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Abstract

Energy-hungry data centers attract researchers’ attention to energy consumption minimization–a challenge
confronted by both industry and academia. To assure the server reliability, its instantaneous temperature is generally
controlled within a preset threshold. Nonetheless, field studies indicated that the occasional violation of extreme
temperature constraints hardly affect the system reliability in practice. Therefore, strictly restraining the server
temperature may contribute to meaningless energy consumption. As a response to this limitation, this paper presents
a dynamic control algorithm without violating the average temperature constraint. We formulate a “soft” Server
Temperature-Constrained Energy Minimization (STCEM) problem, where the object function consists of IT and Heat
Ventilation & Air Conditioner (HVAC) energy. Based on the Lyapunov optimization, two algorithms, i.e., linear and
quadratic control policies, are proposed to approximately solve the STCEM problem. The non-negative weight
parameter V is introduced to trade off the energy consumption against server temperature constraint. Furthermore,
extensive simulations have been carried out to evaluate the system performance for the proposed controlled
algorithms. The experimental results demonstrate that the quadratic control policy outperforms the linear
counterpart on the STCEM problem. Specifically, the energy consumption and server temperature constraint are well
balanced when V ≈ 5000.

Keywords: Data center, Energy minimization, “Soft” server temperature constraint, Lyapunov optimization

Introduction
Data center is a large-scale distributed system, where
Information Technology (IT) and cooling subsystems
compose a complex and massive structure. It provides
user-friendly, reliable, and flexible services for various
Internet applications, and it has been one of the sus-
tentacular technologies that push IT industry forward.
However, with the prevalence of cloud computing, the
problem of energy consumption hiding behind conve-
nient services gradually arose, and the situation is getting
more and more serious. For a typical data center, the
daily energy consumption is as much as 25,000 house-
holds, which is 100 to 200 times more than an office
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with the same space [1]. In 2015, up to 2.3 billion KWh
electricity was consumed by the Microsoft data center
located in USA, which is the third largest energy con-
sumer among US enterprises (https://news.microsoft.
com/download/presskits/cloud/docs/CloudFS.docx). In
addition, as an energy-hungry system, gigantic-scale data
centers not only lead to tremendous energy consump-
tion, but also give rise to a battery of related problems,
such as air pollution, water contamination, and soil
destruction, etc.
It has been widely accepted that the data center consists

of a number of interactive subsystems, of which the most
energy-hungry components are IT and cooling subsys-
tems. Energy consumed by IT equipments is primarily
used to process service request and dissipates in the form
of heat. The cooling facilities remove heat to ensure the
health of IT equipment, so these two components are
coupled via heat. There are a number of studies separately
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dealing with energy minimization in data centers. For
example, [2–6] studied IT energy consumption, others
[7–9] inclined to optimize cooling energy consumption.
However, the aforementioned studies only concentrated
on the energy consumption of a subset of system compo-
nents and overlooked the interactions among them. To
address this issue, joint optimization techniques [10–12],
which aim to minimize the overall energy consumption,
are proposed.
Nevertheless, most existing approaches either neglected

the temperature constraint or ensured the server reliabil-
ity by imposing a “hard” server temperature. By “hard”, it
means that the server temperature must be strictly lower
than a predefined threshold at all times. But actually, IT
equipment is more durable than estimated. Zhang et al.
[13] demonstrated that the performance and reliability
of IT equipment is not greatly undermined under higher
ambient temperature. Pervila et al. [14] placed computer
facilities in a harsh outdoor environment, and results
showed that servers can still function well when the out-
side temperature fluctuates dramatically. Thus, the “hard”
temperature constraint underestimated the capability of
failure tolerance for servers. In practice, the server tem-
perature can occasionally exceed the preset threshold as
long as the average temperature falls into a safe oper-
ating range. Using the “hard” temperature constraint, it
may be too pessimistic and induce unnecessary energy
consumption.
In this work, we formulate a “soft” Server Temperature-

Constrained Energy Minimization (STCEM) problem.
Since the system is running in a stochastic environment,
to solve the STCEM problem is not an easy task. To
address this issue, we leverage the Lyapunov Optimization
(LO) theory to design two approximation algorithms,
i.e., linear and quadratic control policies, to obtain
the near-optimal solution. More specifically, we intro-
duce virtual queues for the average temperature con-
straints. By guaranteeing the mean rate stability of
virtual queues, the “soft” server temperature constraints
are enforced [15]. To verify the efficiency of the pro-
posed policies, we use real-world workloads [16] to
run extensive simulations, and conduct detailed anal-
ysis of total and component energy efficiency. In the
process, some interactive metrics, including server tem-
perature, supplying cold air temperature, the number
of powered-on servers, and Power Usage Efficiency
(PUE), are carefully dissected by a series of compari-
son studies under two different control policies. Sim-
ulation results persuasively reveal that our proposed
approach can effectively cut down the data center
energy consumption. In particular, the quadratic con-
trol policy outperforms the linear control policy in
terms of both energy consumption and average server
temperature.

Related works
Typically, the dominant energy consumers in the data
center are IT subsystem and cooling subsystem, which
account for 56% and 30% of total energy, respectively
[17]. In this section, we elaborate state-of-the-art IT and
thermal management techniques for data center energy
minimization. Since IT and cooling systems interact via
heat, we also discuss the thermal model and supplying air
temperatures in the data center.

IT subsystemmanagement
To meet the Quality of Service (QoS) required by cloud
users in the context of fluctuating IT workloads, data
center operators usually over-provision the computing
resource according to the peak workload. As a result, the
IT resource is extremely underutilized (20 − 30% [18]
in typical data centers). Staggeringly, server energy con-
sumption is out of proportion to its utilization, and energy
consumed by an idle server is about 60% of a fully uti-
lized counterpart [19]. Controlling the sleep/active state
of servers is proved to be an effective way to save IT
energy. Meisner et al. [19] presented an energy conser-
vation approach named PowerNap, which switches the
operation state of servers between active and sleep modes
to cater for the fluctuating workload. However, when the
actual idle interval is less than the wake-up latency, the
frequent switch between active and sleep modes may be
negative for energy saving. To address this issue, Duan
et al. [20] proposed a prediction scheme, which dynami-
cally estimates the length of CPU idle interval and thereby
intelligently picks out the most cost-efficient operation
mode to effectively cut down idle energy.
Another approach to improve energy efficiency for

the IT subsystem is Dynamic Voltage and Frequency
Scaling (DVFS), which reduces energy consumption by
dynamically scaling the supplied voltages and adjusting
the CPU frequency (according to the CPU workload).
Many existing researches have attained some advance-
ment in energy-efficient scheduling by leveraging DVFS
technology. To optimize the energy efficiency, some stud-
ies focused on calculating the optimal CPU frequency
and controlling the supply voltage, e.g., [21–23], in which
several scheduling algorithms are designed and evalu-
ated to find the optimal frequency. Moreover, applying
the Virtual Machine (VM) migration and consolidation
techniques into DVFS management is an extended solu-
tion. For example, Takouna and Meinel [24] made use
of the memory DVFS mechanism for VMs consolida-
tion to cut down the energy consumption. Arroba et al.
[25] proposed a DVFS-aware consolidation policy, which
can consider the processor frequency when workload is
dynamically allocated to servers. It is demonstrated that
up to 39.14% energy is saved by joint DVFS and workload
management.



Fu et al. Journal of Cloud Computing: Advances, Systems and Applications  (2017) 6:25 Page 3 of 16

Cooling subsystemmanagement
According to heat exchange medium, the cooling treat-
ments for the data center can be classified into three
different approaches [26].

• Air cooling. The Computer Room Air Conditioners
(CRACs) supply cold air for servers, which absorbs
waste heat and disposes it to the outside environment.

• Liquid cooling. Heat-generating components are
surrounded by closed loops full of liquid, which carry
heat out by the heat transfer effect. Thanks to liquid
higher specific heat, liquid cooling is more efficient
than air cooling.

• Immersion cooling. Computing equipments are
encapsulated into containers, which are immersed
into non-electrical but thermal conductive liquid.
Immersion cooling saves up to 99% energy with
respect to the traditional data center.

Due to the simpleness and cheap implementation cost,
air cooling is the most common approach used in
the industry. Cooling energy is primarily consumed by
chillers, CRACs, pumps, cooling towers, and fans, which
compose a “standard” cooling subsystem. There are a
number of works concentrating on energy-minimization
techniques for air cooling systems. For instance, Iyengar
and Schmid [8] modeled energy consumption for every
component based on physics. They also formulated a
holistic energy model of HVAC subsystem by adding up
the energy of overall components within a cooling system.
Their models are capable of estimating energy consump-
tion and heat transfer phenomenon. Some experiments
[27–29] leveraged the active tiles to balance cooling
airflow velocity between under-provisioning and over-
provisioning. With the assistance of active tile fans, they
tried to exactly provide the airflow volume required by
servers. Taking full advantages of local climate resource,
some studies concentrated on saving cooling energy by
air-side economizer [30, 31]. Khalaj et al. [32] conducted
cooling energy simulations for nine different air econo-
mizers, and carried out measurement for 23 location in
Australia. Actual measurement data indicated that about
85% of the cooling energy is saved on average, and the
average value of PUE reduces from 1.42 to 1.22.

Thermal model
A typical configuration of a data center with raised floor
and perforated tiles is illustrated in Fig. 1 [33]. Early imple-
mentations of this structure did not seal the cold aisle,
therefore the inlet airflow temperatures of server racks
varied drastically with different sites due to the recircula-
tion of hot air. Yeo et al. [34] showed that the temperature
differential of server inlet airflow for different locations
in an opened aisle data center can be as high as around

Fig. 1 A typical data center model [33]

20 °C when the supplying cold air temperature is 15 °C. To
model the recirculation behavior, researchers proposed a
thermal network approach, in which the inlet airflow tem-
perature is a linear function of the supplying cold airflow
temperature and rack outlet temperature [35, 36]. The
coefficients of thermal network model can be obtained
via field measurements or Computational Fluid Dynamics
(CFD) simulations. To avoid the inefficiency of open aisle,
later studies use the cold aisle containment to mitigate the
recirculation [37, 38]. It is revealed that enclosed cold aisle
has positive effect on uniform thermal distribution and
minimizing cooling energy consumption [39].
On the other hand, the traditional rack structure is illus-

trated in Fig. 2a, where fans are integrated with a server
[40–42]. The server manufacturer rather than the data
center operator takes charge of the fan control due to the
ownership of servers, i.e., servers generally belong to the
data center users rather than the data center operators.
As a consequence, the data center operator only need to
ensure the supplying air temperature to be less than a
threshold specified by the server manufacturer. However,
with recently emerged rack designs where fans are shifted
from servers to racks, as shown in Fig. 2b [43], the data
center operator must consider the server temperature
instead of the supplying air temperature as the constraint.
Hence, the server temperature control is applied into our
thermal model.

Systemmodel
Figure 1 [33] presents a typical data center model with the
configuration of a cold aisle and airflow pattern. There are
a number of Cloud Users (CUs) who rent servers from a
Cloud Provider (CP) to obtain required computing capac-
ity. In response, the CP will turn on a certain number of
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Fig. 2 Typical server design and modern rack design. a A typical
server design: fans installed in servers. b Fan-equipped rack [43]:
shared cooling fan wall on rack front

servers which generate waste heat. To remove the waste
heat inside the data center, rack fans suck the cold air pro-
vided by CRAC and blow it through servers. Then, the
cold air absorbs the waste heat and is ejected from the
rack rear. CRAC consumes a large amount of energy in
this process. To guarantee the QoS and system reliabil-
ity, data center operation must comply with the QoS and
“soft” temperature constraints.

Energy consumptionmodel in data center
Data center energy consumption principally derives from
servers operation and cooling equipment refrigeration. In
this article, we do not take fundamental infrastructures
(illuminating system, fire extinguishing system etc.) into
account. The total energy consumption is approximately
equivalent to the sum of energy consumed by IT and
cooling subsystems.

Server energy consumptionmodel
We assume a total number of J users requesting service
from a data center. At time t, pj(t), Lj(t), and mj(t) are
defined as the power cost of a server, the number of user
requests, and the amount of servers providing service for
user j ∈[ 1, 2, . . . , J], respectively. The energy consumption
of a single server can be written as follows

pj(t) = a1
Lj(t)
mj(t)

+ a2, (1)

where a1 is the marginal energy consumption of a server,
a2 refers to the server’s basic energy consumption gen-
erated by some non-workload-related components, e.g.,
power supply unit and storage devices etc. [44]. The

energy consumption of a server cluster handling user j
requests can be written as

Pj(t) = mj(t)pj(t) = a1Lj(t) + a2mj(t). (2)

Then the total energy consumption for data center
servers is

P(t) =
J∑

j=1
Pj(t) =

J∑

j=1

(
a1Lj(t) + a2mj(t)

)
. (3)

CRAC energy consumption
As in [40], we define the power consumption of a CRAC
at time t as

C(t) = P(t)
CoP (Tc(t))

, (4)

where Tc(t) is the temperature of cold air from CRAC.
The Coefficients of Performance (CoP) describes the cool-
ing efficiency of CRAC at Tc(t). This paper takes the
following quadratic CoP model [40]

CoP
(
Tc(t)

) = b
(
Tc(t)

)2 + cTc(t) + d. (5)

Constraints
QoS constraint
We assume that all requests from the same user share a
service queue. Therefore, the system is an M/M/N queue-
ing system (Fig. 3) and the response time can be calculated
by 1

mjμj−Lj(t) . For user j, the average service rate μj can
be computed through dividing CPU speed s (expressed
by instructions/second) by Kj, i.e., μj = s

Kj
. Each user is

assigned a delay upper bound Dj and the QoS constraint
can be expressed via

1
mjμj − Lj(t)

≤ Dj. (6)

Fig. 3 An M/M/N queueing model
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“Soft” server temperature constraint
Under steady-state, the temperature of a running server
depends upon the server inlet air temperature Tc(t) and
the energy consumption of servers pj(t)

Tcpu
j (t) = Tc(t) + ςpj(t), (7)

where ς (Kelvin.secs/Juoles) refers to the heat exchange
rate. As mentioned above, in practice the instant server
temperature can occasionally violate the upper bound
Tmax
CPU without undermining the system reliability. Hence,

we use the average server temperature constraint instead
of the “hard” one, i.e.,

E
{
Tc(t) + ςpj(t)

} ≤ Tmax
cpu . (8)

We assume the thermal distribution is uniform in server
inlets, where the cold air temperature is equal to the set-
point of CRAC temperature. Previous studies like [36, 45]
developed a thermal model where the server inlet temper-
ature is a linear combination of the CRAC cold air tem-
perature and other server outlet temperatures to reflect
the hot air recirculation effect between cold and hot aisles.
These models are constructed for open aisle configura-
tion. In the enclosed aisle designs considered in this paper,
however, the thermal characteristic is different. Arghode
et al. [39] showed through CFD simulations that phys-
ically separating the hot and cold aisles can result in
uniform and lower server inlet temperature, especially for

over-provisioned case. To further provide evidence for
this argument, we measure the inlet air flow tempera-
ture at various locations through two experiments in a
real data center of UniCloud [16]. Temperature sensors
are deployed in the rack inlet, and they are grouped into
three horizontal layers, with vertical inter-layer distance
0.6 m (Fig. 4). The distance between bottom layer and
raised floor is also 0.6 m. The cold aisles in both computer
rooms are enclosed. Temperature data are collected every
10 min, and both experiments lasts for 1.5 h. The reso-
lution of temperature sensor is 0.1◦C. Field measurement
results plotted in Fig. 5 indicate that although the air flow
temperature at CRAC outlet is generally lower than other
locations, the temperature is rather stable in server racks,
and there is no strong correlation between locations and
air flow temperature. In addition, recent advanced tech-
niques like active tiles [29] and the Down-flow Plenum
[46] further diminished the nonuniform temperature dis-
tribution. Therefore, our thermal model (8) is applicable
in practice.

Total energy minimization problem
Now, we can summarize the holistic energy minimization
problem as follows

min lim
T→∞

1
T

T−1∑

t=0
E {P(t) + C(t)} , (9)

Fig. 4 Layout of sensors deployment. a Computer room 1. This computer room is dedicated to servers. The horizontal distance between the first
rack and CRAC is 3.3 m. The inter-rack distance is 2.4 m. b Computer room 2. This is a small computer room dedicated to network devices. The
horizontal distance between the first rack and CRAC is 3.8 m. The inter-rack distance is 1.4 m
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Fig. 5Measured inlet air flow temperature. a Computer room 1, b Computer room 2

s.t.

1/Dj + Lj(t)
μj

− mj(t) ≤ 0, (10)

lim
T→∞

T−1∑

t=0
E

{
Tc(t) + ς

(
a1

Lj(t)
mj(t)

+ a2
)

− Tmax
cpu

}
≤ 0,

(11)

mmin
j ≤ mj(t) ≤ mmax

j ,∀j, (12)

Tmin ≤ Tc(t) ≤ Tmax, (13)
Lmin
j ≤ Lj(t) ≤ Lmax

j ,∀j. (14)

where mmin
j = 1/Dmax

j +Lj(t)
μj

is the minimal number of
servers guaranteeing QoS, andmmax

j is the maximal num-
ber of servers restricted by the monetary budget. Tc is the
cold air temperature in CRAC, which ranges between the
upper Tmax and lower Tmin bound.
The above problem is hard to solve for the following rea-

sons: 1) The probability density function of Lj(t) needed
to compute Eq. (10) is unknown. 2) The applicability of
classical dynamic programming method is limited due to
scalability issue. Hence, we must explore an alternative
approximation method to solve this problem.

Dynamic control strategies
Considering the above imperfection about traditional
dynamic programming algorithm, we use a Lyapunov
Optimizaion approach to develop an approximate algo-
rithm to solve problems (9) - (13).

Virtual queue and thermal constraint
Conversion for the average temperature constraint
At time t, the updated length of virtual queue is

Z(t + 1) = max
[
Z(t) + ȳ(t), 0

]
, (15)

where ȳ(t) is the mean rate of a virtual queue. If it is sta-
ble, the constraint ( lim

t→∞ ȳ(t) ≤ 0) can be satisfied. Now,
we analyze why it is reasonable to translate the CPU aver-
age temperature constraint into the mean rate stability in
virtual queues.
Transforming formula (8), we can also express the “soft”

server temperature constraint by

E
{
mj(t)Tc(t) + ς

(
a1Lj(t) + a2mj(t)

)}−Tmax
cpu mj(t) ≤ 0

(16)

Substituting (15) into (16), the updated queue is mod-
eled as Eq. (17), which relates the server temperature to
the virtual queue. According to [15], the mean rate stabil-

ity of virtual queues
(
lim
t→∞

E{Zj(t)}
t = 0

)
can guarantee the

“soft” server temperature constraint.

Zj(t + 1) = max
{
Zj(t) + mj(t)Tc(t)

+ς
(
a1Lj(t) + a2mj(t)

) − Tmax
cpu mj(t), 0

}
.

(17)

Applying LO theory to the STCEM problem
The above inference has proved that the mean rate stabil-
ity in virtual queues ensure the safe server temperature. It
provides an inspiration for us to solve the problem by an
indirect approach. Leveraging the above conclusion, we
next discuss how to minimize energy consumption in data
centers.
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The LO function of the length of virtual queues is
defined as

L (Z(t)) = 1
2

J∑

j=1
Zj(t)2. (18)

The corresponding LO drift function is as follows

� (Z(t)) = E {L(t + 1) − L(t) | Z(t)}

= E

⎧
⎨

⎩
1
2

J∑

j=1
Zj(t + 1)2 − 1

2

J∑

j=1
Zj(t)2 | Z(t)

⎫
⎬

⎭ .

(19)

Transforming (19) by replacing Zj(t + 1) with (17)
results in

� (Z(t)) =E

⎧
⎨

⎩
1
2

J∑

j=1
max

[
Zj(t) + mj(t)Tc(t)

+ς
(
a1Lj(t) + a2mj(t)

) − Tmax
cpu mj(t), 0

]2

−1
2

J∑

j=1
Zj(t)2 | Z(t)

⎫
⎬

⎭ , (20)

which yields

�(Z(t)) ≤
J∑

j=1
E

{
1
2

(
Tc(t) + ςa2 − Tmax

cpu

)2
m2

j (t)

+ (
ςa1Lj(t) + Zj(t)

) (
Tc(t) + ςa2 − Tmax

cpu

)
mj(t)

+1
2
ςa1L2j (t) + ςa1Lj(t)Zj(t) | Zj(t)

}
.

(21)

The Lyapunov penalty function of Zj(t) is

VE {(P(t) + C(t)) | Z(t)} . (22)

Substituting Eqs. (3) and (4) in (22), we get the Lyapunov
penalty function of “soft” server temperature constraint

VE {P(t) + C(t) | Z(t)} (23)

= E

⎧
⎨

⎩

J∑

j=1
Va2

(
1 + 1

CoP(Tc(t))

)
mj(t)

+Va1
(
1 + 1

CoP(Tc(t))

)
Lj(t) | Z(t)

}
.

The Lyapunov drift-plus-penalty function of virtual
queue Z(t) is

� (Z(t)) + VE {P(t) + C(t) | Z(t)} , (24)

where V > 0 representing the weight of energy consump-
tion with respect to the server temperature constraint.

Based on the LO theory, problem (9) can be transformed
into minimizing the upper bound of (24)

min� (Z(t)) + VE {P(t) + C(t) | Z(t)} , (25)

s.t. (10), (12), (13), and

lim
t→∞

E
{
Zj(t)

}

t
= 0. (26)

Equation (26) is the converted form of the CPU average
temperature constraint. Hence, we can indirectly optimize
total energy consumption of data centers by minimizing
the Lyapunov drift-plus-penalty function.

Linear resource control strategy
Theorem 1 A linear bound of (24) can be written

as (27),

� (Z(t)) + VE {P(t) + C(t) | Z(t)}

≤ BL + E

⎧
⎨

⎩

J∑

j=1

[ (
ςa1Lj(t) + Zj(t)

)
mj(t)Tc(t) + Va2mj(t)

×
(
1 + 1

b(Tc(t))2 + cTc(t) + d

)]
| Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1

(
ςa1Lj(t) + Zj(t)

) (
ςa2 − Tmax

cpu

)
mj(t) | Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1
Va1Lj(t)

(
1 + 1

b(Tc(t))2 + cTc(t) + d

)
| Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1
ςa1Lj(t)Zj(t) | Z(t)

⎫
⎬

⎭ .

(27)

where

BL =
J∑

j=1

(
1
2

(
Tmax + ςa2 − Tmax

cpu

)2 (
mmax

j

)2

+ 1
2
ς2a21

(
Lmax
j

)2)
. (28)

Proof
Transform (17) into (29).

Zj(t + 1) − Zj(t)
≥mj(t)Tc(t) + ς

(
a1Lj(t) + a2mj(t)

) − Tmax
cpu mj(t).

(29)

Squaring formula (29) gets into (30).

Z2
j (t + 1) − Z2

j (t)

≤
(
mj(t)Tc(t) + ς

(
a1Lj(t) + a2mj(t)

) − Tmax
cpu mj(t)

)2

+ 2Zj(t)
(
mj(t)Tc(t) + ς

(
a1Lj(t) + a2mj(t)

) − Tmax
cpu mj(t)

)
.

(30)
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Taking expectation for (30) and adding up from j = 1 to
j = J results into

J∑

j=1
E

{
Z2
j (t + 1) − Z2

j (t) | Z(t)
}

≤
J∑

j=1
E

{ (
mj(t)Tc(t) + ς

(
a1Lj(t) + a2mj(t)

)

−Tmax
cpu mj(t)

)2 + 2Zj(t)
(
mj(t)Tc(t) + ς

(
a1Lj(t)

+a2mj(t)
) − Tmax

cpu mj(t)
)

| Z(t)
}
. (31)

In format, the left side of (31) is consistent with the
Lyapunov drift function of virtual queues, i.e., Eq. (19).
Thus, replacing left side by 2�(Z(t)) and simplifying it
yield the following connection

� (Z(t))

≤
J∑

j=1
E

{
1
2

(
Tc(t) + ςa2 − Tmax

cpu

)2
mj(t)2

+ (
ςa1Lj(t) + Zj(t)

) (
Tc(t) + ςa2 − Tmax

cpu

)
mj(t)

+1
2
ς2a21Lj(t)

2 + ςa1Lj(t)Zj(t) | Z(t)
}
. (32)

In Eq. (32), applying the bound (12) and (14), we reach
the result (33).

� (Z(t)) ≤ BL

+
J∑

j=1

{(
ςa1Lj(t) + Zj(t)

) (
Tc(t) + ςa2 − Tmax

cpu

)

×mj(t) + ςa1Lj(t)Zj(t) | Z(t)
}
.

(33)

(33) plus (23) makes (27).

Theorem 1 shows that at time t, the linear con-
trol algorithm solves the bound of the right hand of
problem (27).
As we can see, the problem (27) is only related to vari-

ables T(t) and mj(t). According to the monotonicity of
linear function, we take distinctive value ofmj(t): 1) if the
coefficient of mj(t) is more than zero, we take its min-
imum, mmin

j = 1/Dmax+Lj(t)
μj

. 2) Oppositely, we set mj(t)
as mmax

j = 1.1 ∗ Lmax, where Lmax is the maximum of
workload among all users at time t ∈ [0, 1, . . . ,T − 1]. We

next enumerate each possible Tc(t) and take out the opti-
mal Tc(t) associated with the minimal objective function
value. Then, we set the corresponding T(t) and mj(t) as
the CRAC temperature degree and the amount of servers,
respectively. By the above analysis, we translate the opti-
mization of energy consumption into the minimum of the
right hand of Eq. (27). The linear control algorithm based
on the LO theory is presented in Algorithm 1.

Algorithm 1: The linear control algorithm
Input: the cooling air temperature Tc(t)
Output: the number of serversmj(t) distributed to

user j
initialization;
lj: Workloads for application j;
T :The number of time slot;
for t ∈[ 0,T − 1] do

for Tc(t) ∈[Tmin,Tmax] do
for j do

mmin
j = 1/Dmax+Lj(t)

μj
;

mmax
j = 1.1 ∗ Lmax;

A1:=The coefficient ofmj(t) in Eq. (27);
if A1 < 0 then

mj(t) = mmax
j ;

else
mj(t) = mmin

j ;
end
A2:=The constant term in Eq. (27);
y = A1mj(t) + A2;

end
Add all y value in set Y ;

end
Ymin:=The minimum value from set Y ;
Tsuit := The optimal cooling air temperature Tc(t)
corresponding to Ymin;
Update the queue by Eq. (17);

end

Quadratic resource control strategy
In the above section, we take the linear control strat-
egy based on the LO theory to approximately compute
the minimum of energy consumption in data centers.
Depending on the property of the linear function, the opti-
mal variable value, corresponding to the minimal energy
consumption, is either minimum or maximum of the
range of its values. This method gives rise to high fluctu-
ation for CPU transient temperature, which goes against
the stability and reliability of servers. As a response to this
problem, another method, the quadratic control strategy,
is presented.
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Theorem 2 A quadratic bound of problem (24) is
defined as (34),

� (Z(t)) + VE {P(t) + C(t) | Z(t)}

≤ BQ + E

⎧
⎨

⎩

J∑

j=1

[
1
2

(
Tc(t) + ςa2 − Tmax

cpu

)2

mj(t)2 + (
ςa1Lj(t) + Zj(t)

)
Tc(t)mj(t)

]
| Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1

[ (
ςa1Lj(t) + Zj(t)

) (
ςa2 − Tmax

cpu

)

+Va2
(
1 + 1

b (Tc(t))2 + cTc(t) + d

)]
mj(t) | Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1
Va1Lj(t)

(
1 + 1

b (Tc(t))2 + cTc(t) + d

)
| Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1
ςa1Lj(t)Zj(t) | Z(t)

⎫
⎬

⎭ .

(34)

where

BQ =
J∑

j=1

1
2
ς2a21

(
Lmax
j

)2
. (35)

Proof
In Eq. (34), applying the bound (14), we obtain (36).
(23) added to (36) is equal to (34).

� (Z(t)) ≤ BQ + E

⎧
⎨

⎩

J∑

j=1

1
2

(
Tc(t) + ςa2 − Tmax

cpu

)2
mj(t)2 | Z(t)

⎫
⎬

⎭

+ E

⎧
⎨

⎩

J∑

j=1

(
ςa1Lj(t) + Zj(t)

) (
Tc(t) + ςa2 − Tmax

cpu

)

× mj(t) + ςa1Lj(t)Zj(t) | Z(t)

⎫
⎬

⎭ .

(36)

Theorem 2 shows that at time t, the quadratic con-
trol algorithm solves the bound of the right hand of
problem (34).
It is obvious that the right hand of (34) is a quadratic

function with only one variable unknown, and the coef-
ficient of quadratic term is more than zero. To solve the
extreme value of a quadratic function, we generally take
derivative with respect to the unknown variable. Such as
y = Ax2 + Bx + C(A �= 0, x ∈[m, n] ), its derivative about

x is y′ = 2Ax + B. We use the value of x satisfying with
y′ = 0 to calculate the minimum y. Specific to (34), the
value of mj(t) is classified to three categories expressed
in (37). In the regulation, mmin

j = 1/Dmax+Lj(t)
μj

, mmax
j =

1.1 ∗ Lmax, Lmax is the maximum of workloads among
all users at time t ∈[ 0, 1, . . . ,T − 1]. We next enumer-
ate Tc(t) and take out the optimal Tc(t) associated with
the minimal objective function value. Compared with the
linear control strategy, this policy overcomes the draw-
back of only taking extremum for variable mj(t) through
shrinking upper range of the Lyapunov drift function. The
quadratic control strategy is presented in Algorithm 2.
It provides a flexible and practical method for distribut-
ing servers, and it reduces the swing of CPU temperature
as well.

mj(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mmin
j mj(t) < mmin

j
−Va2

(
1+ 1

CoP(Tc (t))

)
−(Tc(t)+ςa2−Tmax)(ςa1Lj(t)+Zj(t))

(Tc(t)+ςa2−Tmax)2
mmin

j ≤ mj(t) ≤ mmax
j

mmax
j mj(t) > mmax

j

(37)

Algorithm 2: The quadratic control algorithm
Input: the cooling air temperature Tc(t)
Output: the number of serversmj(t) distributed to

user j
initialization;
lj: Workloads for application j;
T :The number of time slot;
for t ∈[ 0,T − 1] do

for Tc(t) ∈[Tmin,Tmax] do
for j do

mmin
j = 1/Dmax+Lj(t)

μj
;

mmax
j = 1.1 ∗ Lmax;

A:=The coefficient of quadratic termm2
j (t)

in Eq. (34);
B:=The coefficient ofmj(t) in Eq. (34);
mj(t):=The value ofmj(t) is evaluated
using Eq. (37);
C:=The constant term in Eq.(34);
y = A1m2

j (t) + A2mj(t) + C;
end
Add all y value in set Y ;

end
Ymin:=The minimum value from set Y ;
Tsuit := The optimal cooling air temperature Tc(t)
corresponding to Ymin;
Zj(t):=Update the queue by Eq. (17);

end
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Performance evaluation
In this section, we conduct extensive simulations to eval-
uate the effectiveness of control policies presented in this
paper. We analyze that what effect the control strategies
have on the total and component energy consumption in
a data center. We also compare the performance between
linear and quadratic control policies from the number of
servers, CPU temperature, and CRAC temperature.

System setup
We use a workload trace from a real data center Ordos
UniCloud Co. Ltd [16], which is shown in Fig. 6. The
trace includes one week request arrivals recorded with the
time density of 1 h for 4 interactive applications. In prac-
tice, request arriving rate ranges from 1000 request/s to
150000 request/s. For simplicity, we set mean rate of a
CPU service as 100 request/s. In addition, we set a1 =
a2 = 40 W , the upper bound of response time is 50 ms,
ς = 0.625 Kelvin.secs/Joules. We assume the operating
range of CRAC is [15 °C, 25 °C].

Results and analysis
Baseline policy
To clearly evaluate the effectiveness of linear and
quadratic control strategies, we introduce a Baseline
Policy to highlight the significance of this study by com-
paring baseline with linear and quadratic policies.
The baseline policy can be stated as follows: 1) Accord-

ing to the upper bound of response time Dmax, we obtain
the number of servers m = 1/Dmax

j +Lj(t)
μj

, which is the
minimal number of servers distributed to user j. 2) Then,

taking m into T = Tmax
cpu − ς

(
a1

∑J
j=1 Lj(t)∑J
j=1 mj(t)

+ a2
)

yields

the peak air temperature T for CRAC. We program
Algorithm 3 to calculate the number of servers distributed
to 4 users and the cold air temperature supplied by CRAC.

Algorithm 3: The baseline algorithm.
Input: the workload Lj(t) for user j at time t
Output: the number of serversmj(t) distributed to

user j, the cooling system temperature Tc(t)
lj: Workloads for application j;
T :The number of time slot;
for T = 1 : 168 do

for j do
mj(t) = 1/Dmax+Lj(t)

μj
;

Tc(t) = Tmax
cpu − ς

(
a1

Lj(t)
mj(t) + a2

)
;

end
M:= The number of serversmj(t) allocated to user
j for every time slot is recorded inM;
T := The cooling air temperature Tc(t) for every
time slot is recorded in T ;

end

Total energy consumption
According to the LO theory, we aim at computing the
minimum of problem (25) to calculate the minimal energy
consumption. As the weight parameter V increases, the
variation of total energy consumption under different
control policies are displayed in Fig. 7.

1. It is shown that the line representing baseline is
parallel with X-axis. It is the fixed number of servers
and invariable cooling air temperature that result in
constant total energy consumption.

2. It is observed that the energy consumption is
massive where V is small in Fig. 7. Particularly,
under the linear control policy, it is even higher than
baseline. We attribute it to excessively emphasizing
congestion control in virtual queues, i.e., optimizing
for the Lyapunov drift function �(Z(t)). To relieve
the problem of congestion, i.e., reducing delay time,
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Fig. 7 Comparison of total energy consumption under different
control policies

the cloud provider distributes more servers to service
for users. As a consequence, more energy are
consumed by servers, and waste heat increases along
with increasing energy consumption. To control the
server temperature falling in a safe range and
guarantee the system reliability, cooling system has
to efficiently work on absorbing heat. Thus, energy
consumed by cooling system also increases. To the
contrary, as V grows, we pay more attention to
minimizing energy consumption instead of response
time. Hence, the less servers, the less waste heat and
energy consumption.

3. The energy consumption under linear control policy
is dramatically more than the one controlled by
quadratic policy when V < 104. In other words, the
energy consumption under quadratic control policy
verges on the optimum. We just approximately solve
the objective function by tightening boundary. Since
BL > BQ, the bound calculated by the linear
algorithm is looser than the counterpart computed
by the quadratic algorithm.

4. The energy consumption trend under linear control
policy is almost in coincidence with the curve under
quadratic control policy when V > 104. When V is
greater than a threshold, we incline to optimize for
total energy consumption. Moreover, the order of
magnitude of optimizing energy significantly
overcomes that of reducing delay.

To visually compare energy consumption under differ-
ent control policies, we introduce the comparison table in
the form of specific values (Table 1) and saving propor-
tion (Table 2). In conclusion, the quadratic control policy
is more efficient with respect to the linear control policy
in terms of total energy consumption.

Table 1 Comparison of energy consumption in data center

V Linear Quadratic Baseline

100 42437767 20292071

34542630

500 36658607 20252245

1000 31726690 20226070

5000 22289497 20093693

10,000 20458815 19926465

50,000 18953217 18858236

100,000 17803858 17634134

Component energy and PUE
The component energy is plotted in Fig. 8, which is sim-
ilar with total energy consumption (Fig. 7). The number
of servers have a direct effect on server energy consump-
tion. Most of energy for CPU computing dissipates in
the form of waste heat, which leads to server temper-
ature raising up. In order to guarantee normal server
operation, cooling system must work hard to maintain
server temperature within a safe range. During this pro-
cess, component energy and total energy are in a positive
correlation, which is visually expressed in Figs. 7 and 8. In
addition, as V grows, the number of active servers grad-
ually reduces. As a result, the average server temperature
and cooling temperature is building up, which is clearly
illustrated in Figs. 9 and 10. Considering these perfor-
mance metrics, it is clear that the quadratic control policy
is more appropriate.
Figure 11 depicts the comparison of two policies in

terms of PUE. PUE is computed through dividing total
energy by computing energy, which is a typical perfor-
mance metric. A PUE value closed to 1, indicates a higher
proportion of computing energy. PUE = 1 is an ideal state,
which means all energy is consumed by the useful work,
i.e., CPU operation. Through Fig. 11, we find that the
PUE value under the liner control policy is lower than the
counterpart uner the quadratic control policy. It means
that the linear control policy is superior to the quadratic
control policy in terms of the metric PUE. However,
as shown in Figs. 7 and 8, the quadratic control is more

Table 2 Energy saving proportion data center with respect to
the baseline policy

V Linear Quadratic

100 -22.86% 41.26%

500 -6.13% 41.37%

1000 8.15% 41.45%

5000 35.47% 41.83%

10,000 40.77% 42.31%

50,000 45.13% 45.41%

100,000 48.46% 48.95%
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Fig. 8 Energy comparison for different components under linear and
quadratic control. a Server energy, b Cooling energy

efficient in both the total energy and the component
energy. The conclusion based on the metric PUE is oppo-
site to the state of actual energy consumption. Hence,
the metric PUE accepted by the field experts is not
enough to diagnose whether a data center is efficient
or not.

Fig. 9 The relationship between number of servers and average
server temperature. a linear, b quadratic

Fig. 10 The average temperature comparison between IT and
cooling subsystem. a linear, b quadratic

Number of active servers
The control variablemj(t), i.e., the number of servers dis-
tributed to users, has a decisive influence on total energy
consumption in data center. The number of servers pro-
viding service for users under linear and quadratic control
policies is illustrated in Fig. 12. We use application 1 with
V=1000 as an example to analyze this phenomenon. It
is obvious that the number of servers under quadratic
control policy is nearly always less with respect to the lin-
ear control policy. It depends on the flexibility of control
variable value. It is observed that the blue line fluctu-
ates drastically compared with the yellow line. Extensive
simulations demonstrate that the similar phenomenon
can also be found for other applications and a wider
range of V value. The average number of active servers is
depicted in Fig. 13. Holistically, as V grows, the number
of active servers under linear control policy declines and
almost equates to the counterpart under quadratic control
policy.
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Fig. 12 Servers allocated to user1 with V = 1000

Average server temperature
The average server temperature fluctuation with the
increasing V is displayed in Table 3. This result is
attributed to the amount of workloads assigned to a
server. A larger V means that more attention is paid to
optimize energy consumption. As a result, fewer servers
are distributed to users, and more workloads is allo-
cated to a single server. CPU computing under high
load leads to higher degree server temperature. This
relationship is reflected in Fig. 9. Besides, the trend of
server temperature is in correspondence with energy
consumption. When V ∈[ 100, 10000], since the server
energy consumption under the linear policy is higher
than the counterpart under the quadratic policy, the
server temperature for the linear control policy is much
larger.
To guarantee server stability and reliability, we set the

upper bound of server temperature as 60 °C. As shown
in Fig. 14, for the linear control policy, the average server
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Fig. 13 Comparison in average number of active servers under
different control vs.V

Table 3 Comparison of average server temperature under linear
and quadratic control vs.V

V Linear Quadratic

100 56.88 59.61

500 59.48 59.65

1000 60.69 59.69

5000 64.40 60.06

10,000 64.92 60.55

50,000 64.78 63.42

100,000 66.09 65.70

temperature exceeds the bound when V > 1000. But
under quadratic control policy, it doesn’t go beyond the
bound until V value is closed to 5000. In terms of ther-
mal management, the quadratic control policy is more
efficient compared with the linear control policy.
The probability distribution functions of server inlet

temperature under linear and quadratic control policies
are displayed in Figs. 15 and 16, respectively. Taking the
practical operation into account, only the curves repre-
senting V = 500, 1000, 5000, 10, 000 are depicted. It can
be validated that server temperature rises up with increas-
ing V in the two figures. Using 60 °C as an example,
the proportion of instantaneous temperature of servers
lower than 60 °C is smaller and smaller from V = 500 to
V = 10000 (Fig. 15). Moreover, we can observe that more
than half of server temperatures under the linear control
policy violates “soft” server temperature constraint 60 °C.
But under the quadratic control policy, it is almost all
lower than 60 °C. Specifically, we list out the probability
of instantaneous temperature of servers below 60 °C in
Table 4. It is obvious that the quadratic control policy is

Fig. 14 The average server temperature vs. V
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Fig. 15 The probability distribution function of server instantaneous
temperature under linear policy vs.V

superior to a linear one in guaranteeing the “soft” server
temperature constraint (≤ 60 ◦C).

Conclusion
In this paper, we formulate the total energy minimiza-
tion problem subject to the “soft” server temperature
constraint. Based on the Lyapunov Optimization theory,
we design linear and quadratic control policies to obtain
the near-optimal solution. The “soft” server tempera-
ture constraint is translated into the mean rate stability
of virtual queues. Furthermore, we evaluate the system
performance through extensive simulations with various
parameters. Substantial results indicate that the quadratic
control policy is closer to the optimum, whatever in sav-
ing energy or complying with the temperature constraint.
We set a weight parameter V to balance energy consump-
tion and server temperature constraint. As a consequence,
setting V around 5000 under the quadratic control policy
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Fig. 16 The probability distribution function of server instantaneous
temperature under quadratic policy vs.V

Table 4 Probability of instaneous server temperature below
60 °C vs.V

V Linear Quadratic

100 0.516 0.959

500 0.457 0.927

1000 0.388 0.914

5000 0.192 0.823

10,000 0.169 0.693

50,000 0.146 0.286

100,000 0.103 0.143

is the optimal trade-off: the proportion of energy saving is
up to 41.83%, and the “soft” server temperature constraint
violation proportion is 17.7%.
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