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Abstract

competing techniques especially for bursty workloads.

Enterprise applications are being increasingly deployed on cloud infrastructures. Often, a cloud service provider (SP)
enters into a Service Level Agreement (SLA) with a cloud subscriber, which specifies performance requirements for
the subscriber’s applications. An SP needs systematic Service Level Planning (SLP) tools that can help estimate the
resources needed and hence the cost incurred to satisfy their customers’ SLAs. Enterprise applications typically
experience bursty workloads and the impact of such bursts needs to be considered during SLP exercises.
Unfortunately, most existing approaches do not consider workload burstiness. We propose a Resource Allocation
Planning (RAP) technique, which allows an SP to identify a time varying allocation plan of resources to applications
that satisfies bursts. Extensive simulation results show that the proposed RAP variants can identify resource allocation
plans that satisfy SLAs without exhaustively generating all possible plans. Furthermore, the results show that RAP can
permit SPs to more accurately determine the capacity required for meeting specified SLAs compared to other
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Introduction

Enterprises are beginning to increasingly rely on cloud
computing systems for hosting their applications. Users
of many enterprise applications, e.g., Web servers, require
fast responses to their requests. Unfortunately, existing
cloud infrastructures e.g., Amazon Web Services Elastic
Compute Cloud (EC2), typically do not provide such
performance guarantees. Typically, the enterprise sub-
scriber of the cloud service is responsible for provisioning
resources such that their applications’ performance objec-
tives are met.

In this paper, we consider a performance-aware cloud
system that is capable of providing performance guaran-
tees to its subscribers. In such an environment, a cloud
Service Provider (SP) enters into a Service Level Agree-
ment (SLA) with a subscriber prior to deploying the sub-
scriber’s applications. Service Level Objectives (SLOs) are
specified for a subscriber’s applications as part of their
SLA with the SP. In contrast to a traditional cloud system,
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the SP is responsible for provisioning resources such that
the specified subscriber SLAs are met.

In a performance-aware cloud system, the SP needs
systematic Service Level Planning (SLP) tools to guide
the process of formulating performance SLAs with sub-
scribers and translating them to application resource allo-
cations. For example, consider a subscriber that stipulates
a certain mean response time threshold as an SLO for
their application’s transactions. An SP should consider the
application’s workload as well as the workload of other
applications on the cloud to determine whether there
is adequate capacity to satisfy this performance require-
ment. If this requirement cannot be satisfied, the SP may
suggest a less stringent requirement. Alternatively, the SP
may determine the additional capacity needed to satisfy
the request and use that information to present a revised
cost estimate to the subscriber for satisfying the desired
performance requirement. Our work focuses on SLP tools
that can help SPs undertake such exercises.

SLP tools designed for enterprise application clouds
need to address the phenomenon of workload bursti-
ness. Past studies have shown that enterprise workloads
suffer from burstiness [1-8]. Burstiness refers to serial
correlations in workload patterns such as correlation
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between successive arrivals of transactions and correla-
tions in the resource consumption patterns at various
system resources. Typically, applications encounter peri-
ods of sustained workload peaks followed by periods of
sustained workload troughs. For an application with a
bursty workload, resource allocation based on the aver-
age behaviour, e.g., average rate of request arrivals, may
lead to insufficient resources to handle the peaks thereby
causing SLO violations. In contrast, allocation based on
the peak may lead to over provisioning and under utiliza-
tion of resources leading to increased costs, which can
adversely impact the competitiveness of the SP. To deliver
SLOs in a cost-effective manner, an SP therefore needs
to deduce a time varying allocation plan of resources to
any given application that matches the burstiness pat-
tern of that application. Deducing such burstiness-aware
resource allocation plans while considering the workloads
and SLOs of all applications hosted on the cloud is a
challenge.

Existing approaches have not explicitly addressed the
challenges of SLP in the presence of burstiness. This
paper proposes a novel Resource Allocation Planning
(RAP) method to identify a time varying allocation plan
of resources to applications that meets SLO objectives
while satisfying an SP’s resource constraints. Specifically,
the technique takes as input traces that capture the bursti-
ness of a set of applications over a time period of interest.
Given an application’s trace and a candidate time vary-
ing resource allocation plan, a trace-driven performance
modeling technique [9] is used to predict the impact of
the application’s burstiness on the SLO. RAP searches for a
resource allocation plan that globally minimizes SLO vio-
lations over the input set of applications while satisfying
resource constraints imposed by the SP.

Since the SLP problem outlined above cannot be solved
by traditional optimization solvers, we describe and eval-
uate three different RAP variants to search for optimal or
near-optimal solutions. In particular, we describe an intel-
ligent search technique that identifies the optimal solution
without resorting to an exhaustive search of all possible
resource allocation plans. Furthermore, we propose two
variants that are computationally more efficient than this
intelligent technique while providing near-optimal solu-
tions. Our simulation results show that all three RAP
variants can permit SPs to more accurately determine
the capacity required for delivering specified SLOs com-
pared to burstiness agnostic techniques. Specifically, the
RAP variants discover plans where resource allocations
fluctuate over time in keeping with the observed bursti-
ness. Such plans can in turn lower the costs required by
the SP to deliver a given SLO. Our results also estab-
lish the superiority of RAP to the prevalent practice of
considering SLO targets based on resource utilization
thresholds.
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This paper represents a significant extension of the work
we describe in our previous conference papers [10, 11].
Specifically, this paper proposes two new variants of the
RAP technique, which improve the optimality of resource
allocation solutions. It presents new experiments that
evaluate in detail the optimality and computational com-
plexity of the different RAP variants. Finally, this paper
also includes a more exhaustive discussion of related
work.

The remainder of the paper is organized as follows.
“Resource allocation planning (RAP)” section describes
the RAP variants. “Evaluation setup” section outlines
the simulation setup we use to evaluate RAP. Results
that compare RAP’s performance with other baseline
approaches and that characterize the behaviour of the
various RAP variants are presented in “Results” section.
A discussion of related work is presented in “Related
work” section and conclusions are presented in “Conclu-
sions and future work” section.

Resource allocation planning (RAP)

We provide a high-level overview of RAP in “Overview”
section. “Formulation” section formulates resource alloca-
tion as an optimization problem. “RAP variants” section
describe three RAP variants to solve this problem.

Overview

Figure 1 shows an overview of the RAP approach. Stud-
ies have shown that enterprise workloads have predictable
hour-of-the-day, day-of-the-week, and day-of-the-month
patterns [12]. RAP exploits this phenomenon to discover
burstiness aware resource allocation plans. As shown in
Fig. 1, for each application under study, a cloud SP uses
a collection of traces that embody the workload charac-
teristics of that application. We refer to these traces as a
workload scenario. In particular, a session trace captures
information about user sessions related to the applica-
tion over a period of time. A session is defined as a
group of inter-related requests that fulfill a certain task,
e.g., a web transaction to purchase a product. The ses-
sion trace includes information such as arrival instants
of sessions, number and type of requests issued within a
session, and the user think time, i.e., idle time, between
successive requests in a session. Furthermore, resource
traces capture the application’s use, i.e., utilization, of
low-level resources such as processor cores over the
same period.

Application traces can be obtained in several ways. For
existing applications, a cloud SP can use historical traces
obtained from the application’s deployment in the cloud.
Traces for new applications can be obtained in several
ways. For example, cloud subscribers can provide traces
from environments external to the cloud where the appli-
cation was previously deployed. Alternatively, traces can
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Fig. 1 RAP overview

be synthetically generated based on subscriber estimates
of mean or peak workload behaviour.

From Fig. 1, RAP also takes as input information on
the numbers and types of resources, e.g., web servers and
database servers, available for allocation. This captures
any resource constraints an SP might face and provides
a mechanism for limiting resource costs incurred by the
SP. Finally, RAP takes as input SLOs for the applications.
While many types of SLOs can be considered by RAP, we
use an SLO based on a target mean application request
response time in this paper. We define the SLO viola-
tion percentage for an application as the percentage of
deviation of the mean request response time of the appli-
cation for its workload scenario from the target mean
request response time that defines the application’s SLO.
The global SLO violation metric is defined as the mean
SLO violation percentage for the input set of applications.
We note that RAP can be easily adapted to accommodate
other global SLO violation metrics.

Given the aforementioned inputs, RAP searches for a
time varying resource allocation plan that minimizes the
global SLO violation metric for the input set of applica-
tions. We define a resource allocation plan as the number
and type of resources allocated to a set of applications over
a given number of resource allocation intervals within
a defined planning horizon. The planning horizon rep-
resents the time period over which an SP is obliged to
satisfy an application’s SLO. RAP allows an SP to emulate
elastic or time-varying resource allocation at fine-grained
time intervals within the planning horizon. For a given
planning horizon, resources can be allocated for appli-
cations at the start of these fine-grained intervals and
relinquished at the end of these intervals. Each of these
intervals is referred to as the resource allocation interval.
For example, cloud SPs can study the effect of dynamically
changing resource allocations to applications at resource
allocation intervals of 30 min within a planning horizon
of 24 h.

The main power of RAP comes from exploring a
resource allocation interval smaller than the planning
horizon and exploiting the burstiness across these inter-
vals. This is a key difference from other SLP techniques
proposed in literature. Exploring finer time scales allows
RAP to discover allocation plans that use the least amount
of resources to minimize SLO violations when applica-
tion workloads are bursty. Figure 2 provides an example
that shows the relationship between the planning hori-
zon and the resource allocation intervals over time for
two bursty applications with non overlapping peaks, i.e.,
applications have their peak request arrival rates in two
different resource allocation intervals. If the two applica-
tions compete for the same resource to satisfy their peaks,
they can both be allocated this resource over the planning
horizon but over different resource allocation intervals.
This is not possible if the planning horizon is of the same
granularity as the resource allocation interval. Figure 2
shows how the SP’s resource allocation can be modulated
according to the burstiness patterns of the applications.
RAP uses application workload scenarios to automatically
discover such opportunities.

From Fig. 1, similar to other SLP studies RAP relies on
a performance model to search for an optimum resource
allocation plan. Given a candidate resource allocation plan
and the workload scenario for an application, the per-
formance model predicts the application’s mean request
response time and hence the SLO violation percentage.
We use the Weighted Average Method (WAM) [9] perfor-
mance modeling technique, which has been shown to be
more accurate than other traditional performance model-
ing techniques in predicting SLO violations under bursti-
ness. RAP iteratively generates various resource allocation
plans and uses WAM to evaluate the global SLO violation
metric of these plans. It finally selects the plan that results
in the least violation.

A naive way to arrive at an optimal resource allocation
plan is to enumerate all possible resource allocation plans
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for a given set of applications under given cloud resource
constraints. However, an exhaustive enumeration might
not be feasible if the number of applications, the number
of resource allocation intervals, and the number of tiers
within each application are large. This necessitates the
need for the non-exhaustive search techniques described
in “RAP variants” section.

Formulation

This section describes in detail the optimization problem
underlying RAP. Please refer to Table 1 for a summary
of all symbols used in the paper. The resource allocation
problem has two cost factors: cost of resources allocated
and penalties due to applications’ SLO violations. It should
be noted that both costs can be equally weighted by the
SP or one of them can be assigned a higher priority. This
paper focuses on minimizing the SLO violations objective.

We consider a given set of A applications. Typical
of enterprise applications, each application a employs a
multi-tier architecture which is composed of N, tiers. For
ease of explanation, we assume that all applications con-
sidered for resource allocation have the same number of
application tiers. However, this assumption can be relaxed
by invoking the appropriate performance model for each
application depending on the number of its tiers.

For ease of discussion, each application tier is also
assumed to be associated with a specific type or flavour of
resource instances. For example, the web tier of an appli-
cation might use a large number of resource instances
each containing small number of cores and memory
while the database tier might use a single instance with
larger number of cores and memory. This assumption
can also be relaxed by supporting multiple flavours of
resource instances at each application tier and storing a

performance profile for each resource flavour. This per-
formance profile can be used to select between different
flavours when allocating resources to an application tier.

As mentioned in “Overview” section, each application a
is characterized by a workload scenario, denoted by W/,.
We assume a planning horizon divided into T equal sized
resource allocation intervals. Resource constraints place
an upper limit on the number of resources available to
each tier. The maximum number of resources available to
all applications at tier # in a resource allocation interval £ is
denoted by C#*. The total number of resource instances
allocated to tier # of application « in resource allocation
interval ¢ is denoted by C, ;¢

As described previously in “Overview” section, RAP
relies on a WAM performance model to predict applica-
tions’ SLOs given applications’ workloads scenarios and
resources allocated to the tiers. The SLO violation per-
centage V, for an application « is defined as:

{ RarRTa 4 100% if R, > RT,
Va = Rl . (1)
0 otherwise
where R, is the mean response time of application a over
the planning horizon as predicted by the performance
model and the SLO of application a, denoted by SLO,,
is specified as a target mean response time RT, over the
planning horizon.

The global SLO and resource allocation optimization

problem can be defined by the following set of equations.

A
min X:Pen,Z 2)
a=1
Peng = f(V,) (3)
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Table 1 Summary of symbols

Symbol Definition

A Number of applications

AMg Arrival process model for application a

Amax Application with the top most SLO violation percentage
across all A applications

Cant Number of resource instances allocated to tier n of
application a at interval t

o Maximum number of resources available for allocation
to all applications at tier n in resource allocation interval t

Dan Mean service demand of application a at tier n

Fa Distribution of number of requests per session for
application a

lg Index of dispersion of session inter-arrival time for
application a

Ng Number of application tiers for application a

Nbottleneck Bottleneck tier of an application

Peng SLO violation penalty cost of application a

Ra Mean request response time of application a predicted
by the performance model over the planning horizon

Ra,t Mean request response time of application a predicted
by the performance model over interval t

RTq Target mean request response time of application a
over the planning horizon

Sa Number of user sessions in the workload scenario of
application a

SCVq SCV of session inter-arrival time for application a

SLOg SLO of application a

SMg Service process model of application a

T Number of resource allocation intervals of the planning
horizon

tmax Resource allocation interval with the maximum mean
request response time over the planning horizon

Vg SLO violation percentage of application a

w Set of workload scenarios of all applications

Wq Workload scenario of application a

Zg Distribution of think time between session requests in
application a

Aa Mean session arrival rate for application a

st Cope>1Vae(l,.. A,ne{l,.. Nohtell,...T}
(4)

A
sty Come <Cp*V¥ne{l,.. Na)te{l,...T}  (5)
a=1

Ry=f(Wa CopeVnefl,.. Nhtef{l,...TH) (6)

Equation (2) specifies the objective to minimize SLO vio-
lation penalties over all applications. Equation (3) defines
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an SLO violation penalty cost Pen, for a given application
a as function of the application violation percentage V,
defined in Eq. (1). The penalty cost due to an SLO vio-
lation of a given application may increase with higher
violation percentage. For example, an application with a
50% violation percentage over the planning horizon may
incur higher violation penalty than an application that
has a violation percentage of 10%. Equations (4) and (5)
place upper and lower constraints on the size of the SP’s
resource pool, respectively. Equation (4) shows that each
application, a4, should be allocated at least one resource of
an appropriate flavour in each tier, #, in every interval, ¢.
Equation (5) places a maximum limit on the number of
available resource instances for all A applications at each
tier z in each resource allocation interval . Equation (6)
relates application mean response time R, as a function
of its workload scenario W, and the resources allocated
to all tiers n € {1,...N,} of application a for all resource
allocation intervals ¢ € {1,...T}.

The formulation of the optimization problem provides
flexibility with respect to the overall objective of the SLP
process. From Egs. (2) and (3) the Sum of Violation per-
centages (SV) over all applications can be minimized by
simply setting Pen, to V, for each application a. Therefore
the SLO objective can be modified to:

A
min SV = Z v, (7)

a=1

If the cloud SP is interested in minimizing the num-
ber of applications violating their SLOs, we can assume
that the violation penalties for all applications are equal.
Specifically, each Pen, value in Eq. (2) can be defined as a
binary variable which takes 0 for no violation and 1 for any
positive violation percentage. In this manner the objective
function defined in Eq. (2) leads to minimizing the total
number of applications with positive Pen, values. Mini-
mizing the SV objective defined in Eq. (7) is the focus of
this work.

As discussed in “Overview” section, the output of the
optimization is a resource allocation plan represented by
the number of resources allocated to each tier # per appli-
cation 4, in each resource allocation interval ¢. If any SLO
violations occur, a list of these violations for all A applica-
tions should be returned by the optimization solver.

The objective function represented by Eq. (2) relies on
the mean response time estimates provided by Eq. (6).
In general, the function shown in Eq. (6) is non-linear.
However, it does not have a closed-form representation.
Performance predictions are obtained using WAM, which
uses an iterative algorithm to arrive at the mean response
time estimate R,. Consequently, we cannot use traditional
non-linear optimization techniques. Instead, we propose
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three heuristic algorithms in the next section to solve this
optimization problem.

RAP variants

As mentioned previously, an exhaustive search over all
possible resource allocation plans may not be feasible.
We propose three variants of the RAP approach that
avoid exhaustive searching. The three variants differ with
respect to the trade off between computational complexity
and optimality.

In general, these approaches start with the basic
resource allocation plan as captured previously by Eq. (4)
and then traverse a sequence of decision stages. Each deci-
sion stage generates an optimal or near optimal resource
allocation plan given that one additional resource is avail-
able for allocation relative to the previous decision stage.
This involves using WAM to carry out the following tasks:

1. Identify a candidate application for allocating the one
additional resource.

2. For the identified application, identify the interval
over which this resource has to be allocated.

3. For the identified interval, select the tier to which the
resource has to be allocated.

These tasks are carried out such that the lowest SV
value as shown in Eq. (7) is achieved. These tasks are
repeated over several stages till resources are exhausted or
all applications meet their SLOs.

We now describe in more detail the different approaches
to obtain an optimal or near-optimal resource allocation
plan at a given decision stage. The naive way is to evalu-
ate all possible resource allocation plans at each decision
stage. As shown in Table 2, this involves evaluating all
tiers in all resource allocation intervals for all applications
which results in invoking the performance model A*T*N,,
times. To reduce the computation time at each deci-
sion stage, we introduce three variants of RAP namely:
RAP-Intelligent-Exhaustive (RAP-IE), RAP-AllApps, and
RAP-OneApp. Table 2 summarizes the operation and
computational complexity of the different RAP variants
relative to exhaustively enumerating all possible resource
allocation plans at each decision stage.

Table 2 illustrates the difference between RAP-IE
and the naive enumeration. RAP-IE considers only the

Table 2 Computational complexity of RAP variants
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bottleneck tier of each application in all T resource allo-
cation intervals rather than considering all tiers as per the
naive approach. Among all application tiers, the bottle-
neck tier has the most effect on the mean response time
of an application and consequently the application’s V.
Specifically, at each decision stage for each application
in each interval, one resource of the appropriate flavour
is allocated to the bottleneck tier. We apply the utiliza-
tion law [13] to identify the bottleneck tier. WAM is then
invoked to compute Eq. (6) and hence Eq. (7). This process
is then repeated for all applications. The resource alloca-
tion plan which gives the least SV value is selected and
used to obtain the resource allocation plan in the next
stage. As shown in Table 2, the number of performance
model invocations required by RAP-IE is reduced to A*T.

RAP-IE is essentially an intelligent exhaustive search
technique and as with any exhaustive search technique
it is guaranteed to produce an optimal solution. The
intelligence stems from not considering non-bottleneck
resources while addressing the problem of where to allo-
cate an additional resource. We only explore resource
allocations at the bottlenecks since such a strategy is
proven to minimize response time and hence service level
violation [14, 15]. Essentially, resources are incrementally
allocated in stages, each time allocating a resource that
mitigates the most serious bottleneck from among the set
of all possible bottlenecks. Though better than naive enu-
meration, RAP-IE is still computationally expensive since
the performance model has to be invoked for all applica-
tions in all intervals. To alleviate this problem, we propose
two more computationally efficient variants namely: RAP-
AllApps and RAP-OneApp. These two variants trade-off
optimality for computation time.

Unlike RAP-IE which invokes the performance model
for all applications in all intervals at each stage, RAP-
AllApps invokes the performance model for all applica-
tions only in the intervals with the highest mean response
time. This interval represents the most bursty and con-
gested interval for a given application and so the allocation
of one more resource instance to the bottleneck tier of
such an interval is likely to result in the most reduction in
the application’s V,, when compared to other intervals. As
shown in Table 2, at each stage RAP-AllApps invokes the
performance model A times. In contrast to RAP-IE, the

At each decision stage Exhaustive enumeration RAP-IE RAP-AllApps RAP-OneApp

Applications evaluated All All All Application with the highest V,
Resource allocation intervals All All Interval with the highest Interval with the highest mean
evaluated mean response time response time

Tiers evaluated All bottleneck tier Bottleneck tier Bottleneck tier

Number of performance A¥T*Ng A*T

model invocations

A 1
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algorithm has no dependence on the number of resource
allocation intervals, T.

RAP-AllApps will deviate from optimality when the bot-
tleneck tier is the not the same in all intervals for a given
application. To obtain an optimal solution in this case,
one has to evaluate all intervals since different resource
flavours can have different impact on the value of V. We
will show later in Figs. 6 and 7 that solutions diverge from
optimal when systems tiers have very different configura-
tions and very different service demands.

RAP-OneApp makes the simplifying assumption that
targeting the application with the highest V likely yields
the least SV value. Accordingly, at each stage it ranks all
applications in a descending order in terms of their V
and selects the top most application. The allocation of one
additional resource is explored only for the bottleneck tier
of this application rather than for all applications as in
RAP-IE and RAP-AllApps. Thus, RAP-OneApp invokes
the performance model only once at each decision stage as
shown in Table 2. RAP-OneApp is not guaranteed to pro-
duce an optimal solution since targeting the application
with the highest V,, might not yield the highest reduc-
tion in SV. We experimentally evaluate the optimality
and computational complexity of the three RAP variants
in “Results” section.

We now describe RAP-OneApp in greater detail. In
the remaining sections RAP-OneApp and RAP are used
interchangeably. If the other two variants of RAD, i.e.,
RAP-IE and RAP-AllApps, are involved then all vari-
ants are explicitly referenced by their names. Figure 3
shows the pseudo-code of the RAP-OneApp algorithm. As
described previously in “Overview” section, the inputs to
the algorithm are the set W of workload scenarios with
one workload scenario per application a, the SLO, for
each application a over the planning horizon and C}/*
resources available for allocation to all applications at each
tier # in each resource allocation interval .

From Fig. 3, initially each application a is allocated one
resource instance of the appropriate flavour at each tier
n and for each resource allocation interval . The WAM
performance model is then invoked by RAP through the
function WAM-QNM() as shown in Fig. 3. This func-
tion takes as inputs the workload scenario W, and the
number of resource instances assigned to application a at
each tier # per resource allocation interval ¢. The outputs
returned by this function are the mean response time R,
of application a over the planning horizon and the mean
response time R, ; of application a over each resource allo-
cation interval t. After this step, V, is calculated for each
application a.

The RAP algorithm then enters a loop. In each iteration
of this loop, the application a,,,x with the top most SLO
violation percentage, i.e., maximum V,, is selected first.
For the selected application a,,,, the resource allocation
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interval £,,,, with the maximum R, over all T resource
allocation intervals is selected. This represents the inter-
val where the application is most heavily loaded. It should
be noted that ¢4, can only be an interval for which the
system has free resources remaining to be allocated. The
bottleneck application tier npoujeneck is then determined
for a=a;., and t=t;,,. Finally one additional resource
instance of the appropriate flavour is allocated to applica-
tion ayuux in tier #popeneck at resource allocation interval
Lmax- Resource availabilities are updated to reflect this
resource allocation. The algorithm terminates when either
all the available resources are allocated in all resource allo-
cation intervals or the maximum V/, is 0 which means that
all applications have achieved their SLOs.

Evaluation setup

We first provide a description of the parameters that we
use to generate the synthetic workload scenarios for this
study in “Workload scenario parameters” section. “WAM
performance model” section describes the WAM perfor-
mance model we use in our study. “Experiment factors and
levels” section summarizes the SLP and workload factors
in the study. A description of the baseline techniques that
we use to illustrate the gains from RAP are presented in
“Baseline methods” section.

Workload scenario parameters

As mentioned previously, RAP requires for each applica-
tion a a workload scenario W,. W, is associated with an
arrival process model AM,, which governs how sessions
arrive at the application. In this study, we inject controlled
levels of burstiness in session arrivals. To achieve this, we
characterize AM, by the set of parameters S;, F4, Z4, Aa,
SCV,, and I,.

The parameter S, is the number of user sessions in
the workload scenario. F, and Z, specify the distribu-
tions of the number of requests per session and the think
time between session requests, respectively. 1, denotes
the mean session arrival rate.

The variability of the session inter-arrival time, i.e.,
time between successive session arrivals, distribution is
captured by SCV,. The Squared Coefficient of Variation
(SCV) of the session inter-arrival times is defined as:

2
SCV, = <"“) ®)
Ha

where o, and u, are the standard deviation and mean of
session inter-arrival times, respectively.

Finally, the degree of burstiness in the arrival of sessions
is summarized by the parameter I, which is the index of
dispersion of session inter-arrival times. I, considers the
autocorrelation between session inter-arrival times. Auto-
correlation is defined as the degree of similarity between
a given time series and a lagged version of that time series
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Input: W, SLO, Va €{1,2,..., A}, CTF* Y n €{1,2,..., N}, t €{1,2,..., T}
Output: Co,: Y a €{1,2,..., 4}, n €{1,2,..., N}, t €{1,2,..., T}, V. YV a€{l,2,..., 4}
Fora=1to0 A
# for each application a allocate one resource instance to each tier » in each interval ¢
Comi=1Y a€{l,2,.. A}, nE{1,2,..,N,},t€{1,2,.... T}

V. = CalculateViolationPercentage(R,, SLO,)

If MaxViolationPercentage, == 0

Va=0VaE{l2,..., A4}
End If

)
Npottteneck=GetBottleneckTier(amax, tmax)

Camax,nbottlenevk,tmax = Camax,nbottlenepk,tmax +1
Cavail — ravail 1
nbottleneck,tmax nbottleneck,tmax ~

End While

Fig. 3 RAP Algorithm

# update resource availability based on this information

C,‘l’ft’a” =Cy* - Conye Y nE€E{1,2,.. N}, t €E{1,2,..., T}

# invoke the WAM performance model for each application workload scenario W,EW, Y a €{1,2,...,4}
[Rai, Ri] = WAM-ONM (W,, Coyny Y n €{1,2,...,N,} t€{1,2,...,T})

While (ResourcesAvailable(C,‘i'{a” Y ne{l2. . N}, tE{L2,..,T)
[@max, MaxViolationPercentage] = GetAppwithMaxViolationPerentage()
# if all applications satisfy their violation percentages

Return Con N a €{1,2,... A}, n €{1,2,.... N}, t €{1,2,..., T},

tmax= GetFreelntervalwithMaxRmean(amax, (Ramax: ¥t €{1,2,..., T}),
(CEAN n€{1,2,..., N}, t €{1,2,..., T} )

# allocate one additional resource instance to tier Zpomienecr Of application ay,,, in interval £,

# re-invoke The WAM performance model for the application @, only

[Ramax,tmax; Ramax] = WAM‘QNM(Wamm Camax,n,t V nec {1,2, LR Namax}, te {]:2, ceesy T})
#update the violation percentage for this application

Vamax = CalculateViolationPercentage(Ramax, SLOamax)

Return C,,,, VY a€{1,2,..., 4}, Yn€{1,2,...,N,}, t €{1,2,.... T}, V. ¥ a€{1,2,..., A}

over successive time intervals. The lag-k autocorrelation,
denoted by py, is the correlation between a given time
series and itself shifted by k time steps. Given SCV,, and a
set of pr where k > 1, I, is defined as:

I, = SCV, (1 +2)° pk) )

k=1

As shown in Eq. (9), I, depends on SCV, and the
degree of autocorrelation between session inter-arrival
times given by the infinite summation of p values. Ses-
sion inter-arrival times that are exponentially distributed,
i.e., have a Poisson arrival process, have an I, value of 1
[5, 16]. This implies that the I, value represents the devia-
tion of any observed set of session inter-arrival times from
the burstiness free Poisson process. A high value of SCV,
characterizes high variability in session inter-arrival times
but not necessarily a bursty pattern of session inter-arrival
times. The degree of autocorrelation between session
inter-arrival times determines the degree of burstiness

encountered in the workload. Workloads with bursty ses-
sion arrivals will have very large values for I, in the order
of hundreds or thousands to indicate a clear deviation
from the Poisson process. Caniff et al. presented evidence
of burstiness in real-life workloads [17]. In particular, the
authors showed that the classic FIFA World Cup trace
of web request arrivals has an index of dispersion value
of 8400.

Measuring the value of I, based on Eq. (9) is not prac-
tically feasible due to the infinite summation of the pi
values. Consequently, we use the approximate method
proposed by Casale et al. [5] to calculate .

Finally, W, is associated with a service process model
SM,. SM, captures the service demands placed by a
request on application system resources, e.g., CPUs and
disks. As mentioned previously, each application a has a
number of application tiers N,. The application’s service
process model SM, is characterized by the set D, rep-
resenting the mean service demands at various tiers, i.e.,
nefl,2,...Ny.
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Fig. 4 WAM model of a two tier application

WAM performance model

Figure 4 shows the WAM performance model used to rep-
resent the performance behaviour of an application in our
study. From the figure, WAM takes as input a workload
trace of sessions conforming to the arrival process model
AM, in W,. It also takes as input the Queueing Network
Model (QNM) shown in Fig. 4. The service demands of the
resources in the QNM are defined by the service process
model SM,. WAM peruses the session trace to estimate
a distribution of the number of concurrent sessions at
the application. This is defined as the population distri-
bution. For each population, i.e., the number of concur-
rent sessions, in this distribution, WAM solves the QNM
analytically to obtain a mean response time estimate for
the population. Finally, the per-population mean response
times are weighted by their corresponding probabilities
and session throughputs to obtain a mean response time
estimate for the application when it is subjected to the
session trace. By incorporating the population distribu-
tion instead of merely using the mean population to solve
the QNM, WAM is able to better capture the impact of
burstiness in the session trace [9].

We now describe the QNM used by WAM in more
detail. As shown in Fig. 4, the QNM represents a two
tier application consisting of a web tier and a database
tier. Similar to best practices used in enterprise applica-
tions, the web and database tiers employ different flavors
of resource instances. The web tier employs horizontal
scalability. X resource instances each containing one pro-
cessing core can be allocated at the web tier. The database
tier exploits vertical scalability. One resource instance

with Y cores can be allocated to the database tier. The val-
ues of X and Y are varied by RAP during the SLP process
to achieve application SLO objectives.

Experiment factors and levels

The experiments use a variety of synthetic workload sce-
narios with characteristics as shown in Table 3 to assess
the behaviour of RAP under varying levels of session
arrival variability and burstiness. Unless otherwise stated,
the service demands at the web and database tiers for
all experiments are fixed as per Table 3. The session
length and think time distributions of AM, are chosen
to match empirical distributions observed at a real web-
based application system [18].

Table 3 Experiment factors and levels

Factor Levels

Planning horizon ~4and8h

Resource allocation interval Th

Sa {75,000, 85,000, 100,000}

Fa Empirical distribution with mean 9.4
request/session [18]

Zg Empirical distribution with mean 40 s [18]

Ag 3.33,2.86, 2.5 session/s

SCV, 1,3,4,5

la {1,100, 500, 1000, 10,000}

Da, Exponential distribution with mean 20 ms

Da, Exponential distribution with mean 10 ms
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Experiments presented in the paper employ a planning
horizon of 4 and 8 h and a resource allocation granularity
of 1 h. All applications in the experiments have an appli-
cation SLO defined as a target mean response time that is
twice the service demand at the bottleneck resource. Prac-
titioners often use such an SLO as a measure to indicate
an upper bound for the queuing that can be tolerated at
the bottleneck resource.

Baseline methods

To better illustrate the characteristics of RAP, we consider
several baseline SLP methods. We first consider two tech-
niques that do not consider burstiness. The first approach
is referred to as the whole approach. Unlike RAP, the allo-
cation of resource instances in this approach is carried
out for the whole planning horizon at each decision
stage without considering finer-grained resource alloca-
tion intervals. Specifically, this approach ranks applica-
tions in terms of their SLO violations. Starting from the
application with the highest V,, value it allocates an addi-
tional resource instance to an application tier over the
entire planning horizon until the application’s SLO is
satisfied or until all resources have been allocated.

The second approach is referred to as the basic inter-
val approach. Similar to RAP, this approach attempts
resource allocation at a finer time scale than the plan-
ning horizon starting with the application having the
highest V, value. However, it differs from RAP in the
way it selects the candidate resource allocation interval
for the additional resource instance allocation at each
decision stage. In RAP the candidate resource allocation
interval is the resource allocation interval with the high-
est mean response time to account for burstiness. On
the contrary, the basic interval approach applies a simple
technique to select resource allocation intervals chrono-
logically. Specifically, after selecting the application with
the highest V, value, the additional resource instance is
allocated to the resource allocation interval which comes
in sequence starting from the first resource allocation
interval in the planning horizon. If no resource instances
are available for allocation in this interval, then the next
interval chosen. After each decision stage the applications
are re-ranked in terms of their V, values and the pro-
cess is repeated until all application SLOs are satisfied or
all resources in the cloud are exhausted for all resource
allocation intervals.

Apart from these burstiness agnostic approaches, we
also consider an approach used by practitioners that is
based on setting a resource utilization threshold, e.g., a
CPU utilization target, instead of SLOs based on response
times. An advantage of this technique is its simplicity.
The technique does not require a performance model
to estimate application response times. An example of a
utilization-based technique is the Quartermaster capacity
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manager service proposed by Rolia et al. [19]. Quarter-
master allows resource utilization thresholds to be set as
an indirect mechanism for achieving desired application
response times.

We use a modified version of RAP that allows resource
utilization targets to be specified for applications in lieu
of response time based SLO targets. Since resource uti-
lization in any interval can be computed with just the
knowledge of the request arrival rate and service demand
over that interval, there is no need for employing the
WAM model.

Results

This section is organized as follows. “Comparison of
RAP variants” section compares the three RAP variants.
“Importance of burstiness aware SLP” section compares
RAP with the burstiness agnostic approaches. A com-
parison with the approach that uses resource utilization
thresholds is presented in “Comparison with utilization
based SLP” section.

Comparison of RAP variants

We first perform two controlled experiments to show the
degree of optimality achieved by the three RAP variants.
In the first experiment four different applications are sub-
jected to a non-bursty workload, i.e., exponential session
arrivals, over a planning horizon of 4 h with a resource
allocation interval of 1 h. In each resource allocation inter-
val, the number of database instance cores is kept constant
at 1 for each application. Initially, all applications are allo-
cated one web server instance in each resource allocation
interval. The maximum number of available web server
instances per resource allocation interval is set to 7. These
settings allow the exhaustive enumeration of all possi-
ble resource allocation plans for these applications. The
service demands are set as per Table 3.

The second experiment explores more bursty work-
loads. The four applications are characterized by more
session arrival variability, i.e., SCV, = 3, and progres-
sively higher degrees of session arrival burstiness, i.e., I, =
1,100, 1000 and 10,000. The maximum number of avail-
able web server instances per resource allocation interval
is limited to six in order to enumerate all possible resource
allocation plans. All other settings are the same as in the
previous experiment.

Table 4 shows some statistics about the two experi-
ments described in the above paragraphs. As shown in
the table, exhaustive enumeration requires the genera-
tion of approximately 1.5 million and 50,000 solutions
for the two experiments, respectively. Clearly, exhaus-
tive enumeration is prohibitive even for small scale SLP
exercises.

Figure 5 shows the optimality of the solutions obtained
by the three RAP variants. It compares the mean SLO
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Table 4 Statistics of the results obtained in Fig. 5

Exhaustive enumeration RAP-IE RAP-AllApps RAP-OneApp
Performance model invocations per decision stage N/A 16 4 1
Number of solutions explored in Fig. 5a 1.5 million 192 48 12
Number of solutions explored in Fig. 5b 50,000 128 32 8

violation percentages of the solutions obtained by each of
the three RAP variants against the mean SLO violation
percentages of the solutions obtained by exhaustive enu-
meration. Specifically, the figure organizes the exhaustive
enumeration of all possible solutions obtained based on
the decision stages explored by the three RAP variants.
The x-axis represents the decision stages through which
the RAP variants proceed. At decision stage 0, an ini-
tial resource allocation plan is generated by allocating

one web resource instance to each application over each
resource allocation interval. For each subsequent deci-
sion stage i the black dots represent the mean SLO
violation percentages obtained for the various possibilities
of allocating i additional web server instances to the initial
resource allocation plan generated at decision stage O.
Figure 5a shows the results obtained for the exponen-
tial arrivals experiment while Fig. 5b shows results for
the bursty arrivals experiment. It can be observed in

a
45‘\. T T T T T T T T T
\.\\ ; ° °
awofF e ! H b
o § ) 8
\\A
i'\
351 “ |
.
1\
= 30 e .
k: g
E o5l ~ |
: “
£ 20| A, 1
&.\“"'Q'-u
151 H ]
°  Exhaustive Enumeration = R,
""" RAP-OneApp o =l
10 ——=RAP- AllApps T
A RAP-IE o
5 | | | | I | | | | |
0 1 2 3 4 5 7 8 9 10 11 12
Decision Stage
b 200 T T T T T
4
N 3 i
180F "\ . E ]
160} \\& E .
= 1401 \ ° i
5 AN
g NN
< 120 N 1
z N
— ~0
7 100} N 1
c N
£ 80k \\ M n
y s
60 - e Exhaustive Enumerataion g —
------- RAP- OneApp S S
a0l | ——RAP-AlApps e SN
A RAPE -
20 1 | | | | L L
0 1 2 3 4 5 6 7 8

Decision Stage

Fig. 5 Optimality of RAP variants. a Exponential session arrivals. b Bursty session arrivals
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Fig. 5a that both RAP-IE and RAP-AllApps are able to
generate the optimal plans at each decision stage while
RAP-OneApp can generate the optimal plan in all stages
except decision stages 7, 8, and 9. In most decision stages
the application which causes the most reduction in the
overall SV value has also the highest V, value. The dif-
ference in behaviour between RAP-IE and RAP-AllApps
on one side and RAP-OneApp on the other side can be
observed more clearly in Fig. 5b with bursty workloads.
However, RAP-OneApp’s solution is still very close to the
solutions obtained by the other two variants.

From Fig. 5, there is no difference between the solu-
tions obtained by RAP-IE and RAP-AllApps in all decision
stages. This is because the workloads considered in the
two experiments have the same bottleneck tier, i.e., web
tier, in all resource allocation intervals at all decisions
stages. To illustrate the difference between the solutions
obtained by RAP-IE and RAP-AllApps, another experi-
ment is conducted with the same settings used in the
experiment shown in Fig. 5a. However, the maximum
number of web server instances and database instance
cores per resource allocation interval are set to much
higher values than the values used in the first experiment.
This is done to allocate enough resources to all appli-
cations so that they can satisfy their SLO requirements.
To force the workloads to change their bottleneck tiers
in some resource allocation intervals at some decision
stages, the mean database service demand is increased
from 10 to 18 ms to be close to the mean web service
demand of 20 ms.

Figure 6 shows slight differences in the solutions
obtained by RAP-AllApps from the optimal solutions
obtained by RAP-IE. These differences occur at deci-
sion stages 7 to 13 and 18 to 25. This is because in
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each of these decision stages the bottleneck tier is not
the same in all resource allocation intervals for some of
the workloads considered in the experiment. This affects
the optimality of the solutions obtained by RAP-AllApps,
which evaluates at each decision stage the performance
of all applications in only the resource allocation inter-
vals with the highest mean response time. Figure 6 shows
that the three RAP variants are eventually able to converge
to the optimal solution which results in zero mean SLO
violation percentage. This happens because, as described
previously, the resource limits per each resource alloca-
tion interval are set to very high values which are sufficient
for each RAP variant to eventually obtain the optimal
resource allocation plan.

Finally, we explore the sensitivity of the RAP variants
to the degree of homogeneity in resource scaling among
application tiers. In the experiments described so far the
web tier is modeled by a multi-server resource while the
database tier is modeled by a multi-core resource. There-
fore, the effect of adding one more resource instance to
the web tier on the overall application response time is
not the same as adding one more resource instance to the
database tier. This is referred to as heterogeneous resource
scaling among application tiers. In the experiments we
present now, the service demands of the web and database
tier are 20 and 18 ms, respectively. However, in contrast
to the previous experiments, the database tier is modeled
by a multi-server service center instead of a multi-core
service center. In this way, the web and database tier are
allocated same flavours of resource instances which yields
homogeneous scaling of resources in both tiers.

Figure 7 compares homogeneous and heterogeneous
scaling for the scenario where the 4 applications are
subjected to bursty workloads, respectively. From the

70 T T T T T T T T T T T T T

mean SLO violation %

"""" RAP-OneApp
10kL—— RAP-AllApps
—A— RAP-IE

Fig. 6 Effect of similarity in service demands

L1 AN T T T M N Y T N Y Y Y SO BT M. e’ SO SN
7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Decision Stage




Youssef and Krishnamurthy Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:17 Page 13 of 21

160

140

mean SLO violation %
I =
o ~
o o

3
o

60

40

20

200
“e++ee+* RAP-OneApp
——— RAP-AllApps
180 —a—RAP- IE
160
140
® 120
c
s
k]
]
> 100
)
S
]
&
2
£ 80
60
40
20
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Decision Stage

«esseee RAP-OneApp
——— RAP-AllApps

—&— RAP- |E

1 2 3 4 5 6 7 8 9 10 11 12 13

i
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Decision Stage

Fig. 7 Effect of Homogeneous and Heterogeneous scaling. a Bursty Arrivals - Homogeneous Scaling. b Bursty Arrivals - Heterogeneous Scaling

figures, the solutions of the RAP variants diverge from one
another slightly more when there is heterogeneous scal-
ing. This is because heterogeneous scaling triggers more
changes in the bottleneck tier over the planning horizon
than homogeneous scaling. Consequently, RAP-AllApps
and RAP-OneApp are likely to report only near optimal
solutions. We however note that even in this scenario
RAP-AllApps and RAP-OneApp solutions are quite close
to the optimal solution.

In summary, the more the degree of similarity in
resource service demands between application tiers and

the more the degree of heterogeneity in resource scal-
ing among application tiers, the more the deviation in
the solutions obtained by RAP-AllApps and RAP-OneApp
from those obtained by RAP-IE. However, both heuristic
RAP variants, i.e,, RAP-AllApps and RAP-OneApp, are
able to obtain close to optimal solutions in most of the
experiments conducted for both exponential and bursty
workloads. Furthermore, these approaches are signifi-
cantly less computationally expensive as shown in Table 4.
From Table 4, for the experiment shown in Fig. 5a, RAP-
OneApp reduces the number of solutions explored per
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decision stage by 94 and 75% relative to RAP-IE and
RAP-AllApps, respectively. Consequently, RAP-OneApp
is better suited for analyses involving a large number of
applications.

We characterize the computation times of the differ-
ent RAP variants on a desktop machine with a 2.4 GHz
Intel Xeon processor and 4 GB RAM. Each WAM model
invocation takes about 20 s. For the experiment shown in
Table 4, RAP-IE, RAP-AllApps, and RAP-OneApp invoke
WAM 16 times, 4 times, and once per decision stage,
respectively. Therefore, the computation times per deci-
sion stage for RAP-IE, RAP-AllApps, and RAP-OneApp
are 5.3 min, 1.3 min, and 20 s, respectively. We note
that the WAM invocations in each decision stage are
completely independent of one another. Consequently,
computation times of RAP-IE and RAP-AllApps can be
reduced by exploiting hardware parallelism. While we
have implemented multi-threaded versions of these RAP
variants, we omit providing detailed computation time
statistics for these versions for the sake of brevity. These
can be found in the doctoral thesis of Youssef [20].

Importance of burstiness aware SLP

The experiments in this section illustrate the advantages
of exploiting burstiness in SLP exercises. To achieve this,
we compare RAP to the burstiness agnostic whole and
basic interval approaches described previously in “Base-
line methods” section. The RAP version referred to in
the remaining sections of the paper is RAP-OneApp. As
mentioned previously, the whole approach considers a
resource allocation interval that is the same as the plan-
ning horizon. In contrast, the basic interval approach con-
siders a resource allocation interval with finer time scale
granularity than the planning horizon. However, in con-
trast to RADP, it does not consider the relative burstiness of
these intervals.

Figure 8 shows the number of web server instances and
database instance cores allocated to a combination con-
sisting of five identical application workload scenarios,
i.e., in terms of variability and burstiness, over an 8 h
planning horizon with 1-h resource allocation intervals.
Specifically, the five workload scenarios are character-
ized by medium variability and extremely bursty session
arrivals, ie, SCV, = 3 and I, = 10,000. All other
settings are as per Table 3. RAP is setup to allocate as
many resources needed to satisfy the SLOs of all the
five applications.

Figure 8 illustrates the operation of each allocation
approach. In the whole approach all intervals are allocated
the same number of web server instances and database
instance cores. In the basic interval approach the interval
resource allocations follow almost a chronological order.
Specifically, for intervals 1 to 6, allocations in any given
interval either remain the same or drop when compared to
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the allocations in the previous interval. Interval 7 violates
this observation since the bottleneck tier switches from
the web tier to the database tier in one of the workload
scenarios. RAP selects the interval for resource alloca-
tion to be the one with the highest mean response time.
Consequently, its resource allocations show a pattern that
reflects the combined burstiness characteristics of the
application workload scenarios. From the figure, RAP esti-
mates a requirement of at most 14 web server instances
and 9 database instance cores in some intervals to satisfy
application SLOs. The other approaches estimate higher
numbers since they do not exploit burstiness.

The sensitivity of the three policies to burstiness is now
explored. Figure 9 shows the total number of web server
instances and database instance cores allocated over eight
hours using the three resource allocation approaches
mentioned above to satisfy SLOs of four different com-
binations of workload scenarios. The four combinations
are characterized by progressively higher degrees of ses-
sion arrival burstiness. Each combination consists of five
workload scenarios which have statistically identical ses-
sion arrival process characteristics. Table 5 lists the val-
ues of the parameters which characterize the session
arrival process of each combination of workload scenar-
ios shown in Fig. 9. Figure 9 confirms that RAP estimates
the least number of resources in all cases and the gains
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are significant especially when there is a high degree of
burstiness.

We now explore a resource constrained scenario to
show the effect of each of the three approaches on the
mean violation percentage. For this experiment, we con-
sider the four combinations of workload scenarios shown
in Table 5. Each combination consists of ten applica-
tions subjected to the statistically similar workloads. The
number of web server instances and the number of

database instance cores available per interval is limited
to 16 each so that application SLOs are violated. Similar
to the previous experiment, we consider a planning hori-
zon of 8 h and a resource allocation interval of 1 h. All
other settings are as per Table 3. Figure 10 shows the SLO
violation percentages that result from the three resource
allocation approaches.

As shown in Fig. 10a, all three resource allocation
approaches estimate the same mean SLO violation per-
centage for the non-bursty exponential combination of
workload scenarios. Thus it does not matter which

Table 5 Arrival processes of workload scenario combinations

Session arrival process of each combination Sa la
Exponential 1 1
Medium bursty 3 100
High bursty 3 1000
Extreme bursty 3 10,000
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resource allocation approach is used for exponential
workload scenarios. However, the whole and basic interval
approaches present resource allocation plans that cause
very large SLO violations for the highly bursty combi-
nations of workload scenarios. In particular, the plans
estimated by both of these approaches cause mean SLO
violation percentages of 155 and 226%, respectively, for
the extremely bursty combination of workload scenarios
while RAP’s plan causes only a 71% mean violation.
The mean SLO violation percentage of RAP is still high
because a very tight constraint is enforced on the num-
ber of web server instances and database instance cores
available per interval. A lower violation percentage can be
achieved by relaxing the resource constraints.

Figure 10b provides a more detailed view of the
extremely bursty combination of workload scenarios eval-
uated in Fig. 10a. This detailed view shows the individual
violation percentages of the ten applications constituting
that combination. From the figure, the whole approach
achieves very low violation percentages for some work-
load scenarios while very high violation percentages for
other workload scenarios. This behaviour stems from the
way the whole approach works. As described in “Baseline
methods” section, the whole approach allocates resources
to an application over the whole planning horizon without
taking into consideration burstiness in specific resource
allocation intervals. Given the resource-constrained sce-
nario shown in Fig. 10b, the whole approach exhausts
the available resources quickly by giving a bulk of addi-
tional resources over the whole planning horizon to one
application with the highest violation percentage at each
decision stage. Therefore, the applications which are allo-
cated resources in the early decision stages have a higher
chance to obtain much lower violation percentages than
the applications that are allocated resources in the deci-
sion stages that come later since most of the resources will
be exhausted at these late decisions stages. This explains
why some applications have very low violation percent-
ages while others have very high violation percentages
using the whole approach.

This is not the case with both basic interval and RAP
approaches. Both basic interval and RAP-OneApp allo-
cate resources on a resource allocation interval basis,
which does not allow resources to be exhausted as
quickly as is the case with the whole approach. Therefore,
these two approaches achieve an SLO violation balance
across the ten applications. However RAP has the added
advantage of obtaining lower per-application violation
percentages.

In summary, RAP can take advantage of burstiness
characteristics of applications hosted on a cloud to sug-
gest cost-effective resource allocations. In resource con-
strained scenarios, it can suggest strategies that lead
to lower overall SLO violations. Furthermore, plans
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generated by RAP also balance SLO violations across
applications. As a result, they can minimize the risk of SPs
incurring penalties due to extreme SLO violations.

Comparison with utilization based SLP

We now investigate a technique that only considers
resource utilization thresholds, e.g., a CPU utilization
target, instead of SLOs based on response times. We
use RAP as the allocation approach in all cases. How-
ever, we explore two different variants. We denote the
approach taken in the previous sections where SLOs
are specified based on mean response times as RAP-
Resp. The other variant accepts an SLO threshold based
on a mean resource utilization target of the bottleneck
resource over the planning horizon. We refer to this as
RAP-Ux% where x refers to the value of the threshold.
Specifically, we experiment with x values of 30, 50 and
60%. We explore four different combinations of workload
scenarios where each combination has five applications.
Similar to the previous section, the four combinations
have progressively higher degrees of burstiness. All other
settings are as per Table 3. Figure 11 compares the total
number of web server instances and database instance
cores allocated using RAP-Ux% with different x values
and RAP-Resp.

Figure 11 illustrates several potential problems with a
utilization based approach for bursty workloads. From the
figure, as expected, the lower the utilization target the
higher the number of resources estimated by RAP. How-
ever, the number of resources estimated for a given utiliza-
tion threshold remains the same regardless of the degree
of burstiness in session arrivals. In contrast, RAP-Resp
adapts the number of resources provisioned depending on
the level of burstiness. This indicates that merely relying
on utilization-based targets may not be an appropriate
method for guaranteeing SLOs of applications with high
degree of burstiness.

Figure 12 also shows the effect of using utilization-
based targets on application response time violations. For
each of the RAP-Ux% estimated allocation plans, we cal-
culate mean response time SLO violations as defined in
“Resource allocation planning (RAP)” section. RAP-Resp
is not shown in the figure since it identifies a plan that
eliminates SLO violations. From Fig. 12, response time
violations increase with burstiness for a given utiliza-
tion target. Furthermore, the degree of violation is larger
for higher thresholds. From the figure, the likelihood of
minimizing response time violations for bursty workloads
increases if one were to choose very low utilization tar-
gets, ie., less than 30%. However, such low utilization
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targets may allocate excessive resources over the planning
horizon thereby increasing costs.

In summary, these results show the challenges in meet-
ing response time targets for applications with bursty
workloads by controlling their resource utilizations. We
argue that SLP frameworks must incorporate models that
can help SPs directly specify response time based SLOs.

Related work

“Burstiness in enterprise workloads” section briefly dis-
cusses the prevalence of workload burstiness in enterprise
applications. A description of related work in the areas of
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Fig. 12 Violations with utilization based SLP

runtime resource management and offline capacity plan-
ning are provided in “Runtime resource management” and
“Offline capacity planning” sections, respectively. Finally,
a brief overview of current commercial capacity plan-
ning tools is provided in “Commercial capacity planning
tools” section.

Burstiness in enterprise workloads

Several studies have characterized the behaviour of enter-
prise application workloads [1, 2]. Many of these studies
have indicated the presence of workload burstiness in real
workloads [3—-8]. Menascé et al. [2] characterized two
weeks of activity at two real e-business sites. The authors
reported very strong burstiness in the arrival of requests
to these sites. Vallamsetty et al. [1] confirmed the above
findings by characterizing traffic arriving at two other real
e-commerce sites. This suggests that workload burstiness
should be taken into consideration and exploited during
resource planning and provisioning exercises [17].

Runtime resource management

Significant research efforts have focused on techniques
that can dynamically reconfigure an application such that
its performance objectives are satisfied even in the pres-
ence of workload fluctuations. These studies focus on
computing resource allocations at runtime. This is in con-
trast to our work that is intended to be used by an SP
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to proactively determine resource allocations that exploit
predictable patterns in application workload characteris-
tics. Broadly, work in this area can be categorized into
approaches that rely on queueing performance models
and those that rely on control theory [21].

Queueing-model based techniques

Queueing-model based techniques employ a QNM to
predict user-level SLO metrics such as throughput and
response time of the application being managed. This per-
formance model is usually embedded within a runtime
controller that controls resource allocations to the man-
aged application so as to satisfy its SLO targets. These
techniques are based on the assumption that the applica-
tion system being controlled is in a steady state and as a
result they have been shown to be effective for decisions
spanning medium term time horizons, e.g., 30 min [21].

Urgaonkar et al. proposed a performance-model based
approach to dynamically reconfigure an application based
on observed and predicted changes to its workload
behaviour [22]. In contrast to our approach, this work
is concerned with “local” optimization of a single appli-
cation. Moreover, it does not take into account resource
availability constraints and workload burstiness.

Li et al. [23-25] combined an extended QNM called a
Layered Queueing Model (LQM) with bin-packing and
a linear programming approach based on Network Flow
Models (NFMs) for fast, optimal deployment of a given
set of applications in a resource pool. Similar to our
proposed work, the authors address computational com-
plexity by formulating the NFM in a manner that permits
a large number of applications to be handled. Unlike our
work, their work does not consider the impact of bursty
workloads.

Ardagna et al. proposed a runtime resource allocation
scheduler that assigns multi-tier applications to physical
resources at fine timescales to satisfy cost and perfor-
mance objectives [26, 27]. The approach uses a multi-class
QNM and a heuristic search algorithm that solves a mixed
non-linear programming problem. The authors demon-
strate that their solution techniques execute faster and
provide better resource allocation solutions than tradi-
tional optimization techniques. Similar to the approach of
Li et al., this work does not consider workload burstiness.

Control-theoretic techniques
Control-theoretic techniques employ an online feedback
controller to adjust resource allocations in response to
short time scale workload fluctuations. These techniques
can accurately model system transients and adjust the
system resource configuration within a very short time
frame, e.g., a few minutes.

Kostentinos et al. derive runtime models that deduce
the relationship between resource utilizations, data center
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power usage, and application performance [28]. The mod-
els are used to dynamically adapt CPU frequency, CPU
usage, and memory usage of applications to meet power
and performance requirements. In contrast to our work,
the study did not focus on how burstiness impacts data
center resource allocations.

Gmach et al. proposed an approach to integrate two
types of controllers: a long-term workload placement con-
troller and a short-term workload migration controller
[29, 30]. Another integrated workload management archi-
tecture composed of multiple resource controllers was
proposed by Zhu et al. to consolidate different applica-
tion workloads having SLOs on a large data center [31].
In contrast to our work, both these approaches deter-
mined workload placements based on CPU utilization and
did not consider the effect of the placements on response
time. Lu et al. develop controllers that dynamically manip-
ulate resource control settings offered by Virtual Machine
Monitors (VMMs) in response to workload fluctuations
[32]. While this work considers response time based
SLOs, it does not focus on optimizing resource allocation
by leveraging knowledge about application burstiness.

Malkowski et al. proposed a multi-model controller
for dynamically provisioning Virtual Machines (VMs) to
multi-tier applications in clouds [33]. A knowledge base
is used to store all VM configurations encountered dur-
ing previous deployments of the applications and the
measured performance, e.g., request throughput, of such
configurations. This knowledge base is used to drive
future provisioning decisions. The authors point out that
a large collection of performance data spanning multiple
different configurations, workload conditions, and SLA
specifications are needed for the knowledge base to be
effective.

Caniff et al. presented an online resource provisioning
algorithm, Fastrack, which exploits workload burstiness to
guide dynamic resource allocation in multi-tier systems
[17]. Fastrack detects the bursty periods in the applica-
tion’s workload and accordingly allocates more resources
to these periods. This algorithm is quite similar to our
work in trying to exploit workload burstiness to save the
number of resources allocated. However, unlike our work
which considers all applications in a cloud simultaneously
while making resource allocation decisions, this work only
focuses on a single application.

Offline capacity planning
While runtime resource provisioning techniques are
important, they need to be complemented by offline tech-
niques that provide pre-deployment insights to SPs [34]. A
number of such offline approaches have been introduced
in the literature [12, 19, 35-39].

Rolia et al. [19] proposed a capacity manager ser-
vice, Quartermaster, for enterprise applications sharing
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a pool of resources. Quartermaster relies on historical
traces of observed demands, e.g., CPU, disk, and net-
work demands, of applications. Similar to our work, this
technique exploits predictable patterns in historical traces
of applications, e.g., time-of-the-day, day-of-the-week,
and month-of-the-year patterns, to produce cost-effective
resource estimates. Quartermaster allows resource uti-
lization thresholds to be set as an indirect mechanism for
achieving adequate application response times. Our work
allows both utilization and response time thresholds to be
specified directly as part of an application’s SLO.

Jung et al. proposed an approach which combined a
LQM with a heuristic optimization algorithm to gen-
erate optimal server configurations [36]. These con-
figurations were then encoded in the form of rules
and policies to be used while the system is running.
In contrast to our work, the configuration generation
exercise did not consider fine timescale resource alloca-
tion strategies that exploit workload burstiness. Further-
more, LQMs are not capable of reflecting the impact of
burstiness unless they are integrated with a trace-based
technique such as the WAM technique that we use in
this paper.

Mylavarapu et al. proposed a Monte Carlo technique
in conjunction with a genetic algorithm to obtain an
optimized VM assignment scheme that ensures peak
application demands are satisfied while avoiding over-
provisioning of resources [37]. In contrast to our study,
this work only considers SLOs based on CPU utilization
targets.

Meng et al. proposed a trace-based approach for capac-
ity planning in compute clouds through VM multiplexing
[39]. Instead of assigning VMs on a one-by-one basis
to each application workload, a joint-VM is allocated
to accommodate a group of application workloads at a
time. The applications to group within a VM are selected
such that their workload peaks do not overlap with one
another. This approach is similar to our work in the sense
that workload properties of applications are exploited to
drive the SLP process. However, this work only consid-
ered VM CPU service demands as the workload met-
ric of interest while our work considers several service
and arrival process parameters that are of importance
to SLP.

Finally, as the problem of resource scheduling in
cloud environments is seen as NP-hard, approaches
such as genetic algorithms, particle swarm optimiza-
tion, and ant colony optimization have been found to
be effective [40]. These algorithms are similar to RAP
in the sense that they can obtain near optimal solu-
tions without exhaustively enumerating all possible solu-
tions. However, to the best of our knowledge, these
approaches have not explicitly considered the impact of
burstiness.
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Commercial capacity planning tools

Various commercial offline capacity planning tools have
been offered by different vendors. Examples of such tools
include VMware Capacity Planner [41] , NetIQ PlateSpin
Recon [42], and Lanamark Suite [43]. To the best of our
knowledge based on their data sheets, these tools cannot
support SLP based on response time targets. Moreover,
they do not explicitly consider SLP for complex workloads
characterized by burstiness.

Conclusions and future work

This paper presents RAP, a technique that can allow cloud
SPs to assign resources to applications to meet SLOs.
RAP exploits the predictable, bursty workload patterns
experienced by enterprise applications. Given traces that
capture the workload behavior of a set of applications,
RAP automatically discovers time varying resource allo-
cation plans that globally minimize SLO violations across
the applications. In particular, RAP exploits burstiness to
suggest plans that use lesser resources to satisfy SLOs than
burstiness agnostic techniques. In resource constrained
scenarios, RAP balances out SLO violations uniformly
across applications thereby reducing the risk of SPs incur-
ring large penalties due to extreme violations. We also
show that the approach outperforms the prevalent prac-
tice of enforcing resource utilization thresholds.

We develop several variants of RAP that provide mecha-
nisms to trade off optimality for computational efficiency.
The RAP-IE variant can identify the optimal resource allo-
cation plan. Our experiments indicate that RAP-AllApps
can identify the optimal plan when there is no bottle-
neck switch across the resource allocation intervals. For
other scenarios, it is able to identify close to optimal plans.
The RAP-OneApp variant is more computationally effi-
cient than the other variants and is hence better suited for
analyses involving a large number of applications. For all
the scenarios we study, RAP-OneApp’s solutions are very
close to those identified by the other two variants.

RAP requires a performance model that can quantify
the impact of scaling strategies. As an example, we have
used a model that can look at either horizontal scaling
or vertical scaling. If a model can capture the impact
of hybrid scaling, i.e., simultaneously scaling vertically
as well as horizontally, then RAP algorithms can lever-
age such a model for resource allocation planning. We
also note that scaling strategies can incur overheads, e.g.,
adding cores to a database server might likely require
restarting the database service thereby negatively affecting
the application’s performance. RAP can take into account
such scenarios by using a performance model that cap-
tures the impact of such overheads.

An SP can deploy applications on the cloud based on the
estimates provided by RAP and monitor SLO violations
over time. If any changes occur in application workloads
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after deployment leading to SLO violations, revised traces
in addition to any changes in resource instance lim-
its can be input to RAP again to consider changes in
resource allocations. This can also be used to negotiate
new SLAs with subscribers to reflect workload changes.
We also note that SLO violations predicted by RAP need
to be compared continually with those observed under
deployment. If discrepancies are related to the perfor-
mance model, then the model needs to be calibrated to
offer better SLO predictions.

Future work will focus on refining RAP in a number of
ways. Currently, RAP avoids over provisioning resources
by allocating them in increments of one. Future work
will address more explicit ways to specify resource con-
straints, e.g., enforcing a budget based on the costs for
different types of resource flavours. We will also incor-
porate constraints that minimize the number of resource
instance migrations across applications. In this paper, we
do not address the objective of balancing the number of
resources among the applications for the sake of fairness
[44, 45]. Objective functions based on fairness measures
will be investigated in future work. We will also mod-
ify RAP to accommodate multiple resource flavours for
a given tier.Finally, future work will explore experimental
validation using benchmark multi-tier applications.
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