
Armstrong et al. Journal of Cloud Computing: Advances, Systems
and Applications (2015) 4:17
DOI 10.1186/s13677-015-0042-8

RESEARCH Open Access

Contextualization: dynamic configuration
of virtual machines
Django Armstrong1*†, Daniel Espling2†, Johan Tordsson2, Karim Djemame1 and Erik Elmroth2

Abstract

New VM instances are created from static templates that contain the basic configuration of the VM to achieve
elasticity with regards to capacity. Instance specific settings can be injected into the VM during the deployment phase
through means of contextualization. So far this is limited to a single data source and data remains static throughout
the lifecycle of the VM.
We present a layered approach to contextualization that supports different classes of contextualization data available
from several sources. The settings are made available to the VM through virtual devices. Inside each VM data from
different classes are layered on top of each other to create a unified file hierarchy.
Context data can be modified during runtime by updating the contents of the virtual devices, making our approach
the first contextualization approach to natively support recontextualization. Recontextualization enables runtime
reconfiguration of an executing service and can act as a trigger and key enabler of self-* techniques. This trigger
provides a service with a mechanism to adapt or optimize itself in response to a changing environment. The runtime
reconfiguration using recontextualization and its potential gains are illustrated in an example with a distributed file
system, demonstrating the feasibility of our approach.

Keywords: Cloud Computing; Contextualization; Recontextualization; Configuration; Virtual machine

Introduction
One of the key characteristics of cloud computing is rapid
elasticity [1]; the ability to quickly provision or release
resources assigned to a cloud service in order to respond
to current demand. In the Infrastructure as a Service
(IaaS) model, cloud services are normally comprised of a
set of different components, each defined using a Virtual
Machine (VM) template. To achieve elasticity, the capac-
ity of a cloud service can be adapted during runtime by
adjusting the number of running VM instances of each
template. This makes it possible to scale each part of the
service independently.
Each VM instance started from a template needs to be

customized with some unique settings, e.g., networking
configuration to ensure each instance is assigned a unique
IP-address. The settings need to be applied dynamically,
normally done as part of the VM boot process. This

*Correspondence: scsdja@leeds.ac.uk
†Equal Contributors
1School of Computing, Faculty of Engineering, University of Leeds, LS2 9JT
Leeds, UK
Full list of author information is available at the end of the article

boot-time customization process is called contextualiza-
tion [2, 3].
Several different usage scenarios that join isolated cloud

infrastructures together into a larger unified infrastruc-
ture are being considered [4, 5]. Conceptually, a virtual
market of cloud resources not limited by technological
boundaries would offer diversity in terms of (but not
limited to) pricing, availability, and a choice of different
geographical locations to use for hosting. Cloud infras-
tructures commonly offer supporting services such as
network based storage, and today’s major infrastructure
providers (IPs) such as Amazon wrap the infrastructure
specific functionality into pre-configured VM templates.
In a multi-cloud scenario the VM templates need to be
generic enough to be deployed across a wide range of
infrastructures. Therefore, the contextualization stage is
needed to support interactions with any infrastructure-
specific services or settings.
VMs can be migrated between physical hosts with-

out being restarted using live-migration. This enables an
IP to re-distribute the current VM load across available
server resources during runtime. Because the VM is not

© 2015 Armstrong et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-015-0042-8-x&domain=pdf
mailto: scsdja@leeds.ac.uk
http://creativecommons.org/licenses/by/4.0

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 2 of 15

restarted during the migration, the contextualization pro-
cedure is not triggered post-migration. Therefore, any
VM customization (such as loading infrastructure specific
settings) will remain unchanged.
In our earlier work [6] we present and define recontex-

tualization, an emerging technology to allow contextual
data inside running VMs to be updated during runtime.
This work extends on earlier work on recontextualiza-
tion and contextualization [3] and presents a novel layered
based approach to contextualization. In this approach,
multiple independent sets of contextual data are merged
into a unified structure realized by a custom file system
whose data sets can be dynamically added or removed
during runtime. This paper presents the requirements,
design, and evaluation of a system that support this multi-
layered approach to contextualization, which is the first
contextualization solution to natively support recontextu-
alization. It is worth noting that the research presented in
this paper uses a scientific methodology based on func-
tional prototyping and system performance analysis. We
do not use mathematical modelling. Additionally and for
clarity’s sake, the results of this research aims to facili-
tate and enhance current cloud provider interoperability
beyond the state of the art but we do not claim to solve all
problems of VM or IaaS interoperability.
The rest of this article is organized as follows; In

Section ‘Background and related work’ the background of
topics related to the field of contextualization and recon-
textualization are presented. Section ‘Contextualization’
presents an overview of contextualization including chal-
lenges and a summary of our earlier work on the
subject. The corresponding information for recontex-
tualization is presented in Section ‘Recontextualization’.
Section ‘Context-aware lifecycle management’ shows
how the two techniques are used in conjunction to
provide adaptable usage throughout the lifecycle of
a service. The unified approach is demonstrated and
evaluated in Section ‘Functional evaluation’. Finally, con-
clusions and future work are presented in Section
‘Conclusions and future work’.

Background and related work
This section of the paper introduces the topics of Vir-
tualization, Service Lifecycle, Configuration Management
and Autonomic Computing in relation to our research.
Additionally, the differences between configuration man-
agement, contextualization and recontextulization, are
explicitly defined using the life-cycle of a cloud application
in Section ‘Service lifecycle’.

Virtualization
Hardware virtualization techniques [7, 8] provide means
of dynamically segmenting the physical hardware into
smaller virtual compartments. This makes it possible to

run several different VMs in parallel on the same phys-
ical hardware. Each VM is a self-contained unit, includ-
ing operating system and (virtual) hardware drivers. The
physical resources are subdivided, managed, and made
available to the executing VMs through a Hypervisor.
Virtualization is the underlying abstraction technol-

ogy for most IaaS clouds. VMs create natural barriers
between multiple tenants and offer an environment prac-
tically indistinguishable from running on dedicated phys-
ical hardware. One of the major benefits of virtualization
is that it enables some of the fundamental assumptions
of physical hardware hosting to be relaxed, which creates
new interesting research areas. For example, the hardware
configuration of a VM can dynamically change during
runtime as the number of CPUs or the amount of RAM
memory assigned is adjusted by the hypervisor [9, 10].
These events have no correspondance when running on
physical hardware, as the hardware setup is assumed to
remain constant from boot-time throughout the uptime
of the server. The lifecycle of a VM therefore is more
complicated in comparison to a regular server.
Another interesting property of virtualization is that

VMs can be relocated (migrated) during runtime from one
physical host to another. This opens up a wide range of
management possibilities from the infrastructure side, as
the mapping between physical and virtual resources can
change dynamically in response to demand and availabil-
ity. From the perspective of the system running inside
the VM, migration is not noticeable (apart from a slight
pause as control over the VM is finally passed on from the
source to the target hypervisor). Migrations may therefore
invalidate decisions made during initialization. Such deci-
sions may include algorithmic decisions based on nearest-
neighbour or geographical hosting location, where the
algorithms assume that the location of the service remains
unchanged throughout the uptime of the system. How
the layered contextualization approach presented in this
work can be used to mitigate the effects of migration is
discussed and described in Section ‘Functional evaluation’.

Service lifecycle
The lifecycle of a cloud service is related to the lifecycle
of the underlying VM templates, rather than to the life-
cycle of individual VM instances. The VM templates and
a service manifest [11] are created during the Definition
phase. The service manifest contains all necessary meta
data required to tie the individual VM templates together
into a unified service. This includes rules, initial values,
and lower and upper bounds for automated scaling of VM
instances. When the service is submitted for execution
to a cloud IP the service enters the Deployment phase.
During deployment, the initial number of VM instances
are started and assigned to physical resources. The ser-
vice executes during the Operations phase, during which

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 3 of 15

the placement and constitution (size) of the service can
change dynamically.
Configuration and contextualization are done during

different parts of the service lifecycle. This is illustrated
in Table 1. Configuration takes place during the defini-
tion phase of the service and includes all customization
required to make the VM templates function as a unified
service. Settings specific to the platform to which the ser-
vice is deployed are normally not available during the def-
inition phase unless the service is designed with a single
platform in mind. Instead, it is made available to the VMs
during the deployment phase through contextualization.
Recontextualization offers means to update customized
data during the operations phase, enabling migration of
VMs in scenarios where such data is fundamental to the
operations of the service.

Configuration management
The long lasting deployment of systems such as cloud ser-
vices create a need for maintenance and management of
the application during the operations phase. Such mainte-
nance may include, e.g., applying system security updates
across all associated nodes. For small scale systems this
can be done manually, but the process is time consum-
ing and error-prone. The rapid and automated elasticity
of cloud services further limits the feasibility of manual
system management as instances of VMs may be added
or removed automatically during any period of the day.
Configuration management is a well established concept
for managing distributed systems during runtime, not just
specific to the field of cloud computing. Aiello et al. [12]
defines configuration management as:

Definition. Configuration Management. A manage-
ment process that focuses on establishing andmaintaining
consistent system performance and functional attributes
using requirements, design, and operational information
throughout a system’s lifecycle. [12]

Computing oriented configuration management tools
such as CFEngine, Puppet, or Chef are commonly used in
large scale hosting on physical platforms. These tools pro-
vide a number of benefits including (I) the reproducibil-
ity and automation of software configuration across an
unlimited number of (virtual) machines, (II) the con-
tinuous vigilance over running systems with automated

Table 1 Lifecycle phases of a cloud service

Definition phase Deployment phase Operations phase

Develop Select Provider Monitor/Optimize

Compose Deploy Execute

Configure Contextualize Recontextualize

repairs and alert mechanisms, (III) enhanced control over
and rationalisation of large scale deployments, and (IV)
the ability to build up a knowledge base to document and
trace the history of a system as it evolves.
The CFEngine [13] project provides automated con-

figuration management of large networked systems.
CFEngine can be deployed to manage many different
types of computer system such as servers, desktops and
mobile/embedded devices. The project was started in
1993 by Mark Burgess at Oslo University as a way to auto-
mate the management of dissimilar Unix workstations.
In the work by Burgess the foundations of self-healing
systems were developed and as a precursor heavily influ-
enced the ideas of Autonomic Computing developed later
by IBM (see Section ‘Autonomic computing’).
Puppet [14] is a configuration management system

originally forked from CFEngine. Puppet provides graph-
based and model-driven approaches to configuration
management, through a simplified declarative domain
specific language that was designed to be human read-
able. The model driven solution enables the configuration
of software components as a class, a collection of related
resources where a resource is a unit of configuration.
Resources can be compiled into a catalogue that defines
resource dependencies using a directed acyclic graph. A
catalogue can be applied to a given system to configure it.
Chef [15] rose out of the Ruby-on-Rails community out

of dissatisfaction with Puppet’s non-deterministic graph-
based ordering of resources. In contrast to Puppet, Chef
places emphasis on starting up services from newly provi-
sioned clean systems, where the sequence and execution
of configuration tasks is fixed and known by the user.
This makes Chef particularly well suited to the paradigm
of cloud computing where VM instances are short-lived
and new instances are spawned from a newly provisioned
base image. Chef uses the analogy of cooking and creates
“recipes” that are bundles of installation steps or scripts to
be executed.
Although existing configuration management tools are

well suited to cloud computing they do not resolve all
the issues surrounding configuring an application in an
dynamic environment. Most notably, these systems oper-
ate on the application level for automated management
of runtime reconfigurations for a large number of sys-
tem nodes. Contextualization, as described in Section
‘Contextualization’, operates on a lower layer of the system
stack. Contextualization offers a multi-purpose mecha-
nism for adapting a generically configured VM to a spe-
cific and dynamically assigned execution environment.
For example, the required settings to connect a booting
VM to a VPN can be supplied by the infrastructure at
boot time. Configuration management tools and contex-
tualization are complementary techniques for dynamic
reconfiguration. Contextualization deals with lower level

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 4 of 15

IP specifics such as network configuration and platform
specific settings, while configuration management can be
used to manage updates at the application level.

Autonomic computing
Autonomic computing has been a topic of interest for
many years with research starting in 2001 by IBM’s auto-
nomic computing initiative [16]. The initiative aimed to
create a self-managing computing environment, capa-
ble of handling increasingly complex systems. Autonomic
computing has been defined as:

Definition. Autonomic Computing. “Computing sys-
tems that can manage themselves given high-level objec-
tives from administrators.” [16]

Autonomic computing involves the creation of sys-
tems that run diagnostics checks and compensate for any
irregularities that are discovered. Multiple control loops
adjust the system to maintain its state within a number
of specific bounded criteria. The ever growing complex-
ity of distributed systems provide motivation for the use
of autonomous systems as manual control is expensive,
prone to errors and time consuming. Autonomic comput-
ing reduces the need for systemmaintenance with aspects
such as security or software configuration maintained in
an unattended fashion. Administrators, instead of con-
trolling entire systems by hand, define general rule based
policies that guide “self-*” management processes in four
functional areas:

• Self-configuration: Automatic configuration of
components during runtime.

• Self-healing: Automatic discovery, and correction of
faults during runtime.

• Self-optimization: Automatic monitoring and
control of resources to ensure the optimal function
with respect to the defined requirements.

• Self-protection: Proactive identification and
protection from arbitrary attacks.

Within the context of cloud computing autonomic com-
puting can be applied to and reasoned about both at the
infrastructure level and at the service level. At the infras-
tructure level, self-management actions primarily within
self-optimization can be used with regards to resource
assignment and control. An example is re-evaluating the
current mapping between virtual and physical hardware
to reach higher-level objectives, such as improved applica-
tion availability. Work in this area has been done by, e.g.,
Dautov et al. [17], Karakostas [18], Fargo et al. [19], Maurer
et al. [20], Wood et al. [21], and Shrivastava et al. [22].
At the service level, autonomic computing approaches
can be used to manage the operations of the applications

themselves. This includes triggering self-optimization
routines to adapt to the current service constitution or
self-configuration approaches to adapt to a new execution
environment. The work presented in this paper focuses
on the service-level. We show how the approach can be
used as triggers that allow self-configuration and other
self-* processes to react to changes in the service context.
This is done by having mechanisms to make dynamical
generated and context-aware data available to processes
running inside the VMs of each service.
Athreya et al. [23] investigate the application of self-*

approaches to the Internet of Things (IoT), a vision of hav-
ing billions of devices all conneted to the Internet.With so
many connected devices, more autonomic management
systems are required. In their work Athreya et al. present
a number of challenges for self-configurable IoT systems.
These challenges include, e.g., addressing and clarifying
the incentives for self-management (including weighing
the development costs to the potential benefits), and also
discuss the great need of having integrated applications
to fully utilize the advantages granted by a self-* enabled
infrastructures. These challenges clearly applies to our
work as well, and their work provides a solid ground for
further discussions.
Self-configuration can conceptually be subdivided into

two different subtasks; how to generate the new config-
uration data and how to allow the software to transition
from using the old data to using the new data. For this
work we consider the generation of configuration data to
be out of scope, since the specifics of the data is closely
associated with any given situation.
Finally, Windows Azure [24] provides some basic SaaS

level self-configuration functionality through the RoleEn-
vironment Class [25]. This makes use of Windows envi-
ronment variables but is limited in scope to Microsoft’s
proprietary programming languages and the Azure plat-
form. This prevents interoperability amongst other IaaS
providers. Our approach strives to enhance this over the
current state of the art. Additionally, the RoleEnvironment
approach does not consider the self-configuration of IaaS
and PaaS level software components, which our solution
does.

Contextualization
Our research on contextualization of cloud applications
started with an evaluation into the limitations of the
current cloud infrastructures. It quickly became appar-
ent that, although virtualization brings several key ben-
efits and is a critical enabler of cloud computing, it
also increases the complexity of managing an application
deployed in a cloud.
Modern virtualization technologies enable rapid provi-

sioning of VMs and thus allow cloud services to scale up
and down on-demand. This elasticity [26, 27] comes with

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 5 of 15

a new set of challenges for dynamic service configura-
tion. The focus of this research is on horizontal elasticity
where scaling is achieved by adding or removing VMs to
a service during its operation. The related case of verti-
cal elasticity, i.e. application scaling through VM resizing,
is much easier from a contextualization perspective. For
horizontal elasticity scenarios, predefined yet flexible con-
textualization mechanisms enable the manipulation of
VM images during the development of a software service.
Previously, this required the complex and time consuming
configuration of software within base images.
For clarity, our definition of contextualization is as

follows:

Definition. Contextualization. The autonomous con-
figuration of individual components of an application and
supporting software stack during deployment to a specific
environment. [3]

In this definition, an environment is considered to be
the specific composition of underlying physical and/or
virtual hardware in addition to any value added services
provisioned by an IP.

Challenges
There are a number of challenges that make the con-
textualization of cloud services a non-trivial affair. In
our previous work we argued that contextualization in
cloud computing is a highly pervasive key technological
requirement of any cloud service, where elastic resource
management is critical to the on-demand scalability of a
service [3]. The holistic nature of the services deployed
on clouds makes it difficult to provide flexible generic
and open tools without limiting the heterogeneity of sup-
ported services.We identified three inherent challenges to
providing elasticity through contextualization where VMs
are added and removed during service operation.
The first challenge to overcome is the complete con-

textualization of cloud services across all classifications
within the cloud ecosystem: Software as a Service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Ser-
vice (IaaS) [1, 28]. These classifications refer to:

• SaaS: web-based applications and services hosted
on-line, usually reachable from standard interfaces
such as a web browser.

• PaaS: systems that offer deployment of applications
designed for execution on a specific platform or
software environment. For example, the opportunity
to upload a Java archive and have it executed on
remote resources.

• IaaS: infrastructures that offer the provisioning of
remote resources on which the consumer can
execute arbitrary software as if the resources were

dedicated hardware servers. Virtualization is usually
used as a layer between the hardware and the
consumer software systems, which makes it possible
for the consumer to design the software stack from
the operating system upwards.

In this work, we focus on IaaS contextualization of VMs
comprising a cloud service. We touch upon using the
suggested approach to access platform software services
such as network based storage or database services that
could be considered stand-alone PaaS services. In IaaS, the
challenge pertains to low-level contextualization of virtual
resources, as found in IPs, where virtual devices require
context to enable VMs to be bootstrapped to existing
virtual infrastructures. This approach has been partially
explored by RESERVOIR [5].
The second challenge to overcome is contextualiza-

tion across multiple IaaS domains for reasons of inter-
operability. Many IaaS providers offer platform services
that are not interoperable with those of other providers.
Also, as contextualization of VMs is performed as part
of service development, the service will be customized
to a single provider only. To solve this challenge, we
need to extend contextualization to support run-time
recontextualization.
The third challenge pertains to a set of functional

requirements for real world clouds and their impact on
contextualization. Notable among these are end-to-end
security through contextualization mechanisms that sup-
port a Virtual Private Network (VPN) overlay and soft-
ware license management systems. Both of these have
unique contextualization requirements: contextualization
must be secure with no VPN keys stored unless in use;
and contextualization that is able to accommodate license
protected software and licensing tokens.
In our previous work [6] we discuss the nature of con-

textualization in the light of the OPTIMIS project [4].
We present details of the architecture and implementa-
tion of our tool for the contextualization of platform level
services as well as virtual infrastructure. We discuss the
implication of contextualization in clouds, the motivation
behind our work and suggest a landscape for the evolu-
tion of contextualization tools across all classes of clouds
within the ecosystem of the future. We contribute to both
the image and instance level contextualization of VM’s and
illustrate the potential effectiveness of our tool through a
simple use case.
In addition, as part of our previous work on contextu-

alization, a proof of concept contextualization tool was
developed and its performance tested. This prototype
was used to confirm the validity of our contextualisation
approach on a cloud testbed. This provided evidence on
the potential performance of our approach for contextu-
alization with regards to preparing generic VM images of

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 6 of 15

sizes in the range of 1-5 GB in increments of 1 GB and
with varying numbers of concurrent user requests from
10-100, for the purpose of creating ISO CD images con-
taining 1MB of context data. The results showed adequate
scalability and response time over ten iterations of the
experiment with minimal variance.

Recontextualization
Recontextualization can be used to adapt a running ser-
vice to any system changes, including making newly
migrated VMs operate properly in the (potentially differ-
ent) system environment of a new host. A definition of
recontextualization is as follows:

Definition. Recontextualization. The autonomous
updating of configuration for individual components of an
application and supporting software stack during runtime
for the purpose of adapting to a new environment [6].

In this definition, a new environment is considered to
be a change in the underlying physical or virtual hard-
ware, for example when a VM ismigrated from one host to
another. In addition, changes in infrastructure or platform
level services that are in active use by a cloud application
would also be considered to be a new environment.
An analogy to recontextualization can be made with

printers and printer drivers. Imagine a laptop user moving
from one physical location to another (i.e. a new envi-
ronment) wanting to access a printer at the new location.
Instead of manually installing a driver for an associated
printer and having to configure the driver before the print-
ing device is usable, the environment itself could detect
that the laptop has entered the printer domain, and supply
the needed software and settings to the laptop operating
system automatically.
Using recontextualization, VM instances can be auto-

matically offered settings and context data to adapt to
a new execution environment. Without the support of
recontextualization, adapting the instances to their envi-
ronment may require a time-consuming manual process
that limits the flexibility and scalability of the cloud.When
migrating VM instances, parts of the virtual infrastructure
(e.g., virtual networks, storage areas, databases) may have
to be migrated as well. For example, assume that a cloud
service is running on the resources of an IP and that it
employs a network based storage service offered by that
provider. When migrating to another IP, there are three
main tasks; migrating the VM itself, relocating the data
on the network based storage service to the correspond-
ing service offered by the new IP (to avoid cross-network
transfer costs), and ensuring that the VM is able to com-
municate with the new storage system without manual
intervention. Recontextualization can be used to achieve
the latter of these three.

The key benefits of our approach to recontextualization
are: i) minimal changes to the existing cloud infrastruc-
ture, i.e. there is no need to make alterations to the
hypervisor and ii) the preservation of security through the
selection of a recontextualization mechanism that gathers
contextualization data from a secured source. In addi-
tion to these benefits, there are a number of challenges
that must be overcome before recontextualization can
reach widespread adoption. These are due in part to a
lack of IP interoperability and the difficulties in creating
an approach to recontextualization that can be applied
to the wide diversity of applications deployed into cloud
computing environments.

Challenges
A motivational factor behind the need for runtime
recontextualization stems from VM migration in clouds
[29, 30]. Using migration, a VM can be transferred from
one physical host to another without explicitly shutting
down and subsequently restarting the VM [31]. The entire
state of the VM, including e.g., memory pages, are trans-
ferred to the new host and the VM can resume its
execution from its state prior to migration. As a con-
sequence of this, no contextualization is triggered again
when the VM is resumed, as the level of abstraction pro-
vided by virtualization is insufficient for platform services.
In this research migration from and to identical hyper-
visor technology is considered. The topic of hypervisor
interoperability for migration is out of scope but is dis-
cussed in work by Liu et al. [32]. The idea of reconfiguring
computing services is by all means not a new subject
area. Mohamed et al. [33] present work on reconfigura-
tion of Web Services during runtime. In their approach,
remote APIs for modifying values in running services
are compiled into Java-based Web Services and are made
accessible using remote method invocation.
As presented by Ferrer et al. [4], there are several differ-

ent cloud scenarios that present a number of challenges to
development and deployment of an application. The abil-
ity to perform VM migration is a necessity in all these
cloud scenarios, e.g., for the purpose of consolidating
resources and maintaining levels of QoS. Three of these
scenarios are cloud bursting, cloud federations, and bro-
kered cloud deployment. For each scenario, the ability to
migrate VMs during runtime is important:

• Bursting - The partial or full migration of an
application to a third party IP. This may occur when
local resources are near exhaustion.

• Federation - The migration of an applications
workload between a group of IPs. This normally
occurs when a single IP’s resources are insufficient
for maintaining the high availability of an application
through redundancy.

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 7 of 15

• Brokering - The automated migration of an
application’s VMs across IPs. This is normally done
for the purpose of maintaining an agreed Quality of
Service (QoS) in the case of an end-user utilizing a
broker to select an IP given a set of selection criteria.

These scenarios have also been used to guide the defin-
ing of requirements for any potential recontextualization
mechanism. In the bursting scenario, if an IaaS provider
is not obligated to divulge third party providers used for
outsourcing of computational resources, an application
may end up deployed on to a third party’s infrastructure
that requires use of their local infrastructure services. A
dynamic federation of IaaS providers created during nego-
tiation time that alters during the operation phase requires
infrastructure services to be discovered dynamically. The
same is applicable in the case of a broker, knowledge of
a provider’s local infrastructure services is not available
during deployment until after the broker has selected a
provider.
The following general requirements have been extracted

from the scenarios and are considered as imperative:

i. A triggering mechanism for recontextualization on
VMmigration or other events.

ii. A secure process to gather and recreate
contextualization data after migration or other
events.

iii. A hypervisor agnostic solution that maintains IaaS
provider interoperability.

iv. An approach that is non-pervasive and minimizes
modifications at the IaaS level.

The lack of knowledge on the attributes of an IaaS
provider’s local infrastructure service available during
deployment time further motivates this research. An
example of such a service that exhibits configuration
issues after resource migration is application-level moni-
toring and is discussed in detail in our previous work [6].

A recontextualization mechanism
With the requirements in mind, we have considered
several approaches for mechanisms that would support
recontextualization [6]. An approach using dynamic vir-
tual device mounting is found to be the most promising
solution for recontextualization due to inherent inter-
operability and support in all major operating systems.
Dynamic virtual device mounting is based on dynami-
cally mounting virtual media containing newly generated
content in a running VM via the reuse of existing hypervi-
sor interfaces and procedures. Interoperability is achieved
by reusing existing drivers for removable media such as
USB disks or CD-ROM drives. Recontextualization can
be detected by the guest OS by reacting to events trig-
gered when new USB or CD-ROMmedia is available. The

ability to manage virtual devices is also offered by the lib-
virt API [34], inferring that there is fundamental support
for these operations in most major hypervisors.
The suggested approached has been implemented and

the performance has been assessed to confirm the feasi-
bility of the approach in a real cloud infrastructure. For
all tests, libvirt version 0.9.9 is used to monitor and man-
age the VMs. QEMU-KVMversion 1.0.50 andXen version
4.0.0 are used as hypervisors, both running on the same
hardware using CentOS 5.5 (final) with kernel version
2.6.32.24. The hosts used in these tests are on the same
subnet, have shared storage and are comprised of a quad
core Intel Xeon X3430 CPU 2.40 GHz, 4 GB DDR3 @
1333 MHz, 1 GBit NIC and a 250 GB 7200 RPM WD
RE3 HDD.
The results of the evaluation are shown in Fig. 1. The

first set of bars illustrate the time to migrate a VM from
one host to another with recontextualization running and
context data attached. The second set of columns illus-
trate the same migrations with recontextualization turned
off and no virtual devices mounted. The third column
illustrates the time spent within the recontextualizer soft-
ware during the tests from the first column, measured
from when the event for migration was received in the
recontextualizer until the device had been removed and
reattached. The values shown are the averages from ten
runs, and all columns have error bars with the (marginal)
standard deviations which are all in the 0.03 to 0.07 second
range.
Based on the evaluation we conclude that the recon-

textualization process adds about an 18% overhead using
either hypervisor compared to normal migrations [6]. For
KVM, most of the extra time required for recontextualiza-
tion is spent outside the bounds of our component. The
delay is likely associated with processing events and extra
overhead imposed by preparing migration with virtual
devices attached. In the case of Xen the device manage-
ment functionality in libvirt proved unreliable and we
therefore had to bypass the libvirt API. We instead had to
rely on sub-process calls from the recontextualizer to Xen
using the xm utility. This workaround increases the time
needed for recontextualization in the Xen case. The inter-
nal logic of the recontextualizer is discussed in full detail
as part of Section ‘Design and architecture’ and within
Procedure 1.
There are four major phases associated with the recon-

textualization process. First, information about the VM
corresponding to the event is resolved using libvirt when
the migration event is received. In the second phase,
any current virtual contextualization device is identified
and detached. Third, new contextualization information
is prepared and bundled into a virtual device (ISO9660)
image. Finally, the new virtual device is attached to the
VM. A detailed breakdown of the time spent in different

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 8 of 15

Fig. 1 Time measurements of recontextualization

phases of recontextualization is presented in Fig. 2. The
above mentioned workaround for Xen interactions affects
the second and fourth phase (detaching and attaching
of devices), most likely increasing the time required for
processing. In the first and third phases Xen requires sig-
nificantly longer time than KVMdespite running the same
internal logic for recontextualization, using the same calls
in the libvirt API. This indicates performance flaws either
in the link between libvirt and Xen or in the core of Xen
itself.

Contextualization versus recontextualization
Although contextualization and recontextualization share
many similarities in that they help adapt services to
running in the cloud, they do however differ in one

fundamental way. Contextualization can only be used dur-
ing deployment time to configure an application to a
specific IP’s environment. Recontextualization, however,
enables an application to be migrated freely between dis-
similar environments during runtime through the use of
an additional level of abstraction. One could consider
recontextualization to be an extension of contextualiza-
tion, and base contextualization of services during deploy-
ment (or development) is also needed to enable runtime
recontextualization.

Context-aware lifecycle management
As discussed in Section ‘Service lifecycle’, a cloud service
is prepared with configuration data built in during the
definition phase. Complementing contextualization data,

Fig. 2 Breakdown of time spent during recontextualization

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 9 of 15

either generated or read from a repository, is injected by
the infrastructure during deployment. Parts of the con-
textualization data may also be recontextualized during
runtime. In this work, we strive to create a model and
mechanism capable of managing any kind of configura-
tion and contextualization data in a fail-safe manner that
appears seamless to the software running inside as part of
the service.
To make the approach generally applicable we con-

sider several classes of data used for configuration/
contextualization, where the classification is related to the
entity from where it originates. For example:

• Web server configuration data is normally provided
by the service developer, so this data would belong to
the service class.

• WAN network data is by necessity provided by the
infrastructure, and would belong to the infrastructure
class.

Other classes of data may include, e.g., legislative data
that depends on the current legislation in which the ser-
vice is hosted, or data injected by a broker during an
advanced service deployment.
Defining a complete ontology of service classes and their

relations is out of scope at this point, but is an impor-
tant part of future work. The model presented in this
paper supports an arbitrary number of service classes,
and relies on an internal prioritization of the classes to
determine which class should take precedence if the same
data is available from multiple sources. The feasibility of
the approach is illustrated using a use-case featuring a
distributed file system. The use-case employs data from
service and infrastructure classes, and infrastructure-class
data is configured to have precedence in case of overlap-
ping datasets.

Practical applications
A generic approach with support for several classes of data
enables a service to be designed for generic cloud deploy-
ment with a set of default settings. These default settings
may be complemented and partly replaced with settings
provided by, e.g., the infrastructure to which the service is
deployed. Through future formalization of the type of data
offered by different actors, dynamic services with inherit
support for self-* operations, e.g. self-configuration, can
be constructed and deployed to the cloud.
For example, in previous work on recontextualiza-

tion [6], a monitoring use case was used to illustrate how
the infrastructure can update a setting used for inter-
nal processes in the VM during runtime. In this work,
we illustrate how the procedure can be used at the ser-
vice level to reconfigure the internal connections of a
distributed file system, adapting its operation to a new

geographic layout resulting from migration of VMs (see
Section ‘Functional evaluation’).
Further use cases related to other aspects of self-* man-

agement are part of future work. For self-protection, the
ability to change the security level of the software exe-
cuting inside the VM depending on, e.g., the geographical
location of the current IP is an interesting area of research.
This could include adjusting the level of encryption of data
streams passing in and out of the service component to
manage the balance between security and performance. If
the hosted service contains data only allowed to be hosted
within certain legislations, recontextualization could be
used to ensure that the operations of the service compo-
nent is temporary suspended if the VM is (erroneously)
migrated to a disallowed environment.

Design and architecture
Asdescribed in Section ‘A recontextualizationmechanism’,
earlier work explored several approaches to passing data
between the hypervisor and the processes running inside
the VM. The work in this paper retains the use of vir-
tual devices as a transport mechanism, due to its native
support in major hypervisors and operating systems, and
does not depend on network access. This is a key feature,
since network access is one of the primary things that con-
textualized settings can be used to enable. As previously
mentioned, the core idea of our suggested approach is to
dynamically generate customized ISO images which are
made available to the running VM instance. As the ISO
images can be freely changed (and re-mounted) during
run-time, the context data can be updated at any point in
the VM lifecycle.
Our proposed solution contains two distinct parts; tools

and services for contextualization running as part of the
cloud controlling software on the infrastructure side, and
a minimalistic process running inside each VM. The
code running inside the VM runs a small virtual file
system (described in Section ‘Flexible file system’) that
encapsulates the complexity of dealing with potentially
overlapping and conflicting sets of context data of dif-
ferent classes. The software required for the file system
is made available during contextualization, and has min-
imal OS dependencies. An overview of the components
designed to run on the infrastructure side is shown in
Fig. 3, and a description of the roles of each component
follows.

• Contextualizer offers API-level integration with the
surrounding cloud control system to integrate the
contextualization process in the workflow executed
prior to deployment. The result of the
contextualization call is an ISO image file customized
to suit the running hypervisor with the necessary
context data. Once completed the file is uploaded to a

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 10 of 15

Fig. 3 Overview of unified contextualizer architecture

data repository from where it can be fetched later
during the service deployment procedure.

• Image service contains the code used for image
generation that is shared between contextualization
and recontextualization. This includes the
coordination of calls to image creation, fabrication,
and conversion.

• ISO image creatormanipulates a set of template
ISO images. In addition, this sub-component is
responsible for the creation of ISO images and the
embedding of context data. The ISO Image Creator
has access to a single set of context data processing
scripts that are agnostic of a VM’s operating system,
embedded in the ISO image and responsible for
reading context data from the ISO image at run time.
An internal interface provides access to
contextualization scripts embedded in the VM image.

• Image fabricatormanipulates VM images, passed to
it by the VM Contextualizer, using underlying system
tools. This sub-component installs context data
originating from a manifest. A set of prefabricated
operating system specific contextualization scripts,
from a data store, are embedded for each operating
system with foreseen use at the IP level. The main
function of these scripts are to set the context of
operating system level components such as
configuring the network for DHCP access, or
connecting to a service-level VPN.

• Image converter transforms images from one
format to another for the purpose of supporting
interoperability between IPs using different
hypervisor technology. Depending on the hypervisor
and operating system, conversion can require the
changes made by the Image Fabricator to be reverted
and reapplied. The Image Converter supports Xen,
KVM, VMware, and VirtualBox hypervisors and has
built-in support for a range of different image formats.

• Recontextualizer is a stand alone component that
monitors events related to VM domains during

runtime. The recontextualizer is responsible for
triggering the creation and association of new
infrastructure class context data when applicable
domains are migrated to the infrastructure. The
recontextualizer is integrated with libvirt, and relies
on libvirt’s unified approach to domain and device
management to support runtime reactive virtual
device management across a multitude of different
hypervisors.

Figure 3 also includes the order in which components
are called. From the figure it can be seen that the Contex-
tualizer component is invoked by the VM Manger during
application deployment (step 1) to create ISO images
(steps 2, 3), create VM images (steps 4, 5) and/or manip-
ulate VM images (steps 6, 7). After images have been
created and/or manipulated, they are stored in a local data
repository (step 8) for deployment by the VM Manager.
During operation, if an event from the underlying hyper-
visor indicates that a VM has been stopped, started or
migrated (step 9), alterations to the existing ISO images
are made (steps 10, 11) and reinserted into the VM’s
virtual device (step 12).
The flow of logic through the contextualizer compo-

nent is as follows: context data is gathered from a range
of sources, it is processed into a usable fashion for use
within a VM, stored within an ISO image and finally
associated with the virtual hardware of a domain for use
during booting. The recontextualization mechanism (i.e.
the internal logic), outlined in Procedure 1, registers inter-
est with libvirt in a VM’s lifecycle by means of a callback
function before beginning its operation. When an event
is registered in the callback function it is classified and
appropriate action taken. The exact events used to rep-
resent a VM stopping or starting as a result of migration
may differ depending on the underlying hypervisor. In the
example shown we use vmStop and vmStart events to also
cover migration, as these are the only events available with
the XEN hypervisor and libvirt.

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 11 of 15

If a stop event is detected the previous device contain-
ing context data is detached and the device change is
committed via libvirt, which proceeds to propagate the
virtual hardware change at the hypervisor level. In the case
of a start event being detected, infrastructure class con-
text data is generated then packaged into an ISO image.
The recontextualization mechanism interacts with libvirt
to create a new virtual device with the contents of the
dynamically generated ISO image. A failed VM migration
will not affect recontextualization as the corresponding
events are only sent after a migration has been successful.

Procedure 1 Recontextualization Mechanism Internal
Logic

connection = libvirt.open(‘URL’)
libvirt.EventRegister(Callback())
while true do

if connection.event then
function CALLBACK(event, domain)

if event.vmStop then
device = getDeviceDef(domain)
detachDevice(device)
updateDevices()

end if
if event.vmStart then

contextData=createContextData(domain)
makeIso(contextData)
attachDevice(device)
updateDevices()

end if
end function

end if
sleep()

end while

Although not shown in the illustration, the infrastruc-
ture can trigger recontextualization in response to any
event, not just migration. This enables the infrastructure
to update the contents of the virtual device by gener-
ating new context data and detaching and re-attaching
the virtual device. Using this construct, infrastructure
specific settings can be changed during runtime at the
convenience of the provider.

Flexible file system
Flexible File System (FFS) is a lean, read-only file sys-
tem implementation that allows separate directory trees
to be mounted into a single location. The resulting file
system looks and acts like a single unified directory struc-
ture while retaining all file contents and properties in the
underlying directory trees.
FFS can be seen as a layered stack of file-sets, each set

comprised of different files and directories. When a user

attempts to read a file in the unified structure, FFS will
attempt to fetch a file from the topmost (highest priori-
tized) layer. If the file cannot be found at this layer, the
call will be delegated to lower layer(s) until it is found, or
return an error if the file cannot be found in any layer. This
process is illustrated in Fig. 4. In this example, there are
two set of files (Layer 1 and Layer 2), and files in Layer 2
have precedence. FFS will ensure that the two file sets are
displayed and presented to the user in a coherent way, and
the user will not be able to distinguish which files are from
which file-set.
In essence, the FFS file system solves many of the com-

plications of dealing with file-sets from different sources,
as files from one set can overshadow a file from another
set, without making permanent changes to either of
the files. In the example shown in Fig. 4, the file ’F’
from Layer 1 will not be visible to the user as it has
the same name and path as a file from another file-set
(Layer 2), which has precedence. If the Layer 2 file-set
is removed (as can happen due to recontextualization,
see Section ‘Recontextualization using FFS’), file ’F’ from
Layer 1 would be visible to the user, and the running
applications are able to reconfigure to use the available
settings.
FFS is implemented using Filesystem in Userspace

(FUSE) [35], a kernel module that allows custom filesys-
tem implementations to run in userspace without the
need for any changes in kernel space. The kernel module
is available for most Unix-like system, including OpenSo-
laris and OS X, and was merged into the main Linux ker-
nel tree in 2011. Work on FUSE compatible technologies
for Windows is ongoing [36].
Creating a read-only file system requires four method

calls to be implemented:

• readdir(path) List all items in a path. In this case,
FFS returns the union of listings from all layers.

• getattr(path) List attributes for the file or folder
indicated by the path. FFS will return the actual file
attributes, with the attributes at the highest layer
taking precedence if the path exists in more than one
layer.

• open(path, flags) Similarly to getattr(), the access
flags for the file with the highest precedence will
apply.

• read(path, size, offset) Reads size bytes starting
from offset in the file indicated by path, again being
resolved to the file located at the layer with the
highest precedence if more than one layer exists.

The required logic for managing several classes of data
is implemented within these method calls, creating a
virtual file structure based on the set of files currently
available.

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 12 of 15

Fig. 4 Overview of Flexible File System layering. Calls from the operating system are rerouted by FFS to the topmost layer containing the file, or
return File not found if neither layer contains the file

Recontextualization using FFS
The file system is initialized and started during the
deployment phase of the cloud service (see Table 1), with
the required files being part of the context data class
originating from the service manifest. If multi-layered
contextualization is not required for a particular service,
the associated files can simply be omitted from the set
of files specified in the manifest. When other layers of
context data (such as infrastructure specific settings) are
available they will be made available as a separate layer in
the FFS stack. The order of the layers (configurable as part
of the initial context files) determine the priority of files in
case of overlapping datasets.
Since layers can be added and removed during runtime,

recontextualization is natively supported by this approach.
In the following section, we show results of testing using
this setup to replace infrastructure specific data after
migration to a new environment.

Functional evaluation
Earlier in the paper we discussed how virtualization inval-
idates some basic assumptions of server hosting, such
as the physical hardware constitution of the executing
environment (vertical elasticity), or the physical location
of the system (migration). A similar behavior can also
be observed at the application level inside the VMs. For
example, distributed file systems such as Hadoop FS [37]
perform optimization during initialization to ensure that
the system exchanges data with a nearby server node to
maximize throughput and reduce latency. This approach
assumes that the geographical location where the sys-
tem is being hosted remains unchanged throughout the
uptime of the service. This is normally a reasonable
assumption when using physical hosting but one easily

invalidated in virtualized hosting as a result of VMmigra-
tion. As a consequence, the performance of applications
such as Distributed File Systems (DFS) may be degraded
post-migration until the system is rebooted and a new
initialization phase optimization can take place. This sce-
nario is illustrated in Fig. 5 where a client receives a
considerable performance penalty for accessing a DFS’s
cache at a geographically remote location after migration
has occurred. In this scenario, the contextualization and
recontextualization data is the IP address that points to
the local cache of the DFS and is modified in the con-
figuration file of the DFS client running within the VM.

Fig. 5 Distributed File System operation post-migration. As a result of
previous settings, client data is exchanged with a remote server node
(a), instead of a nearby node after recontextualization (b)

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 13 of 15

For example, before recontextualization this IP could be
192.168.1.1 and after 192.168.2.1.
As the use of virtualized hosting becomes more

widespread, application-level systems need to be updated
to better respond to previously unexpected changes in
the hosting environment. For example, the degraded per-
formance could in theory be detected by internal self-
optimization techniques during runtime. However, from
the perspective of the individual VM a performance
loss as a result of migration would be hard to distin-
guish from a loss of performance due to heavy load on
the network. This is one factor that makes application-
level self-optimization approaches more challenging to
design.
By supporting recontextualization, the proposed con-

textualization framework offers unambiguous means of
triggering internal system events as a result of external
events such as VMmigration or a change in the surround-
ing hosting infrastructure. In the distributed file system
case, recontextualization can be used to trigger a new
optimization phase post-migration, either by calling des-
ignated functions in the file system client (if supported),
or simply by restarting the client process.
The above scenario has been used to illustrate the fea-

sibility of the suggested approach through a series of
tests. The tests were performed on host machines with
quad core Intel i7-920 CPU @ 2.66GHz, 24GB DDR3
@ 1333MHz, 1GBit NIC and two 1500GB 7200RPM
HDDs in RAID1. The following software inclusive of
version numbers were used: Debian 6 (Kernel 2.6.32-5-
xen-amd64), XEN 4.0.1, Libvirt 1.0.5 and GlusterFS 3.3.2.
Three paravirtualized VMs were created, two acting as
Gluster servers serving a “brick” each as a replicated vol-
ume and a third as a Gluster Client where the tests were
performed on the exported file system stored within the
volume. In these tests, traffic shaping techniques (man-
aged via the Linux Kernel Traffic Control command tc)
have been used to simulate network delays and laten-
cies between different hosts. The tests show how network
delay and latencies affect the I/O performance of the Glus-
ter FS distributed file system. The remote host in the test
scenario is limited to 25Mbit of bandwidth, with an aver-
age 10ms latency. The latency has a 2% variance following
a normal distribution and 25% correlation with the previ-
ous traffic to simulate network fluctuations. The local host
is connected with a 500Mbit connection and a measured
average latency of 1.02ms (0.5% variance). These settings
correspond to typical network conditions of WAN and
LAN networks, respectively. The I/O testing is performed
by running a series of tests using the Bonnie++ I/O testing
framework [38]. Results from the tests are shown in Figs. 6
and 7.
It is important to note that the performance results are

strongly correlated with the traffic shaping settings, and

Fig. 6 Throughput per second of I/O operations when using a local
file system cache compared to a remote cache

the numerical results shown in the figures should not be
emphasized. The purpose of these tests are to illustrate
the functional capabilities of the suggested approach, and
demonstrate that contextualization and recontextualiza-
tion can be used to adapt a running VM to changing
execution environments.
As illustrated using these tests, considerable perfor-

mance gains can be achieved by optimizing the setup
of application-level systems such as distributed file sys-
tems during runtime. This is achieved by using recon-
textualization to update the application with new settings
containing details of what server node to use for its inter-
actions. This demonstrates how the suggested approach
can be used as a corner stone in application-level self-*
operations.

Fig. 7 Number of file operations per second of I/O operations when
using a local file system cache compared to a remote cache

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 14 of 15

Conclusions and future work
In this work we have suggested a contextualization
approach that supports several classes of data. The data
can originate from different sources, e.g. data related to
the service the VM instance is part of or data related to
the platform on which the instance is running. Data of
different classes are layered on top of each other using a
lean virtual file system implementation, making it possible
to add or remove data layers during runtime. For exam-
ple, the platform specific class of data can be replaced by
the infrastructure as a response to, e.g., a migration of the
VM instance to a new executing environment. This way,
the suggested contextualization solution is the first known
approach to natively support recontextualization. Recon-
textualization offer means to reconfigure the VM instance
as a result of external events or changes in the execution
environment.
Recontextualization can be used as a trigger for self-*

operations that cannot misinterpret events. This is in
contrast to a VM trying to analyse when an event had
occurred via its own internal procedures, for example
based on when its external IP address changes. A dis-
tributed file system use case demonstrated the feasibility
of our approach. In the use case recontextualization is
used to reconfigure the VM to recover from performance
degradation experienced as a result of VM migration.
Although the degradation is partly synthetic and corre-
lated to the network settings used, we demonstrate that
performance gains can be achieved by runtime optimiza-
tion triggered by recontextualization.
The limitations of our research are constrained to

the self-configuration property of autonomic comput-
ing. Future work includes evaluating further use cases
related to other self-* aspects such as self-protection.
This includes the ability to adjust the security level and
functionality of the service component depending on the
current geographical location.
Additionally, we have mostly limited our research to

IaaS level applications of contextualization and recon-
textualization. We touch upon using these technologies
also for accessing platform specific functionality, such
as network based storage, offered as a service by IPs.
There is great potential for employing these techniques
within PaaS systems, for example enabling dynamic
code replacement where software libraries (JAR files,
DLLs, etc.) can be made available by the infrastruc-
ture for execution within the service. This would allow
for arbitrary recontextualization also at the application
level.
Future technical work includes formalizing and stan-

dardizing the use of different classes of context data and
their semantics. A common approach to contextualiza-
tion is key to enable wide-spread and compatible sup-
port across cloud boundaries. A unified representation

and interpretation of contextualization meta-data in man-
ifests and service definitions also needs to be further
developed.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DA and DE conducted the design, analysis and experiments of
contextualization and recontextualization system within the paper. All authors
drafted, read and approved the final manuscript.

Acknowledgements
The research that led to these results is partially supported by the European
Commission’s Seventh Framework Programme (FP7/2001-2013) under grant
agreement numbers 257115 (OPTIMIS) and 610874 (ASCETiC). The authors
would also like to thank Tomas Forsman for technical assistance and expertise.

Author details
1School of Computing, Faculty of Engineering, University of Leeds, LS2 9JT
Leeds, UK. 2Department of Computing Science, Umeå University, SE-901 87
Umeå, Sweden.

Received: 31 March 2015 Accepted: 30 June 2015

References
1. Mell P, Grance T (2011) The NIST definition of cloud computing. NIST Spec

Publ 800:145
2. Keahey K, Freeman T (2008) Contextualization: Providing One-Click Virtual

Clusters. In: Proceedings of the 4th IEEE International Conference on
EScience (ESCIENCE ’08), Washington, DC, USA. pp 301–308

3. Armstrong D, Djemame K, Nair S, Tordsson J, Ziegler W (2011) Towards a
Contextualization Solution for Cloud Platform Services. In: Cloud
Computing Technology and Science (CloudCom), 2011 IEEE Third
International Conference on. IEEE. pp 328–331

4. Ferrer A. J, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C, Sirvent
R, Guitart J, Badia R. M, Djemame K, Ziegler W, Dimitrakos T, Nair S. K,
Kousiouris G, Konstanteli K, Varvarigou T, Hudzia B, Kipp A, Wesner S,
Corrales M, Forgó N, Sharif T, Sheridan C (2011) OPTIMIS: a Holistic
Approach to Cloud Service Provisioning. Futur Gener Comput Syst
28:66–77

5. Rochwerger B, Caceres J, Montero RS, Breitgand D, Elmroth E, Galis A,
Levy E, Llorente IM, Nagin K, Wolfstha Y (2009) The Reservoir model and
architecture for open federated cloud computing. IBM J Res Dev 53(4)

6. Armstrong D, Espling D, Tordsson J, Djemame K, Elmroth E (2013)
Runtime Virtual Machine Recontextualization for Clouds. In: Caragiannis I,
Alexander M, Badia R, Cannataro M, Costan A, Danelutto M, Desprez F,
Krammer B, Sahuquillo J, Scott S, Weidendorfer J (eds). Euro-Par 2012:
Parallel Processing Workshops. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Heidelberger Square 3, 14197 Berlin, Germany
Vol. 7640. pp 567–76

7. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A (2003) Xen and the art of virtualization. SIGOPS Oper Syst Rev
37(5):164–177

8. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third
generation architectures. Commun ACM 17(7):412–421

9. Dawoud W, Takouna I, Meinel C (2012) Elastic virtual machine for
fine-grained cloud resource provisioning. In: Global Trends in Computing
and Communication Systems. Springer Berlin Heidelberg, Heidelberger
Square 3, 14197 Berlin, Germany. pp 11–25

10. Kalyvianaki E, Charalambous T, Hand S (2009) Self-adaptive and
self-configured cpu resource provisioning for virtualized servers using
kalman filters. In: Proceedings of the 6th International Conference on
Autonomic Computing. ACM. pp 117–126

11. Galán F, Sampaio A, Rodero-Merino L, Loy I, Gil V, Vaquero LM (2009)
Service specification in cloud environments based on extensions to open
standards. In: Proceedings of the Fourth International ICST Conference on
Communication System Software and Middleware. ACM. p 19

Armstrong et al. Journal of Cloud Computing: Advances, Systems and Applications (2015) 4:17 Page 15 of 15

12. Aiello R, Sachs L (2010) Configuration Management Best Practices:
Practical Methods that Work In the Real World. 1st edn. Addison-Wesley
Professional, Boston, USA

13. CFEngine 3 - Configuration Management Software for Agile System
Administrators. http://aws.amazon.com. Online (Accessed: March 2015)

14. Puppet - IT Automation for System Administrators. http://puppetlabs.
com/. Online (Accessed: March 2015)

15. Chef - A Systems Integration Framework. https://www.chef.io/chef/.
Online (Accessed: March 2015)

16. Kephart JO, Chess DM (2003) The Vision Of Autonomic Computing.
Computer 36(1):41–50

17. Dautov R, Paraskakis I, Stannett M (2014) Utilising stream reasoning
techniques to underpin an autonomous framework for cloud application
platforms. J Cloud Comput 3(1):13

18. Karakostas B (2014) Towards Autonomic Cloud Configuration and
Deployment Environments. In: International Conference on Cloud and
Autonomic Computing (ICCAC). pp 93–96

19. Fargo F, Tunc C, Al-Nashif Y, Akoglu A, Hariri S (2014) Autonomic
Workload and Resources Management of Cloud Computing Services. In:
International Conference on Cloud and Autonomic Computing (ICCAC).
pp 101–110

20. Maurer M, Brandic I, Sakellariou R (2012) Adaptive resource configuration
for Cloud infrastructure management. Futur Gener Comput Syst

21. Wood T, Shenoy P, Venkataramani A, Yousif M (2009) Sandpiper:
Black-box and gray-box resource management for virtual machines.
Comput Netw 53(17):2923–2938

22. Shrivastava V, Zerfos P, Lee K-w, Jamjoom H, Liu Y-H, Banerjee S (2011)
Application-aware virtual machine migration in data centers. In:
INFOCOM, 2011 Proceedings IEEE. IEEE. pp 66–70

23. Athreya AP, DeBruhl B, Tague P (2013) Designing for self-configuration
and self-adaptation in the Internet of Things. In: Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), 2013 9th
International Conference Conference on. IEEE. pp 585–592

24. Microsoft: Windows Azure. http://www.windowsazure.com. Online
(Accessed: March 2015)

25. Microsoft: Windows Azure’s Role Environment Class. http://msdn.
microsoft.com/en-us/library/microsoft.windowsazure.serviceruntime.
roleenvironment.aspx. Online (Accessed: March 2015)

26. Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic ReSource Scaling
for cloud systems. In: Proceedings of the 6th International Conference on
Network and Service Management (CNSM ’10), Piscataway, NJ, USA.
pp 9–16

27. Krishnan S, Counio JC (2010) Pepper: An Elastic Web Server Farm for
Cloud Based on Hadoop. In: Proceedings of the 2nd IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom ’10), Los Alamitos, CA, USA. pp 741–747

28. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the
clouds: towards a cloud definition. SIGCOMM Comput Commun Rev
39(1):50–55

29. Bradford R, Kotsovinos E, Feldmann A, Schiöberg H (2007) Live wide-area
migration of virtual machines including local persistent state. In:
Proceedings of the 3rd International Conference on Virtual Execution
Environments. ACM. pp 169–179

30. Wood T, Ramakrishnan KK, Shenoy P, van der Merwe J (2011) CloudNet:
dynamic pooling of cloud resources by live WAN migration of
virtual machines. In: Proceedings of the 7th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. ACM.
pp 121–132

31. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A
(2005) Live migration of virtual machines. In: Proceedings of the 2nd
Conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association. pp 273–286

32. Liu P, Yang Z, Song X, Zhou Y, Chen H, Zang B (2008) Heterogeneous live
migration of virtual machines. In: International Workshop on Virtualization
Technology (IWVT’08)

33. Mohamed M, Belaid D, Tata S (2013) Adding Monitoring and
Reconfiguration Facilities for Service-Based Applications in the Cloud. In:
Advanced Information Networking and Applications (AINA), 2013 IEEE
27th International Conference on. pp 756–763

34. Libvirt: The virtualization API. http://libvirt.org/. Online (Accessed: March
2015)

35. Szeredi M Filesystem in userspace. http://fuse.sourceforge.net/. Online
(Accessed: March 2015)

36. Dokan. http://dokan-dev.net/en. Online (Accessed: March 2015)
37. Borthakur D (2007) The hadoop distributed file system: Architecture and

design. Hadoop Project Website 11:21
38. Coker R Bonnie++ file-system benchmark. http://www.coker.com.au/

bonnie++. Online (Accessed: March 2015)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://aws.amazon.com
http://puppetlabs.com/
http://puppetlabs.com/
https://www.chef.io/chef/
http://www.windowsazure.com
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.serviceruntime.roleenvironment.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.serviceruntime.roleenvironment.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.serviceruntime.roleenvironment.aspx
http://libvirt.org/
http://fuse.sourceforge.net/
http://dokan-dev.net/en
http://www.coker.com.au/bonnie++
http://www.coker.com.au/bonnie++

	Abstract
	Keywords

	Introduction
	Background and related work
	Virtualization
	Service lifecycle
	Configuration management
	Autonomic computing

	Contextualization
	Challenges

	Recontextualization
	Challenges
	A recontextualization mechanism
	Contextualization versus recontextualization

	Context-aware lifecycle management
	Practical applications
	Design and architecture
	Flexible file system
	Recontextualization using FFS

	Functional evaluation
	Conclusions and future work
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

