Ward and Barker Journal of Cloud Computing: Advances, Systems
and Applications KXDXXXXXN
DOI 10.1186/513677-015-0041-9

® Journal of Cloud Computing

a SpringerOpen Journal

RESEARCH Open Access

Cloud cover: monitoring large-scale clouds

with Varanus

Jonathan Stuart Ward' and Adam Barker

@ CrossMark

Abstract

the performance of Varanus through a detailed evaluation.

Keywords: Cloud computing; Monitoring

Cloud computing has quickly become the de facto means to deploy large scale systems in a robust and cost
effective manner. Central to the maintenance of large scale systems is monitoring which allows for the detection of
faults, errors and anomalies and the enacting of optimisation and corrective measures. Monitoring large scale systems
is significant challenge requiring the low latency movement of large volumes of data and near real time analysis. This
challenge is magnified by elasticity and other cloud properties which previous monitoring systems do not yet fully
account for. In this paper we propose Varanus! a cloud aware monitoring tool that provides robust, fault tolerant
monitoring at scale. We describe in detail the mechanisms which enable Varanus to function effectively and explore

Introduction
Monitoring is a fundamental part of designing and main-
taining reliable and effective software systems. The data
obtained from monitoring is invaluable allowing for the
detection of error, misconfiguration and other interesting
phenomena. As the Internet of Things, Big Data and per-
vasive computing become increasingly relevant, data has
never been more valuable. However, as the size and com-
plexity of systems has increased so to has the difficulty in
collecting monitoring state. Cloud computing is a tech-
nology which underpins much of the so called data deluge
and is an area where monitoring is a distinct challenge.
Prior to the advent of cloud computing, large scale sys-
tems were accessible only to organisations with the great-
est means. Since 2007, cloud computing has brought large
scale systems to the masses. Organisations and even indi-
viduals can now temporarily acquire significant compute
and storage capacity via an elastic model for a fraction of
the cost of a single physical server. Elasticity is the abil-
ity of a deployment to change in scale and composition in
accordance with demand and is what sets cloud comput-
ing apart from grid, cluster and other earlier paradigms
of distributed computing. The combination of elasticity

*Correspondence: adam.barker@st-andrews.ac.uk
TEqual Contributors
School of Computer Science, University of St Andrews, St Andrews, UK

@ Springer

and scale poses a series of challenges to a number of area,
including monitoring.

Cloud management is a research topic which has
received considerable attention. Common topics include
configuration and change management, cost forecasting
and architectures for deploying services and workloads to
cloud services. Monitoring, an integral part of manage-
ment has however received notably less attention. Moni-
toring cloud deployments is a challenge for a number of
reasons. Scale necessitates that a monitoring tool must
collect and analyse vast quantities of data in a timely man-
ner, with minimum human intervention, while elasticity
requires tolerance to all manner of change. Other areas
of monitoring including failure detection, QoS and root
cause analysis are also affected by elasticity.

Current monitoring tools fall into two broad categories:
monitoring as a service tools which outsource data collec-
tion and analysis to a third party and legacy grid, cluster
and enterprise monitoring tools such as Nagios, Gan-
glia and Cacti which have greater functionality but are ill
suited to the requirements of cloud computing [1]. The
former category of tool charge, typically, at a per host
basis and can incur significant fiscal costs. Furthermore
these tools transmit monitoring data across the Internet
to the cloud provider, this potentially introduces secu-
rity concerns and increases monitoring latency. The latter

© 2015 Ward and Barker. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0041-9-x&domain=pdf
mailto: adam.barker@st-andrews.ac.uk
http://creativecommons.org/licenses/by/4.0

Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

category of tools are ill suited to cloud computing due
as they lack awareness of cloud properties, as such they
conflate termination with failure, are ill suited to han-
dling elasticity and have no conception of the myriad
of costs (both fiscal and performance related) associated
with cloud computing.

Cloud computing has enabled even small organisations
to deploy thousands of VMs, if only for short period of
times. Prior to cloud computing this level of scale was
unavailable to all but the largest organisations, as such the
vast majority of legacy monitoring software is designed
for smaller scale operations. As the scale of cloud deploy-
ments continues to grow the availability of scalable mon-
itoring tools which support the unique requirements of
cloud computing are becoming necessary. Monitoring as a
service tools are often touted as those tools, however these
services lack the customisability of previous tools and
lack any mechanisms to implement corrective or adaptive
behaviours. Any tool which is designed to monitor large
deployments of virtual machines must be autonomic. It
cannot rely upon humans to process events or analyse
data and implement manual alterations. Humans are sim-
ply too slow to manually monitor anything resembling a
large scale system. What is therefore required are tools
which can collect and analyse monitoring data and decide
if necessary to alter the state of the system. This is signif-
icantly beyond the current state of cloud monitoring and
thus requires new tooling.

The area of cloud monitoring remains relatively unex-
plored and there is hitherto no universally accepted
toolchain or systems for the purpose. Most real world
cloud monitoring deployments are a patchwork of various
data collection, analysis, reporting, automation and deci-
sion making software. There are few universal best known
practices or tools and many grid and cluster monitoring
tools remain in common usage despite being a poor fit for
cloud monitoring.

This paper presents a detailed overview and evaluation
of Varanus [2—4], a highly scalable monitoring tool resis-
tant to the effects of rapid elasticity. This tool breaks with
many of the conventions of previous monitoring systems
and leverages a multi-tier P2P architecture in order to
achieve in situ monitoring without the need for dedicated
monitoring infrastructure.

Prior work

Cloud monitoring is a relatively new area, however other
types of monitoring have produced a vast array of tools
and designs. Many of these tools have not been designed
with cloud properties in mind and are potentially ill suited
for cloud monitoring, irregardless these tools are fre-
quently used and referred to within the domain of cloud
monitoring.

Page 2 of 28

Nagios

Nagios [5] is the premier open source monitoring tool. Ini-
tially released in 1999, the venerable tool has a vast plugin
library which supports virtually all common software, net-
work devices and appliances. Nagios was never designed
for cloud computing, as such it has no native support
for tolerating elasticity and requires a significant deal of
modification to better support cloud computing. Despite
the domain mismatch, Nagios remains the most popular
monitoring tool for two reasons: its extensive functional-
ity and the lack of a suitable replacement. Recent cloud
monitoring tools predominantly fall under the categori-
sation of monitoring as a service tools which eschew the
computational costs of data collection and analysis to a
third party company. Users who wish to keep their moni-
toring tools behind their firewall, or who demand greater
functionality that is offered by monitoring as a service
tools have little alternative to Nagios and its contempo-
raries. As it is open source, widely used and is available for
experimentation we therefore make use of Nagios to com-
pare with Varanus throughout our evaluation described in
detail in Section 8. Two versions of Nagios are evaluated
alongside Varanus: a stock configuration and a modified
installation which has a number of patches applied includ-
ing the ‘large installation tweaks’ The Nagios architecture
that we employ in our evaluation is depicted in Fig. 1. We
employ a three tier Nagios hierarchy whereby the mas-
ter is responsible for collating and analysing the results
which are obtained from monitored hosts via a set of
Nagios slaves. The slaves are intended to alleviate the
burden of scheduling and communicating with individual
VMs. Puppet is also used in order to seed newly joining
VMs with the Nagios client and provide the configuration
necessary to communicate with the Nagios master and
additionally to restart the Nagios master in order add the
new hosts.

Ganglia

Ganglia [6] is a resource monitoring tool primar-
ily intended for HPC environments. Ganglia organises
machines into clusters and grids. A cluster is a collection
of monitored servers and a grid is the collection of all clus-
ters. A Ganglia deployment operates three components:
Gmond, Gmetad and the web frontend. Gmond, the Gan-
glia monitoring daemon is installed on each monitored
machine and collects metrics from the local machine and
receives metrics over the network from the local cluster.
Gmetad, the Ganglia Meta daemon polls aggregated met-
rics from Gmond instances and other Gmetad instances.
The web frontend obtains metrics from a gmond instance
and presents them to users. This architecture is used
to form a tree, with Gmond instances at the leaves and
Gmond instances at subsequent layers. The root of the
tree is the Gmond instance which supplies state to the web



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

Page 3 of 28

Nagios
Slave 1

DR

Monitored
VM 2

\

Monitored
VM 1

\

Monitored
VM 2

Monitored
VM 1

Fig. 1 The Nagios architecture used in our evaluation, assisted by Puppet

Nagios
Master

Push monitoring state up the Nagios hierarchy

Nagios
Slave2 T

Configure New VMs
with Nagios clients and configuration

Puppet
Master

Nagios
Slave?
Update Nagios
Master with details
Monitored Monitored
e M2 of new VMs and

restart master

/

frontend. Ganglia is first and foremost a resource moni-
tor and was designed to monitor HPC environments. As
such it is designed to obtain low level metrics including
CPU, memory, disk and IO. It was not designed to mon-
itor applications or services and nor was it designed for
highly dynamic environments.

Riemann

Riemann [7] is an event based distributed systems mon-
itoring tool. Riemann does not focus on data collection,
but rather on event submission and processing. Events
are representations of arbitrary metrics which are gen-
eratedq by clients and encoded using Google Protocol
Buffers [8] and additionally contains various metadata
(hostname, service name, time, ttl, etc). On receiving an
event Riemann processes it through a stream. Users can
write stream functions in a Clojure based DSL to operate
on streams. Stream functions can handle events, merge
streams, split streams and perform various other oper-
ations. Through stream processing Riemann can check
thresholds, detect anomalous behaviour, raise alerts and

perform other common monitoring use cases. Designed
to handle thousands of events per second, Riemann is
intended to operate at scale.

Amazon CloudWatch
CloudWatch [9] is the monitoring component of Amazon
Web Services. CloudWatch primarily acts as a store for
monitoring data, allowing EC2 instances and other AWS
services to push state to it via an HTTP APL Using this
data a user can view plots, trends, statistics and various
other representations via the AWS management console.
This information can then be used to create alarms which
trigger user alerts or autoscale deployments. Monitor-
ing state can also be pulled by third party applications
for analysis or long term storage. Various tools including
Nagios have support for obtaining Cloud Watch metrics.
Access to this service is governed by a pricing model
that charges for metrics, alarms, API requests and moni-
toring frequency. The most significant basic charge is for
metrics to be collected at minute intervals followed by the
charge for the use of non standard metrics. CloudWatch




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

presents a trade-off between full customisability and ease
of use. The primary use case of CloudWatch is monitor-
ing the full gamut of AWS services. Users of only EC2 will
likely find the customisability of a full monitoring system
preferable to the limited control afforded by CloudWatch.

Varanus overview

Varanus is comprised of four components: the coordi-
nation service, the collection service, the storage service
and the analysis service. The next four sections detail
the design of these services. Figures 2 and 3 provide
a high level overview of the interaction of the four ser-
vices. These loosely coupled services cooperate in order to
provide a full suite of monitoring functionality. The coor-
dination service is the foundation upon which the other
services operate, providing a means for the components
to communicate and provides VM registration, configu-
ration storage, decision making and agreement. The data
collection service is comprised of a small daemon which
operates on each monitored host which collects metrics
and values and transmits them to the storage service.
The storage service runs across elected (or specifically
dedicated) VMs and provides a mechanism for the in
memory storage and processing of large volumes of time-
series data. The analysis service consumes data from the
storage service in order to detect irregularities, failure,
bottlenecks, plan optimisations and other user definable
behaviour.

Varanus coordination service

The coordination service is a robust, highly available con-
figuration store which additionally provides agreement,
configuration storage and failure detection to the other
components within Varanus. It is a self contained service
with no external dependencies and is intended to continue
operating even under high failure rates. Every VM within

Page 4 of 28

a Varanus deployment runs a coordinator daemon, how-
ever the role that each coordinator takes can vary from
taking part in relevant agreements and detecting failure to
storing configuration data, coordinating agreements and
enforcing consistency.

When building distributed systems the challenge of
configuring and coordinating components soon arises.
In the typical case one looks to well tested frameworks
and platforms upon which to build. Software such as
Apache Zookeeper, etcd and Doozerd provides fault tol-
erant mechanisms for service discovery, coordination and
orchestration. The use of existing configuration and man-
agement tools as a basis upon which to develop a moni-
toring tool poses a number of issues. Firstly, such tools are
commonly built upon large stacks which require a myriad
of dependencies resulting in a footprint far beyond what
is required. Ideally, in order to avoid a significant observer
effect the components of a monitoring tool must be small
and unobtrusive. Secondly, current coordination tools are
intended to be used by multiple applications. Thus, the
failure, loss of performance or other issues with a coordi-
nation service would impact both critical applications and
the monitoring service. Therefore, when the monitoring
tool is most required, it is unavailable or degraded. We
therefore eschew the use of third party coordination tools
in favour of a dedicated out of band mechanism which
is intended to tolerate a wide variety of failure modes in
order to facilitate monitoring and maintain a small foot-
print. For this purpose we look towards peer to peer
overlay networks as a means to provide a highly robust
basis for developing a monitoring solution.

Cloud computing is unlike classical peer to peer com-
puting scenarios whereby there are a large number of
geographically distributed peers, each with network con-
ditions of variable performance. A typical large scale
cloud deployment consists of a significant number of VMs

Locate Storage
Service Hosts

Coordinator

PySh. Storage
monitoring Service
data

Coordinate Replicas

Modify
Configuration

Fig. 2 A high level overview of the 4 Varanus components and their interactions

Obtain
monitoring
data

Analysis
Service




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

Page 5 of 28

/

|

|

| .

| Coordinator
\ Participent

[ /

| -

|

|

|

Locate store instance

Collection! |
service! ¢ * it I
| e S @ Coordinator |
Reserve / ¢ Reserve /

| Monitored Monitored 5 |
| & WM VM |

[N h ¢
| - o - |
L e e e e e DN = — — — — _—=

Monitored VMs
push state to store

Fig. 3 The Orchestration of the four Varanus services

Coordinate agreement

/ Coordinator

Locate other
store instances

/ = | Coordination Service
|
Coordinator\ |
\ Participent/ I
- |
|
|
|
________ R
Retrieve serialised
actor
Analysis Service
L I
' |
' |
| Quince ¢ > I
| Actor
Actor calls |
' |
L e e e e e f _______ |
Obtain monitoring
_________ state
| Obtain monitoring
| state
|
Distribute Buffer .
Families

|
| Storage Service

in a small number of geographical locations with each
(in usual circumstances) possessing plentiful bandwidth
within the localised cloud region and reduced bandwidth
between cloud regions. This scenario lends itself to the use
of a structured peer to peer architecture which exploits
localisation and the plentiful bandwidth within cloud
regions while conserving slower inter-cloud bandwidth.
The Varanus coordination service is peer to peer over-
lay network which attempts to exploit the architecture of
clouds.

We describe the communication architecture employed
by the coordination service in terms of three groupings:
cloud, region and sub-region. Cloud and region map neatly
to the well established terminology, a cloud is a top level
abstraction which includes multiple regions and a region
is a geographic area which hosts cloud resources. A sub-
region is a further sub division of a region which includes a
subset of provisioned cloud resources this is similar to the
notion of (availability) zones but may transcend or overlap
actual zones.

These different levels of abstraction produce a three tier
hierarchy. An example of this hierarchy is shown in Fig. 4
and a more detailed overview is provided by Fig. 5. The
coordination service employs a gossip protocol over this

hierarchy in order to facilitate a range of functionality.
The coordinator itself uses the protocol to disseminate
configuration state, update membership and detect fail-
ure meanwhile the other service uses this mechanism to
exchange state.

Communication

The coordination service makes use of a gossip protocol.
In the context of cloud monitoring, gossip protocols have
several advantages, including:

¢ Minimising CPU usage in favour of utilising network
capacity. This is advantageous in a cloud computing
setting where internal bandwidth is free where as
CPU is a metered resources.

e Tolerating network outages, membership change and
failure with minimum overhead.

e Providing heartbeat and primitive failure detection at
no extra message of computation cost.

Therefore, a gossip protocol serves as the communi-
cation mechanism for the coordinator and for the other
Varanus services.

In large scale cloud deployments individual VMs oper-
ate under a range of computation and communication




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX Page 6 of 28
Cloud
Region A (AWS Europe) Region B (Azure US East)
Region C Region A Region B
RabbitMQ VM 1 Apache VM 1 Apache VM 2 MySQL VM 1 MySQL VM 2

Fig. 4 An Example Varanus Hierarchy Depicted as a Tree

constraints. By distributing the computational complex-
ity of an operation over the system, gossip protocols
offer a means to develop mechanisms better suited to
large scale systems. Gossip protocols have been demon-
strated to be effective mechanisms for providing robust
and scalable services for distributed systems including
information dissemination [10], aggregation [11] and fail-
ure detection [12]. The coordination services uses a gossip
protocol to propagate updates to the configuration store,
update membership and detect failure. In addition to the
gossip protocol, the coordinator also makes use of the Raft
protocol in order to achieve consensus when necessary.
The basic operation of the coordination gossip proto-
col consists of the periodic, pairwise propagation of state
between coordinator instances. This mechanism under-
pins the data collection and agreement protocols which
support monitoring functions. Each monitoring agent
participates in a gossip based overlay network. Using this
overlay monitoring agents propagate and receive state
from other, nearby, agents. This is achieved by performing
a pull-push operation with neighbouring correspondents.
The rate of dissemination of data from a single process

to all other processes can be described by the following
equation:

S Xy
St+1 = Tintervar X Fanout x T (1)

where S is the number of susceptible processes (those
which have not yet received the information), X is the
number of infected processes (those which have received
the information), # is the number of processes and ¢ is
the current timestep. Therefore, the delay in propagat-
ing information can be greatly reduced by decreasing the
interval at which communication occurs (thus increas-
ing the frequency) and by increasing the fanout value
(thus increasing the number of correspondents selected as
targets).

In addition to this mechanism, preferential target selec-
tion is used to reduce the delay in propagating state.
Targets are selected based on a weighting scheme which
uses round-trip time estimates in order to select targets
which are topologically closer. Each round of gossip is spa-
tially weighted according to the scheme proposed in [13],
using RTT as a distance metric in order to propagate

VM 1 \ - -
\‘ Region 1 (Amazon EC2 US East) Region 2 (Microsoft Azure EU) Region 3
Lookup Information '
Local -> {2,3} \‘
Region -> {18,23} -— -1 - - =1 - -1
Foreign -> {39,78,89,91} ‘I' | r | r |
|l | )
\ hy r ! | !
st i b I [ ‘ '
ore
| nE A B A
CPU Usage V | I | | |
2 ->54% ; | w A/ | w A |
3->82% 1 sub Region 1 | | sub Region2 , I sub Region 1 |
Sub Region 2 -> 82% _— === =_——_— = === = === ==l =====

Region 2 -> 37%
Region 3 -> 24%

Fig. 5 A more detailed example of the Varanus hierarchy

Key: = Intra-Sub-Region — Inter-Sub-Region — Inter-Region




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

updates to all VMs within distance d within O(log? d) time
steps.

This scheme results in increased memory usage and
constant background communication but achieves rapid
state propagation and resilience to churn and failure.

In order to best exploit the topology of IaaS clouds
different behaviours occur at each level of the gossip hier-
archy. The rationale for this hierarchy is rooted in the
differences between intra and inter cloud communication.
Within IaaS environments there are high bandwidth, low
latency and unmetered network connections. This is true
of virtually all cloud providers. It is also true of any private
cloud with a public network between cloud regions. This
environment lends itself to the use of an unreliable proto-
col for rapid and near constant state propagation. Between
cloud regions this is not as feasible, costs arising from
latency and bandwidth metering force communication to
be performed in a slower, more reliable fashion.

This gossip protocol, is applied at every level of the
hierarchy. What differs between each level is the informa-
tion which is communicated and the frequency at which
communication occurs.

1. Intra Group: communication between monitoring
agents within the same sub-region. This occurs at a
near constant rate. Each time an event occurs in the
coordinator or other Varanus service the coordinator
propagates the new state to its group. At this level of
granularity, the full state stored by the monitoring
agent is propagated to its neighbours.

2. Inter-Group: communication between monitoring
agents in different sub-regions within the same
region. This occurs at a frequent but non constant
rate. Periodically state is propagated to external
groups according to a shifting interval. At this level,
only aggregated values and a small subset of local
contacts and foreign contacts are propagated.

3. Inter-Region: communication between coordinator
processes in different different cloud regions or
datacenters. This occurs proportionally to the
inter-group rate. At this level aggregate values for the
entire region and subsets of the local and foreign
contacts are propagated between regions.

Some concrete examples of this communication hierar-
chy include:

e Configuration store lookup data. A full set of lookup
data is sent to hosts within the local sub-region, the
location of top level VMs are sent to sub-regions
within the same region and only the location of the
root VM is propagated between regions.

¢ Monitoring data collected by the collection service.
Raw data is sent to storage service instances in the
same sub-region, aggregates values of the sub-regions

Page 7 of 28

resource are sent to neighbouring regions and
aggregates of the entire region are sent to other
regions.

e Membership information. Full membership
information is propagated within a sub-region.
Between regions a subset of hosts in that sub-region
are propagated and between regions a small
sub-section of hosts in the region are propagated.

Consensus

In addition to the gossip protocol, the coordination ser-
vices makes use of a separate protocol for enforcing con-
sensus. This protocol is less frequently used than the
gossip protocol due to its additional complexity and over-
head. In the coordination service it is used for leader
election, consistent commits and the other services rely
upon it for a range of functions. The Varanus consensus
protocol is based on the Raft consensus algorithm [14].
Raft is used as it is comparable to Paxos in terms of perfor-
mance, but it more modern and is designed to be easier to
understand and debug in addition to having a wide range
of implementations. Raft uses a replicated state machine
approach to consensus similar to Paxos but is intended to
be simpler to understand and to implement. In order to
agree upon a single value, Raft employ a leader to enforce
consensus. The process of committing a value using Raft
is as follows:

1. A leader is elected from the pool of candidates.

2. The leader continuously broadcasts heartbeats to
followers. Follower use a 200—500 millisecond
heartbeat timeout which varies based on
acknowledgement time.

3. Followers respond to the heartbeat with an
acknowledgement.

4. A client submits a value to the leader.

5. The leader attaches the value to the heartbeat and
waits for acknowledgements.

6. Once the majority of VMs have accepted the value
the leader commits the value.

7. The leader then appends a notification to the
heartbeat to notify all followers of the agreed upon
value.

Should followers fail to receive a heartbeat it will
become a candidate, nominate itself and broadcast a solic-
itation for votes to all other VMs. Should a network
partition occur, the leader of the partition with the largest
portion of VMs will be able to commit. Other partitions
will not. After the partition ends, values are reconciled to
return all VMs to a consistent state.

Each stage where the leader or a candidate broadcasts
to all followers is performed using the Varanus gossip
protocol. Acknowledgements are more standard unicast



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

messages. Batches of commits and acknowledgements can
be compacted into single messages which reduces the
complexity cost of performing frequent commits. Despite
this, a single commit requires several rounds of gossip to
complete and as such is avoided in favour of plain gossip
wherever possible.

sub-region assignment
sub-regions are groups of related VMs within the same
geographic cloud region. Related is qualified by a num-
ber of factors including the software the VM is running,
the network distance and latency between VMs and the
behaviour of the VM.

sub-region assignment is done according to a dis-
tributed, weighted, k-nearest neighbour algorithm. Upon
instantiation the collection service daemon running on
each VM compute a feature vector which describes all
available properties including installed software, resource
usage, logical location and user provided metadata. This
vector is then pushed to the coordination service. A
default weighting is given in favour of installed software
and logical location (location in terms of cloud region and
in terms of network distance). This weighting is given as
the software the VM is running is the most likely factor
in determining the purpose and general behaviour of the
VM and location has the greatest influence on the cost
of communication. This scheme therefore preferentially
groups VMs running similar software which have few net-
work hops between them. The feature vector describes the
following, in order of importance:

1. Location. The location of the virtual machine down
to the smallest unit. The exact nomenclature is cloud
dependant but in general terms, this will correspond
to a data center, availability zone, region or other
abstraction.

2. Primary software deployed in the VM. Software that
the VM was deployed in order to provide, including
but not limited to web servers, databases, in memory
caches, distributed computation tools and so forth.

3. Seed information. Information provided to the VM
at boot time including but not limited to the id of the
stakeholder who instantiated the VM, hostnames and
addresses of common resources and user provided
annotations.

4. Secondary software, other than monitoring tools.
Software which supports the primary application or
otherwise adds additional functionality.

The coordination service computes an aggregated fea-
ture vector for each preexisting sub-region describing
properties common to all VMs within that sub-region.
Newly instantiated VMs fetch all relevant group’s aggre-
gate feature vector from the coordination service and

Page 8 of 28

perform a k-nearest neighbour to assign the VM to a
sub-regions. Should the distance between the VM and
existing sub-groups exceed an acceptable value or should
no sub-regions exist, the VM will form a new sub-region.
Periodically the coordination service recomputes the fea-
ture vector for each sub-region to ensure it best reflects
its membership. Should a the individual feature vector
of a VM differ significantly from its sub-region aggre-
gate it will perform a comparison against other relevant
sub-regions. After a delay, if no satisfactory sub-region can
be found, he VM will depart its sub-region to form a
new sub-region. If a sub-region remains underpopulated,
when compared to other sub-regions, its members will dis-
band and join the other sub-regions. After a repeat of this
process, VMs will cease forming new sub-regions for an
exponentially increasing length of time in order to pre-
vent an infinite cycle occurring. This grouping scheme
attempts to group related, nearby VMs based upon the
assumption that monitoring state is most valuable to VMs
similar to that from which the state is collected. Varanus,
which is based upon this scheme, is therefore primarily
concerned with the distribution of monitoring state to
other VMs and places delivering state to human users as
a secondary concern. This is pursuant to Varanus being
an autonomic monitoring framewo sub-region rk and is
motivated by the ability of software to make effective use
of large quantities of near real time monitoring state (as
opposed to humans’ lesser capacity).

Membership

Keeping track of membership of a large scale system
requires significant message rates. A number of schemes
have been proposed in peer-to-peer literature [15-18]
which provide mechanisms for disseminating and main-
taining membership state at each peer. Varanus, however,
aims to be unobtrusive and have limited effect upon mon-
itored VMs. As such, the coordination service makes no
effort to maintain a consistent global view, or anything
approaching a global view. Rather, the coordination ser-
vice local to each sub-region tasks itself with tracking full
membership of that sub-region and maintains two addi-
tional member sets storing minimal membership state
of sub-regions belonging to the local region and remote
regions respectively. These sets are referred to as local
contacts and remote contacts.

This scheme provides a means for the coordination ser-
vice to locate related VMs quickly, only requiring them to
consult their own state store. Meanwhile, should the need
arise to communicate with monitoring agents in other
sub-regions, lookup can be achieved in constant time via
the local and remote sub-region contacts. This scheme
also allows a global view to be built, if necessary, with
relative ease.



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

Newly joining VMs register their membership by gos-
siping with the coordination service in that sub-region.
This in turn will eventually announce that VMs presence
to other sub-regions.

Role assignment

Each VM runs a coordinator instance, however not
all instances perform the same functions. Coordinator
instances within a sub-region can be assigned one of three
roles:

1. The leader is responsible for committing values to
the mutable configuration store and ensuring its
consistency. Similarly the leader enforces agreement
amongst its sub-region. It also serves as the broker
for events and holds a portion of the configuration
store. It is elected using the consensus mechanism.

2. Failovers are participants which serve as hot standbys
should the leader fail or elect to stand down.

3. Participants store portions of the configuration store
and take part in agreement.

4. Reserves receive event notifications and other
message and are able to become participants but take
no active role in the coordination service until they
do.

The leader is assigned using the standard agreement
mechanism from the pool of participants. The election
considers load average as the worthwhile value, the ini-
tially elected VM is the VM with the lowest load average.
Participants also nominate themselves based upon load
averages. If a VM is heavily loaded it can opt to become
a reserve and take on no additional work that could affect
its performance. If the leader or a participant encounters
a sustained period of load it can opt to become a reserve.
In this case all Varanus services other than the collec-
tion service must migrate their state to alternative hosts
(unless already done so). If all available hosts are acting are
reserves, Varanus cannot operate correctly. In this situa-
tion Varanus require additional dedicated VMs in order to
provide monitoring functionality.

Regions and clouds also have leaders. region leaders are
nominated from a pool of sub-region leaders and cloud
leaders are nominated from a pool of region leaders. This
allows configuration storage, agreement and other func-
tions to be performed across sub-regions is necessary. The
mechanisms which govern how region and cloud leaders
operate is the same as sub-region leaders.

Configuration store

While Varanus attempts to be autonomic, providing mon-
itoring services with as little human interaction as neces-
sary, it still has a need for configuration data. Archetypal

Page 9 of 28

design advises the use of configuration files that use a
standard format such as XML, YAML, .cfg or .ini. This
design requires either a human or a program to write the
file and raises a number of potential issues regarding file
versioning and consistency. While this design can be suc-
cessfully used (we employ this design in the collection
service in order to integrate existing software) it is best to
avoid it entirely and employ a design which lends itself to
programatic (and thus autonomic) configuration. This is
the role of the configuration store.

This portion of the coordination service lends itself to
direct comparison with Zookeeper, etcd and other ser-
vices. Unlike these other tools the Varanus coordination
service is fully decentralised and designed specifically to
support a single set of services. This allows the configura-
tion store to be vastly simpler than other general purpose
services and potentially more robust.

The configuration store is comprised of several individ-
ual stores. Each level of the communication hierarchy has
its own configuration store. There is:

1. A cloud wide store which stores values relevant to
every VM in the cloud.

2. A region wide store which stores values relevant to
every VM in the region.

3. A sub-region wide store which stores values relevant
to every VM in the sub-region.

Each store is managed by the leader of the respec-
tive level in the hierarchy. Leaders pass commits down
the hierarchy until the value is committed to partici-
pants within a sub-region. Thus, a value committed to
the cloud store will be replicated in every sub-region,
a value committed to the region will replicated in sub-
regions belonging to that region and the sub-region store
has no replication beyond that sub-region.

Each store both in the hierarchy has an independent
keyspace. The keyspace of each store is hierarchical and
resembles a UNIX filesystem as shown in Fig. 6. The store
supports three types of node: directory nodes, data nodes
and immutable data nodes. Each keyspace has a top level
root node which subsequent nodes are created under.
Data nodes can either be top level or can be children to
directory nodes. Directory nodes can also have directory
nodes as children. Directory nodes provide two opera-
tions: get and delete. Get returns a list of known children
and delete removes the node and any children. Mutable
data nodes provide four operations to clients: get, update,
delete and watch. Get returns the value, update updates
the value of the node, delete removes the node and watch
registers a client’s interest in that node such that on a value
change an event is raised and sent to the client. Immutable
data nodes are regular data nodes which only support the
get operation.



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX Page 10 of 28

load_avg load_avg i-12345

traversal

Fig. 6 The filesystem like structure of the configuration store. Circles denote directory nodes, rectangles denote data nodes and hexagons denote
immutable data nodes. In this case the root directory node has not yet been associated with the “app2-key” node, preventing it being found via

Consistency is the motivation behind the dichotomy
between mutable and immutable data nodes. As the
immutable nodes do not support modifying existing val-
ues there is no need to employ any complex consistency
protocol to ensure that all copies of that value are kept
consistent. Adding immutable nodes to the store can be
performed by any participant (where as mutable values
can only be committed via the leader) and can make use
the the previously described gossip protocol to quickly
disseminate state to other participants. The mutable data
nodes and directories meanwhile, allow deletion and allow
values to be updated and to avoid inconsistent configura-
tion requires the use of an consistency protocol. For muta-
ble values the store makes use of the Raft based consensus
mechanism. As per all consistency algorithms, RAFT is
significantly slower than the Varanus gossip algorithm.

Immutable nodes can be created without modifying
directory nodes. If this is done, the list of children pro-
vided by the parent will not include the immutable node.
This is acceptable if the immutable node’s key is known,
otherwise this is problematic as clients will be unable to
locate the node. This can be rectified by updating the
directory node which, while more costly than creating
the immutable node, is less costly than creating a muta-
ble node. Updates to the directory node can be done in
batches to allow numerous immutable nodes to be created
before the directory is updated in a single operation.

Both the mutable and immutable nodes use the same
strategy for determining replica placement. Replication is
orientated around sub-regions. Three factors are used in
determining replication locations:

1. Load average, highly loaded hosts are avoided while
underloaded hosts are preferred

2. Uptime. All VMs are eventually terminated and often
termination occurs in batches. It is therefore
advantageous to distribute keys over hosts which
have a range of up times so as to potentially avoid all
replicas being terminated simultaneously.

3. Previous keys. So to avoid a overly skewed
distribution of keys the number of current keys
stored by each host is considered and hosts with
fewer keys are preferred as replicas.

Priority is given to load average, pursuant in the goal of
Varanus being unobtrusive. The coordination service will
attempt to identify K replicas (where K is a user defined
value stored by the configuration service, defaulting to
3) within a sub-region which are uniformly distributed
throughout the range of up times which have not been
overloaded and have fewer than half of the keys assigned
to the most significant replica. If the coordination service
cannot find K replicas which satisfy these criteria it will
relax the need for a uniform distribution and accept repli-
cas with more than half the number of keys that the most
significant replica stores. If it still cannot satisfy those
requirements it will relax them further, until a suitable
arrangement can be found.

Each coordinator maintains a lookup table for values
within each store. Each participant within a sub-region
periodically gossips a subset of keys which it is cur-
rently responsible for. Keys are chosen uniformly at ran-
dom. Every other node in that sub-region receives those
messages and updates its lookup table. A timeout, pro-
portional to the average time between updates and the
number of keys in the sub-region is used to remove stale
entries.



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

The configuration store is intended to store small (less
than 4KB) items. The store is intended to store config-
uration strings and data necessary for the coordination
service to function. Larger data sets, such as full moni-
toring data is committed to the storage service which is
optimised for the storage of greater volumes of time series
information. The information that the configuration store
is intended to store includes:

® 15 minutely load averages for members. This is used
for leader elections and for replicas.

e Configuration strings, for example the key-value pair:
"n_replicas=3".

e The location of the leader and participants

Failure detection

Failure detection is provided by a gossip based Phi Accrual
algorithm [19], using a similar scheme to Apache Cas-
sandra. Heartbeats are propagated between coordinator
processes via a gossip protocol at a regular interval. Rather
than providing a boolean failed/alive value, the phi accrual
failure detectors provides ®, a value signifying the like-
lihood that a given VM has failed. ® is derived from a
sliding window of heartbeat intervals. The failure detec-
tor calculates the mean, median and variance within the
window and builds the resultant exponential distribution
which is used to compute ®. This differs from the original
Phi Accrual design which used the normal distribution as
the exponential distribution better tolerates the variable
latency of the gossip stream. This algorithm is beneficial
for cloud environments whereby there is often consid-
erable variance in network performance. If the network
performance degrades the resulting averages and variance
will increase resulting in a longer period than previously
for the value of ® to rise. When the ® of a given VM
exceeds the a predefined threshold that VM is considered
to have failed by the detecting VM. The detecting VM
first checks using the cloud provider’s API if the failed
VM has been terminated, if it has indeed been terminated
it announces this to other VMs and no further action is
taken. If, however, the VM is still declared as running by
the cloud provider then the detection VM initiates a round
of consensus in order to agree upon the failure. If con-
sensus is reached, the VM is declared failed and action
can be taken to mitigate that failure. If agreement can-
not be reached it is therefore the case that some VMs
are not receiving heartbeats while others are. This indi-
cates the presence of some form of network partition or
other Byzantine failure. One of the strengths of the RAFT
consensus algorithm is the inbuilt ability to detect net-
work partitions and still operate in spite of them. Thus,
if a round of agreement is initiated and there is indeed a
network partition, so long as their is a majority of VM in
one partition, the VMs that can still communicate with

Page 11 of 28

each other can still reach consensus regarding the fail-
ure. The default action for failed VM (including VM that
are divided by partition) is to terminate them and replace
them with correctly functioning VMs.

For optimum failure detection, every VM should sub-
scribe to the heartbeats of every other VM and calculate
the appropriate ® value. This is ill advised for a number of
reasons: firstly it would result in significant computation
at each VIM and secondly would require heartbeats to be
propagate across cloud regions. Heartbeats, are instead
propagated according to the previously described gossip
hierarchy. The full set of heartbeats are propagated within
sub-regions, a subset are propagated within regions and
a smaller subset between regions. It is subsections, not
aggregates that are transmitted at higher levels of the hier-
archy as aggregates would be of little value and would
not be appropriate for the Phi Accrual algorithm. Subsec-
tions are still, however, propagated at a decreasing rate as
accorded by the hierarchy. The Phi Accrual algorithm per-
fectly tolerates slow but constant heartbeats and as such is
unaffected by a slowed rate of propagation at higher levels
of the hierarchy. The size of the subset that is propagated
between sub-regions and regions is dependant upon pre-
defined configuration. Propagating heartbeats between
sub-regions doesn’t particularly aid in failure detection, as
gossip messages are propagated faster within sub-regions
inevitably failure will be detected there first. What prop-
agated gossip messages does achieve, however is deter-
mining if a network partition has occurred between layers
of the hierarchy. Unlike in the case of failure detection
with a sub-region, terminating VMs is unlikely to resolve
this issues but detection can allow alternative action to be
taken.

Events
Coordinators and other Varanus services may have pro-
longed interest in values stored in the configuration store
or may need to take special action should a VM fail or
other phenomena to occur. One approach to this prob-
lem is to continuously poll the values or VMs in question
and take action should the result of that polling change.
This approach consumes unnecessary cpu cycles and
bandwidth and risks becoming intrusive. In lieu of this
approach Varanus employs an asynchronous event system
which can be used to alert watchers as to value changes as
serve as the basis for an event based programming model.
Varanus events are immutable associative arrays which
contain a number of fields which describe the event in
detail. The Varanus event formats is shown in Fig. 7.
Events can either serve as a notification, such as in the
case of watchers whereby the arrival of an event trig-
gers a callback, or a means to encode state and invoke
remote computation. Actors can be propagated via plain
unicast or using the gossip protocol. Events are discussed



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

Field Purpose

Host the hostname or IP address that
the event pertains to

Origin the source of the event if differ-
ent that the host it pertains to

Subject the subject of the event, used for
pub-sub event distribution. Sub-
scribers subscribe to subjects.

hline Id a unique identifier for the event

Service the service or application
that the event pertains to e.g.
Apache, System, MySQI etc

Type the type of event, used to spec-
ify actors

Value the value relevant to the event

Timestamp the time the event was pro-
duced, used in conjunction with
the Id to determine the lifespan
of messages

Tags (Optional) an unordered list of
key-value pairs for providing
additional data

Preprocessor | (Optional) the name of a Quince
actor to invoke before handling

Arguments (Optional) an ordered lists of
parameters for the preprocessor

Fig. 7 The Varanus event format

with regards to computation and analysis in section 1.
Events are distributed over the existing coordination ser-
vice infrastructure and therefore serve as a lightweight
loosely coupled message service, they are used by the anal-
ysis service to encode intermediate computation and by
other services to notify components of configuration and
status changes.

Varanus collection service

Monitoring fundamentally entails the observation of
behaviours which occur within a system. Most data collec-
tion tools, the Varanus collection service included, consist
of a small daemon which regularly collects state and trans-
mits it to a remote host for storage and processing. What
differs about the Varanus collection service is its ability to
perform on the fly reconfiguration and alter what data is
obtained and the frequency and granularity at which it is
captured.

A single VM has no shortage of values and behaviours
which can be monitored. In the typical use case inter-
est focuses around a limited number of values, these
are primarily performance factors (cpu, memory, trans-
actions, requests etc), application behaviours (error rates,

Page 12 of 28

logs, status codes etc) and user behaviour (click through
rates, time per page etc). There are additional sources
of potentially valuable monitoring data which vastly out-
number the typically collected data. Virtually all changes
in memory or on disk and all network activity can be valu-
able. Be it for diagnostic purposes, intrusion detection or
another more specific motivation. Capturing the full range
of potential metrics is, however, all but impossible. The
computation required to collect all possible metrics would
outstrip all other applications and much of the data may
be of no practical use for a given use case. Therefore best
practice is to collect a subset of the possible metrics which
are most appropriate to the monitoring system’s use cases.
A monitoring system has a wide range of use cases and
the importance of a given use case may change dependant
upon the state of the system. For example if a system is suf-
fering from widespread failure which is preventing user’s
accessing a service, diagnostic metrics increase in impor-
tance while use metrics decrease. Situations may also arise
where it is advantageous to have data collected at a shorter
interval or at a different level of precision. It is therefore
important to provide a flexible mechanism to collect mon-
itoring state that befits the current set of use cases. The
Varanus collection service aims to be such a mechanism.
The collection service considers three types of monitoring
data that can be obtained:

e Metrics, numeric values typically representing
performance

® Logs, debugging data, service codes and other textual
data which describes events or behaviours

Just as there is no shortage of state to collect, there is no
shortage of tools to perform the collection. Nagios, Gan-
glia, Zenoss, Amazon CloudWatch, DataDog, New Relic
and many more tools replicate near identical functional-
ity which obtains metrics from a host. Many of these tools
rely upon the same low level APIs and tools to obtain said
data and given the relative lack of options to obtain cer-
tain types of data, any attempt to design a new tool would
inevitably repeat the functionality of past tools. For exam-
ple, the venerable Apache HT TP server provides a handful
of ways to obtain its internal state, developers are lim-
ited to parsing log files or parsing the output of a status
page (provided by mod_status). Furthermore, the strength
of many well adopted data collection tools are the plugin
architectures and vast plugin libraries that enable existing
tools to obtain data from new applications. It would there-
fore be foolhardy to eschew existing data collection tools
however existing tools are not without their shortcom-
ings. The vast majority of current tools rely upon manual
configuration and are not interoperable by default. Fur-
thermore many data collection tools can be discounted
due to their plugin architectures being little more than



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

a myriad of shell and Perl scripts which are difficult to
maintain and autonomically deploy.

From the vast pool of potential tools, the Varanus col-
lection service uses collectd, a well established data col-
lection daemon with an extensive plugin library, to obtain
data from the OS and applications. collectd is an ideal
basis for building a more complex data collection tool as
it has a small footprint (in terms of resource usage and its
size on disk), has a wide range of plugins, an active devel-
opment community and a simple, well designed architec-
ture. The design of collectd is orientated entirely around
plugins. The core of collectd does very little, its primary
function it to invoke plugins which obtain data and then
to invoke plugins which stores or transmits that data.
Exactly which plugins are invoked, what data is collected
and where it is transmitted is determined by a configu-
ration file. This limits the effectiveness of collectd as an
autonomic tool and necessitates a human or an external
service provide this configuration. In large deployments
it is common place to use Chef, Puppet, Salt or an alter-
native automation tool to install and configure collectd
instances. For deploying and managing a monitoring tool,
itis undesirable to have external dependencies as it is most
desirable to ensure that the monitoring tool continues to
function despite the failure of external services. It is for
this reason that the collection service manages the con-
figuration of collectd with no dependency other than the
Varanus coordination service.

The collection service consists of two components: a
collectd instance and a configuration generator. Addition-
ally collectd uses a bespoke plugin which allows collectd to
communicate data to the storage service. Collectd uses a
unicast protocol to communicate directly with the appro-
priate storage service instance. The architecture of the
collection service is depicted in Fig. 8.

The configuration generator is intended to solve two
problems: generating the initial configuration for collectd
which is appropriate for the software and services oper-
ated by the VM and secondly updating configuration to
alter data collection as requirements change. In order to
initially generate the necessary configuration for collectd,
the config generator pulls down the set list of metrics
and rate of collection from the configuration store. The
configuration generator then outputs the necessary con-
figuration in the collectd format and begins the collection
process. The coordinator instance running on the VM
passes any relevant events, such as updates to collectd
configuration to the configuration generator. This allows
Varanus to alter the rate of collection and change what
metrics are collected.

The storage service
The industry standard tool for storing time series data
is RRDTool [20], a circular buffer based database library.

Page 13 of 28

A typical RRDTool deployment will have a small num-
ber of variables stored per RRD database file. As a central
responsibility of Varanus is the storage of time series mon-
itoring data one might initially consider the use of rrdtool.
There are however a number of limitations which reduce
the applicability of rrdtool to Varanus and its intended use
cases.

e When used as a backend for a monitoring tool an
update to an rrdtool database typically occurs when
fresh data is collected. An update involves multiple
disk reads and writes to the header and archives
within the database and if consolidation occurs there
are additional reads and writes. As the number of
databases increases and as the delay between updates
decreases the IO load increases. This load is tolerable
for hundreds of rrdtool databases however as this
number increases to thousands, IO load becomes
problematic. Users of medium to large scale systems
report? 3 that IO load can result in rrdtool falling
behind on writes, resulting in the database failing to
represent recent monitoring data. This has lead to
the development of various caching solutions which
feed data to rrdtool, a Java reimplementation of
rrdtool and a range of strategies to optimise rrdtool
to reduce IO load.

e rrdtool does not allow updates with a timestamp
earlier than the most recent updated. In a monitoring
tool such as Ganglia where there is a hierarchical
structure that provides an ordered stream of time
series data this is not a major limitation. In alternative
schemes where monitoring data is replicated between
multiple locations or where data is collected
according to a best effort mechanism this can be a
significant issue. If, for example, network latency
resulted in the out of order delivery of monitoring
data those older values would be discarded. This
limitation also prevents historical data from being
imported, unless it is done so prior to other updates.

¢ rrdtool databases are created with a given time step:
the interval at which data is committed to the
database. Data which is committed to rrdtool during
each time step is interpolated and a single value is
store for the given time step. Unless data arrives at
the exact time step (a virtual impossibility) an
interpolated value is written to disk. Thus, any use
case which requires the actual value as collected is
incompatible with rrdtool. If no data is committed to
the database during a time step or if an insufficient
data is committed within a given time step in order to
perform interpolation the update for that step
contains an "UNKNOWN" value. If a data source
creates data at an irregular rate and a rrdtool is
configured with a large time step, data will be lost and



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

Page 14 of 28

Varanus
Configuration
Store

*

Obtain configuration

]
Varanus Events, Configuration
Coordinator e g. update e Generator
Instance config |

Generate Config File

{

Configuration

configuration as appropriate

<= reads

Fig. 8 The collection service. The configuration generator obtains a list of metrics and frequencies from the Varanus configuration store and
generates the resulting collectd configuration. Collectd is then started and obtains state via its plugins and pushes state to the Varanus storage
service through the use of a bespoke network plugin. Should a use case require additional metrics or an alternative frequency of collection then an
event can be dispatched via the coordination service which will in turn be passed to the configuration generator which will update the Collectd

Varanus Storage Service Instance

t

Push over network

Varanus
Plugin

2

Metrics and events

Collectd Core

CPU
Plugin

Unix Socket
Plugin

}

Application Metrics

Applications

Apache
Plugin

Memory
Plugin

redundant "UNKNOWNS" will be stored in the
database.

e rrdtool is first and foremost a storage format, it is not
intended to support in memory process of monitoring
data. All processing of monitoring data (such as
threshold or trend analysis) must be done prior to or
after data is committed to disk. The use case rrdstool
is optimised for is graphing and it does this extremely
well. Modern monitoring use cases however go
beyond simple graphing and necessitate a much wider
range of processing, this requires greater support for
in memory storage than what stock rrdtool provides.

There are a number of plugins, patches and mitiga-
tion strategies that can make rrdtool more appropriate
for cloud monitoring. While the concept of a fixed sized
circular buffer database is an ideal format for storing
time series data elements of the design of rrdtool, (espe-
cially the concept of a fixed update schedule and a heavy
reliance upon IO) are a poor foundation for a scalable,

elastic monitoring tool. We therefore propose an alter-
native circular buffer based storage mechanism which
replicates a subsection of rrdtool functionally while mak-
ing design decisions that make it more appropriate to
cloud monitoring.

BufferTable

BufferTable is the Varanus storage system. BufferTable is
a distributed hash table which associates a source id and
metric id with a family of circular buffers. BufferTable is
intended to store metrics and status codes/log/event data.
As such the buffer that the family maps to varies with the
format of the data.

BufferTable is an in memory data structure primarily
intended to facilitate the analysis of monitoring data with
each buffer family having a fixed memory footprint, per-
sistence is achieved through a database or flat file backend.
Each within a sub-region is eligible to run a BufferTable
instance. BufferTable uses the same election mechanism



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

which the coordination service uses to determine the role
each coordinator plays.

BufferTable instances (like all of Varanus) are orien-
tated around sub-regions. BufferTable instances distribute
buffer families over the VMs within a sub-region in order
to store more data than a single host can accommodate.
Participants are designated as BufferTable hosts if they are
not fully loaded and have less than 75 % memory usage.
Preference is given to hosts which have the least load and
memory usage. BufferTable instances report their location
via the configuration service’s configuration store. A ded-
icated directory in the configuration store provides the
locations of the BufferTable instances responsible for all
collected data. The source id and metric id are used to
order the directory structure. This provides the means
for collectors to identify where to push state to and from
where the analysis service consumes state. Collection ser-
vice instances are assigned BufferTable instances to push
state to on a least loaded basis.

BufferTable is indexed by a source id which contains
the IP address or fully qualified domain name of the
host that the metric pertains to and a metric id which
identifies metric (e.g. CPUPercent, MemFree, MariaDB-
Transactions etc). This facilitates constant time lookup
for obtaining all metrics associated with a given host, all
metrics associated with a given id and a single metric iden-
tified by a source id, metric id pair. The BufferTable does
not store single circular buffers, but rather buffer families.

A buffer family is a collection of circular buffers which
store time series data for a single variable. The variable
can either be in the form of a floating point value or a
string. The former is used for performance data, resource
usage and statistics while the latter is use for representing
service check results, logs, events and other non numeric
data. In both cases the buffer family consists of a series
of buffers appropriate to that data type. The first buffer
within the family is the receiving buffer, which stores
metrics as they are received from monitored hosts. Sub-
sequent buffers in the family are aggregate buffers, these
buffers store aggregated metrics representing the value
over a given time period. Each aggregate buffer stores data
for a given interval with each additional buffer storing
aggregate for a greater time period than the previous. The
user can provide intervals, via the configuration service,
for aggregate buffers on a per metric basis or provide a sin-
gle default set of intervals. A typical scheme might be as
follows, the receiving buffer followed by aggregate buffers
with a 60 s, 5 min, 10 min, 30 min and hour long periods.
Values are aggregated from one buffer to another when
either a buffer is full or when by a scheduled task running
which runs at the frequency of the subsequent buffer. In
the eventuality that a buffer has reached its capacity but
the time range of data within that buffer does not extend
to the interval of the subsequent buffer an interim buffer is

Page 15 of 28

created with an intermediate interval. This interim buffer
persists until data can be directly aggregated from one
buffer to the next.

In the case of the floating point buffer family aggrega-
tion is quite simple. Floating point metrics can be using
a mean, median, modal, max, min, last, first or by a user
defined method. In the case of string data, aggregation
is far less simple and require a user defined method.
User defined methods for both types of data are provided
by Quince actors, described in the analysis section. The
motivation for providing a method to aggregate string
data is in order to preserve relevant logs, events and other
textual data, which may have future use, beyond the aggre-
gation interval of the receiving buffer. Full, unaggregated
log storage is beyond the purview of BufferTable as it pri-
oritises recent data over older data. Numerous log storage
systems including Splunk, Logstash and syslog-ng exist
which can store logs indefinitely. Much how BufferTable
can push state to a database or flat file, so too can it be
configured to commit state to a log storage facility.

Chronologically ordered metrics can be inserted into
the ring buffer in constant time. An out of order metric
is entered into the ring buffer using a binary search to
locate the index which falls within the appropriate time
period, separates the buffer into two slices at that index,
appends the metric to the lower slice and then appends
the upper slice. This results in a O(logn) performance for
out of order inserts.

A BufferTable instance is provided with an upper mem-
ory bound which it will not exceed. When instantiated
the BufferTable is empty. Buffer families are created
when metrics are submitted to the the BufferTable. Ini-
tially, buffer families are created with an equal share
of the BufferTable’s allocated memory. Within a buffer
family, memory is allocated to buffers in a logarithmi-
cally decreasing manner from the receiving buffer to the
final aggregate buffer. If buffers with larger intervals are
empty, their capacity is subdivided amongst the preceding
buffers. Should a buffer family reach its assigned capacity
it will employ a LIFO strategy whereby aggregated metrics
from the final buffer will be discarded. To avoid the loss
of these metrics, a persistent storage mechanism must be
used as timely collection and analysis of monitoring is the
primary use case of Varanus and not long term storage.

Varanus analysis service

The large set of potential monitoring use cases necessi-
tates analysis tools which provide a vast range of function-
ality. MapReduce has long been cited as the killer appli-
cation of cloud computing and has become the de facto
means of expressing data intensive computation. MapRe-
duce was however intended for batch computation and as
such gives no time guarantees nor does it guarantee that
data will be used as soon as it is available. This has led to a



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

range of MapReduce and MapReduce-like services which
attempt to support real time computation. The most pop-
ular of these is Apache Storm. Storm, MapReduce and
indeed most other tools of the domain are intended to
run over arbitrary clusters and are not indeed to run on
shared use hosts. This makes the use of MapReduce and
its contemporaries inappropriate in Varanus as it is built
around the goals of resource awareness and being sec-
ondary to other applications running on VMs. Rather than
attempting to develop yet another MapReduce implemen-
tation which meets the goals of Varanus it is preferable
to instead provide a means to export Varanus state to
an existing MapReduce implementation, if MapReduce is
indeed required.

In lieu of MapReduce, Varanus exposes an alternative
processing framework which is better suited to analysing
monitoring data. The primary means of analysing moni-
toring state in Varanus is Quince * an event based pro-
gramming model which in the same vein as other Varanus
services, distributed computation over the entire cloud
deployment. Quince is intended to allow developers to
build upon Varanus and to develop new features and
implement autonomic failure detection and correction
strategies. The actor model was chosen as it maps well to
the underlying Varanus architecture and allows actors to
be relocated and message routing to be altered according
to resource usage, membership change and other phe-
nomena with ease, where as other concurrency models
would not support this as easily.

Quince

Quince is an event based programming model to support
real time monitoring data analysis and the development
of autonomic workflows. Quince expresses computation
in terms of events and actors which process those events.
The actor model is a well researched model of concur-
rent computation which is now seeing application in the
cloud domain. Actors provide a high level, location inde-
pendent model of concurrent programming which scale
out and scale up with relative ease. Actors, therefore make
an ideal basis for facilitating various forms of autonomic
programming.

Quince exposes three units of computation to end users:
sensors, events and actors. The user expresses their com-
putation in the form of sensors, which generate events
and actors, which consume events. This orchestration is
intended to facilitate autonomic programming with the
sensor and event-actor chain intended to directly map
to the monitor-analyse-plan-execute autonomic pipeline.
Additionally, while more batch computational models
such as MapReduce support only acyclical workflows,
Quince has no such limitation making it a superior choice
for real time processing.

Page 16 of 28

Sensors are written by the user and run not as part of the
analysis service but rather as part of the storage service.
Sensors are associated with values in the storage service
and run periodically when values are updated. Should val-
ues in the state store meet the conditions specified in a
sensor be met an event is generated. Sensors provide a
means to regularly check conditions and trigger an event,
for use cases where regular checking is not needed events
can be generated without a sensor. This allows events to be
generated natively within applications, rather than having
a sensor check state collected from the application. Not all
use cases however require a sensor, nor a complex event.
The sensor is, therefore, entirely optional. Actors can be
called though a simple API call via any software. Addition-
ally events can empty aside from the type field, allowing
events to serve as simple messages to call actors.

Once events have been generated they are then dis-
tributed. Event distributed occurs in one or more of the
following manners:

1. Local handling, the event is passed to an appropriate
actor (if one exists) at the local Quince runtime.

2. Direct delivery, the event is sent to one or more
specifically designated hosts. Hosts are designated by
the coordination service. By default the least loaded
hosts are prioritised for direct distribution.

3. Propagation, the event is propagated to to the entire
deployment or logical subgroup via a hierarchical
gossip broadcast.

These three distribution mechanisms allow events to be
processed locally for efficiency, sent to a dedicated event
processing instance for consistency or propagated over
the deployment to perform complex, distributed tasks and
analysis.

Actors are also written by the end user and are called
when a Quince runtime receives an event appropriate to
the actor. If an event is received and no appropriate actor
is present the Quince runtime will either disregard or for-
ward the message according to what is specified in the
event. When invoked the matching actor will decode the
event, perform their prescribed action and optionally gen-
erate an additional event. This allows for the creation
of event chains, whereby a string of actors are invoked
though the use of intermediate events.

In addition to regular actors Quince provides the notion
of preprocessors. Preprocessors are invoked by being
specified in the preprocessor event field and are called
before the regular actor. The result of the preprocessor, if
any, is what is passed to the regular actor. Preprocessors
are otherwise identical to regular actors, differing only in
their method of invocation. Quince by default, provides
three preprocessors:



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

1. Aggregate. The aggregate actor takes two
parameters, a delay and a aggregation method
(count, max, min, medium, mode or sum). All events
received from the initial invocation until he delay has
elapsed are aggregated according to the specified
method and a single event is produced as a result.

2. Filter. The filter actor takes two parameters, an event
field and a search pattern. If the search pattern does
not match the given field the event it is discarded. In
addition to regular expressions the pattern can
search for the special values last and expected which
correlate to state store values representing the
previously recorded state and the normal state.

3. Redirect. The redirect actor takes an argument
specifying which distribution method (listed above)
to redistributed the message on.

By combining actors and preprocessors developers can
create powerful event chains which can detect notable
states and phenomena and in turn implement corrective
action. The primary motivation behind this problem is
to provide a scalable, distributed means to execute mon-
itoring workflows. Using this programming model it is
near trivial to implement basic monitoring practices such
as threshold checking and feasible to implement complex
autonomic monitoring workflows.

Actors in Quince are not bound to a physical host,
Quince actors exist in virtual actor space an abstraction
which maps a sub-region. Individual actors are instan-
tiated within the actor space and are identified by 3
values: a type signature, a instance ID and locator, signi-
fying the VM currently hosting the actor. In the virtual
actor space, at any given time, there can be zero, one or
many instance of an actor. Serialised actors are stored as
immutable objects within the coordination service config-
uration store and are instantiated when necessary. Actors
are dynamically loaded when an event handled by a non-
instantiated actor is raised. Actors are instantiated to
hosts according to the least loaded strategy used through-
out Varanus. The hosts which act as Quince runtimes
and which have instances of each actor in the system are
announced via the configuration store.

Computation placement

While most current actor implementations provide loca-
tion agnosticism, whereby actors are invoked locally or
remotely using the same semantics, most do not decouple
the actor from an endpoint. Current actor schemes pre-
dominantly rely upon hardcoded URIs or some external
lookup service such as DNS or JNDI to provide a URI
This scheme ties actor instances to a specific host and
requires all clients to update their URIs in the case of fail-
ure or configuration alternation or rely upon some form
of indirection. This is non ideal and runs contrary to the

Page 17 of 28

notion of rapid elasticity and simple horizontal scaling. As
the hosts which comprise a cloud deployment are prone
to rapid (and possibly frequent) change it is not preferable
to have actors tied to a specific host. Rather it is prefer-
able to have actors able to move between hosts and sets of
hosts transparently and encapsulate this into the existing
notion of location agnosticism.

Unlike previous actor implementations actors in Quince
are not bound to a physical host. Quince actors exist
in a stage otherwise known as a virtual actor space an
abstraction which maps to the underlying resources which
comprise the cloud deployment. Individual actors are
instantiated within the actor space and are identified by
3 values: a type signature, a instance ID and locator, sig-
nifying the VM currently hosting the actor. In the virtual
actor space, at any given time, there can be zero, one or
many instance of an actor. The virtual actor space maps
to the underlying resources. Specifically it maps to two
locations: an actor store and the Quince runtime.

The actor store is any data store which supports the
hosting of packaged code archives (which is virtually all of
them). In our implementation the actor store is provided
by a Kelips [18] like DHT which is also hosted by the VMs
within the deployment. The actor store could, however,
be an external database or service such as Amazon S3 or
equivalent. Non instantiated or cold actors reside in the
actor store until required. They are dynamically loaded
when a request to a cold actor is issued. In our implemen-
tation this is achieved through Scala/JVM dynamic class
loading which fetches the respective jar file containing
the packaged actor front the actor store to an appro-
priate VM, instantiates the actor and then handles the
incoming request. Instantiated or /ot actors are hosted by
Quince runtimes which reside upon each VM within the
deployment. This scheme could also allows for hot actors,
including their state to be serialised to the actor store.

Actors are instantiated on specific VMs within the
deployment based upon demand. Due to the manner
in which actors express computation and the message
passing therein, parallelising and concurrently executing
actors is incredibly simple. For this reason, it is trivial
to have multiple independent actor institutions on the
same or on multiple hosts. The mechanism which decides
where and how many actors to instantiate is the actor
coordinator. The coordinator runs as part of each runtime
and is itself an actor, as such it can be easily substituted
for alternative implementations. The default coordinator
decide where and how many actors to instantiate based
upon four factors: the number of events per second cur-
rently being generated, the historical volume of events,
the response time of current actors and resource usage
of VMs within the deployment. All of this data is made
available via the Varanus monitoring tool. The coordina-
tor uses this state in conjunction with a series of simple



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

linear regressions to estimate the appropriate number of
actors.

As actors can be moved or terminated there is need
to maintain knowledge of the location of actors. Quince
tracks the location of actors by distributing a lookup
map to each runtime which specifies the current loca-
tion of each instantiated actor. Each Quince runtime
maintains a map (in our implementation this is a Guava
multi map) which maps actors to endpoints which host
actor instances. New actor instantiations register them-
selves with the local runtimes’s map which is then dis-
seminated to all other runtimes within the deployment.
Similarly actor instances on VMs which are undergoing
termination mark themselves in a tombstone state prior
to termination and then eventually expunged from each
runtime’s lookup map. If the VM fails or is unable to reg-
ister the termination it then becomes the prerogative of
the failure detector to remove the dead actor from the
lookup map.

The lookup map is disseminated and kept consistent
between all runtimes either via a pub-sub for client run-
times or gossip scheme for actor hosting runtimes. Both
these methods of synchronisation achieve eventual con-
sistency, therefore there is the possibility that calls may
be made to no longer existing endpoints or runtimes may
not yet be aware of newly instantiated endpoints. Again,
the circuit breaker mechanism is intended to lessen the
significant of this issue.

The mechanism described above affords Quince the
mean to instantiate, terminate and move actors on an
ad hoc basis. What is required to use this mechanism
is a policy that stipulates where actors are placed and
when to change their placement. In the current Quince
implementation this is achieved through a simple heuris-
tic approach. Quince deployments are instantiated with
a heuristic map which associates a given condition with
an action. This map, by default, contains heuristics to
instantiate additional VMs when the actor system has
insufficient resource, to terminate VMs when there are
excessive resources for a significant period and a series
of heuristics to increase and reduce actor instantiations
according to demand. This basic approach is not guar-
anteed to achieve an optimum solution to the problem
of computation placement and can result in sub opti-
mal decision making. A constraints or machine learning
approach may be superior and can be slotted in as a
substitute with relative ease.

Example 1

Consider the problem of concatenating related log entries
from a distributed application that are generated within
10 min of each other and then enumerating how many
concatenated logs were produced within the 10 min inter-
val. Each log is identified by an ID and log entries are

Page 18 of 28

not guaranteed to be causally ordered. Figure 9 provides a
Scala implementation of this scheme.

In this example there is a sensor, LogSensor and two
actors: join and report. LogSensor periodically checks
for new log entries, filter the relevant log type and passes it
to join. join extracts the ID from the new log and makes
an API call to a document store to ascertain if another log
entry with the same ID exits. If it does, it concatenates the
two entries and pushes the result to the document store.
If not, it commits the partial entry to the document store
and awaits the next entry. report is called in conjunction
with the aggregate preprocessor to enumerate and report
to a service the number of log entries concatenated within
the 10 min window.

Example 2

Consider the problem of detecting high CPU usage then
if the rest of the sub-region is heavily loaded, start addi-
tional VMs to compensate for load. The user would write
a sensor and actor similar to that in Fig. 10.

In this simple example the sensor CPUSensor is exe-
cuted by the monitoring agent when the local CPU usage
is updated in the state store. Should the CPU capacity
exceed 90 % the sensor generates a cpuEvent, and spec-
ifies direct distribution. This will propagate events to a
specifically designated host, by default the coordination

class LogSensor(val log :
def run() = {

String) extends Sensor:

preprocessor = new Filter(
value, "myApplication™")
trigger (preprocessor (new
JoinEvent (log, direct))
3}

class Join(val log :
def run() = {
val IDRegex = new Regex ("ID:\d{5}")
val ID = (pattern findAllIn str).
mkString ())

LogEvent) extends Actor{

val existinglog = documentStore.get(
ID)
if (existingLog){
val concatLog = existinglLog

+ logEvent.value
documentStore.put (ID,
contactLog)
preprocessor = new
Aggregator (600, count)
trigger (preprocessor (new
ReportEvent (1, direct))
} else {
documentStore.put (ID,
logEvent .value)

1

class Report(val notification : JoinEvent) extends
Actor{
def run() = {
reportingService.report(notification
.value)

33
Fig. 9 Concatenating logs using Quince Actors




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

class CPUSensor(val cpu : Int) extends Sensor:
def run() = {
if (cpu > 0.9){
preprocessor = new
Aggregator (60, count)

trigger (preprocessor (new

CPUEvent (cpu, direct))
33}
class CPUactor(val cpuEvent : CPUEvent) extends
Actor{
def run() = {

val = numHosts = varanus.store.get(
hosts) .size ()
if (cpuEvent.value >= (numHosts / 2))
{
startNewVM ()
33}

Fig. 10 Detecting and mitigating high CPU usage using Quince Actors

services designates the least loaded host. Prior to invok-
ing the actor, the event is first passed to a preprocessor
which aggregates the values of all events of the cpuEvent
type received over a 60 s period. The aggregate event is
then sent to the CPUactor which uses the value con-
tained in the event (which after the aggregate sub-actor
is the number of loaded hosts). The actor, CPUactor
consumes the aggregate event and establishes what pro-
portion of the VM deployment is loaded. If more than half
of the VMs within the deployment are at 90 % or greater
CPU utilisation, a new VM is started.

Evaluation

Evaluation architecture

Deploying distributed applications is often challenging
due to the logical and geographic separation of compo-
nents. Scale often exacerbates this problem, producing a
volume of work which far surpasses what humans can do
in a timely fashion. Common cloud computing best prac-
tice stipulates that SSH (or RDP in the case of Windows
VMs) is a last resort. That is that a human should only
log in to a VM in the event that of some unanticipated
behaviour which cannot be handled through automated
tools.

The evaluation of Varanus was performed using Ama-
zon Web Service, therefore instead of using generic cloud
computing terms this paper will use AWS specific nomen-
clature. EC2, like most Iaa$S clouds, allow users to seed
an executable script to a VM on instantiation. This is the
mechanism which is used to provide the basic configu-
ration to each VM, necessary to obtain all the relevant
software and to deploy the configuration. This script is
transmitted to VMs and once they have finished the boot
process, the script is then executed.

The VMs in our evaluation all run Ubuntu 12.04, instan-
tiated from the Amazon Machine Image ami-ecda6c84.
Each VM instance is seeded a very simple Bash script
which installs Puppet and then uses Puppet to install

Page 19 of 28

and configure all subsequent software. Puppet® is an
Open Source configuration management tool which pro-
vides a declarative Ruby based DSL which enables users
to build manifests which describes software installation,
commands and configuration which should be performed
on clients. Puppet is used to install Varanus and the neces-
sary software to collect data and run experiments and give
Varanus instances the necessary bootstrap information.

In addition to the deployment which is being evalu-
ated, additional VMs are provisioned for services which
support the experiments. These are:

The Results Service: a simple message service endpoint
which provides a mechanism for clients to push their
experimental results. This service is written in Python and
uses a ZeroMQ pull socket to act as a sink which waits
for results to be pushed. In addition to Varanus, Puppet
installs a client which pushes results to the result service
once the experiment has completed.

The Events Service: the events service is a mechanism to
simulate faults and to terminate and instantiate VMs. The
events service takes configuration files written in JSON
which specify what events to trigger and when. Events
include: terminate an arbitrary number of VMs, termi-
nate a specific VM, instantiate a number of VMs, trigger
a failure and instruct Puppet to pull down configura-
tion to VMs. In order to achieve this, the events service
communicates with the EC2 API in order to instantiate
and terminate VMs and with a small client on VMs in
order to simulate failure and run arbitrary commands.
The events service is written in Python and uses ZeroMQ
push sockets for messaging.

The Puppet Master: the Puppet master serves and com-
piles manifest files which specify the configuration for
VMs.

This architecture is described in Fig. 11. When evalu-
ating larger numbers of VMs the results service and the
Puppet master become overloaded and hamper the exper-
iment. Thus when using larger number of VMs they are
replicated over multiple VMs which are round-robined
between using the Route 53 DNS service in order for them
to scale and meet demand.

Comparison against current monitoring tools

It is difficult to compare like for like Varanus against other
real world tools. Most real world monitoring tools do not
expose mechanisms to examine their own performance
and behaviour and as such would require significant mod-
ification. Additionally, many of these tools do not have
out of the box support for cloud environments and would
necessitate the devising of a means to deploy and man-
age them on the cloud. Despite the difficulty in doing so,
we deemed it essential to examine Varanus against at least



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX Page 20 of 28

Varanus
Instance

Varanus
Instance

Initial
configuration

Experiment
Results

Puppet
Master

> > Results

Service

Varanus
Instance

/

Bootstraps with
Puppet Master
Address

VM Termination
and Instantiation

Fig. 11 The architecture used to deploy Varanus and collect results

Events for experiments
(failure triggers, simulated traffic, etc)

Result notifications

Events
Service

once real world monitoring tool. Therefore, we evaluate
Varanus against Nagios - the world’s most popular Open
Source monitoring tool. To perform a more thorough
evaluation than a comparison against a single tool, we
have devised a novel compromise. In addition to Nagios,
we compare Varanus against our own implementations
of monitoring architectures which are found in common
monitoring tools. These implementations use the same
libraries and share some code with Varanus and therefore
allow for an unbiased comparison of the underlying archi-
tecture rather than being influenced by implementation
details.

Common monitoring architectures

There are a common set of architectures which underpin
many current tools. In our evaluation of Varanus we con-
sider our own implementations of these architectures in
lieu of further examining existing tools. In our attempts
to examine current tools like for like, we found that dif-
ferences in encoding formats, networking and other sec-
ondary features prevented an unbiased examination. This
is evident from our comparison against Nagios whereby
there are disproportional disparities between the perfor-
mance of Varanus and Nagios. This disparity is certainly
in part due to the inappropriateness of Varanus to cloud

monitoring but is exacerbated by the discrepancies in
implementations. Furthermore, many popular monitoring
tools have large codebases which are poorly documented
and do not easily lend themselves to experimentation. We
therefore implemented a number of common monitoring
architectures using the same networking libraries, encod-
ing format, language and other factors as per Varanus to
provide an effective like for like comparison. The inten-
tion behind this is to see how the architecture of Varanus
fairs against existing architectures which are implemented
using modern libraries and benefit from awareness of
cloud properties.
These architectures include:

e 2-tier push model. This is the architecture employed
by collectd, statsD and many monitoring as a service
tools. Monitored clients are provided the address of a
monitoring server to which they push monitoring
state at their own prerogative. The single central
monitoring server acts as a sink; receiving monitoring
state and analysing the incoming data.

e n-tier Push Model. This is similar to the architecture
employed by Collectd and an extension of the 2-tier
push model. Rather than pushing directly to the top
level server monitored VMs push state to an



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

intermediate monitoring server. The intermediary,
performs analysis on the monitoring state and in turn
transmits the outcome of the analysis to the top level
monitoring server. This forms a three level tree. In
real world implementations of this architecture the
tree can have arbitrary depth, with several levels of
intermediary monitoring servers. This is not,
however, common and thus our implementation is of
the typical 3-tier variety. This design is a more
scalable variant of the 2-tier push model and
alleviates much of the pressure on the top level
monitoring server. The top level server is however
still responsible for assigning monitoring servers to
clients, aggregating state from monitoring servers
and still receives significant volumes of messages. We
evaluate two variants of this scheme: a fixed and a
variable version. The fixed version uses 11 VMs, 1 as
the root monitoring server and 10 as intermediaries.
This variant is still quite common in real world tools,
despite the fact that it has no way to accommodate
for elasticity. The second variant, instantiates
additional VMs as is necessary; doing so when the
current pool of monitoring servers is overloaded.

e 2-tier pull model. This is the architecture employed
by basic Nagios, The Windows Management
Instrumentation, Icinga, Xymon and Cacti. A central
server polls a set of monitored servers according to a
schedule that it computes when clients leave and join.
When new VMs are instantiated, this schedule must
be recomputed in order to include the new VM. All
collection and analysis of monitoring data is done on
a single VM. This is the oldest of the commonly
employed monitoring architectures and tightly
couples components. It is entirely expected that this
will be amongst the least scalable architectures.

e 2-tier pull model. This architecture can be used by
Nagios, Xymon, Cacti, Ganglia and is an extension of
the 2-tier model. This architecture is similar in
concept to the 2-tier push model however clients are
not in control transmitting monitoring state to
servers. Instead, monitoring servers generate a
polling schedule and poll clients according to that
schedule. Intermediate monitoring servers collect
and analyse state. The top level server then polls the
intermediate servers, aggregating state and the results
of the analysis. This, much like the 2-tier model,
requires the recomputation of the schedule when
sub-tree membership changes. Once again, there are
two variants of this model: the elasticity intolerant
fixed version and the variable version which can
provision additional VMs as necessary.

Each of these monitoring architectures is implemented
using the same libraries as Varanus: using ZeroMQ to

Page 21 of 28

transmit data and using protocol buffers to encode state
on the wire. The Varanus collection service (with a little
modification) is reused as the monitoring client for each
of these architectures. It collects the full gamut of sys-
tem statistics and a full set of Apache metrics. In total this
results in 200 metrics. As for analysis, only simple thresh-
old analysis is done. Each of the monitoring architectures
(and Varanus) are provided a set of thresholds to corre-
spond with the metrics and checks for threshold violations
each time monitoring state is received.

Elasticity

Central to our claims regarding the effectiveness of
Varanus as a cloud monitoring tool is the notion of
elasticity. Elasticity: the propensity for cloud VMs to
rapidly change in scale and composition is problematic
for many monitoring activities. Elasticity has significant
implications for a monitoring system and can disrupt
services, interfere with failure detection, introduce laten-
cies and incur computational costs. Any monitoring tool
well suited for cloud monitoring must therefore tolerate
elasticity.

Conceptually, elasticity is similar to the notion of
churn [21] from the domain of peer-to-peer computing.
Given closer examination, however, the two concepts dif-
fer. Notably churn encompasses near constant change
in membership, short-lived membership and the reap-
pearance of previously seen peers. Elasticity differs in
that: membership change typically occurs infrequently but
involves a significant portion of all members, members
will typically have at least an hour uptime (due to the com-
mon practice of billing in hour increments), and members
are not capable of rejoining (due to VM termination). It is
therefore infeasible to rely upon previous categorisations
of churn in order to understand elasticity.

Elasticity describes the instantiation and termination of
resources to meet demand. This encompasses compute,
storage, network and other resources. With regards to
monitoring, we are predominantly concerned with VMs.
By far the most common mechanism used to control
elasticity and alter the scale and composition of cloud
deployments is auto scaling. Each cloud provider has their
own implementation of the concept, each with different
semantics but the underlying concept is the same. An
auto scaler instantiates or terminates VMs as application
demand changes.

One of the most common use-cases for cloud com-
puting by far is he hosting of web applications. A web
application utilising an auto scaling tool will change
in scale based upon http requests. An auto scaler will
either consider resource usage on the existing web servers
(which increases proportional to requests) or the vol-
ume of requests alone. Either way, by examining http
request patterns we are able to understand to some degree



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX Page 22 of 28

the patterns of elasticity encountered by common hosted Three of the common patterns (that are relevant to elas-

cloud applications. ticity) which emerge from the http traces are exponential
Pursuant to this goal Fig. 12 shows the hourly volume and linear changes in traffic and constant traffic:

of http requests over a 24 h period to 5 low to high traffic

web servers. This data is obtained from publicly available ¢ An exponential increase in traffic is common when
server traces namely those from NASA [22], the EPA [23], access patterns are related to the time of day. Many
The University of Saskatchewan [24] and Clarknet [25]. business orientated applications see an exponential
The graphs shown in Fig. 12 show a subset of those traces increase in demand during opening of business and a
and demonstrate some of the common trends. logarithmic decay once trading hours have ended.

HTTP Requests Per Hour, ClarkNet Web Server Trace

Requests Per Hour

Hour

HTTP Requests Per Hour, University of Saskatchewan Web Server Trace

Requests Per Hour

Hour

HTTP Requests Per Hour, NASA Web Server Trace

Requests Per Hour

Hour

Fig. 12 Examples of traces of HTTP requests per hour over a 24 h period. Taken from a number of common public sources. Shown here are traces
from the University of Saskatchewan, NASA and ClarkNet




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

This pattern is also typical of applications and
resources which are made popular via social media.
As the resource becomes popular demand
exponentially increases and as it fades from vogue
there is a logarithmic decrease. Exponential change in
load necessitates a rapid change in the cloud
deployment in order to either code with demand or
to avoid overpaying for under-utilised resources.

¢ A linear change in traffic is more common in web
applications which are not as associated with time
and while being notable does not require the same
dramatic change in deployment composition but will
still require some alteration.

e Exactly constant traffic is quite unlikely, however for
the purposes of elasticity periods where there is not a
sufficiently large change in load is for all intents and
purposes considered constant. This is where the
provisioned resources are sufficient to meet demand
and do not go beyond what is required.

The exact change in deployment composition is based
upon an administrator defined rule. Common rules
include adding an additional VM each time an existing
VM exceeds 80 % cpu utilisation, instantiating additional
VMs per a given number of requests, and instantiating
additional VMs while application latency remains above a
given threshold. The rules for terminating VMs are then a
sensible reversal of the previous rules.

Based upon a trivial benchmarking exercise using the
Apache stress testing tool of EC2 ml.medium VMs it
is simple to examine the first two rules. Based upon
the stress testing of 10 m1.medium instances the mean
maximum requests per second an instance could fulfil
was 2431 requests per second. 80 % CPU utilisation was
exceeded upon handling around 2000 requests per sec-
ond. Given a satisfactory leeway one can generalise that
after a sustained period of greater than 2000 requests per
second an additional VM should be instantiated. Many
auto scalers specific the sustained period as a 15 min
window.

By experimenting with this generalised rule in conjunc-
tion with the Amazon EC2 Auto Scaler and recreating
portions of the http traces using Apache JMeter we were
able to derive models simulating linear and exponential
periods of elasticity which resemble what real world web
applications encounter.

Monitoring latency

Monitoring latency is the time between the collection of
subsequent monitoring state. Monitoring latency is sep-
arate from but related to the collection interval (which
defines the frequency at which effort is made to obtain
data). In the vast majority of monitoring tools the collec-
tion interval entails a best effort scheduling, in an ideal

Page 23 of 28

environment the monitoring latency should equal the col-
lection interval, however this is seldom the case. Network
latency, loaded hosts or other phenomena can serve to
increase monitoring latency. This is inherently undesir-
able as it creates ‘blind spots’ whereby administrators or
autonomic agents are unaware of the state of the system
and thus unable to take any requisite actions to modify the
system.

Historical best practice recommended between 1 and
5 minutely intervals for the collection of most variables.
More recent best practice such as that advised by Cop-
perEgg [26] and DataDog [27] reduces the collection inter-
val to one second for all frequently changing variables. A
modern cloud monitoring tool must therefore be capable
of propagating monitoring state at an interval as close to
one second as is possible.

Linearly increasing deployment size

This initial set of experiments act as a precursor to our
investigation into the effects of elasticity upon Varanus
and other monitoring tools. In this scenario, Varanus and
other tools are provisioned in deployments of increasing
size. Once these deployments are provisioned and are sta-
ble, monitoring latency is recorded. There is no bonafide
elasticity, once deployments are provisioned they do not
change until termination. This allows the effects of scale
to be investigated prior to the effects of elasticity.

Experiment 1

In this experiment, we test Varanus and Nagios using the
previously described methodology. Figure 13 shows the
monitoring latency of Varanus and Nagios over deploy-
ments ranging from 100 VMs to 5000 VMs. As is clear,
Nagios (even the modified version) suffers from linearly
increasing monitoring latency, proportional to the size

1000 Varanus
Nagios
Nagios Optimized

)
2
Q
g 100 I
28
3
g T
s i
-
=)
£ x
§ 10 R
5
= I

vy

1" =
100 200 500 1000 2000 5000

Deployment Size

Fig. 13 Monitoring latency with varying deployment size. Here it is
evident that Varanus maintains a low, near 1 s monitoring latency
where as both versions of Nagios incur near linear increases in latency




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

of the monitored deployment. This is due to the man-
ner in which Nagios performs data collection: it generates
a schedule and linearly iterates through that schedule
until all polling has been completed for that time period.
As the size of the schedule increases as does the time
required to iterate through them. In the optimised version
of Nagios, additional concurrent threads are used to per-
form polling and a number of patches have been applied
which decrease the time of each poll. Despite this, as the
size of the deployment increases both versions of Nagios
suffer from increased monitoring latency with the stock
install reaching a mean latency of 266 s and the modi-
fied version reaching mean of 58 s. The second value is
consistent with the historic best practice of minutely data
collection but is far from the per second interval that is
desired.

Varanus, meanwhile is an entirely push based archi-
tecture with no centralised scheduling. As such Varanus
maintains a monitoring latency much closer to the desired
one second. In the case of a 5000 VM deployment Varanus
achieves a mean latency of 1.64 s with an upper bound
of 2.04 s. The upper bound is due to the a Varanus
storage service instance suffering from higher than aver-
age load. This is rectified by distributing clients between
storage instances. If there is an insufficient number of
underloaded servers in the deployment, Various moni-
toring latency will increase. Figure 14 compares Varanus
running over a semi loaded deployment with Varanus
running over a semi loaded deployment with additional
dedicated, unloaded servers. In this case Varanus main-
tains a mean monitoring latency of 1.07 s when provided
with additional dedicated servers.

21 — Varanus (Extra Hosts)
— Varanus
8 1.575
: f
3 T
4
5 I
- -z
& 105 = T . r
©
Pa
jo))
£
s
.g 0.525
g o
0
100 200 500 1000 2000 5000

Deployment Slize

Fig. 14 Varanus monitoring latency with and without additional
Dedicated Hosts in a loaded deployment. As Varanus attempts to use
the existing resources in a a cloud deployment its performance
depends upon the existence of under-utilised resources. If resources
are at a premium, Varanus performance will suffer. This is particularly
evident when at scale as typified by the difference in value and std
deviation at a scale of 5000 VMs between Varanus with and without
additional dedicated hosts

Page 24 of 28

Experiment 2

In this experiment, we repeat the previous experiment this
time comparing Varanus against other monitoring archi-
tectures. Figure 15(a) shows the monitoring latency of
Varanus and the push/pull variations of 2-tier and n-tier
monitoring architectures. As is clear, Varanus once again
maintains a low, near constant monitoring latency where
as other monitoring architectures suffer increased moni-
toring latency as scale increases. Of particular note is the
behaviour of several monitoring architectures at the 1000
VM point. Figure 15(a) show the same results as Fig. 15(a)
presented using a logarithmic scale. From this it is clear
that many existing tools maintain appropriately low mon-
itoring latencies at the 500 VM point, however at 1000
VMs there is a sudden increase in monitoring latency.
This is due to the VM at the top of the hierarchy suffer-
ing heavy load and thus processing monitoring data at a
slowed rate. An example of this is the central VM in the
n-tier push fixed size architecture which reported a 5 min
load average of 138 at a scale of 500 VMs. The logarithmic

2-tier Push
= N-tier Pull (Fixed Size)

~ Varanus ~— N-tier Push (Fixed Size)
N-tier Push (Variable Size) — 2-tier Pull

— N-tier Push (Variable Size)
300

225

150

75

Monitoring Latency (Seconds)

100 200 500 1000 2000 5000
Number of VMs

b

2-tier Push
— N-tier Pull (Fixed Size)

— Varanus — N-tier Push (Fixed Size)
N-tier Push (Variable Size) — 2-tier Pull
— N-tier Push (Variable Size)

100

Monitoring Latency (Seconds)

100 200 500 1000 2000 5000
Number of VMs

Fig. 15 Comparison of monitoring latency of Varanus and
implementations of common monitoring architectures at increasing
scale.a On alinear scale. b Figure 15a represented on a logarithmic
scale




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

scale also highlights how Varanus deviates from the goal
of 1 s monitoring latency as the scale of the deployment
increases. At 5000 VMs, Varanus incurs an average mon-
itoring latency of 1.65 s. Again, this could be reduced by
provisioning additional dedicated VMs.

Deployment size varying with elasticity

The previous experiment elucidated upon the effects of
continually increasing deployment size on monitoring
latency. What was not taken into account, however, was
VM termination. In this set of experiments, the deploy-
ment is subjected to varying levels of load. This is more
natural and is much more typical of what is found in
real world scenarios. Here, VMs are provisioned as load
increase and terminated when load subsides. This is rather
more arduous for monitoring tools compared to the pre-
vious scenario.

Experiment 1
Figures 16b and 16a show the effect of elasticity upon
monitoring latency. In both these cases, web server trace

a
100 > Varanus A
Nagios T
Nagios Optimised
F——F—3 F—=
g I
£ , -
153
(73
3 I
g
g 10
[
-
(=2
£
S 4
[
o
g =
1 3 i - . I = > = = " T 2
0 10 20 30 40 50 60 70 80 90 100 110 120
b Interval (Minutes)
1000 > Varanus
Nagios
Nagios Optimised
@
°
c
o
2 100
L2
g s
I =
2 1 I {
-
j=
£
5 10 % {
i
o
=
| = I - e = - - - P e = =
0 10 20 30 40 50 60 70 80 90 100 110 120
Interval (Minutes)
Fig. 16 Varanus and Nagios monitoring latency during different
elastic models. a Monitoring Latency During a Period of Increasing
High Demand. b Monitoring Latency During a Period of Moderate,
Sustained Demand

Page 25 of 28

data is used to produce realistic fluctuations in demand
which is in turn used to induce elasticity via the use of the
AWS Elastic Load Balancer. Figure 16b shows the results
of a moderate, sustained traffic (starting at 10,000 requests
and gradually increasing to 1,000,000 requests per second
and then gradually subsiding to 10,000 requests per sec-
ond) representing what a popular web site may receive on
an average day. Figure 16a shows the results of a sudden
spike in traffic (starting at 10,000 requests per second and
increasing to 10,000,000 requests per second) represent-
ing what a web site may encounter in a special case (e.g.
sudden popularity on social media, a special event, etc).
This latterly case is an edge case, however it is one of the
key use cases of cloud computing. It is therefore essen-
tial that cloud monitoring tools be able to tolerate sudden
peaks in load without suffering from QoS degradation.

Nagios demonstrates a significant increase in monitor-
ing latency as additional hosts are instantiated to meet
demand. In Fig. 16a Nagios provides low latency mon-
itoring until the sudden increase in demand causes the
instantiation of additional VMs. As VMs are continu-
ously instantiated until demand is met Nagios exhibits
a sudden spike in monitoring latency. Part of this spike
is attributable in the bootstrapping of new VMs, which
requires Nagios to restart and thus further increases mon-
itoring latency. Which levels off after the number of VM
becomes constant.

Again, as Varanus makes use of a push mechanism
and has a scalable bootstrapping mechanism elasticity is
tolerate and has limited effect upon monitoring latency.
Much like the result in the previous experiment, Varanus
achieves a low monitoring latency which in its worst
instance reaches 3.1 s.

Experiment 2

Again, we repeat experiment 1 this time with our own
implementations of common monitoring architectures.
Figures 17a and 17b show the effects of two elastic-
ity model on monitoring latency. Producing results not
dissimilar to the real world Nagios, none of the monitor-
ing architectures maintain a consistently low monitoring
latency while encountering either elasticity model. In the
case of the moderate load, the majority of the moni-
toring architectures encounters a near linear increase in
monitoring latency as requests increase. The two vari-
able architectures perform better than the others but each
still suffer from increased monitoring latency. Despite
being able to provision additional VMs in order to tol-
erate demand, the tree based structure of each of the
variable architectures resulted in top level VM eventually
subsuming to load and monitoring latency increased as
a result. This is also the case in the high demand elastic
model, where monitoring latency in the monitoring archi-
tecture implementations suffers significantly due to the



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

2-tier Pull
— n-tier Push (variable)

~— 2-tier Push
— n-tier Pull (fixed)

— Varanus
n-tier Push (fixed)
= n-tier Pull (variable)

65

52

39

26

Monitoring Latency (Seconds)

0 10 20 30 40 50 60 70 80 9 100 110 120
Interval (Minutes)

— 2-tier Pull
— 2-tier Push

— Varanus
n-tier Pull (variable)
= n-tier Push (varibalbe)

n-tier Pull (fixed)
= n-tier Push (fixed)

120

o
S

@
1=}

Monitoring Latnecy (seconds)
B [~}
o o

n
=]

0 10 20 30 40 50 60 70 80 90 100 110 120
Interval (Minutes)

Fig. 17 Varanus and other monitoring architectures, monitoring
latency during different elastic models. a Monitoring Latency During
a Period of Moderate, Sustained Demand. b Monitoring Latency
During a Period of Increasing High Demand

high levels of load encountered. In each of the monitor-
ing architectures, the top level VMs suffered high CPU,
network and memory usage as a result of the large vol-
ume of messages being send from monitored VMs or VMs
further down the hierarchy. Varanus, owing to its decen-
tralised architecture does not heavily load individual VMs,
rather it amortises load over the deployment - allowing
monitoring latency to be kept low.

Investigating resource usage

A priori, lower resource usage is desirable. A monitor-
ing tool which requires significant resources will have
high fiscal costs and risks interfering with the deployment
that it is monitoring. The primary resources consumed by
monitoring tools is CPU, while monitoring can be data
and thus network intensive, it is the aggregation, anal-
ysis and handling of monitoring data which is typically
the bottleneck - all of which is CPU bound work. The
following set of experiments investigate the CPU usage of

Page 26 of 28

Varanus, Nagios and other monitoring architectures and
how this impacts their appropriateness for cloud monitor-
ing. Specifically, we investigate CPU usage during a period
of moderate load and elasticity; a common occurrence
in cloud deployments which should not stress an ideal
cloud monitoring tool. In the following experiments, CPU
usage refers to the over all percentage of resources within
the cloud deployment which are devoted to perform-
ing monitoring. This includes all components performing
monitoring: clients, servers and in the case of Varanus, all
the constituent services.

Experiment 1

Figure 18a shows the CPU usage of Nagios and Varanus
while the cloud deployment encounters a period of mod-
erate, sustained demand and scales accordingly. CPU
usage here in the overall percent of cpu time in the deploy-
ment which is devoted to providing monitoring functions.
In the case of Nagios, this includes the monitoring servers,
scripts running on monitored hosts and the backend

— Nagios Optimised — Nagios Varanus

30

225 I

CPU USage (Percent)
&

7.5

Interval (Minutes)

2-tier Push
— n-tier Push (variable size)

Varanus
— n-tier Pull (fixed size)

b — 2-tier Pull

n-tier Push (fixed size)
— n-tier Pull (variable size)

22

CPU USage (Percent)

Interval (Minutes)

Fig. 18 Comparison of Varanus and other monitoring tool’s CPU
Usage During Different Elastic Models. a Comparison of CPU Usage of
Varanus and Nagios during a Period of Moderate, Sustained Demand.
b Comparison of CPU Usage of Varanus and Nagios during a Period of
Moderate, Sustained Demand




Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications MXXXXXKXXIXIXX

database. In the case of Varanus, it is the percentage of
CPU time used by all Varanus components. As Nagios fol-
lows a client-sever architecture it has a small number of
dedicated servers and a large number of clients. Nagios,
therefore heavily loads its servers and imparts a small load
upon the clients. Varanus, is however decentralised and
uses a small amount of CPU time on all participants and
a larger percent on certain under-utilised hosts. Varanus,
therefore uses a greater overall percentage of CPU use
but amortises that cost over the entire deployment. This
is evident from the range of values shown by the error
bars of Varnus on Fig. 18a; as Varanus distributes the
cost of monitoring and uses a resource aware approach
its resource usage is highly variable dependant upon the
available resources. Nagios meanwhile has a more con-
servative resource usage but heavily loads a small number
of machines. As those machines must be provisioned in
addition to the monitored deployment, they represent an
additional overhead. Varanus, while more costly, attempts
to use the free resources within that deployment and
unless it is heavily loaded; does not require additional
VMs. Additionally, with regards to the previous experi-
ments, Varanus manages to achieve constant low latency
monitoring with only double the resource usage of Nagios
which has a very modest resource usage but can incur a
very high monitoring latency.

Experiment 2

Figure 18b shows the CPU usage of Varanus and other
monitoring architectures during a period of moderate
demand. Again, Varanus due to its peer to peer, resource
aware design consumes more resources than the other
monitoring architectures. Worthy of note is the resource
consumption of the two variable n-tier architectures
which consume greater resources than the other moni-
toring architectures. As noted in previous experiments,
these architectures have the lowest monitoring latency of
set of evaluated architectures. They achieve lower latency
by provisioning additional VMs to perform monitoring,
this in turn results in a greater CPU usage. Varanus pro-
visions no additional VMs (at least in this experiment)
and achieves lower monitoring latency than the other
monitoring architectures.

Evaluation summary

Our evaluation demonstrates that Varanus is able to
perform low latency monitoring with conservative CPU
usage even at scale. By utilising a decentralised architec-
ture Varanus can propagate state and perform analysis
without heavily loading individual VMs and by exploiting
the plentiful low cost intra-cloud bandwidth of IaaS clouds
Varanus can further reduce computation. As Varanus
attempts to make use of existing resources, monitoring
performance can suffer if resources are limited. This is the

Page 27 of 28

primary factor affecting Varanus performance and can be
avoided by provisioning additional unloaded VMs.

When compared to Nagios, a diminishing yet still pro-
lific monitoring tool, Varanus offers superior out of the
box performance for cloud monitoring. Nagios can cer-
tainly be used effectively for cloud monitoring, however
this requires significant modification backed by man-
power and experience and used in conjunction with
automation tools such as Puppet or Chef. When deployed
in their default configuration or even with a number
of patches, Nagios suffers from increasing monitoring
latency and CPU usage proportional to the scale of the
deployment.

Evaluation limitations

All the experiments detailed in this paper have been under
controlled conditions with simulated load and artificial
usage patterns. While these patterns have been deprived
from real world trace data and are run on a genuine
public cloud, they do not capture the full degree of spon-
taneity and variability which occurs under non-simulated
conditions. Despite making significant inquiries, (quite
understandable) no real stakeholders in large scale cloud
systems were willing to test Varanus or participate in
a manner which would yield publishable data. Despite
the lack of real world testing the experimentation that
has been performed has yielded results which should be
consistent with what occurs under non simulated condi-
tions. It would, however, have been preferable to include
empirical evidence as to this in this paper.

Conclusion

Effective monitoring of large cloud systems is essential.
Without appropriate monitoring anomalies, faults, perfor-
mance degradation and all manner of other undesirable
phenomenon can occur, unchecked. Previously it has been
common practice for administrators to consume monitor-
ing data and enact the appropriate changes to the system
to ensure continued correct operation. With large cloud
systems, this is no longer feasible. The scale, elasticity and
complex of this class of systems prohibits a administra-
tors from having a detailed holistic view of the system.
Furthermore, many current tools are incapable of tolerat-
ing the scale and elasticity and deliver monitoring state in
a non timely manner. Thus, what is required is an auto-
nomic monitoring system which can collect and analyse
monitoring data in a timely fashion and reduce the burden
on human administrators. We have presented Varanus as
this tool. By leveraging concepts from peer to peer, volun-
teer and highly decentralised computing we have designed
Varanus to tolerate scale and elasticity and to act in a
resource aware fashion. When evaluated against current
tools, Varanus demonstrates its ability to maintain low
latency monitoring with an acceptable resource overhead



Ward and Barker Journal of Cloud Computing: Advances, Systems and Applications XXXXXXXXXXX

which is amortised over the entire cloud deployment. We
therefore contend that the design of Varanus is highly
suitable for monitoring large scale systems and is a valid
alternative to older monitoring schemes.

Endnotes
'named for the genus of the monitor lizard
Zhttp://net.doit.wisc.edu/~dwcarder/rrdcache/
Shttps://lists.oetiker.ch/pipermail/rrd-developers/
2006- August/001754.html
“The Quince Monitor Lizard (Varanus melinus) is of
the genus Varanus
Shttp://puppetlabs.com

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

The core of this paper is based on work developed for JSW's PhD thesis at the
University of St Andrews, supervised by AB. Both authors read and approved
the final manuscript.

Acknowledgements
This research was supported by a Royal Society Industry Fellowship and an
Amazon Web Services (AWS) grant.

Received: 4 March 2015 Accepted: 19 June 2015
Published online: 14 July 2015

References

1. Ward JS, Barker A Observing the clouds: a survey and taxonomy of cloud
monitoring. J Cloud Comput 3(1):1-30

2. Ward JS, Barker A (2013) Varanus: In Situ Monitoring for Large Scale Cloud
Systems. In: IEEE 5th International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE. pp 341-344

3. Ward JS, Barker A (2014) Self managing monitoring for highly elastic large
scale cloud deployments. In: Proceedings of the Sixth International
Workshop on Data Intensive Distributed Computing. DIDC '14. ACM.
pp 3-10

4. Ward JS, Barker A (2012) Semantic based data collection for large scale
cloud systems. In: Proceedings of the Fifth International Workshop on
Data-Intensive Distributed Computing (DIDC). ACM. pp 13-22

5. Nagios. Nagios - The Industry Standard in IT Infrastructure Monitoring.
http://www.nagios.org/

6. Massie ML, Chun BN, Culler DE (2004) The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Comput
30(7):817-840

7. Riemann. http://riemann.io/

8. Google (2014) Google Protocol Buffers. https://developers.google.com/
protocol-buffers/docs/overview

9. Amazon CloudWatch. http://aws.amazon.com/cloudwatch/

10. Datta A, Sharma R (2011) GoDisco: selective gossip based dissemination
of information in social community based overlays. In: Proceedings of the
12th International Conference on Distributed Computing and
Networking. Springer-Verlag, Berlin, Heidelberg. pp 227-238. http/dl.
acm.org/citation.cfm?id=1946143.1946163

11. Jelasity M, Montresor A, Babaoglu O (2005) Gossip-based aggregation in
large dynamic networks. ACM Trans Comput Syst (TOCS) 23(3):219-252

12. Renesse RV, Minsky Y, Hayden M (1998) A gossip-style failure detection
service. In: Middleware'98. Springer. pp 55-70

13. Dressler F (2006) Weighted probabilistic data dissemination (wpdd). Dept.
of Computer Science

14. Ongaro D, Ousterhout J (2014) In search of an understandable consensus
algorithm. In: 2014 USENIX Annual Technical Conference (USENIX ATC
14). USENIX Association, Philadelphia, PA. pp 305-319. https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro

20.

21

22.

23.

24.

25.

26.
27.

Page 28 of 28

Monnerat LR, Amorim CL (2006) D1ht: a distributed one hop hash table.
In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006,
20th International. IEEE. p 10

Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: A
scalable peer-to-peer lookup service for internet applications. ACM
SIGCOMM Comput Commun Rev 31(4):149-160

Voulgaris S, Gavidia D, Steen MV (2005) Cyclon: Inexpensive membership
management for unstructured p2p overlays. J Netw Syst Manage
13(2):197-217

Gupta |, Birman K, Linga P, Demers A, Renesse RV (2003) Kelips: Building
an efficient and stable p2p dht through increased memory and
background overhead. In: Stoica | (ed). Peer-to-Peer Systems II. Springer
Vol. 2735. pp 160-169

Hayashibara N (2004) Accrual failure detectors. PhD thesis, Citeseer
Oetiker T (2005) RRDtool. http://oss.oetiker.ch/rrdtool/

Stutzbach D, Rejaie R (2006) Understanding churn in peer-to-peer
networks. In: Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement. ACM. pp 189-202

NASA. NASA-HTTP Web Traces. http://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html

EPA Research Triangle Park, NC EPA-HTTP Web Traces. http:/ita.ee.lbl.
gov/html/contrib/EPA-HTTP.html

University of Saskatchewan University of Saskatchewan Web Traces.
http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html

Clarknet Baltimore Clarknet-HTTP Web Traces. http://ita.ee.lbl.gov/html/
contrib/ClarkNet-HTTP.html

CopperEgg. http://copperegg.com/

Data Dog - Cloud Monitoring as a Service. https://www.datadoghg.com/

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://net.doit.wisc.edu/~dwcarder/ rrdcache/
https://lists.oetiker.ch/pipermail/rrd-developers/2006-August/001754.html
https://lists.oetiker.ch/pipermail/rrd-developers/2006-August/001754.html
http://puppetlabs.com
http://www.nagios.org/
http://riemann.io/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
http://aws.amazon.com/cloudwatch/
http://dl.acm.org/citation.cfm?id=1946143.1946163
http://dl.acm.org/citation.cfm?id=1946143.1946163
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://oss.oetiker.ch/rrdtool/
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/EPA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html
http://copperegg.com/
https://www.datadoghq.com/

	Abstract
	Keywords

	Introduction
	Prior work
	Nagios
	Ganglia
	Riemann
	Amazon CloudWatch

	Varanus overview
	Varanus coordination service
	Communication
	Consensus
	sub-region assignment
	Membership
	Role assignment
	Configuration store
	Failure detection
	Events

	Varanus collection service
	The storage service
	BufferTable

	Varanus analysis service
	Quince
	Computation placement
	Example 1
	Example 2


	Evaluation
	Evaluation architecture
	Comparison against current monitoring tools
	Common monitoring architectures

	Elasticity
	Monitoring latency

	Linearly increasing deployment size
	Experiment 1
	Experiment 2

	Deployment size varying with elasticity
	Experiment 1
	Experiment 2

	Investigating resource usage
	Experiment 1
	Experiment 2

	Evaluation summary
	Evaluation limitations
	Conclusion
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

