontal fragmentation
can be expressed by a selection condition on the table.

e Derived fragmentation: A given horizontal
fragmentation on a primary table (the primary
fragmentation) induces a horizontal fragmentation of
another table based on the semijoin with the primary
table. In this case, the primary and derived fragments
with matching values for the join attributes can be
stored on the same server; this improves efficiency of
a join on the primary and the derived fragments.

The following three properties are considered the
important correctness properties of a fragmentation:

e Completeness: No data should be lost during
fragmentation. For vertical fragmentation, each
column can be found in some fragment; in horizontal
fragmentation each row can be found in a fragment.

e Reconstructability: Data from the fragments can be
recombined to result in the original data set. For
vertical fragmentation, the join operator is used on
the tuple identifier to link the columns from the
fragments; in horizontal fragmentation, the union
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operator is used on the rows coming from the
fragments.

e Non-redundancy: To avoid duplicate storage of data,
data should be uniquely assigned to one fragment. In
vertical fragmentation, each column is contained in
only one fragment (except for the tuple identifier that
links the fragments); in horizontal fragmentation,
each row is contained in only one fragment.

In this paper we will compute semantically-guided hor-
izontal fragmentations of a primary table. Each of these
fragmentations will be based on clustering an attribute for
which values should be relaxed to allow for flexible query
answering. In contrast to the conventional applications of
fragmentation, the clustering-based fragmentations will
support flexible query answering in an efficient manner.

For other tables (those that can be joined with the pri-
mary table) a derived fragmentation will be computed that
allows for data locality in a distributed database system.

Anti-instantiation

In this paper we focus on flexible query answering for con-
junctive queries expressed as logical formulas. That is, we
assume a logical language . consisting of a finite set of
predicate symbols (denoting the table names; for example,
Ill, Treat or P), a possibly infinite set dom of constant sym-
bols (denoting the values in table cells; for example, Mary
or a), and an infinite set of variables (x or y). A term is
either a constant or a variable. The capital letter X denotes
a vector of variables; if the order of variables in X does
not matter, we identify X with the set of its variables and
apply set operators — for example we write y € X. We
use the standard logical connectors conjunction A, dis-
junction V, negation — and material implication — and
universal V as well as existential 3 quantifiers. An atom
is a formula consisting of a single predicate symbol only;
a literal is an atom (a “positive literal”) or a negation of
an atom (a “negative literal”); a clause is a disjunction of
atoms; a ground formula is one that contains no variables;
the existential (universal) closure of a formula ¢ is writ-
ten as 3¢ (V¢) and denotes the closed formula obtained
by binding all free variables of ¢ with the respective
quantifier.

A query formula Q is a conjunction of literals with
some variables X occurring freely (that is, not bound by
variables); that is, Q(X) = L;; A ... A L;,. By abuse of
notation, we will also write L;; € Q when Lj is a con-
junct in formula Q. A query Q(X) is sent to a knowledge
base X (a set of logical formulas) and then evaluated in X
by a function ans that returns a set of answers containing
instantiations of the free variables (in other words, a set of
formulas that are logically implied by X); as we focus on
the generalization of queries, we assume the ans function
and an appropriate notion of logical truth given. A special
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case of a knowledge base can be a relational database with
database tables as in Example 1.

Example 2. Query Q(x1,x2,x3) = Ill(x1, Flu) A 1ll(x1,
Cough) A Info(x1,x,x3) asks for all the patient IDs x) as
well as names xo and addresses x3 of patients that suffer
from both flu and cough. This query fails with the given
database tables as there is no patient with both flu and
cough. However, the querying user might instead be inter-
ested in the patient called Mary who is ill with both flu and
asthma. Query generalization will enable an intelligent
database system to find this informative answer.

As in [3] we apply a notion of generalization based on a
model operator |=.

Definition 1 (Deductive generalization [3]). Let ¥ be a
knowledge base, ¢ (X) be a formula with a tuple X of free
variables, and (X, Y) be a formula with an additional
tuple Y of free variables disjoint from X. The formula
Y (X, Y) is a deductive generalization of ¢ (X), if it holds in
Y that the less general ¢ implies the more general \y where
for the free variables X (the ones that occur in ¢ and possi-
bly in ) the universal closure and for free variables Y (the
ones that occur in W only) the existential closure is taken:

Y EVXIAY (9(X) = ¥ (X,Y))

The CoopQA system [4] applies three generalization
operators to a conjunctive query (which — among others —
can already be found in the seminal paper of Michalski
[5]): Dropping Condition (DC) removes one conjunct
from a query; Anti-Instantiation (A/) replaces a constant
(or a variable occurring at least twice) in Q with a new
variable y; Goal Replacement (GR) takes a rule from %,
finds a substitution 6 that maps the rule’s body to some
conjuncts in the query and replaces these conjuncts by the
head (with 6 applied). In this paper we focus only on the
Al operator.

Example 3. For query Q(x1,%x2,x3) = Il (x1, Flu) A 1ll(x1,
Cough) A Info(x1,x2,x3) an example generalization with
Al is QM (x1,%2,%3,9) = Ill(x1, Flu) A Ill(x1,y) A Info(x1,
x9,%3). A nomn-empty answer (and hence informative
answer) 1l1(2748, Flu) A Il(2748, Asthma) A Info(2748,
Mary, ‘New Str 3, Newtown®) is returned as an answer
saying that Mary suffers from flu and asthma at the
same time. However, another obtained answer is
111(2748, Flu) A 1ll(2748, brokenLeg) A Info(2748, Mary,
‘New Str 3, Newtown") saying that Mary suffers from flu
and a broken leg.

Al applies to constants and to variables and covers these
special cases:
e turning constants into variables: P(a) is converted to
P(x) (see [5])
e breaking joins: P(x) A S(x) is converted to P(x) A S(y)
(introduced in [3])
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e naming apart variables inside atoms: P(x, x) is
converted to P(x, y)

For each constant a all occurrences can be anti-
instantiated one after the other; the same applies to vari-
ables x — however, with the exception that if x only occurs
twice, one occurrence of x need not be anti-instantiated
due to equivalence. For logical queries, anti-instantiation
can be implemented as shown in the listing in Listing 1.

Listing 1 Anti-instantiation (AI)
Input: Query Q(X) =L; A...A Ly, oflength n
Output: Generalized query QM (X,Y) with Y containing
one new variable
1: From Q(X) choose a term ¢ such that ¢ is

e either a variable occurring in Q(X) at least twice
® or a constant

2: Choose one literal L; where ¢ occurs

3: Let L} be the literal with one occurrence of ¢ replaced
with a new variable

4 returnLi A ... /\Lj—l /\L; /\Lj+1 A...ANLy

In this paper, we focus on the first application of anti-
instantiation: turning constants into variables. In the fol-
lowing section, we present an approach that identifies
those tuples in a relational table that are good candi-
dates for answers to such an anti-instantiated query; these
candidates are put into one fragment for storage in a
distributed database system.

Data replication

To achieve fault tolerance, reliability and high availabil-
ity, data in a distributed database system should be copied
(that is, replicated) to different servers. Whenever one of
the database servers fails, if it is too overloaded or geo-
graphically too far away from the requesting user, a data
copy (that is, a replica) can be retrieved from one of the
other servers.

The data replication problem (DRP; see [6]) is a for-
mal description of the task of distributing copies of data
records (that is, database fragments) among a set of
servers in a distributed database system. The data replica-
tion problem is basically a Bin Packing Problem (BPP) in
the following sense:

K servers correspond to K bins

bins have a maximum capacity W

n fragments correspond to # objects

each object has a weight (a capacity consumption)

w;, <W

® objects have to be placed into a minimum number of
bins without exceeding the maximum capacity
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This BPP can be written as an integer linear program
(ILP) as follows — where x; is a binary variable that
denotes whether fragment/object i is placed in server/bin
k; and y; denotes that server/bin k is used (that is, is
non-empty):

K
minimize Zyk (1)
k=1
K
s.t. ink =1, i=1,...,n (2)
k=1
n
> wika < Wy k=1,...,K 3)
i=1
v € 10,1} k=1,...,K (4)

xpel0,lk=1,...,K, i=1,...,n (5

To explain, Equation 1 means that we want to mini-
mize the number of servers/bins used; Equation 2 means
that each object is assigned to exactly one bin; Equation 3
means that the capacity of each server is not exceeded;
and the last two equations denote that the variables are
binary — that is, the ILP is a so-called 0-1 linear program.

An extension of the basic BPP will be used to ensure
that replicas will be placed on distinct servers: the Bin
Packing with Conflicts (BPPC; [7-9]) problem allows con-
straints to be expressed on pairs of objects that should
not be placed in the same bin. That is, one adds a con-
flict graph G = (V, E) where the node set V = {1,...,n}
corresponds to the set of objects. A binary edge e = (i, )
exists whenever the two incident nodes i and j must not
be placed in the same bin; note that (i, /) is meant to be
undirected and hence identical to (j, i). In the ILP repre-
sentation, a further constraint is added to avoid conflicts
in the placements.

K
minimize Z Vi (6)
k=1
K
s.t. ink:l’ i=1,...,n (7)
k=1
n
> wixi < Wy, k=1,...,K (8)
i=1
xik+xjk§yk G,j))eE k=1,...,K 9)
yi € {0,1} k=1,...,K (10)
xp €01} k=1,...,K, i=1,...,n (1)

Equation 9 ensures that no conflicting objects i and j are
placed in the same bin k because otherwise the sum of the
two x-variables x;; and xj; would be 2 and hence exceed
vk which is 1.
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In this paper, we will extend the BPPC to ensure that a
certain replication factor m for each fragment of the rela-
tional table is obeyed; that is, for each fragment stored at
one server there are at least m — 1 other servers storing a
copy of this fragment, too.

Clustering-based fragmentation

We now present our intelligent fragmentation and replica-
tion procedure that will support flexible query answering
with anti-instantiation.

The anti-instantiation operator as stated above is a
purely syntactic operator. For the application of turning
constants into variables, any constant can be inserted in
the answer. This syntactic operator is oblivious of whether
the obtained answer is semantically close to the replaced
constant in the original query or not. For example in
Example 3, the two diseases cough and asthma are seman-
tically closer to each other than the two diseases cough
and broken leg. That is, the generalization operators can
sometimes lead to overgeneralization where the general-
ized queries (and hence the obtained answers) are too far
away from the user’s original query intention. To avoid this
overgeneralization and the overabundance of answers, a
semantic guidance has to be added to the process. This
semantic guidance can for example be given by a taxon-
omy on constants.

As an extension to [2], we will present a clustering
heuristics attributes on which anti-instantiation should
be applied. We call such attribute a relaxation attribute.
The domain of an attribute is the set of values that the
attribute may range over; whereas the active domain is
the set of values actually occuring in a given table. For
a given table instance F (a set of tuples ranging over
the same attributes) and a relaxation attribute A, the
active domain can be obtained by a projection 7 to A on
F: w4 (F). In our example the relaxation attribute is the
attribute Diagnosis in table Ill. From a semantical point
of view, the domain of Diagnosis is the set of strings that
denote a disease; the active domain is the set of terms
{Cough, Flu, Asthma, brokenArm, brokenLeg}.

Wiese 2013 [2] assumes a tree-shaped taxonomy on the
active domain of a relaxation attribute where the active
domain values can be found in the leave nodes connected
by some intermediary nodes serving as a classification of
the values. As an alternative, in this paper we only rely
on the specification of a similarity value sim(a, b) between
any two values 4 and b in the active domain of a relaxation
attribute. These similarity values, however, can indeed be
calculated by using a taxonomy; we will briefly survey
some of such similarity measures below when describ-
ing the prototype. Based on this similarity specification,
we derive a clustering of the active domain of each relax-
ation attribute A in a relation instance F. We rely on a
very general definition of a clustering as being a set of
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subsets (the clusters) of a larger set of values. For a cluster-
ing to be reasonable, similarities of any two values inside
one cluster should somehow be larger than between any
two values from different clusters. This will be ensured
below by relying on so-called /ead elements in the clus-
ters and on a threshold value « that restricts the minimal
similarity allowed inside a cluster: if ¢; is a cluster, then
head; € ¢; and for any other value a € ¢; (with a # head;)
it holds that sim(a, head;) > o The clustering of the active
domain of A induces a horizontal fragmentation of F into
fragments F; € F such that the active domain of each
fragment F; coincides with one cluster; more formally,
¢; = wa(F;). For the fragmentation to be complete, we also
require the clustering C to be complete; that is, if 74 (F) is
the active domain to be clustered, then the complete clus-
tering C = ¢y, ..., ¢, covers the whole active domain and
no value islost: ¢ U...Uc, = m4(F). These requirements
are summarized in the definition of a clustering-based
fragmentation as follows.

Definition 2 (Clustering-based fragmentation). Let A be
a relaxation attribute; let F be a table instance (a set of
tuples); let C = {c1,...cu} be a complete clustering of the
active domain s (F) of A in F; let head,; € c;; then, a set of
fragments {Fi, ..., Fy,} (defined over the same attributes as
F) is a clustering-based fragmentation if
e Horizontal fragmentation: for every fragment F;,
F,CF
e (lustering: for every F; there is a cluster ¢; € C such
that ¢; = w4 (F;) (that is, the active domain of F; on A
is equal to a cluster in C)
e Threshold: for every a € ¢; (with a # head;) it holds
that sim(a, head;) > o
e Completeness: For every tuple t in F there is an F; in
which t is contained
® Reconstructability: F = F{U...UF,
¢ Non-redundancy: for any i # j, F; N F; =} (or in
other words ¢; N ¢j = )

Approximation algorithm for clustering
We use and adapt an established approximation algo-
rithm for clustering originally presented by Gonzalez [10].
Its original presentation relies on a notion of distance
between any two values. It has a running time of O(kf) for
clustering a set of k objects into f clusters. Each cluster
is represented by one or more so-called head values; and
each value is assigned to the cluster represented by a head
with minimal distance to the value. In case the distance
measure is metric (in particular, satisfies the triangular
inequation), Gonzalez showed that the number of heads
obtained by his algorithm is at most twice as much as
the optimal number of heads (in other words, it is a
2-approximation of the optimal solution).

Rieck et al. [11] apply this algorithm to malware detec-
tion. Instead of fixing the number f of clusters, they use a
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threshold for the distances of values inside a cluster to the
cluster head; hence the number of obtained clusters can
differ. This functionality is also needed in our application.
We however rely on the notion of similarity between two
values (instead of distance) and provide a reformulation of
the clustering algorithm here based on [10,11]. The algo-
rithm starts by assigning all values of the active domain
to an initial cluster ¢, choosing an arbitrary element of it
as head; and then step by step choosing other head ele-
ments heady, . .., heady that have lowest similarity to all
other heads and moving other elements to the new clus-
ters ¢z, ..., ¢ an element is moved to a new cluster when
it has higher similarity to the new head element than to the
old head element. The algorithm continues finding new
heads until a threshold « is reached; « limits the mini-
mum similarity that elements inside a cluster may have to
their cluster heads. Listing 2 shows a pseudocode for the
clustering procedure.

Listing 2 Clustering procedure

Input: Set w4 (F) of values for attribute A, similarity
threshold «

Output: A set of clusters cy, ..., ¢f

: Letcy = w4 (F)

. Choose arbitrary head; € c1

: SiMyyin = min{sim(a, heady) | a € c1;a # head}

i=1

. while sim,;,;, < a do
Choose head;y1 € (b | b € c;b # head;;

sim(b, head)) = simyin; 1 < j < i}

7: ciy1 = t{headi 1} U {c | ¢ € csc # head;
sim(c, head;) < sim(c, head;y1);1 <j < i}

8: i=:i+’1

9: Simpin = min{sim(d, head;) | d € c¢;d # headj;
l<j=<i

10: end while

AR R

Note that the clustering obtained by this heuristic is
always complete: any value of w4 (F) is assigned to some
cluster ¢;. And we also have the property that clusters do
not overlap: ¢; N ¢j # @ for each i # j.

Example 4. In our example, we assume that the pair-
wise similarities for the values in the active domain
of the relaxation attribute Diagnosis are given. We
assume further that the pairwise similarities in
the subset {Cough, Flu, Asthma} and in the subset
{brokenArm, brokenLeg} are higher than any similarity in
between these two subsets. In the first clustering step, we
choose heady arbitrarily — let us assume Flu — and the
entire active domain forms cluster c¢1. Now as heady the
value with the lowest similarity is chosen — let us assume
brokenArm. Now, all values with higher similarity to
brokenArm (than to Flu) are moved to cluster cy — which
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will then consist of {brokenArm, brokenLeg). If we choose
threshold a to lie in between the minimum intra-cluster (of
both ¢y and cy) similarity and the maximum inter-cluster
similarity (between pairs of values from ¢, and c), we will
stop after this second iteration.

Fragmentation and lookup table

When considering only a single relaxation attribute A, we
obtain a fragmentation of the corresponding table: a set of
fragments F; — each corresponding to a cluster ;. A rela-
tional algebra expression for each fragment can be stated
as follows (using the selection operator ¢ and a disjunc-
tion of equality conditions on A for each value a contained
in the cluster):

F; = O‘comiiti(m(c,')(F)

where condition(c;) = \/ ,...(A = a)

aec;

The selection operator results in a set of rows — hence
a horizontal fragmentation is obtained. Because the clus-
tering is complete, the fragmentation itself will also be
complete; hence, in addition a reconstruction of the origi-
nal instance F is possible by the union operator. Moreover,
because clusters do not overlap, we also achieve non-
redundancy in this fragmentation. Hence, all properties of
Definition 2 will be ensured.

Example 5. Based on the above clustering, we obtain two
fragments of the Ill table.

Respiratory | PatientID | Diagnosis

8457 Cough

2784 Flu

2784 Asthma

8765 Asthma

Fracture | PatientID | Diagnosis

2784 brokenLeg
1055 brokenArm

Fragmentation and replica management are usually sup-
ported by lookup tables [12] (also called root tables [13])
that store metadata — for example, information about in
which fragment to look for matching tuples when a query
arrives. In our case, as we enable flexible query answering
in distributed database systems, we create a lookup table
that contains:

e the fragment ID F; that is used to solve the data
replication problem

e the fragment name that will be used in queries to the
fragment

o the head head; of the cluster ¢; that was used to obtain
the fragment F; as a semantic representative of the
values for relaxation attribute A inside fragment F;

e the size w; of fragment F; that is used in the data
replication problem; for simplicity, in this paper we
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only count the number of rows — but more advanced
size measures can be used, too

e an array of the IP addresses or names of the database
servers that fragment F; is assigned to

Example 6. We insert the following data into the ROOT
lookup table where ID is the fragment identifier, Name
is the fragment name, S is the fragment size in number
of tuples, and Host is the name of the server where the
fragment is assigned to.

ROOT | ID
F1 | Respiratory
F2 | Fracture

Head S

Flu 4
brokenArm | 2

Host

NULL
NULL

Name

The last missing information — identifying the database
server hosting the fragment — is computed by solving a bin
packing problem with conflicts (BPPC). The basic idea is
that for f fragments we want to replicate m times, each
fragment F; is copied m — 1 times: for F; (and 1 < i < f)
we obtain the copies Fy;, Fyryj, - - ., Fgu—1)f+: so that the
total number of fragments will be n = f - m. Furthermore
any two copies of fragment F; (and including F; itself)
must not be placed on the same server; this will be ensured
by a conflict graph where there exist edges between all
pairs of copies of F;.

Example 7. In our example, when we assume a replication

factor of m = 2, we have to copy each fragment once. Hence
we have that Fi = F3 = Respiratory each with a size of 4;
and Fy = Fy = Fracture each with a size of 2. The conflict
graph then consists of nodes V' = {Fy, Fa, F3, F4} and edges
E = {(F1, F3), (F2, Fa)}.

As input information for the BPPC we hence need:

e the capacity W of each of the database servers based
on some configuration information of the distributed
database system

e the replication factor m based on some configuration
information of the distributed database system

e Fyaswellasm — 1 copies Fryj, For iy - - - Fguo1)f+i of
each F; (where1l <i <f)

o the sizes w; for each F; (where 1 < i < n) where the
copies of a fragment have the same size as the
fragment itself

o the conflict graph G where the set of n = f - m nodes
is the set of fragments and their copies — that is,

V ={F,F,...,Ff,Ffi1,...,F,} —and the set of
undirected binary edges E consists of the sets E;
(where 1 < i <) of pairs (X, Y) of a fragment F; and
all its copies — that is, E = Ulf'=1 E;where E; = {(X,Y)
| X,Y € {FiiFf+i’F2f+i! s !F(m—l)f+i}; 1=<i Ef}

When solving the usual ILP formulation of BPPC (as
shown in Equations 6 to 11) with these inputs, we obtain
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a solution that occupies the minimal number of servers
(bins) while respecting the different sizes w; that the frag-
ments (for a single relaxation attribute A) may have as well
as ensuring the replication factor. An example with the
ILP solver [psolve is provided in an upcoming section.

As opposed to lookup tables for individual tuples [12],
we only store a row per fragment (and only the appropriate
cluster head). Due to this, the lookup tables are small and
lookups can be faster. That is why we assume that there is
only a master server for the lookup table; one hot backup
server can be used that can take over the task of the master
server in case of a failure. Alternatively, distribution of the
lookup table to all replica servers can be used; however,
this incurs extra overhead and consistency problems [12].

Query rewriting

Flexible query answering can now be executed on the
obtained clustering-based fragmentation. Queries are
rewritten and redirected to the appropriate fragment with
the help of the lookup table as follows:

1. The user sends a query to the database system with a
selection condition containing a constant « for the
relaxation attribute A.

2. The database system checks if there is a head value
head; in the lookup table such that head; = a. Then
the appropriate fragment F; is already identified and
the next three steps can be skipped.

3. Otherwise the database system reads all f head values
from the lookup table.

4. The database system computes all similarities
sim(a, head;) (for 1 < i <f).

5. The database system chooses a head head; with
maximum similarity to a and thereby identifies
appropriate fragment F;. A threshold 8 can be
provided by the user to limit this similarity
divergence.

6. The database system rewrites the query by replacing
the original table name with the identified fragment
name and removes the selection condition
containing a for the relaxation attribute.

7. The rewritten query is redirected to the server that
hosts the identified fragment.

8. The server can return the entire fragment for the
rewritten query with the assertion that the distance
threshold B is not exceed and hence the answers are
relevant for the user.

9. If the query contains multiple selection conditions
for the relaxation attribute, several query rewritings
will be executed and theses queries can be redirected
to different servers.

Example 8. In the example query Q(x1,x3,%x3) =
Il (%1, Flu) A Ill(x1, Cough) A Info(x1,x2,%3) the constant
Cough is anti-instantiated. The fragment matching the
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Cough constant is the one containing respiratory diseases
because we assume that it holds that sim(Flu, Cough) >
sim(brokenArm, Cough). The second constant for the
relaxation attribute in this query is Flu; however, Flu is
a head element of the corresponding fragment and hence
no similarities have to be computed. The anti-instantiated
query is

QA (x1,x2,%3,9,5') = Respiratory(x1,y)
ARespiratory(x1,y') A Info(x1,%x2,%3) Ay £y

The inequality condition on the new variables is neces-
sary to only obtain answers where the two disease values
found in the Respiratory fragment differ. A distributed join
on x1 has to be executed to combine the data from the
Info table with the data from the Respiratory fragment;
we will later on discuss how this overhead can be avoided
by using derived fragmentation. Because the query is redi-
rected to the fragment with highest similarity, in this case
only the first informative answer (see Example 3) with
the disease asthma Ill(2748, Flu) A 1ll(2748, Asthma) A
Info(2748, Mary, ‘New Str 3, Newtown') is returned. In
contrast, the answer for the disease brokenLeg is suppressed
because it resides in the Fracture fragment.

The computation of distributed joins cannot be avoided
if subqueries must be redirected to different server. We
argue however, that with any other conventional data
replication scheme (like [12,14]), distributed joins have to
be processed, too; while with our scheme we have added
support for flexible query answering.

Example 9. Consider the example query
Q(x1, %2, x3) = Ill(x1, brokenLeg)
Al (x1, Cough) A Info(x1,x2,x3)

The query has to be rewritten into the query

QY (x1,%2,%3,9,) = Fracture(x1,y)
ARespiratory(x1,y") A Info(x1,%2,%3)

which has to be answered by both Fracture the and the
Respiratory fragment. It may happen that the Respiratory,
Fracture and Info tables all reside on different servers and
so we would have to compute a three-way distributed join
on xi.

Improving data locality with derived
fragmentations

Apart from failure tolerance and load balancing, another
important issue for cloud storage is data locality: Data
that are often accessed together should be stored on the
same server in order to avoid excessive network traffic and
delays. That is why we propose to compute a derived frag-
mentation for each table that shares join attributes with
the primary table (for which the clustering-based frag-
mentation was computed). Each derived fragment should
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then be assigned to the same database server on which the
primary fragment with the matching join attribute values
resides.

Hence for a given fragmentation {Fy,...,Fr} of a
primary table F we compute the corresponding frag-
mentation {Gy,..., Gy} of any table G sharing join
attributes with F as a semijoin of G with each fragment
Fi: G; = GI><F; — which is equivalent to the projec-
tion on the attributes of G of the natural join of G and
Fi: Wanr(6) (G >< F).

Example 10. In our example we can join both the Treat
as well as the Info table with the Ill table. Because we have
two fragments of Ill, we obtain two derived fragments of
Treat and Info as well: the first set of derived fragments is
called Treat_resp and Info_resp based on a join on patient
IDs occurring in the primary Respiratory fragment.

Respiratory | PatientID | Diagnosis
8457 Cough
2784 Flu
2784 Asthma
8765 Asthma
Treat_resp PatientID | Prescription
8457 Inhalation
2784 Inhalation
8765 Inhalation
2784 Plaster bandage
Info resp|PatientID| Name | Address
8457 Dete Main Str 5, Newt.
2784 Mary | New Str 3, Newt.
8765 Lisa | Main Str 20, Oldt.

The second set of derived fragments is Treat_frac and
Info_frac based on a join on patient IDs occurring in the
primary Fracture fragment.

Fracture | PatientID | Diagnosis
2784 brokenLeg
1055 brokenArm
Treat_frac PatientID | Prescription
2784 Inhalation
2784 Plaster bandage
1055 Plaster bandage
Info frac| PatientID | Name | Address
2784 Mary | New Str 3, Newt.
1055 Anne | High Str 2, Oldt.

Note that non-redundancy of derived fragments is dif-
ficult to achieve (this is also discussed in [1]). We opt for
having some redundancy in the derived fragments for sake
of better data locality and hence better performance of
query answering. That is why the information for patient
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Mary occurs in both derived fragments; the same applies
to the treatment fragments.

Data replication for derived fragments

We maintain separate lookup tables for each (primary and
derived) fragmentation of each table. Hence, the sizes of
the derived fragments are also computed and stored in
the corresponding lookup table. These sizes of the derived
fragments must be taken into account for the data repli-
cation procedure and are encoded in the BPPC as follows.
The capacity W, the replication factor m, the primary
fragments and their m — 1 copies as well as the conflict
graph stay the same as before; the only input that changes
is sizes w; assigned to the fragments:

e the sizes w; are now computed as the sum of the size
of the primary fragment F; plus the size of any
derived fragment G;.

e solving the BPPC results in a placement where the
primary fragment fits on the server together with all
its derived fragments.

e the primary fragment and its derived fragments are
hence assigned to the same server and the server
information in the lookup tables is inserted
accordingly.

Implementation and example

Our prototype implementation is based on PostgreSQL
and the UMLS::Similarity implementation. In the follow-
ing subsections we describe the steps that the prototype
executes.

UMLS and its similarity measures

The Unified Medical Language System incorporates sev-
eral taxonomies from the medical domain like the Sys-
tematized Nomenclature of Medicine—Clinical Terms
(SNOMED CT), or Medical Subject Headings (MeSH). It
unifies these taxonomies assigning Concept Unique Iden-
tifiers (CUI) to terms so that shared terms in the different
taxonomies have the same identifier.

The Perl program UMLS::Similarity [15] offers an
implementation of several standard similarity measures.
They can be differentiated into measures based solely on
path lengths in a taxonomy and measures taking the so-
called information content [16] into account. The infor-
mation content (IC) is computed from a pre-assigned
estimated probability p(c) of each leave term in the
taxonomy (assuming a parent-child or is-a relationship
in the taxonomy); for inner nodes that subsume other
terms, this probability must be larger than for any child
node (for example, by summing over all child nodes)
because this concept covers all its child concepts. The
information content is then defined as the negative log
likelihood: —logp(c). In this way, the higher a term is
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located in taxonomy, the more abstract the term it is, and
the lower is its information content; where the unique root
node of the taxonomy has IC 0 (or in other words, its
probability is 1) — that is, no information content.

UMLS::Similarity offers implementations of the follow-
ing measures based on path lengths:

e Dath length (path) counts the nodes occurring on a
path between two terms a and b and takes the
inverse: sim(a, b) = m.

e Leacock and Chodorow (Ich) [17] use the length of
the shortest path between two terms but also
consider the overall maximum depth d,,,, of the
taxonomy: sim(a, b) = — log W%M

e Wu and Palmer (wup) [18] consider the depth of
terms — that is, the length of the path from the root
node to the term. It first calculates the depths of the
two terms and the depth of their least common
subsumer (LCS) and then calculates similarity as

twice the Ics depth divided by the sum of the depths
2-depth(lcs(a,b))

depth(c)+depth(b)

e Conceptual distance (cdist) refers to the path length

between two terms; while in the original case paths
between terms were defined with respect to whether
a meaning was narrower or broader ([19]), later on
the paths in a parent-child (is-a) relationship were
considered [20] — that is why in the latter case cdist
coincides with path.

e Al-Mubaid and Nguyen (nam) [21] combine path
length and depth into one measure; they consider the
overall maximum depth d,,,4x of the taxonomy, the
depth of the least common subsumer of the two
comparison terms, the shortest path length between
the two terms. UMLS::Similarity returns the inverse

of this distance mleasure, that is:
og2
(length(path(a,b))—1)-(dyax—depth(lcs(a,b)))+1

of the two terms: sim(a, b) =

UMLS::Similarity offers implementations of the follow-
ing measures incorporating information content (IC):

e Resnik (res) [16] proposed to use the information
content of the least common subsumer (LCS):
IC(lcs(a, b))

e Jiang and Conrath (jcn) [22] use the inverse of a
distance that is based on the IC of the two terms and
the IC of the least common subsumer:

, . 1
sim(a, b) = ferTem —rIcUswh)
e Lin (lin) [23] takes twice the IC of the LCS and

divides it by the sum of the ICs of the two terms:

. " 2.0C(Ues(a,b))
sim(a, b) = 1C(a)+IC(b)

We used the UMLS::Similarity web interface with the
MeSH taxonomy to obtain the pair-wise similarity of the
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set of terms asthma, cough, influenza, tibial fracture and
ulna fracture. Figure 1 shows how the terms are related
by a is-a relationship in the MeSH taxonomy. Table 1
shows the similarity values obtained. Due to symmetry of
the terms in the taxonomy (the path lengths and LCSs
are mostly identical), the similarity values do not differ
much in the two subsets asthma, cough and influenza, as
opposed to tibial fracture and ulna fracture; the only dif-
ference is obtained with the two measures where the IC of
the respective terms 4, b are taken into account — namely
jen and lin.

Clustering and fragmentation

The clustering heuristics has been implemented as a
Java module that calls the UMLS::Similarity web inter-
face. When using the clustering heuristics with the given
similarities, regardless of which heads we choose, after
two steps we obtain the two clusters {asthma, cough,
influenza}, and {tibial fracture, ulna fracture}: let us
assume, we choose asthma as head, then we compute all
similarities to asthma. The one with the lowest similarity
is ulna fracture — which is taken to be head,. Because tib-
ial fracture has lower similarity to ulna fracture than to
asthma, it is assigned to ¢y. For an appropriate threshold «
(depending on the similarity measure chosen) the process
could stop here. If instead we now continue the clustering,
we would eventually obtain a total clustering consist-
ing of only singleton sets: tibial fracture would become
heads (because it has minimal distance to head,); later
on, cough would become head, and influenza would be
heads.

Choosing the path similarity and a threshold @ = 0.15
results in the two mentioned clusters. A fragmentation
of the base table [/l can hence be obtained by com-
puting the following materialized views in the Postgres
database.

CREATE MATERIALIZED VIEW Respiratory AS
SELECT * FROM Ill WHERE Diagnosis

IN (’Cough’, ’'Influenza’, ’'Asthma’)

CREATE MATERIALIZED VIEW Fracture AS
SELECT * FROM I1l WHERE Diagnosis

IN (’'Tibial fracture’, ’'Ulna Fracture’)

Disease,
Respiratory Tract

Injuries Wound

;
Diseases,

Disorder, Respiratory Fracture
Respiration Bronchial | | Tract Infections
\ [ —
‘ Cough ‘ ‘ Asthma ‘ ‘ Influenza ‘ Fracture Tibial
of ulna Fractures

Figure 1 Taxonomic relationship of example terms in MeSH.
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Sophisticated size estimations for these fragments
might be possible as stated previously. We obtain the sizes
of the fragment by counting the number of rows:

SELECT count () FROM Respiratory
and

SELECT count () FROM Fracture

Next, we fill a lookup table containing information as.

INSERT INTO root ill VALUES

("F1', ’'Respiratory’, ‘asthma’, 4, NULL);
INSERT INTO root ill VALUES

("F2', 'Fracture’, ’‘ulna fracture’, 2,
NULL) ;

To obtain the placement of the fragments to servers
we model the corresponding BPPC and use the solver
Ip_solve [24]. Ip_solve has a simple human-readable syn-
tax and can be accessed by a Java program via the Java
Native Interface (JNI). An example input for K = 5 (max-
imum number of servers), W = 5 (capacity per server),
m = 2 (replication factor) looks as shown in Listing 3.

Listing 3 Input to ILP solver
I min:yl +y2 +y3 + y4 + y5;

: x11 +x12 + x13 + x14 + x15=1;
: X21 + x22 + x23 + x24 + x25 = 1;
: x31 +x32+x33 +x34 +x35=1;
. x41 + x42 + x43 + x44 + x45 = 1;

: 4x11 +2x21 +4x31 +2x41 <=5yl;
: 4x12 +2x22 + 4x32 + 2x42 <=5Yy2;
: 4x13 +2x23 +4x33 +2x43 <=5Y3;
: 4x14 + 2x24 + 4 x34 + 2 x44 <= 5Yy4
0 4x15+2x25+4x35 +2x45 <=5y5;

- T~ NS N SO )

—_ e e e e
Bw oy P9

: x11 + x31 <=y1; x21 + x41 <=y1;
: x12 +x32 <=y2;x22 + x42 <=y2;
: x13 + x33 <=y3;x23 + x43 <=Y3;
: x14 + x34 <= y4; x24 + x44 <=y4;
: x15 + x35 <=y5; x25 + x45 <=y5;

e
© ® N o W

. bin x11,x12,x13,x14,x15;
: bin x21,x22,x23,x24,x25;
. bin x31,x32,x33,x34,x35;
: bin x41,x42,x43,x44,x45;

NN N NN
AR W N D

: bin y1,y2,y3,y4,y5;

The solution uses four servers (out of the five available
ones): one for each of the two fragments and their copy. If
the capacity is increased to W = 6, only two servers are
used: the two fragments now fit on one server and the two
copies on another server.
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Table 1 Sample similarity obtained with UMLS::Similarity
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Asthma Cough Influenza Tibial fracture Ulna fracture
Asthma (jcn) 0.3109 (jcn) 0.3844 (jcn) 0.1405 (jcn) 0.1282
max (cdist) 0.2 (cdist) 0.2 (cdist) 0.1429 (cdist) 0.1429
(Iin) 0.6175 (lin) 0.6662 (lin)0.2116 (lin) 0.1968
(wup) 0.6667 (wup) 0.6667 (wup) 0.5556 (wup) 0.5556
(path) 0.2 (path) 0.2 (path) 0.1429 (path) 0.1429
(res) 2.5963 (res) 2.5963 (res) 0.9555 (res) 0.9555
(Ich) 2.0794 (Ich) 2.0794 (Ich) 1.743 (Ich) 1.743
(nam) is 0.1621 (nam) 0.1621 (nam) 0.1483 (nam) 0.1483
Cough (jcn) 0.2958 (jcn) 0.1266 (jcn) 0.1166
max (cdist) 0.2 (cdist) 0.1429 (cdist) 0.1429
(lin) 0.6057 (lin) 0.1948 (lin) 0.1822
(wup) 0.6667 (wup) 0.5556 (wup) 0.5556
(path) 0.2 (path) 0.1429 (path) 0.1429
(res) 2.5963 (res) 0.9555 (res) 0.9555
(Ich) 2.0794 (Ich) 1.743 (Ich) 1.743
(nam) 0.1621 (nam) 0.1483 (nam) 0.1483
Influenza (jcn) 0.1373 (jcn) 0.1256
max (cdist) 0.1429 (cdist) 0.1429
(lin) 0.2079 (lin) 0.1936
(wup) 0.5556 (wup) 0.5556
(path) 0.1429 (path) 0.1429
(res) 0.9555 (res) 0.9555
(Ich) 1.743 (Ich) 1.743
(nam) 0.1483 (nam) 0.1483
Tibial fracture (jcn) 0.243
max (cdist) 0.3333
(lin) 0.6295
(wup) 0.7778
(path) 0.3333
(res) 3.4961
(Ich) 2.5903
(nam) 0.1867
Ulna fracture
max

For improved efficiency, the root table is currently
stored as a hash map in the Java frontend (instead of stored
in a separate database table). The hash map is keyed by
the head element, because the heads are necessary for the
query rewriting module.

Query rewriting

The query rewriting procedure has to parse the SQL string
inserted by the user. If a selection condition is given for
the relaxation attribute, the root table is consulted to

check for a matching head element. If none is found, again
the UMLS::Similarity interface is consulted to obtain
the similarities between head elements and the selection
condition.

As a simple example considers the SQL query

SELECT %= FROM Il1l

WHERE Diagnosis = ’Bronchitis’

When comparing bronchitis to the first head (that is,
asthma), UMLS::Similarity gives the following similarity
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results: ‘The similarity of bronchitis (C0006277) and
asthma (C0004096) using (jcn) is 1.0305, (cdist) is 0.3333,
(lin) is 0.881, (wup) is 0.8, (path) is 0.3333, (res) is 3.5921,
(Ich) is 2.5903, (nam) is 0.1867’

Whereas comparing bronchitis to the second head (that
is, tibial fracture), UMLS::Similarity gives the following
similarity results: “The similarity of bronchitis (C0006277)
and tibial fracture (C0040185) using (jcn) is 0.1308, (cdist)
is 0.1429, (lin) is 0.2, (wup) is 0.5556, (path) is 0.1429, (res)
is 0.9555, (Ich) is 1.743, (nam) is 0.1483’

Hence, asthma is more similar to bronchitis in every
measure. The SQL query is rewritten by retrieving the
appropriate fragment name and redirected to the appro-
priate server identified from the root table:

SELECT » FROM Respiratory

That is, the entire fragment is returned as it is the one
with the most relevant answers for the user.

Experimental analysis

In general, any flexible query answering approach incurs
a certain performance overhead compared to exact query
answering. In our case, the clustering and fragmentation
have to be compute but also the query answering incurs
some extra overhead due to the fact that the appropri-
ate fragment has to be identified and multiple answers
are returned whereas exact query answering would simply
have returned an empty answer set. With our approach
however we aim to reduce this overhead by locating all
related answers in the same fragment; any other fragmen-
tation approach would need to recombine related answers
from different fragments. For a performance evaluation of
our prototype we used a test dataset consisting of values
taken from the list of Medical Subject Headings (MeSH)
[25]. The similarity computation during the clustering
constituted an extreme overhead. That is why we com-
puted pairwise similarities for 300 sample headings and
stored these similarity values in a separate table. With
these 300 values we randomly filled the disease column
of a test table. We varied the row count between 10 and
1000 rows. Another parameter to vary is the threshold
a for the intra-cluster similarity: the maximum similar-
ity that values in a cluster may have to their respective
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head. For a higher threshold, more clusters are computed
(and hence more similarity computations are executed)
than for a lower threshold. We tested similarity thresh-
olds 0.1, 0.125, 0.3 and 0.5. We ran the clustering and
fragmentation algorithm on a PC with 1.73 GHz and 4GB
RAM. The observed runtimes and number of obtained
fragments are reported in Table 2. For the lower thresh-
old values 0.1 and 0.125 runtimes are in the range of some
seconds up to around 17 minutes. For a row count of
1000 rows the higher similarity values lead to a high num-
ber of fragments and runtimes are hence prohibitively
high. Due to the high amount of pairwise comparisons,
obtaining the similarity values is still the bottleneck of the
clustering procedure. In future work we will follow two
ways of improving scalability of the clustering: optimiz-
ing the access to the similarity values and investigating
implications of a parallel implementation of the clustering
procedure.

Related work

We divide the related work survey into approaches for
flexible query answering and approaches for data frag-
mentation and replication.

Flexible query answering
The area of flexible query answering (sometimes also
called cooperative query answering) has been studied
extensively for single server systems. Some approaches
have used taxonomies or ontologies for flexible query
answering but did not consider their application for
distributed storage of data: CoBase [26] used a type
abstraction hierarchy to generalize values; Shin et al.
[27] use some specific notion of metric distance in a
knowledge abstraction hierarchy to identify semantically
related answers; Halder and Cortesi [28] define a par-
tial order between cooperative answers based on their
abstract interpretation framework; Muslea [29] discusses
the relaxation of queries in disjunctive normal form.
Ontology-based query relaxation has also been studied for
non-relational data (like XML data in [30]).

All these approaches address query relaxation at
runtime while answering the query. This is usu-
ally prohibitively expensive. In contrast, our approach

Table 2 Runtime and fragment count obtained for MeSH dataset

10 rows 100 rows 1000 rows
o Runtime Fragment Runtime Fragment Runtime Fragment
(ms) count (ms) count (ms) count
0.1 971 2 18200 4 709627 12
0.125 1211 3 32900 7 1038085 17
0.3 2658 8 201959 45 4132254 94
0.5 2415 10 244161 69 7428473 233
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precomputes the clustering and fragmentation so that
query answering does not incur a performance penalty.

Data fragmentation and replication

There are some approaches for fine-grained fragmenta-
tion and replication on object/tuple level; however none
of these approaches support the flexible query answer-
ing application aimed at in this paper. In contrast they
are mostly workload-driven and try to optimize the local-
ity of data that are covered in the same query. However,
they only support exact query answering. In contrast to
this, we do not consider workloads but a generic clus-
tering approach that can work with arbitrary workloads
providing the feature of flexible query answering by find-
ing semantically related answers. While some approaches
are adaptive to updates, no quality guarantee after an
update is reported. We intend to extend our approach
in the future by bringing robust optimization to the data
replication area. Loukopoulos and Ahmad [6] describe
data replication as an optimization problem; they focus on
fine-grained geo-replication for individual objects. They
include an assumed number of reads and writes for each
site as well as communication costs between sites. They
reduce their problem to the Knapsack problem. In partic-
ular, they devise an adaptive genetic algorithm that can
reallocate data to different sites. We aim to follow a dif-
ferent path to support this adaptive behavior: the notion
of robust optimization is briefly discussed in Section
Discussion and conclusion.

Curino et al. [14] represent database tuples as nodes in
a graph. They assume a given transaction workload and
add hyperedges to the graph between those nodes that
are accessed by the same transactions. By using a stan-
dard graph partitioning algorithm, they find a database
fragmentation that minimizes the number of cut hyper-
edges. In a second phase, they use a machine learning
classifier to derive a range-based fragmentation. Then
they make an experimental comparison between the
graph-based, the range-based, a hash-based fragmenta-
tion on tuple keys and full replication. Lastly, they also
compare three different kinds of lookup tables to map
tuple identifier to the corresponding fragment: indexes,
bit arrays and Bloom filters. Similar to them, we apply
lookup tables to locate the replicated data; however we
apply this to larger fragments and not to individual
tuples.

Quamar et al. [31] also model the fragmentation prob-
lem as minimizing cuts of hyperedges in a graph; for
efficiency reasons, their algorithm works on a compressed
representation of the hypergraph which results in groups
of tuples. In particular, the authors criticize the fine-
grained (tuple-wise) approach in [14] to be impractical for
large number of tuples which is similar to our approach.
The authors propose mechanisms to handle changes in
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the workload and compare their approach to random and
tuple-level partitioning.

Tatarowicz et al. [12] assume three existing fragmenta-
tions: hash-based, range-based and lookup tables for indi-
vidual keys and compare those in terms of communication
cost and throughput. For an efficient management of
lookup tables, they experimented with different com-
pression techniques. In particular they argue that for
hash-based partitioning, the query decomposition step
is a bottleneck. While we apply the notion of lookup
tables, too, the authors do not discuss how the fragments
are obtained, whereas we propose a semantically guided
fragmentation approach here.

Discussion and conclusion
In this paper we proposed an intelligent fragmentation
and replication approach for a distributed database sys-
tem; with this approach, cloud storage can be enhanced
with a semantically-guided flexible query answering
mechanism that will provide related but still very rele-
vant answers for the user. The approach combines frag-
mentation based on a clustering with data replication.
For the user, this approach is totally invisible: he can
send queries to the database system unchanged. The
distributed database system autonomously computes the
fragmentation (where the only additional information
needed is the clustering backed by a taxonomy specific
to the domain of the anti-instantiation column) and can
use an automatic data replication mechanism that relies
on the size information of each fragment and gener-
ates a bin packing input for an Integer Linear Program-
ming (ILP) solver. As most of the related approaches, we
assume a static dataset with mostly read-only accesses.
When receiving a user query, the database system can
autonomously rewrite the query and redirect subqueries
to the appropriate servers based on the maintenance of
a root table. The proposed method hence offers novel
self-management and self-configuration techniques for a
user-friendly query handling. While the user provides the
original table and the desired similarity threshold as input,
the database system can autonomously distribute the data
while minimizing the amount of database servers. Hence
we see our approach as a first step towards an intel-
ligent cloud database system. For full applicability in a
cloud database, automatic reconfiguration after updates,
failure-tolerance as well as parallelization of our clus-
tering approach (for example with map-reduce) will be
necessary; these topics will be handled in future work.
The work presented in this paper can be extended in
various research directions. We give a brief discussion of
possible extensions.

e So far, the fragmentation process is only centered
around a single relaxation attribute. The current
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approach can of course be executed in parallel for
several relaxation attributes in parallel (with separate
fragmentations and root tables for each relaxation
attribute); however, this will lead to a massive
(possibly unnecessary) replication of the data. We are
currently investigating a more fine-grained support
for multiple relaxation attributes with a more
sophisticated data replication approach that can also
be stated as a bin packing problem.

e In order to have a full-blown distributed flexible
query answering system, the interaction of the
proposed fragmentation with other generalization
operators (like dropping condition and goal
replacement) must be elaborated.

e When multiple fragments are assigned to one server,
data locality can be improved by assigning fragments
that are semantically close to each other to the same
server.

® QOur main focus for future work is to study the effect
of updates on data (deletions and insertions) in the
fragments: it must be studied in detail how fragments
can be reconfigured and probably migrated to other
server without incurring too much transfer cost.

Regarding the update problem, we plan to apply a spe-
cial optimization approach to database replication: the
notion of recovery robust optimization [32] describes
optimization methods that compute a solution that can
later on adapt to changing conditions which so far have
been used mostly for timetabling applications [33] or job
sequencing [8] or telecommunication networks [34]; in
this respect it is important to ensure a worst case guaran-
tee as in [8]. This is a different approach than presented
here and its implications will hence be the topic of future
work.
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