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SCADA systems allow users to monitor and/or control physical devices, processes, and events remotely and in real-time.
As these systems are critical to industrial processes, they are often run on highly reliable and dedicated hardware. Moving
these SCADA systems to an Infrastructure as a Service (laaS) cloud allows for: cheaper deployments, system redundancy
support, and increased uptime. The goal of this work was to present the results of our experimental study of
moving/migrating a selected SCADA system to a cloud environment and present major lessons learned. To this
end, EclipseSCADA was deployed to the NeCTAR research cloud using the “lift and shift” approach. Performance
metrics of a unique nature and large scale of experimentation were collected from the deployed EclipseSCADA system
under different loads to examine the effects cloud resources and public networks have on SCADA behavior.

Introduction

Supervisory Control and Data Acquisition (SCADA) sys-
tems are instrumental to a wide range of mission-critical
industrial systems, from infrastructure installations like
gas pipelines or water control facilities to industrial
plants. SCADA systems allow a user to monitor (using
sensors) and control (using actuators) an industrial system
remotely. As these systems are critical to industrial pro-
cesses, they are often run on highly reliable and dedicated
hardware [1]. This is in contrast to the current trend and
state of computing, which is moving from running appli-
cations on internally hosted servers to flexible, cheaper,
nternal or external cloud systems.

For users, the main benefit of moving applications
such as SCADA to the cloud lies in the potential cost
savings and reduced setup time. Cloud resources are
purchased and accessed on-demand, at a total cost of
ownership cheaper than buying and operating hardware;
furthermore, as there is no need to install and/or maintain
hardware and manage software, the need for technical staff
is reduced. For industry, running SCADA on the cloud can
lead to new business models, instead of a traditional one-
off hardware cost and software licensing fee. Cloud-based
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SCADA solutions can provide users with flexible fees based
on the amount of computing resources, technical support,
and software they use.

One way to provide a cloud-based SCADA system
would be the cloud native approach, which means to
develop it from scratch, ideally using an appropriate
architectural design to make use of cloud inherent features.
Another option is to take an existing SCADA implementa-
tion and migrate it to a cloud environment. Often this latter
approach is an initial step towards the cloud, given that
solid and well proven implementations are available.

When moving an open-source SCADA system to cloud
infrastructure, there is a need to ensure that the real-time
monitoring and control demands of the industrial system
can be achieved. Based on a comparison of commercial and
open-source SCADA features, EclipseSCADA" was selected
as an example of a representative SCADA system. Using
the “lift and shift” method, EclipseSCADA was migrated to
the IaaS cloud, and performance metrics of a unique nature
and large scale of experimentation collected. Based on the
collected metrics, we provide a number of recommenda-
tions, which can benefit users planning to move SCADA
systems to cloud infrastructure.

Through the carried out work, the following contribu-
tions have been made:
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e The presentation of a general migration process and
performance metrics of a unique nature and large
scale of experimentation collected, which can be
applied to move SCADA systems to cloud resources.

e A detailed performance study of EclipseSCADA was
carried out to identify how a SCADA system behaves
when running across multiple regions of a cloud.

e The presentation of a series of lessons, which can
be used to select SCADA parts that should be
migrated and location of their deployment, their
relationship, influence on execution performance,
and even improve the performance of SCADA
systems running on the cloud.

The rest of the paper is as follows: Section 3 introduces
“generalized” SCADA architecture. Section 3 presents
related work in running and migrating SCADA system on
the cloud. Section 4 compares open-source SCADA
systems with common commercial SCADA products in
order to find a representative SCADA system to be mi-
grated. Section 5 shows a case study — it describes the
process used to develop and deploy the selected SCADA
system (EclipseSCADA) to IaaS cloud resources (NeCTAR
[2]). To identify problems regarding the real-time monitor-
ing and control mechanism of SCADA systems when run-
ning on the cloud, an analysis of the ported EclipseSCADA
system was carried out in Section 6. This section also
contains an analysis of collected performance results and
migrating lessons. Section 7 concludes the paper.

“Generalized” SCADA architecture

SCADA describes applications, which aim to control
and monitor remote equipment via a communication
channel [3]. There have been a number of attempts to
form a generalized SCADA framework and architecture.
Boye [4] defines a simple SCADA architecture that con-
sists of sensors, switches and/or actuators (field devices),
connected and read by a device server (see Fig. 1). Data
is transferred across a network to a control server, which
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Fig. 1 Simple SCADA System
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handles events (informing a user if sensor data exceeds
set boundaries). A user of a SCADA system accesses
data via the master server using a workstation.

In contrast, IEEE [5] defines an in-depth standard
describing the components that make up a SCADA frame-
work. According to the IEEE standard, the system is divided
into a remote site and master station (see Fig. 2). The
remote site consists of field devices connected to a de-
vice server. Communication between the field device
and device server makes use of a SCADA communication
standard (used by the driver). Collected information is
stored in a real-time and historical database on the master
station. Communication between components of the
master station uses an internal communication protocol.
The Master Terminal Unit (MTU) contains a number of
tools that interact with the data stored in the databases
including:

e An event handler, which reacts to changes to the
real time database;

e A device manager, which can modify the behaviour
of field devices;

e An alarm manager, which allows users to setup
monitoring rules and notify a user if rules have
been broken;

e An archiver, which provides analytics of stored
data; and

e A GUI or Human Machine Interface, which
provides the user with a graphical representation
of the remote site.

Every SCADA system uses a large number of field
devices. A field device understands and collects data
from sensors, switches and actuators. For this reason,
field devices make use of a compute device called a
Programmable Logic Controller (PLC), or Remote Terminal
Unit (RTU) (see Fig. 3). Users can access the PLC or RTU
through a network interface or a Human Machine Interface
(HMI), allowing for configuration and access to connected
sensors, switches or actuators. An inbuilt computer
runs code which converts signals from connected sensors,
switches or actuators to digital data, or vice versa. The
code that runs on field devices falls under two categories:
monitoring loops for sensors that may incorporate sam-
pling/averaging, and state diagrams that control the state
of output devices such as switches/actuators. Often this
code has real time requirements, as it directly monitors
and controls the connected field devices.

Field devices are designed to be reliable, often incorp-
orating backup power and redundancy in the form of
backup I/O cards. If a device is connected to an I/O card
that fails, the device automatically gets connected to the
redundant I/O. In the absence of this feature, if an input
card fails, signals would be lost until the card is replaced.
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Fig. 2 General SCADA software architecture

Through the use of SCADA and Field Devices, it becomes
possible to monitor and control large scale systems (such
as gas pipelines, which cover very large distances) cheaply
and efficiently.

To transfer data between a field device and SCADA
system, communication protocols are used. Protocols
are either Polling or Event Driven (see Fig. 4). Polling
protocols transfer data on a timed loop, where the time
between each transfer is called the polling interval. Event
driven protocols transfer data on sensor change. Com-
monly used polling protocols include Modbus [6] and
Profibus [7]. Commonly used event driven protocols in-
clude S7 [8] and iec104 [9].

Related work

There are a number of papers, which discuss how to
build cloud-based SCADA architectures. They focus on
implementing a solution from the ground up, as opposed
to utilizing pre-existing SCADA solutions.

e Liu, et al. presents a generalized overview of clouds
and SCADA and proposes the possibility of running
SCADA in the cloud [10].

e Gligor and Turc recommend exposing each SCADA
component as a service and deploying them through

a Local Directory Service (LDS) [11]. The LDS
stores a description of available SCADA resources,
access methods, and description. The use of a broker
allows some components can be replaced by cloud
services; for example the database service can utilize
Data Center as a Service (DaaS). This approach is
very flexible; allowing users to extending the SCADA
system by adding new functionalities to existing services
or defines new ones in accordance with needs and
formulated requirements.

Based on these concepts, a web-based SCADA
system is implemented on Rackspace cloud resources.
Data was transferred using a simple protocol, consisting
of a few numerical and process monitoring variables.
Data transfer rates were measured from a local database
to a cloud database, results measured were between 125
to 156 ms.

e Goose et al. present a secure SCADA cloud framework
called SKYDA [12]. This SCADA system is designed to
take advantage of the scalability and reliability offered
by a cloud-based infrastructure. This paper focuses
on providing a high level understanding of SCADA
replication using clouds, moving all SCADA
components (except the field devices) as a single
service. Field devices are connected to the cloud
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Fig. 3 Field Device Architecture
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based SCADA system directly or (for legacy devices)
via a proxy. The framework utilizes multiple cloud
providers, running multiple copies of the SCADA
Master application in multiple clouds to provide fault
tolerance.

There also are solutions provided by commercial cloud-
based SCADA providers; the two major commercial solu-
tions are Ignition and XiO’s Cloud SCADA.

e Ignition SCADA is a SCADA solution that has been
built from the ground up using Java to take advantage
of cloud features [13]. Ignition interfaces with most
Programmable Logic Controllers (PLC), allowing users
to take advantage of existing sensors/actuators. Ignition
users do not maintain hardware themselves; instead
they access systems remotely via web interfaces. Users
are charged based on the number of servers used
instead of via software licensing fees. Ignition allows
users to customize their architecture by choosing to
deploy components individually.

e XiO Cloud SCADA [14] consists of two components, a
local (customizable) hardware module called a Soft-1/
O, which contains the sensors and actuators, and the
cloud component, the SCADA application which runs
on secure commercial servers. Users subscribe to a
Cloud Service, for a monthly fee, giving them access to
the SCADA system through web and mobile apps.
Users can customize the priorities of their XiO SCADA
system, for example to priorities energy efficiency.

In general, there is a trend to develop SCADA systems
specifically for cloud infrastructure. The fact that existing
SCADA solutions have not been used alludes to potential
issues with migrating SCADA solutions. However, it is not
clear if issues are performance or deployment related. The
solution presented by Gligor and Turc addresses perform-
ance through the use of a simple data transfer protocol,
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while the local directory service addresses deployment
issues. The SKYDA cloud framework only addresses
deployment issues through the use of automated
replication.

Common open-source SCADA solutions include EPICS,
TANGO, EclipseSCADA and IndigoSCADA. EPICS (Ex-
perimental Physics and Industry Control System) [15] is a
SCADA system designed to operate devices such as par-
ticle accelerators, large experiments, and major telescopes.
TANGO [16] is an object orientated distributed control
system supported by a consortium of European Synchro-
trons in Germany, Spain, Italy, Poland, and France. Eclip-
seSCADA [17] is a key eclipse foundation project used
commercially, the details of which have not been made
public. IndigoSCADA [18] is a light weight SCADA sys-
tem for Linux and Windows. While some of these solu-
tions have been run on cloud infrastructure, no major
performance study has been carried out on how these
solutions behave. This paper focuses on the process of
migrating and understanding, based on the nature and
scale of experimentation undertaken, the feasibility and
outcomes of migrating existing open SCADA solutions to
run on cloud infrastructure.

Open-source SCADA selection

It was the goal to ensure that the results of this migra-
tion study would be able to be applied to a wide range
of open and commercial systems. Therefore there was a
need to select an open-source SCADA package which
would: provide similar architecture and features to com-
mercial packages, have manageable code with minimal
coupling between components, and be widely adopted
and supported.

Most commercial solutions focus on detailing features of
their product rather than the system architecture, which is
making comparisons difficult. One commercial SCADA
package which provides a detailed description of the system
architecture and provided features is WinCC. As WinCC
has an open architecture [19], it has been selected as the
focus of architecture and feature comparison. By choosing
an open-source SCADA solution with similar features and
structure to WinCC, we make the claim that our outcomes
are applicable to commercial SCADA systems.

SCADA architecture and feature comparison

The WinCC open architecture [20] is a theoretical model
that consists of a number of software components called
managers. There are three key managers that make up the
core WinCC functionality: event, device, and database
managers. Similar features are provided by the open-
source SCADA solutions presented in section 3.

e Event managers handle notifications and alarms. The
EPICS solution provides alarm handling through an



Church et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:11

application, which notifies the user when information
is stored in a distributed database. Users of TANGO
build event notification through access to databases.
EclipseSCADA and IndigoSCADA perform checks on
data stored in the real-time database.

e The Device manager handles connection of field
devices and incorporates drivers. Similar functions
are provided by all open-source SCADA solutions;
each solution provides a system node which listens
to connected devices via drivers.

e Database managers handle both historical and real-time
data using relational databases. This approach is most
similar to IndigoSCADA, which also uses relational
database storage for both historical and real-time data.
EclipseSCADA, EPICS, and TANGO store historical
data in a relational database, but real-time data is stored
in memory in the form of blocks.

Device support is another key feature, which can be
compared (see Table 1). WinCC supports drivers in four
categories: Open Platform Communications (OPC), Field
bus, telecontrol systems, and TCP/IP drivers. Most open-
source solutions provide similar support for field devices;
EPIC, TANGO and EclipseSCADA support all but telecon-
trol systems. IndigoSCADA provides support for all but
field bus devices.

SCADA code manageability comparison
Related work (see section 3) alludes to the need to modify a
SCADA system to take advantage of cloud. For this reason a
study of code manageability was carried out. Manageability
of code can be based on static code metrics measuring
coupling (see Table 2). Solutions with fewer modules and
fewer links between modules will be easier to analyze and
port. CppDepend [21] and Eclipse Metrics [22] were used to
identify the number of modules, links, and shared functions.
Of the studied solutions, results show that EPICS is
the most complex, having on average 2.2 links per module.
TANGO and EclipseSCADA have around 1 link per
module; however, EclipseSCADA is more manageable,
consisting of fewer modules. IndigoSCADA is the sim-
plest solution having on average 0.7 links per module.
Measuring the variance of shared functions can also
give an indication of code manageability. Solutions, in
which code is weakly coupled across many modules, can

Table 1 Comparison of supported SCADA drivers
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be difficult to partition, while modules with few tightly
coupled links are easier to partition. EPICS and EclipseS-
CADA are loosely coupled solutions with few strong links.
EPICS having more modules and links, has code-reuse
spread across more modules. TANGO and IndigoSCADA
have modules, which are highly coupled, only a few mod-
ules which reuse code.

The last aspect of manageability is the type of SCADA
package; TANGO and EclipseSCADA are toolkits and
require development be carried out before migration.
EPICS and IndigoSCADA are out-of-the-box systems
and do not require further development, reducing the
time needed to carry out migration.

SCADA adoption comparison
SCADA adoption and support differs depending on the
solution.

e TANGO is supported by a consortium of European
Synchrotrons in Germany, Spain, Italy, Poland, and
France. Key projects that utilized TANGO include:
the C3 Prototype of the European Mars Analog
Station, the diagnostics of the Laser Mégajoule and
the laser facility CILEX-APOLLON. TANGO has a
large community of users, contributing a large number
of device drivers, at time of writing over 558 different
devices are supported, including sensors, motors,
vacuums and lasers (beam lines).

e EPICS is a collaborative project between Argonne
and Los Alamos national labs. As of 2015, EPICS is
deployed in over one hundred research lab across
the globe; key research institutes using EPICS
include Fermilab, Australian Synchrotron, and the
Lawrence Berkeley National Labs. Commercial
companies also provide services for EPICS, in the
form of consulting, by providing device drivers for
their hardware or by selling instruments with an
embedded I0C.

o EclipseSCADA is part of the Eclipse IoT Industry
Working Group initiative. EclipseSCADA has been
deployed in a number of productive installations
around the world. Commercial support is available
through a company called IBS SYSTEMS, which
uses the EclipseSCADA toolkit to build SCADA
solutions targeted to users’ industrial requirements.

Drivers WinCC EPICS TANGO EclipseSCADA IndigoSCADA

OPC Yes Yes Yes Yes Yes

Field Bus Yes S7, Profibus S7, Profibus S7 No

Telecontrol Yes No No No DNP3, iec104, iec61850
TCP/IP Yes Modbus, Modbus Modbus Modbus, RFC1006

Ethernet
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SCADA Solutions # Modules Avg. # of Links Variance of Shared Functions SCADA System Type
EPICS 9 22 134 Out-of-the-box
TANGO 9 1.1 5598 Toolkit
EclipseSCADA 6 1 113 Toolkit
IndigoSCADA 9 0.7 7163 Out-of-the-box

e IndigoSCADA is supported by a company called
Enscada, little is known about deployment of this
SCADA system in research and/or commercial
environments.

Conclusion

A summary of open-source SCADA packages in terms
of their features, manageability and adoption/support is
as follows (see Table 3):

e Similarity of WinCC has been measured based on
features and driver support. Of the selected SCADA
systems, both IndigoSCADA and EclipseSCADA
share features in terms of event, device and storage
managers, while TANGO and EPICS implement
event handling and data storage differently than
WinCC. Driver support across all open-source solutions
is similar, supporting 3 out of 4 categories. As a toolkit
with features similar to WinCC, EclipseSCADA would
allow for a SCADA configuration similar to WinCC to
be developed.

e Manageability is measured in terms of coupling and
required development. IndigoSCADA, TANGO and
EclipseSCADA had significantly less coupling then
EPICS. Out of the solutions with low coupling, only
Indigo is an out-of-the-box solution which does not
require further development. Out of the toolkits,
EclipseSCADA has fewer modules compared to
TANGO and is therefore more manageable.

e EPICS and TANGO are widely used in research
areas, and have a large support base. EclipseSCADA
is not as well-known as EPICS and TANGO, but used
commercially, and has links to the eclipse foundation,
which are points in its favor. IndigopSCADA has limited
adoption in research or industry, and is ranked last.

Table 3 Examination of open-source SCADA solutions

Based on these criteria, the open source EclipseSCADA
was chosen. As a toolkit, EclipseSCADA is flexible enough
to build a SCADA solution that is similar to WinCC. The
low coupling score suggests a modular solution, which
could be modified to suit cloud infrastructure.

Migration of EclipseSCADA

The open source EclipseSCADA toolkit was chosen as a
representative SCADA system. Using EclipseSCADA, a
SCADA system was developed, which consisted of a re-
mote sever, a master server, and a file server. Using the
“lift and shift” method, EclipseSCADA was ported to the
NeCTAR research cloud.

EclipseSCADA solution development

Development of a SCADA solution using the EclipseS-
CADA toolkit is carried out using the EclipseIDE.
Through the toolkit, users are provided with a configur-
ation template that they can use to define the structure
of the SCADA system, by creating and configuring
servers and devices (see Fig. 5).

The configuration template defines two type of servers,
external or system nodes: the remote server is where real
time storage of data is performed, and the system node is
where device drivers are run. Users modify these tem-
plates by specifying the running IP address of each server.
Users can link any number of devices to a system node.
Device templates are available for a number of communi-
cation protocols, which can be modified by specifying port
numbers and data types, and communication period.

When compiled, the SCADA system defined by the
user takes the form of OSGi services [23], which are
bundled Java code that can be installed, started, stopped,
and updated through a simple API. A separate service is
built for each IP address defined by the user, and is de-
signed to be deployed on the specified machine. Users

SCADA Solutions Criteria
Similarity to WinCC Manageability Widely
Features Driver Support Coupling Toolkit Used
EPICS Through Extensions 3/4 categories Low No Yes
TANGO Through Extensions 3/4 categories High Yes Yes
EclipseSCADA Through Customization 3/4 categories Low Yes Yes
IndigoSCADA Yes 3/4 categories High No No
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can access these compiled OSGi services through a GUI,
which implements Human Machine Interface (HMI) fea-
tures. This GUI can link to system node and file server,
giving end-users access to real time and historical data,
alarm and event handling.

Using the EclipseSCADA toolkit, the core components
shown in Fig. 6 were developed. The core components
consist of a remote server, a master server, and file
server.

e The remote server provides real-time collection of
sensor, switch, and actuator information. Data is
stored in memory (data blocks) and converted to the
EclipseSCADA internal protocol, Next Generation
Protocol (NGP [24]).

e The master server provides event and alarm
handling for NGP formatted data.

e The file server provides data archival. A relational
database service is used to store and manage data.

Migration methodology

When migrating EclipseSCADA to the cloud, three differ-
ent deployment paths can be considered: re-hosting, re-
factoring, and revising [25]. The quickest and simplest
approach is achieved by simply re-hosting an application
in the cloud (“lift & shift” method). Re-hosting is the
process of installing an existing application in a cloud
environment and mainly relying on Infrastructure as a
Service (laaS) offerings. This can be the first step in a
gradual approach, enabling to perform initial analysis and
to improve the application during multiple iterations.

To better benefit from the characteristics of cloud
computing, e.g., making an application scalable or more
reliable, re-engineering might be necessary. This can be
a simple refactoring, i.e. a modification of one or a few
features. An example is adding monitoring capabilities,

which enable elastic behavior such as adding new re-
sources when the application is heavily used or releasing
resources when they are not needed. It might also re-
quire revising an application, i.e. making major modifica-
tions at its core; examples would be using a Platform as
a Service (PaaS) database offering or changing an appli-
cation into a multi-tenancy SaaS offering. To fully bene-
fit from the cloud, it might also be necessary to rebuild
an application and integrate, for example automation for
scaling in and out. Driven by the increasing number of
SaaS offerings, an option might be to replace an existing
application with a cloud-based Saa$S solution [26].

We used a combination of re-hosting and performance
testing to deploy EclipseSCADA to the NeCTAR re-
search cloud [2] (running OpenStack [27]). The steps
used to carry out “lift and shift” are as follows:

1. Create and upload an Ubuntu VM image to the
NeCTAR cloud.
2. Deploy the Ubuntu VM and carry out installation of
EclipseSCADA.
a. Install the EclipseSCADA dependencies (Java,
Eclipse, etc.).
b. Copy each EclipseSCADA component into the VM.
c. Configure EclipseSCADA links by specifying the
location of each sensor/switch and SCADA component.
3. Start each EclipseSCADA component.

Following these instructions each EclipseSCADA com-
ponent (field device, remote server, master server, and
file server) was deployed to the NeCTAR cloud as a
standalone virtual machine.

Sensor and actuator simulation
EclipseSCADA was configured to use simulated Mod-
bus/TCP devices. Modbus is one of the most commonly
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used polling protocols, with numerous simulators and li-
braries. While the original version of the Modbus proto-
col is designed for use over serial ports, the Modbus/
TCP variant enables communication using the Internet
Protocol Suite.

A Modbus device consists of registers that are used to
hold data. Request messages are sent from the SCADA
system to a Modbus device to carry out operations on
registers. The Modbus device also sends response mes-
sages back to the SCADA system. A message consists of
a number of fields;

e Transaction Identifier - Incrementing ID for
synchronization of messages.

e Protocol Identifier - Set to O, reserved for future
extensions.

e Length Field - Remaining bytes in message.

e Unit Identifier - The register ID to carry out the
operation.

e Function Code - The function to be carried out
(read, write, etc.).

e Data Bytes - Data for response or commands (data
which was read or to be written).

The operation of the Modbus/TCP Protocol and five
sensors is illustrated in Fig. 7. The EclipseSCADA system
requests data by sending a message to the connected field
device. The field device retrieves the requested sensor data
and sends sensor data back to the EclipseSCADA system.
Sensors are polled sequentially until data from each con-
nected sensor is retrieved by the SCADA system.

When measuring the time taken to transfer Modbus
data, there are two terms that must be defined: Round
Trip Time (RTT) and the Polling Interval. Round Trip
Time (RTT) is the time between sending a request until
receiving the respective response with the sensor data.
The Polling Interval is the time between sending requests
to the same sensor. The Polling Interval is configured by
the user and is often implemented in the form of a timer.

Analysis of EclipseSCADA metrics

To study the real-time monitoring and control mechan-
ism of SCADA systems when running on the cloud, an
analysis of the migrated EclipseSCADA system was carried
out. Metrics were collected which focus on understanding
the influence of the size of a monitored environment and
EclipseSCADA specific delays, the influence of the location

Polling Interval

~

eclipseSCADA

Remote Server

» Socket Buffer

Fig. 7 Modbus Polling RTT

P Field Device
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of EclipseSCADA components on EclipseSCADA perform-
ance, and the relationship between processing time and
communication time.

Cloud and SCADA environment setup

Each EclipseSCADA component was deployed on an indi-
vidual virtual machine hosted on the NeCTAR research
cloud [2], which runs OpenStack (Kilo Release), configured
with Neutron with Linux bridge networking. Each virtual
machine (ml.medium) had 2 virtual CPUs, 8GB RAM and
60GB secondary disk. Each virtual CPU consisting of a
single core running at 2.6 GHz clock speed.

Performance metrics were collected while EclipseSCADA
was placed under different sensor loads (200, 400, 600 and
800). Modbus/TCP simulators were deployed on each field
device to represent sensors. As each field device could only
contain 200 simulated sensors (due to implementation re-
strictions of the used Modbus simulator), additional field
devices (running on separate virtual machines) were added
to the EclipseSCADA system for the 400, 600 and 800 sen-
sor load experiments (see Fig. 8).

The EclipseSCADA system was deployed across
Melbourne and Tasmania cloud regions, where simu-
lated field devices were deployed in Tasmania, and
SCADA components were deployed in Melbourne.
There was an estimated distance of 429 km between
these two sites. Table 4 shows the speed of the internal
and external network, where the internal Melbourne
network is over twice as fast as the public (Melbourne
to Tasmania) network.

Table 4 Comparison of network speed (TCP)
Download (Gbits/sec)

Location Upload (Gbits/sec)
330

1.07

Internal Melbourne Network 3.77

Melbourne to Tasmania 1.52

The study of the influence of the size of a monitored
environment
In order to understand the influence the size of a moni-
tored environment has on the performance of EclipseS-
CADA, the Modbus/TCP Round Trip Time (RTT) was
measured using Wireshark [28] (see Table 5). As mentioned
above, simulated field devices were deployed in Tasmania,
while SCADA components were deployed in Melbourne.

The numbers of simulators were varied between 1 and
800, with a polling rate of 1 millisecond. Typically SCADA
systems are setup with a slower polling interval of sec-
onds, but with thousands of sensors. A polling rate of 1
millisecond was deliberately chosen to put more load on
the system, in order to adjust for the number of sensors.

Results showed that the RTT changes depending on the
number of simulated sensors attached to the eclipseS-
CADA system. In a rather small SCADA system consisting
of a single simulator sensor, the time taken to transfer a sin-
gle Modbus/TCP sensor of data is on average 11 millisec-
onds, where 4 milliseconds are spent sending a request and
7 milliseconds are spent sending sensor data. As the size of
a monitored environment increases, i.e, more simulator
sensors are added to the SCADA system, the average time
to retrieve a single point of sensor data increases.

In conclusion, the majority of the RTT time is spent
retrieving data from the simulator. In order to under-
stand the cause of this behavior, experiments were

Table 5 Average Time to Transfer Modbus Data (ms)

# Simulated Sensors Request Response Total RTT
1 4 7 "

200 4 3630 3634
400 4 5996 6000
600 4 9034 9038
800 4 13,961 13,965
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carried out to investigate how the network and SCADA
components interact.

The study of the influence of component location

In order to understand how the distribution of SCADA
components affects network communication, “field devices”
and “remote server” components were deployed across
the Melbourne and Tasmania cloud regions. Modbus/
TCP Round Trip Time (RTT) was measured: between
Melbourne and Tasmania (Remote Region), within the
Melbourne region (Single Region), and on a single
machine (Single Machine) (see Fig. 9).

Results indicate that changing how EclipseSCADA is
deployed geographically has minimal overall effect on
Modbus/TCP data transfer. The single machine setup
eliminates the network completely, resulting in an aver-
age RTT reduction of ~0.5 seconds (when compared
with the remote region setup). Likewise, EclipseSCADA
running in a single region performs only slightly better
with an average RTT reduction of ~0.3 seconds.

In conclusion, network transfer and delays are respon-
sible for a small percentage of the total Modbus/TCP
RTT. To further reduce RTT, it is necessary to reduce
the number of sensors managed by a single remote ser-
ver, or use a more efficient communication protocol. By
using event-driven protocols, it is possible to remove the
need for request messages.

Processing time vs. communication

Results presented in Fig. 9, show that eliminating the
network (single machine) has a minimal effect on
Modbus/TCP RTT. From this, it is possible to conclude
that most of the observed delay when requesting data
(see Table 5) is due to processing rather than network
delays. Furthermore, as the time to retrieve sensor data
increases with the number of monitored sensors, it is
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likely that the delay is due to the implementation of the
Modbus/TCP protocol sending all requests before re-
ceiving sensor data.

In conclusion, network communication can be neglected
in comparison to the time spent processing. Results show
that the migrated SCADA system spent more time generat-
ing and sending polling requests than storing data. For this
reason, Modbus/TCP requests and responses should be
managed by an event queue or on separate threads.

Distinctive features of experimentation

Sections 6.1-6.4 show a unique nature and large scale of
experimentation. First, the experiments were carried out
using two production clouds, the NeCTAR research clouds;
each ran OpenStack. Second, the experiments were carried
out across Melbourne and Tasmania cloud regions; the dis-
tance between them, 429 km, is impressive in terms of in-
dustry, business, and research applications. Third, the
speed of the internal and external network, where the in-
ternal Melbourne network is over twice as fast as the public
(Melbourne to Tasmania) network; such a difference cre-
ates some buffering problems. Fourth, since we wanted to
carry out experiments in boundary computation and com-
munication conditions, with a huge number of devices, it
was necessary to use simulated field devices. That allowed
us to run experiments with load of up to 800 sensors de-
ployed in Tasmania (SCADA components were deployed in
Melbourne). Fifth, the numbers of simulated devices were
varied between 1 and 800, with a polling rate of 1 millisec-
ond. Typically, SCADA systems are setup with a slower
polling interval of seconds. A polling rate of 1 millisecond
was deliberately chosen to put more load on the system.
Sixth, all experiments were carried out during normal ex-
ploitation of clouds and connected them public networks;
that formed normal business/industry conditions.

Time (sec)

a2l

.-
-

= =RTT (M-T-M)

, " e« RTT - Single Region (M-M-M)

= «RTT - Single Machine (M)
==Calculated Network Delay (M-T-M)

200 400
Load (#sensors)

Fig. 9 Average RTT of Modbus Data

600 800
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Recommendations

Based on these observations, we make the following rec-
ommendations when moving and configuring SCADA
to make use of cloud resources:

e Use event-driven protocols (where a sensor informs
the SCADA system on change) — Polling in general
is not efficient; to retrieve a sensor value, a request
message and response message must be sent;
additionally as a timer is used there is a tendency for
a polling based system to flood a network with
repetitive sensor data. Event-driven protocols reduce
the amount of data sent across a network.

e If alegacy SCADA system is used it needs to be
ensured that processing of the messages does not
incur excessive delays. Our results, for example,
indicate that for larger system loads, network
communication can be neglected in comparison to
the time spent processing and storing data. When
using device protocols that are built for serial
devices (like Modbus), it is sometimes a design
limitation of the device or protocol, that there
cannot be requests in parallel. For the other cases,
proper techniques, such as use of an event queue or
multi-threading, need to be employed to minimize
processing delays.

e When the above cannot be influenced and polling
protocols with serial processing need to be used (like
Modbus TCP in certain configurations), field devices
should be spread across many remote servers — The
amount of sensors per remote server depends on the
processing and transfer time required by the
SCADA system. This also means that the remote
server should be able to scale horizontally. It can
also be concluded that the network transmission
time influences the performance, and that protocol
conversion - at least for polling protocols - should
be done close to the field devices.

Conclusion and future work

Monitoring and control of industrial complexes is of
critical importance. Each individual complex is in the
majority of cases distributed, e.g., a gas pipeline, industrial
plant. Therefore, there is a need for a system that can pro-
vide services in real time and is distributed. SCADA sys-
tems are instrumental to a wide range of mission-critical
industrial systems. These systems allow a user to monitor
(using sensors) and control (using actuators) an industrial
system remotely.

Currently, SCADA systems run on highly reliable and
dedicated hardware. This is in contrast to the current
state of computing, which is moving from running appli-
cations on internally hosted servers to flexible, cheaper,
internal or external cloud systems. The problem is to
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identify factors that affect performance of cloud-based
SCADA systems.

Experiments were carried out to examine the effects
cloud resources and public networks have on SCADA sys-
tems. Using the “lift and shift” approach, EclipseSCADA
was deployed to the NeCTAR research cloud in mul-
tiple locations. Performance metrics were collected
from the deployed EclipseSCADA system under differ-
ent loads.

When moving a SCADA system to cloud infrastructure,
there is a need to ensure that the real-time monitoring
and control demands of the industrial system can be
achieved. By carrying out analysis of the EclipseSCADA
system we made a series of recommendations that should
be taken into consideration when migrating SCADA sys-
tems to the cloud. In general, latencies introduced by run-
ning SCADA system components in the cloud are not a
limiting factor, given that response time requirements are
usually in the order of several hundred milliseconds to
seconds. While scalable compute power in a cloud-based
system tempts to centralizing functionalities, this may lead
to problems in given system designs. We have specifically
discovered limitations with polling protocols processed in
a serialized way. We propose in particular the adoption of
event-driven communication protocols to reduce network
transfer, doing protocol conversion close to the field de-
vices, and replication of remote servers, to ensure polling
intervals are met.

Adaption of event-driven protocols for cloud based
SCADA systems would require the use of smart sensors
that would be able to respond to requests made by the
cloud. The complexity of these field devices means that
simulators are not readily available. Polling protocols are
based on timers transfer the same amount of data every
polling interval. When working with event driven simula-
tors, the amount of data being transferred would change
depending on the registered events (which is depended on
the size of the system and application). For this reason ex-
periments with event driven protocols must include the
simulation of realistic datasets, and ideally under different
applications and scenarios. Future work would extend the
experimental methodology to event driven protocols,
which would require the collection of datasets from large
scale SCADA installations and the development of simula-
tors which would playback these datasets.

Endnote
'As of the 19th of November 2015, EclipseSCADA has
been renamed to Eclipse NeoSCADA (https://

www.eclipse.org/eclipsescada/news/2015/11/19/
a_new_name__eclipse_neoscada.html).
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