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Abstract

A nearby virtual machine (VM) based cloudlet is proposed for mobile cloud computing (MCC) to enhance the
performance of real-time resource-intensive mobile applications. Generally, when a mobile device (MD) discovers a
cloudlet in the vicinity, it takes time to set up a VM inside the cloudlet before data offloading from the MD to the
VM starts. The time between the discovery of the cloudlet and actual offloading of data is considered as the service
initiation time. When multiple cloudlets are present in a nearby geographical location, initiating a service with each
cloudlet may be frustrating for cloudlet users that moving from one location to another. In order to eliminate the

migration is completed.

VPN, Virtual Private Network; WAN, Wide Area Network

delay caused by the service initiation time after moving away from the source cloudlet, this paper proposes a
seamless live VM migration between neighbouring cloudlets. A seamless live VM migration is achieved with the
prior knowledge of the migrating VM IP address in the destination cloudlet and more importantly with multipath
TCP (MPTCP). We have performed a number of experiments to validate the proposed approach using Linux KVM
hypervisor. The experimental results demonstrate the feasibility of the proposed approach and also show
performance improvement. Specifically, there is almost zero downtime at the destination cloudlet after the
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Abbreviations: AP, Access Point; DHCP, Dynamic Host Configuration Protocol; HoA, Home Address; LAN, Local Area
Network; MCC, Mobile Cloud Computing; MD, Mobile Device; MoA, Mobile Address; MPTCP, Multipath TCP;
Qok, Quality of Experience; RTO, Retransmission Time Out; TCP, Transport Control Protocol; VM, Virtual Machine;

Introduction

The high demand for mobile applications has encouraged
software and mobile developers to bring the desktop level
applications to mobile devices (MDs). Although the com-
putation and storage capacities and battery life time of
MDs have improved considerably in recent years, mobile
devices still remain resource-poor devices because of
battery power, bandwidth, and capacity to handle
resource-hungry applications. Most of the applications
executing on MDs are real-time and interactive applica-
tions. In addition to offloading, a real-time application to
a distant remote cloud through the Internet increases
response time due to Wide Area Network (WAN) latency
[1]. Latency affects MD users in two ways. Firstly is the
quality of experience (QoE). As latency increases, the QoE
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degrades. Secondly is the faster drain of energy on MDs
[2, 3]. Energy efficiency is also an important performance
parameter for MDs. Therefore, maximizing the benefit of
offloading applications for MDs can be achieved by min-
imizing the latency between the MDs and the servers. In
order to do this, researchers have proposed resource-rich
nearby servers which are connected to or integrated with
wireless access points (AP) as a solution for MDs offload-
ing. Examples include CLONECLOUD [4], MOCHA [5],
MAUI [2], Odessa [6], COMET [7], and virtual machine
(VM) based cloudlet [1]. In this way, the need for
improving QoE and energy efficiency can be accomplished
by low latency, one-hop, high bandwidth (BW) wireless
access to the servers.

There are two types of offloading mechanisms in the
literature. One is by partitioning applications and send-
ing only resource-intensive instructions to servers and
executing the rest of instructions on the MD itself. The
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second mechanism is to send all the instructions to the
server. The second mechanism needs to create a VM
instance on the server for each MD to serve as shared
infrastructure and to provide strong isolation between
computations from different MDs. VM-based cloudlets
[1] adopted the second approach.

The authors in [1] define a cloudlet as “a trusted,
resource-rich computer or cluster of computers that’s
well-connected to the Internet and available for use by
nearby MDs.” Cloudlets are a disruptive technique in
mobile computing. Cloudlets can provide low delay, high
bandwidth access to high-end computing devices that are
within one wireless hop, which can bring substantial value
to new emerging applications [8, 9]. The concept of cloud-
lets is consistent with the recent concept of Fog comput-
ing [10-12] which focuses on the edge for mobile users so
that mobile users can access computation-intensive ser-
vices via short-distance and low-delay local connections.
Further, cloudlets can also be considered as “second-class
data centers” which are much more flexible and easier to
maintain or replace compared to the traditional data cen-
ters [9].

This paper focuses on the VM-based cloudlets. The mo-
tivation of this research stems from the fact that MD users
are not stationary, although they are getting benefit from
the nearby static cloudlet servers. A frequent movement is
common to a MD user but changing network location
causes the following two problems:

e The first one is the change of MD IP address, which
will terminate the existing transport control
protocol (TCP) connection between the source
cloudlet and the MD.

e The second problem is that MD needs to wait for
another service initiation time before the offloading
starts, if there is available nearby cloudlet in the new
location. Service initiation time is the time from
discovering the cloudlet to the time the offloading
starts. Service initiation time has negative impact on

QoE.

To address these two problems, we initially proposed
[13] to replace TCP with MPTCP [14] for the first prob-
lem. Further, our proposed solution to the second problem
is to perform a VM migration from the source cloudlet to
the destination cloudlet to eliminate or reduce the extra
service initiation time.

This paper is an extension of [13]. The main contribu-
tions of the paper include: First, the paper demonstrates
in detail the capability of MPTCP to support live server
VM migration over a wide area network (WAN). Without
any code modification to MPTCP, a server VM can be
migrated live seamlessly without interrupting the applica-
tion running on the VM. Second, this paper proposes two
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interfaces to be used by the VM and to configure the
destination IP address information before the VM is
migrated. This approach has two advantages: seamless
connection migration and zero network VM downtime
after the migration is completed. This paper also discusses
location identifier, possible neighbor database to facilitate
migration decision making, and various scenarios. We also
have added an algorithm to a Virtual Private Network
(VPN) and an algorithm for migration decision making.

The rest of the paper is organized as follows; Section
II describes the related works. Section III discusses our
proposed VM migration for cloudlets using MPTCP.
Section IV describes our experiments and demonstrates
the results. Section V discusses decision making for VM
migration. Finally, Section VI is the conclusions and
future directions.

Background and related work

Various technical areas are related to this paper. This
section introduces the basic concepts of those related
areas, specifically cloudlets, live VM migration, MPTCP
and Fog computing.

Computational offloading and cloudlets

Mobile Cloud Computing (MCC) brings together cloud
computing, mobile computing, wireless networks, and
cloud services to provide MD users rich computational
resources. MCC overcomes the resource limitation of
wireless MDs by leveraging fixed infrastructure.
Resources, such as CPU, RAM, data storage and battery
energy, are limited resources in MDs. Resource intensive
applications, such as speech recognition, natural language
processing, computer vision and graphics, machine learn-
ing, augmented reality, planning, and decision-making
become common in MDs. In order to enhance the per-
formance of these resource-intensive applications, offload-
ing from the MDs to resource-rich servers in the vicinity
or to a distant server is a common solution for mobile
computing.

Research efforts [1, 2, 4] have shown that offloading
applications to a remote server is not always the optimal
solution for MDs. The latency between the MD and the
server is a parameter that governs the performance of
the system in terms of energy consumption and QoE. As
latency increases the energy consumption of the MD
increases and the QoE degrades. Using a nearby server
instead of a remote server for offloading applications
minimizes the network latency between the cloudlet and
the MD.

There are basically two types of offloading mechanism.
Executing resource-intensive application remotely by
partitioning the application is the first method. This
approach relies on the programmers to specify how to
partition the program and to identify the instructions to
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be sent to the remote sever. The partitioning scheme has
to adapt to the network condition and the availability of
resources in real-time basis. For example, if a smartphone
can access a remote server with a good wireless network
connection, resource-intensive tasks can be executed
remotely. If the energy cost to send the tasks remotely is
higher due to poor wireless connection, the tasks will be
executed locally on the smartphone. The following tools:
CLONECLOUD [4], MOCHA [1], MAUI [2], Odessa [7],
and COMET [7] adopt this approach.

The second offloading mechanism is to send the whole
application to a VM instance identified in a remote server.
No smart decision is required for this method. This ap-
proach reduces the burden on the application program-
mers because the applications do not need to be modified
to take advantage of remote execution. If a remote server
is available, the whole application is offloaded to the ser-
ver; otherwise, the device executes the whole program
locally. The authors in [1] proposed a VM-based cloudlet
offloading approach.

There are two different methods to send the VM state
to a cloudlet infrastructure. One is VM migration, in
which an already executing VM is suspended, its proces-
sor, disk and memory states are transferred; and finally
VM execution is resumed at the destination from the
same point of suspension. The other approach is called
dynamic VM synthesis which customizes a VM on
demand. VM customization is time consuming, as the
process includes the time to create VM disc space, install
operating system and install a particular application.
Delivering a service after all of the steps taken causes a
great deal of delay. Minimizing VM customization time is
the main objective of dynamic VM synthesis.

Fog computing

Fog computing, first proposed by Cisco [12], shares
similar concept as cloudlets, as the emphasis is on the
nearby cloudlets or edges. Fog computing extends the
conventional cloud computing paradigm to the edge of
the network that is close to the end users. Fog is also
known as micro datacenter. Fog computing has received
tremendous attention lately as the technology has the
potential to bring the benefits of cloud computing closer
to the users to leverage energy-rich, high-end comput-
ing, and low-latency.

Authors in [10-12] presented various scenarios for
Fog computing. For instance, connected vehicles, smart
grid, wireless sensor and actuator networks can benefit
considerably from low-delay response using Fog com-
puting [10]. Other potential scenarios include Internet of
Things (IoT) and cyber-physical systems [11]. Fog com-
puting can also facilitate augmented reality and real-time
video analytics and mobile big data analytics that require
intensive computations [12].
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Fog computing is still in the early stage in terms of re-
search and practical deployment. On the other hand, Fog
computing addresses not only the technical aspects, but
also the business concerns that exist for cloudlets. To
effectively support Fog computing, a basic infrastructure
for edge computing devices is essential and needs to be
planned and managed by a network operator. The man-
aged infrastructure can mitigate some of the issues
that may occur for VM migration. For instance, the
overlapping of cloudlets, and issues of handovers and
IP address assignment can be effectively managed with
pre-configured policies. Section III describes a simple
pre-established network configuration policy that can
help manage IP addresses for VM migration.

Live VM migration and network migration

VM migration, especially live VM migration, as men-
tioned in Section IL.A, is useful for delay sensitive appli-
cations for MCC. Live VM migration, a key technology
in virtualization, is the process of moving a running VM
from one physical host to another with minimal down-
time. For live VM migration, the service initiation time
is a critical factor that causes delay. Service initiation
time is the time from when the MD discovers a cloudlet
to the time the MD starts offloading data. Four main
steps are involved for the service initiation time: bind
the MD with the cloudlet, transfer the VM overlay, de-
compress the VM overlay, and apply the VM overlay to
the base VM to launch the VM. To minimize the service
initiation time, Ha, et al. [15] applied four optimization
techniques (Deduplication, Bridging the Semantic Gap,
Pipelining, and Early Start) to minimize the delay
significantly.

Live VM migration can be performed within a data cen-
ter from one server to another or it can be performed
across geographically distributed data centers. There are
three key aspects to be considered in a live VM migration
[16]: RAM state, storage and network migration. This
paper focuses on the network migration aspect.

Network migration involves LAN migration and/or
WAN migration. In LAN migration, the VM can retain its
IP and MAC addresses after migration. The local switch
needs to adjust the mapping for the VM’s MAC address to
its new switch port [17]. Over a WAN, retaining the same
IP address before and after VM migration is a challenge. Ex-
tending the layer 2 connectivity over WAN is one solution,
e.g., CloudNet [18]. This allows open network connections
to be seamlessly redirected to the VM’s new location.

Mobile IP is another approach that has been used for
connection redirection [18] without the constraint of
retaining the original IP address. The VM used two IP
addresses; one is called the Home Address (HoA) and
the other one is called Mobile Address (MoA). Every
time the VM changes its location, the VM updates an
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agent of the new location. Traffic for the VM always
goes through the HoA, and then HoA will redirect traf-
fic to MoA. This causes additional delay for the traffic.

Multipath TCP (MPTCP)

To mitigate the VM migration delay and improve the
robustness, another mechanism is to adopt MPTCP.
MPTCP is a transport layer as opposed to a network
layer and is a viable solution for live VM migration. The
main idea is that even if the original IP address of a VM
has changed, the connections remain established [19].
MPTCP is implemented for migration of a VM running
a client application. Unlike the regular TCP/IP protocol,
MPTCP is an IETF (Internet Engineering Task Force)
protocol that allows multiple interfaces to be used for a
single application and socket interface [14]. MPTCP is
responsible for connection setup, transferring data
between TCP connections, adding and removing sub-
flows, and tearing down the session for one or more TCP
connections. In MPTCP, a path is a sequence of links be-
tween a sender and a receiver and it is defined by 4-tuple
source and destination address pair; a subflow is the same
as TCP segments operating over an individual path; and
an MPTCP connection is a one-to-one mapping between
a connection and an application socket.

Other related work

Other approaches to cloudlet migration have been dis-
cussed in the literature. Li, et al. [20] discussed the lack of
consistent network performance for mobile user while off-
loading; the optimal offloading decision becomes subopti-
mal due to MD user movement. The authors proposed a
three-tier (Smartphone-cloudlet-cloud) architecture that
tracks user locations using GPS and saves it in a central-
ized database found in a remote cloud. The location infor-
mation helps to predict user’s movement and to identify
the energy efficient Wi-Fi AP. The real-time network
performance between a smartphone and an AP and the
server-side load are considered to make optimized off-
loading decisions. The approach considered multiple
cloudlets and proposed a centralized cloudlet system
which is different from the decentralized VM based cloud-
let [1]. The research has focused only on energy saving.
On the other hand, the paper does not mention how the
state of the user’s application could be transferred from
one cloudlet to the other.

Kommineni, et al. [21] also considered more than one
cloudlet in a nearby location. The authors claimed that
in order to make the best cloudlet selection, the smart-
phone has to consider the processing speed and the
available memory size of a cloudlet. In addition, the
wireless network latency between a smartphone and an
AP and the BW of a fixed network from the cloudlet to
the remote server were considered crucial metrics for
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cloudlet selection. The real-time network performance is
not considered in this paper.

Jararweh, et al. [22, 23] studied how using cloudlet
through Wi-Fi could save energy of smartphones than
accessing a remote cloud through 3G/4G. Even though
this paper describes transferring the state of the offloaded
application from one cloudlet to another while the user is
moving, the offloading mechanism and the networking
collaboration between cloudlets is not mentioned.

Seamless live VM migration for cloudlets with
multipath TCP

This section presents our seamless live VM migration ap-
proach between cloudlets which is triggered by the reloca-
tion of an MD. Our goal is to develop a nearby VM-based
approach for cloudlets to improve MCC communications.
Two major benefits of our approach are proximity of
servers to MDs minimizes latency and offloading to a re-
mote server through minimum latency not only supports
QOE, but also saves the energy of the MDs. Dynamic VM
synthesis [21, 24] customizes VM on demand for cloudlet
users. After service initiation time, the user starts offload-
ing data to enhance the applications performance. Since
the cloudlet is one hop away from the user, only a mini-
mum delay is experienced as long as the user remains in
the communication range of the cloudlet.

The first problem with the existing dynamic VM mi-
gration is that the MD’s IP address is changed after it
moves from one cloudlet to another. A new IP address
for the MD will terminate the established TCP connec-
tion with the VM instance, which compels the MD to
start a new TCP connection. QoE will be significantly
affected or may not be acceptable in such a solution.
The second problem occurs when accessing the source
cloudlet from the destination cloudlet during the migra-
tion process. This approach involves the network latency
(could be WAN latency) which defeats the purpose of
using a cloudlet to have a short delay.

To address the aforementioned two issues, the follow-
ing two key points are considered for this research:

e To avoid re-establishment of the TCP connection,
the proposed solution uses MPTCP. Hence, it is
possible keep the connection established after the
MD changes its IP address, which can significantly
reduce the delay.

e To ensure that traffic is forwarded between two
cloudlets, creating a trusted network collaboration
using a VPN for geographically nearby cloudlets is a
solution.

MPTCP for seemless live VM migration
The transport protocol plays a crucial role in migration
of a VM instance. The most commonly used transport
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layer protocol is TCP. TCP uses five tuples, the source IP
address, the destination IP address, the source port, the
destination port and the protocol type to identify a con-
nection between a server and a client. If any of the five
tuples changes during the lifetime of the TCP connec-
tion, the established connection will be closed abruptly.
In order to continue the connection with the server, the
client needs to initiate a new connection with TCP.

Over the WAN, VM migration is performed from one
network to another, which forces the IP address of the
VM to be changed. This forces the VM to restart all the
established connections, which causes delay and un-
acceptable QoE.

As stated before, this paper proposes the use of
MPTCP in both the client and the server to reduce the
delay caused by TCP re-establishment. MPTCP works
only if the migrating VM runs as a client application,
since only the client can send a TCP SYN packet with
the new IP address acquired after migration. Even if a
server supports MPTCP, the server does not synchronize
with the client automatically after the IP address is chan-
ged. In addition, the existing MPTCP does not meet all
the requirements for VM migration unless the kernel
code is modified specifically for VM migration. To re-
solve this limitation without modification of the MPTCP
kernel code, this paper proposes another solution to
support a live VM migration without having to re-
establish a new TCP connection. The following explains
the additions to MPTCP.

Migrating a server VM with MPTCP

If a VM server has only one virtual interface and if it is
restarted, all the connections to the server will be lost
regardless of the transport layer protocol used. This is
how both MPTCP and TCP are designed. With TCP, the
server will not actively initiate a connection with a cli-
ent. Modifying the kernel implementation to meet this
requirement (e.g., server could initiate the connection) is
a solution, but this solution will cause a complication if
a server initiates a connection with a client. The reason
is that the client IP address may not be always the
original IP address. For instance, in a network path that
involves network address translation (NAT) box, the
original IP address of the client is hidden.

Therefore, this paper proposes two additional features
on top of MPTCP. The first feature is for the VM
instance to have two virtual interfaces and the second
feature is to construct it in a way that the VM instance
knows its future IP address via a pre-configured policy
for IP addresses.

Prior knowledge of the next IP address
In VM migration, this feature can be supported with a
pre-established network configuration policy. IP address
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assignment can be achieved without much difficulty if
the cloudlets are managed by the same network operator
or cooperative network operators. Emerging techniques,
such as Fog computing [10], can be used to seamlessly
support the feature.

One of the possible policies is explained with the fol-
lowing example:

LAN IP address: 10.4.0.0/24

Broadcast IP: 10.4.0.255/24

MD IP address: The Evens (10.4.0.2/24, 10.4.0.4/24, ...).
VM IP address: The Odds (10.4.0.3/24, 10.4.0.5/24, ...).
Cloudlet IP address: 10.4.0.1/24

Reserved IP address: 10.4.0.224/24

The new VM IP address is the next odd IP address of
the paired MD IP address. For instance, assume that
the LAN IP address of the source (C1) and destination
(C2) cloudlets are 10.4.0.0/24 and 10.5.0.0/24, respect-
ively. The service was originally initiated at C1 with
paired IP addresses, i.e., 10.4.0.2/24 for the MD and
10.4.0.3/24 for the VM. After the user changes location,
the MD is assigned a new IP address, say 10.5.0.8/24.
As soon as the VM is accessed with this new IP
address, the VM knows that the new location IP ad-
dress would be the next odd IP address which is
10.5.0.9/24.

The ADD_ADDR22 option from MPTCP [14] is used
by the VM to inform the client that there is a new or
additional IP address. To send the ADD_ADDR22
option, at least one active subflow is needed for the con-
nection. Hence, this research proposes the VMs to have
two virtual interfaces inside a cloudlet. One interface is
to operate in the regular VM operation mode; the other
works only after the VM is migrated.

Each VM inside of a cloudlet is configured with two
virtual interfaces, e.g., EthO and Ethl. Usually, only EthO
or Ethl is used to communicate with the MD at a time.
If EthO is up, then Ethl is down. After a VM migration,
the state of the two interfaces will exchange. Always, the
interface with the DOWN state is intended to serve as
the interface during migration. When a VM is accessed
from a different IP address than the existing LAN IP
address of the VM, the VM knows that the paired MD
has changed the location. The VM then prepares the mi-
gration by turning on the interface that was in the
DOWN state. The IP address for this new interface is
determined by the paired MD IP address.

Although ADD_ADDR22 advertises the existence of
the additional IP address, no subflow can be started with
the additional interface before the VM is migrated. Since
the IP address assigned to the additional interface is
from a different LAN after migration, the VM is
unreachable through this interface. But the connection
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Table 1 Operation phases and status of the server VM
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Table 2 Summary of MPTCP signals

Operation Phases of VM Interface Status Number
of
Eth1 EthO SUbflow
Normal operation time Down Up 1

After VM is accessed with
different LAN IP address

Up (inactive) Up 1

Right after migration Up Up (inactive) 1
is completed
Normal operation time Up Down 1

from the MD will keep trying to create a new subflow
with the new IP address of the VM.

The VM will be available through the additional inter-
face right after the migration is completed. At this time
the previously working interface becomes inactive. Since
the MD knows the additional IP address of the VM
which was advertised before migration, the MD initiates
a connection through that interface. As soon as the new
subflow is started, the previous interface will be taken
down to make it ready for the next potential migration.
Table 1 summarizes the operation mode of the VM and
the interfaces status.

MD handover with MPTCP

A MD installed with MPTCP can be configured with three
different operational modes based on requirements. Each
operational mode identifies the handover mode as well. A
device with one or more interfaces can select one of the
handover modes based on the need.

Full-MPTCP mode

The full- MPTCP mode allows creating a TCP subflow
with all active IP addresses. For instance, a MD inte-
grated with both Wi-Fi and 3G/4G interfaces can benefit
from the full-MPTCP mode using both interfaces at the
same time to achieve the maximum throughput. If one
of the interfaces goes down, the other active interface
keeps working without any disruption.

Backup mode

In backup mode, MPTCP opens TCP subflows with all
available interfaces just like the full- MPTCP mode. How-
ever, only a subset of interfaces is active for normal data
transfer based on the priority of the interfaces. The
MP_PRIO option (cf. Table 2) sent by the peer is used to
identify the backup interface. As the other peer received
the MP_PRIO option, MPTCP keeps the subflow open
but never sends data unless the current active interface
goes down.

Signalling Name Function
MP_CAPABLE ~ Multipath Checks the capability of the end host
TCP Capable on establishing a MPTCP connection
MP_JOIN Join Adds additional subflow to existing
Connection MPTCP connection
REMOVE_ADDR Remove Removes failed subflow
Address
MP_PRIO Multipath Inform subflow priority
Priority
MP_FASTCLOSE  Fast Close Closes MPTCP connection abruptly.
ADD_ADDR22  Add Address Informs the availability of additional

IP address to the paired host

Single-path mode

Only a single subflow is active with this mode. MPTCP is
able to keep the established connection open for retrans-
mission time out (RTO) time after the active subflow is
lost. This feature enables peer devices to continue data
transfer with the open subflow after a new IP address is
acquired for the same interface or from different interface.
A handover for a smartphone can be from Wi-Fi to 3G/
4G network after it is disconnected from the Wi-Fi net-
work. Compared to the backup mode, this mode waits for
two more round-trip times before the new MPTCP sub-
flow is established and data can be sent.

Handover scenarios for MDs

This paper considers two MD handover scenarios for VM
migration: (i) from Wi-Fi to Wi-Fi, and (ii) from Wi-Fi to
3G/4G to Wi-Fi. The following presents an analysis for
these scenarios. The objective is to show that a handover
is performed before the MPTCP connection is closed
between the VM and the MD. Both the source and the
destination cloudlets are assumed to be in the same VPN.
This allows the MD and the VM to communicate using
their LAN IP address through the WAN even if they exist
in different cloudlet networks.

From Wi-Fi to Wi-Fi

Two geographically close Wi-Fi networks may overlap
or may have a gap. The distance between the two Wi-Fi
network regions may enable the MD to handover with-
out any interruption if the MPTCP protocol is installed
both in the MD and the server the MD is connected to.
The role of the RTO in the MPTCP is to give enough
time for the MD to acquire a new IP address and to
resume the data transfer from where it has stopped
without reestablishment of a new TCP connection if the
application timeout is longer (applications are config-
ured with their own response waiting time).
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Fig. 1 Two Wi-Fi network regions separated with distance d

If two network regions overlap, for a MD moving from
the source to the destination region, the time needed to
create a new subflow with the MPTCP connection is the
time for the MD to be assigned an IP address from the
destination region.

In the case where there is no overlap between two
cloudlet network regions, as shown in Fig. 1, the max-
imum distance d that a MD is allowed to catch up on
the established MPTCP connection is calculated as

d= (RTO-RTT/2-T1p) X Vjum (1)

where d is the distance between the two cloudlet net-
work regions, RTO is the retransmission timeout for the
MPTCP connection, RTT is the round trip time between
the access points (APs) through WAN, Vp,, is the aver-
age human walking speed and Tjp is the time that the
MD obtain a new IP address from the local Dynamic
Host Configuration Protocol (DHCP). The RTO for the
MPTCP protocol varies from 13 to 30 min [25]. The ac-
tual RTO value depends on the latency between the cli-
ent and the server.

To guarantee that the new subflow is created before
MPTCP connection timeouts, the minimum RTO value
for MPTCP, i.e., 13 min (or 780 s) [25], is used to estimate
the maximum distance between two cloudlet network
regions before MPTCP retransmission timeout happens.
This paper also assumes that the user walks with the
average human walking speed of 1.2 m per second, i.e.,
Vham = 1.2 m/s, based on research results in Civil
Engineering [26]. Practically, when a user is using a
MD, the walking speed generally is slower than the nor-
mal speed. In addition, to accommodate a wider range
of variations or errors in estimating the maximum dis-
tance d, this paper discards the value of independent
variables RTT and Typ as listed in Eq. (1). Hence, d < =
RTO x Vi, = 780 x 1.2 m/s = 936 m. The estimated dis-
tance can be used as a reference for network operators
that provide cloudlet services or Fog computing to
avoid delay due to the MPTCP timeout mechanism.
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For instance, the distance could be configured shorter
than the calculated distance to ensure that MPTCP
timeout will not happen.

If D/2 (see Fig. 1) is the Wi-Fi AP communication
range in meters, D +d will be the maximum distance
between two cloudlets that allows a handover of MDs
before the established MPTCP connection timeouts.
This calculation for maximum distance gives the ideal
distance based on the transport layer protocol. However,
applications may have their own session timeout values.
Before the MPTCP connection gives up on waiting for a
response, application session may timeout.

The MPTCP handover mode used for this scenario
could be either fulllMPTCP or single-path MPTCP.
Both of these handover modes have the same perform-
ance, since only one subflow can be active at a time.
Figure 2 shows the sequence diagram for the handover
operation between the MD and the VM. Assume that the
MD user was in the C1 network region, the left cloudlet
as shown in Fig. 1. The VM instance is launched in the
nearest cloudlet server (C1). As the user walks out of the
region of C1 and is connected to cloudlet C2 on the right,
MPTCP protocol handovers the established connection
seamlessly. The sequence chart is explained as follows.

Steps 1-3 are the 3-way handshake of MPTCP
between the VM and the MD with the MP_CAPABLE
option. Duration A in Fig. 2 represents the period between
MD and VM while MD remains in C1’s coverage. T is the
time that the MD spent without any network coverage
which is less than the actual RTO of the connection.
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Fig. 2 Sequence chart for handover between a MD and a VM
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After the MD is disconnected from C1 and connected
with C2, C2 then assigns a new IP address to the MD.
The new 3-way handshake starts at step 4 which is the
TCP SYN packet with the JOIN option in MPTCP. Step
7 indicates an ACK for the JOIN subflow. Duration B
represents data transfer using the new subflow. The
REMOVE_ADDR option is sent from the MD to the
VM in C1 to inform that its previous IP address is no
longer available (step 8). Step 9 is an ACK message.

From Wi-Fi to 3G/4G to Wi-Fi

The ubiquitous nature of 3G/4G cellular network is one
advantage over Wi-Fi networks. Devices with the 3G/4G
capability can take the advantage of this feature to transfer
data between Wi-Fi networks seamlessly with the help of
MPTCP. The existence of a cellular network between two
Wi-Fi networks, as shown in Fig. 3, does not change the
maximum distance between two cloudlets for a potential
live VM migration, see Eq. (1). The reason is that, for this
scenario, some devices, e.g., tablets may only have Wi-Fi
capability.

The handover mechanism is the same as that of the
Wi-Fi to Wi-Fi network. But for a MD connected with
the cellular network, all the three handover modes, full-
MPTCP, backup, and single-path, can be used depending
on the required performance by the user. For instance, if
energy efficiency is more important than the throughput,
the backup or the single-path mode can be used. How-
ever, the full-MPTCP handover mode provides a better
throughput, since both the Wi-Fi and 3G/4G interfaces
can be used simultaneously.

The sequence diagram for the backup handover mode is
shown in Fig. 4 as an illustration. Steps 1-3 are the 3-way
handshake of MPTCP between the VM and the MD with
the MP_CAPABLE option. This subflow is started with
the Wi-Fi interface of the MD. Data transfer starts with
the Wi-Fi subflow (duration A shows the data transfer

WAN
VM (9)
c2
Cc1 A
- [R
? 3G/4 b
Fig. 3 A scenario with Wi-Fi and 3G/4G networks
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Fig. 4 Sequence chart for MPTCP backup handover mode for Wi-Fi
to 3G/4G to Wi-Fi

period) while the JOIN option of MPTCP protocol is sent
through 3G/4G interface (steps 4—7). The JOIN option in-
cludes information which indicates that this particular
subflow is a backup subflow. No data will be sent through
this subflow unless the Wi-Fi subflow fails.

As soon as the MD is disconnected from the Wi-Fi net-
work, the data transfer shifts to the backup subflow (B de-
notes the data transfer duration). The REMOVE_ADDR
(step 8) option is sent through the 3G/4G subflow to
inform the VM that the previous IP address is no longer
available. At step 9, an ACK message is sent from the VM
to the MD.

After the second Wi-Fi AP assigns an IP address to the
MD, the JOIN option is sent through the Wi-Fi interface
of the MD with the new IP address (steps 10-13). Imme-
diately after the Wi-Fi subflow is formed, the data transfer
shifts from the 3G/4G subflow to the Wi-Fi subflow (C
denotes the data transfer period). Then, the 3G/4G sub-
flow remains as a backup.

Networking collaboration between cloudlets

If a service is available in different locations and if there is
no collaboration between the two service providers, it is
impossible to transfer the user state from one service loca-
tion to the other seamlessly. For MCCs, Satyannarayanan,
et al. [1] proposed cloudlet servers to be decentralized and
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Fig. 5 VPN connections for cloudlets
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managed only by the local businesses. In a scenario where
multiple cloudlets are geographically close, it is impossible
to make a seamless live VM migration from one cloudlet
server to another if there is no collaboration between two
cloudlets.

Hence, in this research, a VPN connection between
cloudlets is proposed to allow a seamless live VM migra-
tion between two cloudlets. More detailed description is
as follows.

VPN for cloudlets

Accessing a host remotely over the public network
needs administrative permission and dedicated software
that allows the remote user to access the host. In this
research, the main objective is to migrate a VM be-
tween two cloudlets over the WAN. To meet this ob-
jective, each cloudlet must trust each other and there
must be an administrative permission in each host to
allow a VM migration from one cloudlet to the other.
In order to create a secure networking collaboration
between different sites of cloudlets, VPN is the most
appropriate approach. Adoption of the popular peer
model used in the field for VPN is proposed to meet
the requirements.

As shown in Fig. 5, in a peer model VPN, there are two
main types of routers, e.g,, customer edge (CE) and provider
edge (PE). Further, each CE is connected to a peer PE. To
minimize the latency, we assume that cloudlets are capable of
performing some functionalities of a CE. In other words, a
cloudlet is connected directly to a PE. Hence, cloudlet and CE
are used interchangeably in the context of VPN in this paper.

A VPN is formed based on the geographical loca-
tion of the CEs. If CEs are close enough for a walking
distance, the CEs would form a VPN. From Fig. 5,
CLOUDLET1_VPN and CLOUDLET2_VPN are estab-
lished when a proximity cloudlet servers are found.
CE1 and CE2 belong to CLOUDLET2_VPN and CE4,
and CE5 belong to CLOUDLET1_VPN, respectively.

CE3 is a member of both CLOUDLET1_VPN and
CLOUDLET2_VPN.

Adding a cloudlet to a VPN

A cloudlet is added to a VPN if and only if it is near
at least one cloudlet of the VPN. The maximum dis-
tance a cloudlet can have with at least another cloud-
let from a VPN can be estimated using Eq. (1). The
network coverage of the wireless network in meters
plus 936 m (calculated using Eq. (1)) is the maximum
distance one cloudlet should have with at least an-
other cloudlet from a VPN. The algorithm to add a
cloudlet in a VPN is defined below. Dmax is the
maximum distance between two cloudlets to make a
seamless handover. The existing cloudlet VPNs are
represented by VPNc. C stands for a new cloudlet to
be added to a VPN. Dck is the distance between
cloudlet C and cloudlet K.

A new cloudlet candidate can be added to the existing
VPNs at any time. Once the IP address space is assigned
to VPN sites, merging a VPN will cause IP address over-
laps or IP address change to each sites. If a cloudlet candi-
date is in between two VPN, it would be a member of
both VPNs but merging would not be performed. CE3
from Fig. 5 is an example.

Algorithm 1
Input: Dmax, VPNc, C
Output: VPNs where C is added as a new member
for each VPN V ¥ VPNc
for each cloudletK 3V
Add Cto V, if Dck <= Dmax
Update V
end for
end for
End Algorithm 1
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Removing a cloudlet from a VPN will cause complica-
tion, if the cloudlet being removed is a neighbour for
cloudlets far apart with a distance longer than Dmax.
One VPN may be divided in two VPN as a result of the
removal of one cloudlet.

Location identifier

Packets coming to a cloudlet are filtered based on the
source IP address. When a cloudlet is accessed from a
different site, it is initiated to perform the VM migration.
VM migration is triggered when a mobile IP address is
changed based on the following two reasons:

e A cloudlet can be accessed with a different LAN IP
address if it is in new location or if it is from a
cellular network. After the original IP address of the
MD is changed, the first cloudlet could not give the
optimal performance anymore since WAN latency is
involved between the MD and the first cloudlet.

e Since cloudlets are assumed to be owned by local
businesses or organizations, the MD would benefit
only if the user remains in the particular business area.
For example, a coffee shop would allow users to access
the cloudlet if users remain in the shop. Although
users will not be disconnected as soon as they move
out from the business area, there would be a time limit
to allow the VM instance to be migrated. After all, the
VM instance consumed a resource in a cloudlet and it
has to be freed for the use of another customer.

Possible neighbour database

Each cloudlet maintains a possible neighbour database
which helps make decision on VM migration. While joining
a VPN the new cloudlet multicasts its presence to all VPN
members. The other cloudlets receive and check the RTT
with the new cloudlet. If RTT is in the acceptable range,
the cloudlet is added to the possible neighbour database
with the current RTT value. Since RTT is dependent on the
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real-time network condition, each cloudlet computes the
RTT with their neighbour cloudlets. The RT T value is com-
puted and the database is updated periodically, e.g., every
minute or minutes. The following are the two main reasons
for making the RTT an important parameter in forming the
neighbour database.

The first reason is QoE. After the MD changes a loca-
tion, it will access the previous cloudlet through the
WAN. If the RTT between the previous and the current
cloudlets is unacceptable, there is no need to provide the
service. If the RTT is unacceptable, a new VM will be
synthesised in the new location. This research work con-
siders VM migration between cloudlets only if the RTT
between the cloudlets is less than 150 msec.

The second reason is that RTT determines the TCP
throughput. Ideally the maximum TCP throughput
achievable is: TCP Throughput = Receiver window size /
RTT. Iperf [14] application is used to measure the TCP
throughput between two cloudlets as RTT increases. By
default Iperf application sets the maximum server window
size to 83.5Kbyte. The result is shown below in Fig. 6.

The throughput of TCP is inversely proportional to
the VM migration time. As RTT increases between
the cloudlets, the duration of VM migration would be
unacceptable.

The VM migration decision is based on the neighbour
database. When a cloudlet receives a packet from a re-
mote LAN, it checks whether the network address
matches any of the cloudlets in the possible neighbour
database. The VM migration starts if and only if the
cloudlet is found in the neighbour database.

Other VPN functionalities

To fully support cloudlet services, more VPN-related
functionalities are needed. VPN-related techniques for
cloudlets are beyond the scope of this paper. A de-
tailed description on those functionalities can be
found in [18].

TCP Throughput in Mbps
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Fig. 6 TCP Throughput vs RTT
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Table 3 VM specifications inside the Linux host

Page 11 of 21

VM Virtual CPU RAM Size Virtual Disk Virtual Interface Operating System

Cloudlets (VM1 & VYM2) 4 8GB 40GB 2 Linux 3.11.10+ (64 bit)/ Ubuntu 12.04 LTS

MD (VM4) 2 4GB 40GB 2 Linux 3.11.10 + (64 bit)/ Ubuntu 12.04 LTS

Nested VM (VM3) 2 2GB 10GB 2 Linux 3.11.10.squeezemptcp (32 bit) / Debian 7.3.0

Experimental setup and results
This section presents experiments and results of live VM
migration with a change of IP address using MPTCP.

Experiment environment

Experiments have been conducted using a 16GB RAM,
core i7 Linux 3.11.10+ (Ubuntu 12.04 LTS) host. The
cloudlet servers are emulated using VMs inside the Linux
host. The VM monitor (or hypervisor) used is KVM with
QEMU emulator [27] which uses a pre-copy RAM state
migration mechanism [14].

Table 3 shows the specifications for the emulated
components. Four VMs inside the Linux host are used
for the experiment (see Table 3 and Fig. 7). VM1 and
VM2 represent cloudlet 1 (C1) and cloudlet 2 (C2), re-
spectively. The nested VM (VM3) inside C1 denotes
the server VM instance used by the MD, and VM4 rep-
resents the MD.

Both wireless and wired transmission medium tech-
nologies are characterized by a VM bridged networking.
The VMs networking in Fig. 7 emulates the cloudlets
and the MD as shown in Fig. 1. In Fig. 7, VM4’s EthO
and Ethl are used to emulate a single Wi-Fi interface

of a MD. VM4 accesses VM3 through one interface at a
time (EthO or Eth1). The movement of the MD is emu-
lated by configuring VM4’s interfaces to UP or DOWN
state, as shown in Table 1.

For instance, if the MD is assumed to be in the com-
munication range of C1 initially, only VM4’s EthO will be
at the ON state. The movement of the MD from C1 to
C2 is imitated by configuring VM4’s EthO to the DOWN
state, then Ethl to the UP state. Since most of the
current Wi-Fi interface can connect to one AP at a time,
the above mentioned method is suitable to represent a
Wi-Fi interface for our objective.

MPTCP protocol is installed in all the VMs inside
the Linux host in Fig. 7. A static routing protocol is
used to forward traffic between the VMs. The LAN IP
address connected to Brl and Br2 of the Linux host is
10.1.1.0/24 and 10.1.2.0/24, respectively. BrO of the
Linux host associates the two cloudlets with
134.117.64.0/24 public IP address. The static routing
on the VM4 changes automatically as the MD changes
the coverage. The following example explains the sce-
nario. Assume that the MPTCP connection is initially
established with the VM4’s EthO interface and the

Cloudlet 1 (C1) VM1
( f—‘

vivs

EthO ][ Ethl

Cloudlet 2 (C2) VM2

EthO ]

[ Ethl

Linux Host
\

Mobile Device
(MD) vm4a

Fig. 7 Experiment using VMs and bridged networking inside a Linux host
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VM3’s EthO interface. The static routing forwards ini-
tial traffic as follows:

EthO of the VM4 — Brl of the Linux Host — Br3 of
VM1 — EthO of VM3.

After some time the VM4’s EthO interface is taken
down and then the Ethl interface is turned on to emu-
late the movement of the MD from C1 to C2. This situ-
ation changes the static routing as follows:

Ethl of the VM4 — Br2 of the Linux host = Br3 of
VM2 — BrO of the Linux host through Ethl of VM2 —
Br3 of VM1 through Ethl of VM1 — EthO of VMS3.

High bandwidth (BW) availability and low RTT latency
between the MD and the cloudlet through Brl and
Br2 emulates a LAN. By varying the available BW and
by introducing RTT latency between the two cloud-
lets, BrO network emulates the WAN. Emulating
WAN is achieved using the Linux traffic control ()
command. Token Bucket Filter (tbf) queuing discip-
line provided by Linux is used to set the upload BW of
an interface.

Performance metrics and measurements
QOE can be affected by various factors. This paper adopts
four common metrics for performance evaluation.

e Throughput: Changing coverage from C1 to C2
exposed the MD to low throughput due to the
WAN delay. If VM migration and the MD traffic
share the same path, the MD’s throughput will drop
during the migration. Returning to the previous high
throughput level for the MD is a performance
measurement for the system. The Iperf [14] tool is
used to measure throughput between the VM and
the MD.

e RTT latency: As in throughput, the movement of
the MD introduces a high RTT between the VM
instance and the MD. Monitoring the RTT latency
after the live VM migration is an important
performance metrics. The ping command is used to
measure the RTT with 1 s interval.

e Total VM migration time: The VM is migrated if
the MD changes location and network coverage.
The time duration the MD accesses the VM
instance with high RTT latency and low throughput
through WAN have to be as short as possible. This
duration is tied to the VM migration process. The
longer the VM migration time, the poorer the QoE.
The total VM migration time has been collected.
The VM migration is initiated using a Linux
command, the time before and after the migration
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command completes is considered as the total VM
migration time.

e VM down time: The VM downtime is part of the
total VM migration time. A downtime is the time
the VM is not accessible. The RAM state migration
mechanisms, (both post-copy and pre-copy, [16]),
have a VM downtime. Unacceptable VM downtime
may be experienced based on the network condition
between source and destination.

Network layer unavailability during VM migration is
also investigated using the ping command. During mi-
gration, the VM is pinged with the original IP address
and also with the expected next IP address (see Section
III.A) at the same time. The VM downtime is the time
the VM from the source is paused (no ping response) to
the time the VM from the destination host starts run-
ning (ping response received). The downtime of the VM
is measured with an interval of 10 msec. It is possible to
minimize the interval to 1 msec but flooding of packets
to a VM may influence the performance. For this reason,
in this paper the VM downtime is known if only it is
greater than 10 msec. Otherwise the down time is
expressed as less than 10 msec.

Networking assumptions

This paper assumes that cloudlets are connected to
high-speed Internet. The availability of high BW and
low RTT latency between cloudlets in the vicinity are
assumed throughout the experiment. The assumption
of low RTT latency between cloudlets is supported by
the geographical proximity between hosts for the
cloudlet environment. In addition, low RTT is sup-
ported due to:

e Minimum Hops: As illustrated in Fig. 5, cloudlets
are assumed to be capable of performing as CEs
(customer edge), which make the cloudlets only one
hop away from a PE (provider edge). The possibility
of cloudlets in the vicinity that will be aggregated to
one PE is high. In such cases, the total number of
hops between two cloudlets is two, i.e., CE1 —

PE1 — CE2 (see Fig. 5). This minimizes the total
delay in each router.

e High data transmission rate: High-speed Internet
connection to the cloudlet is also an assumption
made in this paper. High-speed Internet services
found from Internet Service Providers, such as
Rogers in Canada, are taken as a reference. The
service with download and upload speed of
350Mbps are high speed Internet connection
products found in the market by the time the
experiments were conducted, which represents
low transmission delay.
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Table 4 Baseline results for rtt and throughput

RTT Maximum Throughput
Between VM1 and VM2 0.382 msec 627 Mbps
Between VM3 and VM4 0.392 msec 160 Mbps

To assess the feasibility of low RTT latency and high
throughput assumption, public servers which provide
the Iperf application are used to measure the network
layer RTT and the maximum throughput. By running
Iperf client, RTT results were collected for Iperf servers
around the world, including 71 ms for California,
119 ms for (Brabant Wallon) Belgium, and 143 ms (Saint
Petersburg) Russia. All those servers are > 15 hops away
from the host. Hence, it is fair to assume that that the
RTT between the cloudlets can be less than 150 ms. We
also varied RTT from 20 ms to 150 ms in the evaluation.

The following sub-sections show some results. The
first set of results represents baseline performance. No
application was running on the migrating VM, ie., the
migrating VM has all the resources or there is no re-
source sharing for this scenario.

Baseline performance for VM migration

The baseline performance of MPTCP was evaluated with
a single path between VM1 and VM2 (as shown in Fig. 7).
MPTCP acts like a regular TCP and there was no applica-
tion running on the migrating VM (VM3). The purpose is
to minimize the effect of latency and BW usage between
VM3 and other applications and to maximize the
performance.

The average measured network RTT latency between
the VMs and the maximum throughput achieved for
the experiment setup is shown in Table 4. Iperf is used
to measure the throughput and the ping command is
used to measure the average RTT. The receiver window
size (RWS) is set to the default TCP window size which
is 64KByte.

Without any application running on VM1, VM2, and
VM3, migrating VM3 from VM1 to VM2, (see Fig. 7), takes
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10.67 s and VM downtime is 243.46 msec on average. The
total VM migration and the VM downtime are similar to
the result reported in other research [28]. Figure 8 depicts
the effect of VM3 migration on the throughput between
VM1 and VM2. The period T in Fig. 8 represents the total
VM migration time. During T, the result illustrates that the
maximum throughput decreases and fluctuates once the
VM migration is started.

Performance of live VM migration with MPTCP

This section presents the results for a seamless live VM
migration using MPTCP. The TCP connection remains
open after both VM3 and VM4 change their original IP
addresses.

As it is presented in Section IIL.A, the prior knowledge
of the IP address to be assigned for the migrating VM in
the destination host enables a live server VM migration
seamlessly with the MPTCP protocol. The migration is
achieved with the change of the VM IP address. In
addition, the results from the experiment also prove the
seamless handover of the MD from C1 to C2 network
using MPTCP.

Figure 9 illustrates the maximum throughput obtained
between VM3 and VM4. The results are gathered from
VM4, with Iperf server and Iperf client running on VM3
and VM4, respectively. The maximum available BW be-
tween VM1 and VM2 through BrO was configured as
350 Mbps and the network RTT was 20 ms in this ex-
periment. In Fig. 9, the time is divided into slots A, B, C,
D, and E. The following paragraphs describe the situa-
tions for each time slot.

Time slot A is the time where VM4 initially accesses
VM3 through VMI1. During period A, VM3 resides
inside VM1 and VM4 is directly connected to VM1. The
MPTCP connection is established with the UP state in-
terfaces and the IP addresses as shown in Table 5 before
VM4 migration. The traffic flow between VM4 and
VM3 is as follows:

EthO of the VM4 — Brl of the Linux Host — Br3 of
VM1 — EthO of VM3.

Throughput InMbps

Time in sec
------ 1 VM migration

Fig. 8 Throughput between VM1 and VM2 when VM3 is migrating from VM1 to VM2
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Fig. 9 Throughput between VM3 and VM4 before and after VM3 migration from VM1 to VM2

After some time, EthO of VM4 is taken down. Time
slot B denotes the time where both the EthO and the
Ethl interfaces of VM4 are down (zero throughput for
5 s). This is to imitate the time a MD user walks from
one Wi-Fi AP (access point) to another and the time the
new Wi-Fi AP takes to connect and assign a new IP ad-
dress for the real MD. If a real MD and Wi-Fi AP were
used, the performance difference would be different in
time slot B. The delay depends on the distance between
the two WiFi network coverages and the walking speed
of the user (See Fig. 1). For this experiment, the delay is
configured to be 5 s. After 5 s downtime, the Ethl inter-
face of VM4 is changed to the UP state. During this
time, VM4 is connected back to VM3 through VM2.
The existing MPTCP connection adds a new subflow
with the UP state and an IP address for Ethl, as pre-
sented in Table 3 after VM4 migration.

As we can see from Fig. 9, during time slot C, the ap-
plication keeps running even after VM4 IP address has
changed. The traffic between VM4 and VM3 flows as:

Ethl of the VM4 — Br2 of the Linux host = Br3 of
VM2 — Br0 of the Linux host through Ethl of VM2 —
Br3 of VM1 through Ethl of VM1 — EthO of VMS3.

During time slot C, the throughput decreases because

of the involvement of the WAN between VM3 and VM4
(emulated via Br0) to keep the application running.

Table 5 Initial Interfaces and IP Addresses for VM3 and VM4

Interface  Before VM4 migration  After VM4 migration
Interface  IP address Interface state  IP address
state

VM3 EthO up 10.1.1.15/24  UP 10.1.1.15/24

Eth1 DOWN NONE DOWN NONE

VM4 EthO up 10.1.1.14/24  DOWN NONE
Eth1 DOWN NONE up 10.1.2.18/24

As soon as VM3 is accessed with the new IP address
of 10.1.2.18/24 for MD (VM4), VM3 recognizes that
VM4 has changed its original location (interface). The
moving of MD to a new location or VM4 changing the
initial IP address triggers the migration of VM3 from
VM1 to VM2. This is done to minimize the latency and
maximize the throughput between VM3 and VM4 by
avoiding the traffic flow through the WAN. As the ap-
proach mentioned in Section IIL.A, the Ethl interface of
VM3 will be changed to the UP state and assigned with
the next odd IP address (i.e., 10.1.2.19/24) to pair with
the current VM4 IP address (10.1.2.18/24).

VM3 migration process is completed after time slot D.
Time slot D indicates that during the time period, VM3
is inaccessible at the application level. The total VM mi-
gration time is 14.00 s. VM3 application level downtime
is 3 s whereas the network layer downtime is only
204.3 msec.

Time slot E shows the time after VM3 migration is
completed. The MPTCP connection adds a new subflow
with the UP state and new IP addresses. At this time,
the traffic between VM4 and VM3 follows the path:

Ethl of the VM4 — Br2 of the Linux Host — Br3 of
VM2 — Ethl of VM3.

Time slots B, C, and D affect the performance of the
entire system. Time slot B is determined by the geo-
graphical location of the cloudlets. If the network cover-
age of the cloudlets overlaps, minimum time slot B can
be achieved. Time slots C and D depend on the VM mi-
gration process. The shorter these time slots are, the
better the QoE.

The following sub-sections demonstrate the effect of
maximum available BW and RTT latency on the per-
formance of VM migration between VM1 and VM2 for
time slots C and D. The results were based on the KVM
hypervisor which is known for its shorter VM downtime
than that of Xen Server, Hyper V and VMware [28].
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Table 6 Total VM Migration Time (in Seconds) Results for total VM migration time and network layer
RTT VM downtime are shown in Tables 6 and 7, respectively.
20 ms 50 ms 100 ms 150 ms  Lhe results show that the total VM migration time and
BV 350Mbps 14.00 1662 2944 4200 the VM downtime increase as the RTT latency increases
175Mbps 1093 5055 357 1877 with a fixed available BW between‘ VM1 and VM2. It
can also be observed that, as the available BW decreases,
60Mbps 4374 4679 4835 2013 the migration time and VM downtime increases. The
RTT effect is more noticeable for high BW, e.g,
Table 7 Network Layer VM Downtime (in Milliseconds) 175Mbps and 350Mbps than that for the low BW, e.g,
RTT 60Mbps.
20 ms 50 ms 100 ms 150 ms Figures 10 and 11 show that the total VM migration
BW 350Mbps 50453 86081 187805 281118 time and the VM downtime increase as the RTT latency
175Mbps 20930 197341 536787 j5640]  InCreases with a fixed available BW between VM1 and
VM2. It can also be observed that as the available BW
60Mbps 2483.76 3011.99 3547.25 3687.74

decreases, the migration time and VM downtime in-
creases. The RTT effect is more noticeable for high BW,
175Mbps and 350Mbps than the low BW, 60Mbps. The
Total VM migration time and VM downtime following points explain the reasons for the results
This experiment measures the total VM migration time shown in Figs. 10 and 11.

(C+D) and VM network layer downtime by varying

RTT and BW. The network RTT values used were e The total amount of memory configured for VM3 is

20 ms, 50 ms, 100 ms, and 150 m, and the BW values 2GByte while the used amount of the memory is
used for the experiments were 350Mbps, 175Mbps, and only 263MByte. The hypervisor used for this
60Mbps. experiment is KVM. KVM only transfers the used

VM migration time
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memory and it has a way to abstract the free
memory for migrating VM at the destination host.
Recall from the baseline performance result,
migrating more than 263MByte takes only 10.67 s.
The estimated data transfer speed of KVM will be
the used memory size divided by the migration time
which is equal to 197.19Mbps. Note also that
197.19Mbps is the estimated speed, not the exact
speed. To calculate the exact data transfer speed we
need to know how many iterations KVM goes
through and the data transferred in each iteration.
During the baseline experiment, no application was
running on the migrating VM; hence the estimated
data transfer speed is close to the exact speed of
KVM.

e If the available BW is less than 197.19Mbps,
queuing delay will be introduced in addition to the
RTT values between VM1 and VM2. As the total
delay increases between VM1 and VM2, the data
transmission speed decreases which increases the
total VM migration time.

e The throughput for VM3 migration does not stay
the same throughout the migration process. The
TCP auto tuning is turned on, both on VM1 and
VM2 and also the TCP stack on VM1 and VM2 is
configured with minimum of 4Kbyte, maximum of
5394Kbyte, and 85Kbyte default receiver buffer size.
When VM3 is migrated from VM1 to VM2, VM2
increases or decreases its window size to control the
data flow between VM1 and VM2.

The VM migration is performed over the TCP proto-
col. The efficiency of TCP is determined by the BW
delay product (BDP). If the BDP is greater than the re-
ceiver window buffer size, TCP data transmission will
not be efficient. To identify the scenarios which do not
use the available BW efficiently, the average receiver
window buffer size has to be known. TCP performance
analysis is given in the next sub-section.

Performance analysis and TCP

Performance analysis related to TCP is crucial for migra-
tion decision making and design, as MPTCP is built
upon TCP. The throughput for VM3 migration fluctu-
ates during the migration process, as the migration is
performed over the TCP protocol and the TCP auto tun-
ing was turned on. Further, TCP performance is also
closely related to the receiver window size (RWS). The
TCP stack on VM1 and VM2 was configured with mini-
mum of 4KByte, maximum of 5394KByte, and 85KByte
default RWS. The efficiency of TCP is KAI determined
by the BW delay product (BDP). If the BDP is greater
than the RWS, TCP data transmission is not efficient.
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Table 8 The BDP results in KByte

RTT
20 ms 50 ms 100 ms 150 ms
BW 350Mbps 854 2734 4272 6409
175Mbps 427 1068 2136 3204
60Mbps 146 366 732 1098

To identify the scenarios which do not use the available
BW efficiently, the average RWS has to be known.

Table 8 shows the BDP values in KByte for the corre-
sponding RTT and BW values. From the BDP results,
when BW is 350Mbps and RTT is 150 msec, the data
transmission is inefficient even when the RWS is at its
maximum value, i.e. 6409Kbyte ((350Mbps x 150 msec) /
(8 bits/Byte x 1024)) which is greater than 5394Kbyte
(maximum system configured window size). For this
particular case the data transmission speed is governed
by the RWS and the RTT instead of the available BW. If
BDP is greater than the RWS, the ideal maximum TCP
throughput can be calculated as:

Max. TCP Thoughput = RWS/RTT (2)

Based on the total VM size and the VM migration
time (as shown in Table 4), we can estimate the data
transmission speed or throughput (e.g., VM size/VM mi-
gration time), which in turn can be used to calculate the
RWS using Eq. (2). The shaded area in Table 6 indicates
the scenarios where the transmission speed is inefficient.
During those periods, data transmission speed is deter-
mined by RTT and RWS instead of the available BW.
This is also the reason for a similar high total VM mi-
gration time values when RTT = 150 msec regardless of
the available BW values (see Table 4).

Latency and performance analysis
This subsection describes the latency performance analysis
during the VM migration process and the experiments
show that the RTT between VM3 and VM4 increases
from its original value. The goal here is to show the baha-
viour of the RTT during migration. The RTT values used
in this experiment are 20 msec, 50mesc, 100 msec, and
150 msec and the maximum available BW used in this ex-
periment are 350Mbps and 60Mbps.

Before analyzing the results as shown in Figs 12, 13, 14,
15, 16, and 17, some terms are defined below for clarity.

Initial RTT: The average RTT between the migrating
VM and the MD through the WAN before the migration
process is started. For this experiment, it would be the
average RTT between VM3 and VM4 through BrO be-
fore VM3 starts to migrate from VM1 to VM2.

Actual average RTT: is the average RTT between
VM3 and VM4 during VM3 migration process from
VML to VM2.



Teka et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:12

Page 17 of 21

p

., 250

= -

£ 200 A AN Y

= 150 j ¥ '
< T2 — M
- v .

5 100 *T1» H

- ;)

o .

T )

Time in sec

——— BW=350Mbps  ---—---—- BW=60Mbps
Fig. 12 Actual RTT during VM migration for initial RTT =20 msec

3 250

Z 200 P S— R -
= 150 iV
. -t T3 i
=~ 100 :
% 50 «—Ta :-.
= 0 £

Time in sec

———— BW=350Mbps  ---—-—-—- BW=60Mbps
Fig. 13 Actual RTT during VM migration for initial RTT = 50 msec

600
500
400
300
200
100

Actual RTT in msec

Time in sec

——BW=350Mbps  ------- BW=60MDbps
Fig. 14 Actual RTT during VM migration for initial RTT = 100 msec

350
300
250
200
150
100
50

Actual RTT in msec

Time in sec

——— BW=350Mbps  --——---—- BW=60Mbps
Fig. 15 Actual RTT during VM migration for initial RTT = 150 msec




Teka et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:12

Page 18 of 21

Initial RTT

250
1=
3
£ 200
=
=
£ 150
D
&
£ 100
=
<
S 50
g .

& s
20msec 50msec
BW=60Mbps
Fig. 16 Average RTT during migration process vs initial RTT

100msec

B BW=350Mbps

180
160
140
120
100

Delta RTT in msec
0
(@]

N B O
[e}o)a}

B

20msec

o N

BW=60Mbps

Fig. 17 Delta RTT vs the Initial RTT

50msec
Initial RTT between VM3 and VM4

B BW=350Mbps

L lem

150msec

.| .

100msec

Delta RTT: is the difference between the actual aver-
age RTT and the initial RTT.

Figures 12, 13, 14 and 15 show the actual RTT during
VM migration for initial RTT of 20 msec, 50 msec,
100mesec and 150 msec respectively. The RTT was
measured by using ping command with a 1 s interval.
The objective is to show how much the latency in-
creases when the VM starts to migrate. All the graphs
show the results from the time when VM4 starts to ac-
cess VM3 through the WAN. At the start, the low la-
tency shows the RTT between VM4 and VM3 before
VM3 migration process is started. The time durations
are noted as T1, T2, T3, T4, T5, T6, T7 and T8 show
the total VM migration time for different available BW
and RTT values and the values for different Ti are given
in Table 9. Figures 12, 13, 14 and 15 (ie., T1, T4, T5,
and T8) show that as the initial RTT increases, the dur-
ation of migration increases (cf. Table 9).

Table 9 Total VM migration time for the time duration shown
in Figures 12, 13, 14 and 15

T1 T2 T3 T4 T5 T6 7 T8
812s 24.30s 240s 991 s 1562 s 25s 26's 23s

Figure 16 summarizes the results in terms of the actual
average RTT with respect to initial RTT of 20 msec,
50 msec, 100 msec, and 150 msec respectively. In the
case of initial RTT of 150 msec cf. Figure 16), there is
little or no difference in actual average RTT between the
lower BW (ie. 60Mbps) and the higher BW (ie,
350 msec). For fixed latency, minimizing the available
BW increases the VM migration time and the actual
average RTT significantly. The significance is more no-
ticeable for low latency. For low BW, 60Mbps, the actual
average RTT is independent of the initial RTT. Regard-
less of the initial RTT, the actual average RTT reflects
the same amount. For the high BW, 350 Mbps, the ac-
tual average RTT increases as the initial RTT increases.
However, the amount of the RTT added to the initial
RTT is not the same.

Figure 17 illustrates delta RTT as the initial RTT in-
creases for the BW of 60Mbps and 350 Mbps. Delta
RTT decreases as the initial RTT increases regardless of
the available BW. Hence, having a low initial RTT before
VM migration is not a guarantee for low RTT for migra-
tion. From the results, it is concluded that as long as
there is a high available BW, the actual average RTT
does not show much difference from the initial RTT.
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Throughput performance analysis

One main advantage of using a nearby cloudlet is to
achieve a high throughput. The result shown in Fig. 18
is the throughput achieved between VM3 and MD
(VM4). The figure shows the throughput only after VM4
is directly connected to VM2. In Fig. 18, the time before
t=10 is the time when VM4 is connected to VM3
through the WAN. At t=10, the migration process is
manually started. The completion of the VM migration
for various RTT values is depicted in Fig. 18.

Lower RTT values result in higher throughput, as ob-
served in Fig. 18. The throughput of VM4 drops at t =
10 when migration starts. Specially, for RTT =20 msec,
the throughput decreases significantly at t =13. On the
other hand, the throughput starts to increase earlier
when RTT is lower. Figure 19 demonstrates a five times
increase in RTT (from 20 msec to 100 msce), the aver-
age throughput only decreases by 26.4 % (from 7.2Mbps
to 5.3 Mbps). With RTT =20 msec, however, the per-
formance is better than all the other RTT values.

If the proposed MPTCP and prior knowledge of the mi-
grating IP address are not used, the throughput of the MD
user would be zero before the VM is launched in the new
cloudlet. If a real application is used, a notice7able delay is
inevitable during the VM migration process.
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VM migration decision algorithm

The results show that it is impossible to guarantee fast
VM migration over the WAN using only the bare hypervi-
sor. Optimization techniques for WAN VM migration
mentioned in other research efforts, such as [18], has to
be adopted to make the system more efficient. In addition,
a smart VM migration decision maker is desirable for bet-
ter QoE. As the main objective is eliminating the service
re-initiation time for the MD, an efficient service has to be
provided during migration. All the performance metrics
need to be considered before the VM migration starts. If
the VM migration is predicted to result in worse perform-
ance than service re-initiation time, it is better for the MD
to launch a new VM at the new location.

The type of applications running on the VM also de-
termine the VM migration time. In this work, only Iperf
application runs on the migrating VM. Iperfis a type of
send and receive application which does not consume
much of the CPU (maximum of 15 % of VM3 CPU).
Thus, VM migration decision algorithm needs to con-
sider the type of the application running on the VM in
terms of resource (RAM, CPU, hard disc, and network)
consumption and usage. For instance, RAM write inten-
sive applications dirty memory pages frequently. A pre-
copy migration works best only when memory pages can
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be copied to the destination host faster than they are
dirtied. In addition, KVM will never finish live migration
if the RAM page is dirtied with a speed of 32Mbps [28].
Therefore, for live migration to be beneficial, a decision
algorithm plays an important role in determining if the
live VM migration should proceed. The decision algo-
rithm needs to consider factors such as RTT latency and
available BW. The proposed VM migration decision
algorithm is as follows:

Algorithm 2
Input: average RTT, initial RTT
Estimate Delta RTT /* Delta RTT is the difference between the actual
average RTT and the initial RTT */
if (initial RTT + Delta RTT <= 150msec}
then migrate the VM
else if ((150msec < Initial RTT + delta RTT <= 1sec} and
(estimated VM migration time < service initiation time))
then migrate the VM
else
ignore VM migration
notify user to start a new service
destroy the VM instance
end if
end if
End Algorithm 2

The algorithm considers three main parameters in
making decision on the VM migration; the service initi-
ation time, the VM migration time and the RTT during
VM migration. If the RTT during migration is less than
150 msec, it means that the user is having a good QoE
even through the WAN. Regardless of the total esti-
mated VM migration time, the VM migration will be
performed. There is no need to trigger VM migration, if
the actual RTT during VM migration is greater than 1 s
since the service becomes useless for the user.

The algorithm should be implemented in each cloud-
let. The estimation of the total VM migration time and
delta RTT can be achieved through profiling. Applica-
tions and network resources profiler need to be de-
ployed in to the system which keeps track of all VM
migration results. Over time, the profiler provides pre-
cise information. Each cloudlet also can share their
profiles to learn a wide variety of situations within
short time.

Conclusions and future directions

Live VM migration over the WAN includes migration
of the RAM state, network, and storage. This paper pre-
sented an approach for live server VM migration using
MPTCP. To realize the approach, two main features
have been proposed: (i) a scheme for IP address
assignment to reduce TCP downtime and (ii) two virtual
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interfaces were proposed for the VM migration; one
interface operates during normal operation and the
other one operates when a VM migration is triggered.

A number of experiments using emulation have dem-
onstrated that the proposed approach can be realized to
support actual live VM migration. Further, the paper
investigated the performance of VM migration, including
total live migration time, VM downtime, throughput,
RTT and TCP protocol. In addition, the effect of various
parameters has been investigated for further advance-
ment in this fast growing field.

The experiment does not consider storage migration.
Storage migration is influenced by the network resources
(BW and RTT) and the disc I/O speed. If the available
BW is less than the reading speed, it may take a long
time for VM migration. In general, migrating storage
would not be effective.

The concept of cloudlets is similar to the emerging
Fog computing technology. Our proposed live VM mi-
gration between cloudlets can also be applied in a Fog
computing environment, where a service running in a
Fog can be migrated from one edge device to another as
the MD is moving from one area to another. In Fog
computing, cloudlets are most likely managed by the
same network operator, which can effectively facilitate IP
address assignment and other migration issues, includ-
ing the business concerns. VM migration for Fog com-
puting is worth investigating.
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