
Journal of Cloud Computing:
Advances, Systems and Applications

Baun et al. Journal of Cloud Computing: Advances, Systems
and Applications (2017) 6:24
DOI 10.1186/s13677-017-0096-x

SOFTWARE Open Access

OSSperf – a lightweight solution for the
performance evaluation of object-based cloud
storage services
Christian Baun*, Henry-Norbert Cocos and Rosa-Maria Spanou

Abstract

This paper describes the development and implementation of a lightweight software solution, called OSSperf, which
can be used to investigate the performance of object-based public cloud storage services like Amazon S3, Google
Storage and Microsoft Azure Blob Storage, as well as private cloud re-implementations. Furthermore, this paper
presents an explanation of the output of the tool and some lessons learned during the implementation.

Keywords: Cloud computing, Storage services, Performance analysis

Introduction
A form of cloud services, which belong to the Infrastruc-
ture as a Service (IaaS) delivery model, is the group of
object-based storage services. Examples for public cloud
offerings, which belong to this kind of services, are the
Amazon Simple Storage Service (S3) [1], the Google
Cloud Storage (GCS) [2] and Microsoft Azure Blob Stor-
age [3]. Furthermore, several free private cloud solutions
exist, which re-implement the S3-functionality. Exam-
ples for service solutions, which implement the S3 API
and are licensed according to a free software license, are
Eucalyptus Walrus [4, 5], Ceph [6, 7], Nimbus Cumulus
[8, 9], Fake S3 [10], Minio [11], Riak Cloud Storage [12],
S3ninja [13], S3rver [14] and Scality S3 [15]. OpenStack
Swift [16], which is the object storage component of the
IaaS solution, provides a similar functionality, but imple-
ments the Swift API, which is quite similar to the S3 API.
In this work, different approaches and already existing

solutions for the performance evaluation of object-based
storage services are evaluated and a new solution, called
OSSperf is developed. This new benchmark testing solu-
tion is intended to be lightweight, which means it causes
only little effort for installation and usage. It shall sup-
port a wide number of different public and private cloud
services with their different APIs. Additionally, it shall

*Correspondence: christianbaun@fb2.fra-uas.de
Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt
am Main, Germany

analyze the performance of the most important features
of object-based storage services and in order to simu-
late scenarios of different degrees of utilization, the tool
must provide a parallel operationmode for the upload and
download of objects.
This paper is organized as follows. “Related work”

section contains a discussion of related work and explains
the motivation for the development of OSSperf.
In “Development and implementation of OSSperf”

section, the design and implementation of the software
and its functioning are discussed. In addition, this section
provides a description of some challenges, we were facing
during the development and implementation process.
“Analyzing the benchmark” section presents some

benchmark results of OSSperf and explains how to analyze
them.
Finally, “Conclusions” section presents conclusions and

directions for future work.

Related work
Analyzing the performance of object-based storage ser-
vices is a task, which has been addressed by several other
works. First works on this topic were carried out and
published shortly after the availability of the Amazon S3
service offering in 2006 (for the United States) and 2007
(for Europe), that became a blueprint for a large number
of commercial competitors or free re-implementations. In
the literature, several works cover the topic of measuring
the performance of object-based storage services with the

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-017-0096-x&domain=pdf
mailto: christianbaun@fb2.fra-uas.de
http://creativecommons.org/licenses/by/4.0/

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 2 of 10

S3 interface and with the Microsoft Azure Blob Storage
interface.
Garfinkel [17] evaluated in 2007 the throughput, which

the Amazon S3 service offering can deliver via HTTP
GET requests with objects of different sizes over several
days from several locations by using a self-written client.
The tool was implemented in C++ and used libcurl [18]
for the interaction with the storage service. The focus
of this work is the download performance of Amazon
S3. Other operations like the upload performance are
not investigated. Unfortunately, this tool has never been
released by the author and the work does not investi-
gate the performance and functionality of private cloud
scenarios.
Palankar et al. [19] evaluated in 2008 the ability of

Amazon S3 to provide storage to large-scale science
projects from the perspective of cost, availability and
performance. Among others, the authors evaluated the
throughput (HTTP GET operations) which S3 can deliver
in single-node and multi-node scenarios. They also mea-
sured the performance from different remote locations.
No used tool has been released by the authors and the
work does not mention the performance and functionality
of private cloud scenarios.
Li et al. [20] analyzed the performance of the four

public cloud service offerings Amazon S3, Microsoft
Azure Blob Storage and Rackspace Cloud Files with
their self developed Java software solution CloudCmp
[21] for objects of 1 kB and 10MB in size. The authors
among others compare the scalability of the mentioned
blob services by sending multiple concurrent opera-
tions and were able to make bottlenecks visible when
uploading or downloading multiple objects of 10MB
in size.
Calder et al. [22] measured in 2011 the through-

put (HTTP GET and HTTP PUT operations) of the
Microsoft Azure Blob Storage service for objects of 1 kB
and 4MB in size. Unfortunately, the authors do not
describe which tools they did use for their work and the
authors do not mention the performance and function-
ality of further public cloud offerings or of private cloud
scenarios.
Zheng et al. [23, 24] described in 2012 and 2013 the

Cloud Object Storage Benchmark – COSBench [25],
which is able to measure the performance of different
object-based storage services. It is developed in Java and
provides a web-based user interface and helpful docu-
mentation for users and developers. The tool is licensed
according to the Apache 2.0 license and it supports the S3
API and the Swift API, but not the API of the Microsoft
Azure Blob Storage service. COSBench can simulate dif-
ferent sorts of workload. It is among others possible to
specify the number of workers, which interact with the
storage service, and the read/write ratio of the access

operations. This way, the software implements a paral-
lel operation mode. The complexity of COSBench is also
a drawback, because the installation and configuration
require much effort.
Bessani et al. [26] analyzed in 2013 among others the

required time to upload and download objects of 100 kB,
1MB, and 10MB in size from Amazon S3, Microsoft
Azure Blob Storage and Rackspace Cloud Files from
clients that were located on different parts of the globe.
In their work, the authors describe DepSky [27], a soft-
ware solution that can be used to create a virtual storage
cloud by using a combination of diverse cloud service
offerings in order to achieve better levels of availability,
security, privacy and prevent the situation of a vendor
lock-in. While the DepSky software has been released to
the public by the authors, they did not publish a tool to
carry out performance measurements of storage services
so far.
McFarland [28] implemented in 2013 in the program-

ming language Python two applications, called S3-perf,
which make use of the boto [29] library to measure the
download and upload data rate of the Amazon S3 service
offering for different file object sizes. Those solutions offer
only little functionality. They do only provide the option to
measure the required time to execute upload and down-
load operations sequentially. Parallel operations are not
supported and also fundamental operations other than the
upload and download objects are not considered. Further-
more, the solution does not support the Swift API or the
API of the Microsoft Azure Blob Storage service and the
software license is unclear.
Jens Hadlich implemented in 2015 an utility, called the

S3 Performance Test Tool [30] in Java, which can be
used to measure the required time to create and erase
buckets, as well as for uploading and downloading files
into Amazon S3 or S3-compatible object storage systems.
The tool allows to upload and download objects in par-
allel. It is free software and licensed according to the
MIT License. A drawback of the S3 Performance Test
Tool is that it does not support the Swift API or the
Microsoft Azure Blob Storage API and it does not calcu-
late the achieved bandwidth during upload and download
operations.
Land [31] analyzed in 2015 the performance of the

public cloud object-based storage services Amazon S3,
Google Cloud Storage and Microsoft Azure Blob Stor-
age with files of different sizes by using the command
line tools of the service providers and by mounting buck-
ets of the services as file systems in user-space. Attaching
the storage of an object-based storage service via a file
systems in user-space driver is a quite special applica-
tion, which is hardly comparable to the typical sort of
interaction with such services. Additionally, this work
does not analyze the performance and functionality of

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 3 of 10

private cloud scenarios. The author uploaded for his
work a file of 100MB in size and a local git reposi-
tory with several small files into the evaluated storage
services and afterwards erased these files, but in con-
trast to our work, he did not investigate the perfor-
mance of the single storage service related operations
in detail.
Bjornson [32] measured in 2015 the latency - time to

first byte (TTFB) and the throughput of the storage ser-
vice offerings Amazon S3, Google Cloud Storage, and
Microsoft Azure Blob Storage for objects ranging from
16 KB to 32 MB. The author used the Object Storage
Benchmark, which is a part of the PerfKit Benchmarker
[33] test suite. This tool is free software and licensed
according to the Apache 2.0 license. The software sup-
ports not only multiple storage service interfaces, but also
sequential and parallel operations. The author discovered,
that the different public cloud services have different per-
formance characteristics, which depend heavily on the
object size. Thus, it is important for users and adminis-
trators to benchmark storage services with objects, that
are comparable in size with the objects their web appli-
cations use. The work does not consider the typical
storage service related operations in detail and it does
not analyze the performance and functionality of pri-
vate cloud scenarios. The PerfKit Benchmarker suite is
a set of different benchmark applications to investigate
different performance aspects of cloud Infrastructure ser-
vices. The complexity of this collection is also a drawback,
because the configuration and proper handling requires
much effort.
In contrast to the related works in this section (see

Table 1), we wanted to develop and implement a
lightweight solution to analyze the performance of the
most important storage service operations and not only
of upload and download operations or of the latency. Fur-
thermore we wanted to develop a tool which can interact
not only with the Amazon S3 API, but also with the Swift

API and the API of the Microsoft Azure Blob Storage ser-
vice. Last but not least, the development of the tool aimed
to create a solution which can be deployed with minimum
effort and is simple to use.

Development and implementation of OSSperf
The analysis of the existing benchmark testing solutions
in “Related work” section resulted in the development of
a new tool. The preconditions of developing a lightweight
solution, which causes only little effort for installation
and usage, led to the development of a bash script. In
order to simplify the development and implementation
task, already existing command line tools were selected
to carry out all interaction with the used storage ser-
vices. In practice, the users and administrators of storage
services have already installed some of these command
line tools and are trained in working with at least one
of them.
Users of OSSperf have the freedom to choose between

these command line tools for the interaction with the used
storage services:

• az [34]. A python client for the Azure Blob Storage
API.

• gsutil [35]. A python client for the Google Cloud
Storage service offering, which uses the S3 API.

• mc [36]. The so called Minio Client. It is developed in
the programming language go and can interact with
storage services that (re-)implement the API of the S3.

• s3cmd [37]. A python client, that can interact with
storage services that (re-)implement the API of the S3.

• swift [38]. A python client for the Swift API.

Access to the storage services need to be configured
in the way the above mentioned command line tools
expect it.
Per default, if no other client software is specified via a

command line parameter, OSSperf will try to use s3cmd

Table 1 Software solutions to analyze the performance of object-based storage services

Name of the benchmark
solution

Author(s) Released to
public

Software license Parallel
mode

Support for
S3 API

Support for
Swift API

Support for
ABSa API

CloudCmp [21] Li et al. Yes MIT License Yes Yes No Yes

COSBench [25] Zheng et al. Yes Apache 2.0 Yes Yes Yes No

Object Stor. Benchm. [33] Multiple Yes Apache 2.0 Yes Yes Yes No

OSSperf [52] Baun et al. Yes GPLv3 Yes Yes Yes Yes

S3 Perf. Test Tool [30] Hadlich Yes MIT License Yes Yes No No

S3-perf [28] McFarland Yes Unknown No Yes No No

Unknown [22] Calder et al. No Unknown Unknown No No Yes

Unknown [17] Garfinkel No Unknown Unknown Yes No No

Unknown [19] Palankar et al. No Unknown Unknown Yes No No

aABS = Azure Blob Storage

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 4 of 10

for the interaction with the desired storage service. Once
a storage service is registered in the configuration file
of s3cmd, OSSperf can interact with the S3-compatible
REST API of the service.
REST is an architectural-style that relies on HTTP

methods like GET or PUT. S3-compatible services use
PUT to receive the list of buckets that are assigned to
a user account, or a list of objects inside a bucket,
or an object itself. Buckets and objects are created
with PUT and DELETE is used to erase buckets and
objects. POST can be used to upload objects and
HEAD is used to retrieve meta-data from an account,
bucket or object. Uploading files into S3-compatible
services is done via POST or PUT directly from the
client of the user. Table 2 gives an overview of
methods used to interact with S3-compatible storage
services [39].
If the Swift API or the Microsoft Azure Blob Storage

API shall be used, OSSperf does not use the command line
tool s3cmd, but the Swift client (swift) or the Azure
client (az). In contrast to s3cmd, the swift tool uses no
configuration file with user credentials. Users of swift
need to specify the endpoint of the used storage service
as well as username and password inside the environment
variables ST_AUTH, ST_USER and ST_KEY. Users of az
need to specify the username and password inside the
environment variables AZURE_STORAGE_ACCOUNT and
AZURE_STORAGE_ACCESS_KEY.
Users of OSSperf have the freedom to use the Minio

Client (mc) or the python client for the Google Cloud
Storage (gsutil), instead of s3cmd, for the interaction
with storage services that implement the S3-API. In this

Table 2 Description of the HTTP methods with request-URIs that
are used to interact with storage services

Account-related operations

GET / List buckets

HEAD / Retrieve metadata

Bucket-related operations

GET /bucket List objects

PUT /bucket Create bucket

DELETE /bucket Delete bucket

HEAD /bucket Retrieve metadata

Object-related operations

GET /bucket/object Retrieve object

PUT /bucket/object Upload object

DELETE /bucket/object Delete object

HEAD /bucket/object Retrieve metadata

POST /bucket/object Update object

case, it is necessary to specify the connection parameters
of the storage service as the first step in the appropriate
configuration files of theses clients. Afterwards, the alter-
native clients can be set via command line parameter and
used by OSSperf.
One of the aims during the development of OSSperf was

to create a tool, which tests the performance of the most
common used bucket- and object-related operations.
These are in detail the creation and erasure of buck-
ets and the upload, download and erasure of objects, as
well as the operation, which returns a list of the objects,
that are assigned to a specific bucket. These operations
are in other words the CRUD actions (see Table 3),
which are the four basic functions of persistent storage
and are mostly mentioned in the field of SQL databases
and therefore mapped to basic SQL statements, but they
can also be mapped to HTTP methods, which are the
foundation of the interaction with object-based storage
services.
To investigate the performance of the CRUD actions,

when doing a performance evaluation with OSSperf, the
tool executes these six steps for a specific number of
objects of a specific size:

1. Create a bucket
2. Upload one or more objects into this bucket
3. Fetch the list of objects inside the bucket
4. Download the objects from the bucket
5. Erase the objects inside the bucket
6. Erase the bucket

The time, which is required to carry out these opera-
tions is individually measured and can be used to analyze
the performance of these commonly used storage service
operations.
Users of OSSperf have the freedom to specify the

number of files via command-line parameters, which
shall be created, uploaded and downloaded, as well
as their individual size. The files are created via the
command line tool dd and contain data from the
pseudorandom number generator behind the special file
/dev/random.
In order to be able to simulate different load scenar-

ios, the OSSperf tool supports the parallel transfer of

Table 3 The CRUD actions and their matching HTTP methods

CRUD actions HTTP methods SQL statements

Create or replace a resource PUT/POST INSERT

Read a resource GET SELECT

Update (= modify) a resource PUT/POST UPDATE

Delete a resource DELETE DELETE

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 5 of 10

Fig. 1 Example of output data of OSSperf

objects, as well as requesting delete operations in parallel.
If the parallel flag is set, the steps 2, 4 and 5 are executed
in parallel by using the command line tool parallel.
The steps 1, 3 and 6 can not in principle be executed in
parallel.
Setting the bucketname, that OSSperf shall use, can

also be done via command line parameter. The default
bucketname is ossperf-testbucket, but in case
the performance of a public cloud service offering
shall be investigated, it may be required for the user
to specify another name for the bucket, because the
buckets inside a storage service need to have unique
names.
A common assumption, when using storage services,

which implement the same API, is that all operations
cause identical results. But during the development of
OSSperf, some challenges caused by non-matching ser-
vice behavior emerged. One issue is the encoding of the
bucket names. In order to be conforming to the DNS
requirements, bucket names should not contain capital
letters. To comply with this rule, the free private cloud
storage service solutions Minio, Riak CS, S3rver, and
Scality S3, do not accept bucket names with upper-case
letters.
Other services like Nimbus Cumulus and S3ninja only

accept bucket names, which are encoded entirely in upper
case letters. The service offerings Amazon S3 and Google
Cloud Storage, as well as the private cloud solution Fake
S3 are more generous in this case and accept bucket
names, which are written in lower case and upper-case
letters.
In order to be compatible with the different storage ser-

vice solutions and offerings, OSSperf allows the user to
specify the encoding of the bucket name with a command
line parameter.
Every time, OSSperf is executed, the tool prints out a

line of data, which informs the user about the date (col-
umn 1) and time (column 2) when the execution was
finished, the number of created objects (column 3), the
size of the single objects in bytes (column 4), as well
as the required time in seconds to execute the single
steps 1–6 (columns 5–10). Column number 11 contains
the sum of all time values, which is calculated by using
the command line tool bc. The final columns 12 and 13

present the bandwidth BU during the upload (step 2) and
the bandwidth BD during the download (step 4) opera-
tions. These values are also calculated with the command
line tool bc with Eqs. 1 and 2, where N is the num-
ber of files, S is the size of the single files, TU is the
required time to upload and TD the required time to
download the files. Figure 1 contains five lines of out-
put data, generated by OSSperf. These lines are a part of
the output data, which were used to generate Fig. 3 and
Table 4.

S
[
Byte

] × N × 8
TU [s]

/ 1000 / 1000 = BU [Mbit/s] (1)

S
[
Byte

] × N × 8
TD [s]

/ 1000 / 1000 = BD [Mbit/s] (2)

Table 4 Bandwidth during upload and download when using a
multi-node storage service implemented with Minio in a private
context

Size of the
files [kB]

Upload
(parallel)
[Mbit/s]

Upload (seq.)
[Mbit/s]

Download
(parallel)
[Mbit/s]

Download
(seq.)
[Mbit/s]

0.5 0.02 0.02 0.03 0.03

1 0.05 0.04 0.06 0.07

2 0.10 0.08 0.12 0.14

4 0.19 0.17 0.25 0.28

8 0.38 0.32 0.47 0.56

16 0.76 0.67 0.95 1.14

32 1.50 1.27 2.06 2.34

64 2.88 2.38 4.21 4.31

128 5.27 4.34 7.80 7.73

256 9.17 6.97 13.95 13.44

512 14.48 10.00 21.35 19.32

1024 20.60 12.23 29.28 24.51

2048 22.69 15.49 37.69 27.01

4096 28.03 16.89 39.99 28.65

8192 30.15 17.95 42.35 29.64

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 6 of 10

The structure of the output simplifies the analysis of the
performance measurements by using command line tools
like sed, awk and gnuplot.

Analyzing the benchmark
An example for the presentation of benchmark results,
gained with OSSperf, present Fig. 3 and Table 4. For
this scenario, the free storage service solution Minio
[11] was installed in an 8-node deployment on a clus-
ter of Raspberry Pi 2 single board computers [40, 41].
The client, which executed OSSperf, was connected via
Ethernet with the same network switch as the cluster
nodes. Each Raspberry Pi node has a 100MBit/s Ethernet
interface.
The gained data shows that the parallel upload of files

is beneficial for objects of all sizes, but the download of
objects < 128 kB in size requires a longer time in paral-
lel transfer compared to sequential mode. With a growing
object size, the service performs better in parallel transfer
compared with sequential mode.
The effect, that the bandwidth gets better with a grow-

ing file size, is caused by the protocol overhead1 of the
object-based storage services (see Fig. 2). This overhead
exists for file transmissions of any size and its portion
of the potential throughput shrinks with a growing file
size. The overhead is caused among others by theses
characteristics:

• For upload and download operations, one
communication partner needs to wrap the files into
HTTP messages, TCP segments, IP packages and
Ethernet frames and the other communication
partner needs to unwrap them.

• The transmission of the HTTP messages via a
computer network requires time (= network latency).

• Each upload operation requires the client to wait for
a reply of the server, that indicates the request was
successful.

One of the reasons, why the upload performance
in Fig. 3 and Table 4 is slower compared to the
download performance, may be the effort to store files
in minio multi-node deployments. Minio uses erasure
code and checksums [42] to increase the availabil-
ity of the stored data, which causes much effort on
the single board computers, which were used in this
scenario.
Another example of benchmark results, gained with

OSSperf, present Fig. 4 and Table 5. In this sce-
nario, OSSperf was used to investigate the perfor-
mance of the Amazon S3 service offering. Also when
using S3, the upload performance is slower, com-
pared with the download performance. The measured
bandwidth during upload is close to the maximum
data rate, the used internet service provider offers for
upstream. Equal to the private cloud scenario from
Fig. 3 and Table 4, the parallel upload of the ten
files is never faster compared with the sequential
upload. And again, the parallel upload is only benefi-
cial when downloading large files. In this scenario, the
turnaround point is when downloading objects ≥ 512 kB
in size.
When investigating the performance of a public cloud

storage service like Amazon S3, it must always be
kept in mind, that the performance of this service
may vary over the time of the day and that it is
among others influenced by the network path between

Fig. 2 Functioning of the object storage interface

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 7 of 10

Fig. 3 Required time to upload and download sets of 10 files into a multi-node storage service implemented with Minio

client and service, as well as the current network
utilization.

Conclusions
The development of OSSperf resulted in a solution to
evaluate the performance of object-based cloud storage
services, that is more lightweight than COSBench or the
PerfKit Benchmarker test suite, because its installation
and configuration does not require much effort and it has
only few dependencies. OSSperf only requires the bash
command line interpreter, md5sum for the creation and

validation of the checksums, bc to carry out the calcu-
lations, parallel to implement the parallel mode and
command line clients like az, gsutil, mc, s3cmd and
swift for the interaction with the storage services.
In contrast to the works of Garfinkel and of Palankar

et al., which both only consider HTTP GET requests,
OSSperf carries out typical storage service operations and
evaluates the time, which is required to execute these
operations.
OSSperf supports the APIs of several different pub-

lic and private cloud services by using clients that can

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 8 of 10

Fig. 4 Required time to upload and download sets of 10 files into the Amazon S3 public cloud storage service offering

interact via the S3-API, the Swift-API and the Azure
Blob Storage API. This is a huge benefit in contrast
to the other analyzed solutions, because the S3 Perfor-
mance Test Tool, S3-perf, the work of Calder et al.,
the work of Garfinkel and the work of Palankar et
al. support only a single API. CloudCmp, COSBench
and the PerfKit Benchmarker test suite support only
two APIs.
In contrast to S3-perf, the work of Calder et al., the work

of Garfinkel and the work of Palankar et al., OSSperf is
able to operate in sequential and parallel mode to create
load situations of different sort.

The scope of functions sets OSSperf apart from the
other solutions, we investigated in this work (see Table 1).
With the performance information of OSSperf, users and
administrators of storage services can find out which
operations are most time consuming. This information
is essential to optimize applications, which use stor-
age services, as well as for optimizing storage service
deployments.
OSSperf is free software and licensed under the terms

of the GPLv3. The source code and documentation can
be found inside the Git repository: https://github.com/
christianbaun/ossperf/

https://github.com/christianbaun/ossperf/
https://github.com/christianbaun/ossperf/

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 9 of 10

Table 5 Bandwidth during upload and download when using
the public cloud storage service offering Amazon S3

Size of the
files [kB]

Upload
(parallel)
[Mbit/s]

Upload (seq.)
[Mbit/s]

Download
(parallel)
[Mbit/s]

Download
(seq.)
[Mbit/s]

0.5 0.01 0.02 0.02 0.03

1 0.03 0.04 0.04 0.06

2 0.06 0.08 0.06 0.12

4 0.12 0.13 0.15 0.26

8 0.24 0.29 0.31 0.46

16 0.48 0.70 0.54 0.95

32 0.80 1.08 1.14 1.67

64 1.28 1.59 2.19 2.95

128 1.68 2.08 3.92 5.05

256 1.93 2.61 7.31 8.24

512 2.33 3.37 11.06 10.82

1024 3.26 3.89 15.12 13.01

2048 3.82 4.22 17.83 16.77

4096 4.21 4.43 19.61 18.09

8192 4.21 4.54 21.66 20.63

Next steps are the implementation for support of fur-
ther command line clients to interact with object-based
storage services like Rackspace Cloud Files [43] in order
to allow a more detailed investigation of the way, the
different clients influence the performance.

Endnote
1 The network-level efficiency of object-based cloud

storages is better compared with storage services like
Google Drive [44], Microsoft OneDrive [45], Dropbox
[46], Box [47] or Apple iCloud [48] – such services are
sometimes called Personal Cloud Storage – because they
all implement on top of object-based storage services
an additional synchronization protocol in order to keep
the data in a consistent state between client site and the
service provide [49–51].

Abbreviations
ABS: Azure blob storage; API: Application programming interface; AWS:
Amazon web services; Blob: Binary large object; CRUD: Create, read, update
and delete; DNS: Domain name system; GCS: Google cloud storage; GPL: GNU
general public license; HTTP: Hypertext transfer protocol; IaaS: Infrastructure as
a service; IP: Internet protocol; kB: Kilobyte; MB: Megabyte; REST:
Representational state transfer; S3: Simple storage service; TCP: Transmission
control protocol

Acknowledgements
Many thanks to Katrin Baun for her assistance in improving the quality of this
paper.

Funding
This work was funded by the Hessian Ministry for Science and the Arts
(‘Hessisches Ministerium für Wissenschaft und Kunst’) in the framework of

research for practice (‘Forschung für die Praxis’) and by the Faculty of Computer
Science and Engineering Science of the Frankfurt University of Applied
Sciences in the framework of ‘Innovationsfonds Forschung’ (IFOFO).

Availability of data andmaterials
The source code and documentation of the OSSperf software is stored inside
the Git repository: https://github.com/christianbaun/ossperf/.

About the Authors
Dr. Christian Baun is a Professor at the Faculty of Computer Science and
Engineering of the Frankfurt University of Applied Sciences in Frankfurt am
Main, Germany. He earned his Diploma degree in Informatik (Computer
Science) in 2005 and his Master degree in 2006 from the Mannheim University
of Applied Sciences. In 2011, he earned his Doctor degree from the University
of Hamburg. He is author of several books, articles and research papers. His
research interest includes operating systems, distributed systems and
computer networks.
Henry-Norbert Cocos studies computer science at the Frankfurt University of
Applied Sciences. His research interest includes distributed systems and single
board computers. Currently, he constructs a 256 node cluster of Raspberry Pi 3
nodes which shall be used to analyze different parallel computation tasks. For
this work, he analyzes which administration tasks need to be carried out during
the deployment and operation phase and how these tasks can be automated.
Rosa-Maria Spanou studies computer science at the Frankfurt University of
Applied Sciences. Her research interest includes distributed systems and
single board computers. Currently, she constructs and analyzes different
multi-node object-based cloud storage solutions.

Authors’ contributions
CB and HNC carried out the literature review. CB and RMS developed the initial
concept of the OSSperf benchmark solution and CB did most of the
implementation. CB drafted the manuscript. HNC and RMS jointly provided
useful remarks and critically reviewed the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 September 2017 Accepted: 20 November 2017

References
1. Amazon Simple Storage Service (S3). https://aws.amazon.com/s3/.

Accessed 27 Nov 2017
2. Google Cloud Storage (GCS). https://cloud.google.com/storage/.

Accessed 27 Nov 2017
3. Microsoft Azure Blob Storage. https://azure.microsoft.com/services/

storage/blobs/. Accessed 27 Nov 2017
4. Nurmi D, Wolski R, Grzegorczyk C, Obertelli G, Soman S, Youseff L,

Zagorodnov D (2009) The Eucalyptus Open-source Cloud-computing
System. In: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. IEEE. pp 124–131

5. Eucalyptus. https://github.com/eucalyptus/eucalyptus. Accessed 27 Nov
2017

6. Weil SA, Brandt SA, Miller EL, Long DD, Maltzahn C (2006) Ceph: A
Scalable, High-Performance Distributed File System. In: Proceedings of
the 7th Symposium on Operating Systems Design and Implementation.
USENIX. pp 307–320

7. Ceph. https://github.com/ceph/ceph. Accessed 27 Nov 2017
8. Bresnahan J, Keahey K, LaBissoniere D, Freeman T (2011) Cumulus: An

Open Source Storage Cloud for Science. In: Proceedings of the 2nd
International Workshop on Scientific Cloud Computing. ACM. pp 25–32

9. Nimbus Cumulus. https://github.com/nimbusproject/nimbus. Accessed
27 Nov 2017

10. Fake S3. https://github.com/jubos/fake-s3. Accessed 27 Nov 2017

https://github.com/christianbaun/ossperf/
https://aws.amazon.com/s3/
https://cloud.google.com/storage/
https://azure.microsoft.com/services/storage/blobs/
https://azure.microsoft.com/services/storage/blobs/
https://github.com/eucalyptus/eucalyptus
https://github.com/ceph/ceph
https://github.com/nimbusproject/nimbus
https://github.com/jubos/fake-s3

Baun et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:24 Page 10 of 10

11. Minio. https://github.com/minio/minio. Accessed 27 Nov 2017
12. Riak CS. https://github.com/basho/riak_cs. Accessed 27 Nov 2017
13. S3ninja. https://github.com/scireum/s3ninja/. Accessed 27 Nov 2017
14. S3rver. https://github.com/jamhall/s3rver/. Accessed 27 Nov 2017
15. Scality S3. https://github.com/scality/S3. Accessed 27 Nov 2017
16. OpenStack Object Storage (Swift). https://github.com/openstack/swift.

Accessed 27 Nov 2017
17. Garfinkel S (2007) An Evaluation of Amazon’s Grid Computing Services:

EC2, S3, and SQS. Harvard Computer Science Group. Technical Report
TR-08-07

18. Libcurl. https://curl.haxx.se/libcurl/. Accessed 27 Nov 2017
19. Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S (2008) Amazon S3 for

Science Grids: a Viable Solution? In: Proceedings of the 2008 International
Workshop on Data-aware Distributed Computing. ACM. pp 55–64

20. Li A, Yang X, Kandula S, Zhang M (2010) CloudCmp: Comparing Public
Cloud Providers. In: Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement. pp 1–14

21. CloudCmp. https://github.com/angl/cloudcmp. Accessed 27 Nov 2017
22. Calder B, Wang J, Ogus A, Nilakantan N, Skjolsvold A, McKelvie S, Xu Y,

Srivastav S, Wu J, Simitci H, Haridas J, Uddaraju C, Khatri H, Edwards A,
Bedekar V, Mainali S, Abbasi R, Agarwal A, Haq MFu, Haq MIu, Bhardwaj D,
Dayanand S, Adusumilli A, McNett M, Sankaran S, Manivannan K, Rigas L
(2011) Windows Azure Storage: A Highly Available Cloud Storage Service
with Strong Consistency. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. SOSP ’11. pp 143–157

23. Zheng Q, Chen H, Wang Y, Duan J, Huang Z (2012) COSBench: A
Benchmark Tool for Cloud Object Storage. In: Cloud Computing (CLOUD),
2012 IEEE 5th International Conference On. pp 998–999

24. Zheng Q, Chen H, Wang Y, Zhang J, Duan J (2013) COSBench: Cloud
Object Storage Benchmark. In: Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering. pp 199–210

25. COSBench. https://github.com/intel-cloud/cosbench. Accessed 27 Nov
2017

26. Bessani A, Correia M, Quaresma B, André F, Sousa P (2013) DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds. ACM Trans Storage
(TOS) 9(4):12

27. DepSky. https://github.com/cloud-of-clouds/depsky. Accessed 27 Nov
2017

28. S3-perf. https://github.com/ross/s3-perf. Accessed 27 Nov 2017
29. Boto. https://github.com/boto/boto. Accessed 27 Nov 2017
30. S3 Performance Test. https://github.com/jenshadlich/S3-Performance-

Test. Accessed 27 Nov 2017
31. Real-world Benchmarking of Cloud Storage Providers: Amazon S3,

Google Cloud Storage, and Azure Blob Storage. https://lg.io/2015/10/25/
real-world-benchmarking-of-s3-azure-google-cloud-storage.html.
Accessed 27 Nov 2017

32. AWS S3 Vs Google Cloud Vs Azure: Cloud Storage Performance. http://
blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html.
Accessed 27 Nov 2017

33. Perfkit Benchmarker. https://github.com/GoogleCloudPlatform/
PerfKitBenchmarker. Accessed 27 Nov 2017

34. Command-line Tools for Azure. https://github.com/Azure/azure-cli.
Accessed 27 Nov 2017

35. Gsutil. https://github.com/GoogleCloudPlatform/gsutil. Accessed 27 Nov
2017

36. Minio Client. https://github.com/minio/mc. Accessed 27 Nov 2017
37. S3cmd. https://github.com/s3tools/s3cmd. Accessed 27 Nov 2017
38. Swift Client. https://github.com/openstack/python-swiftclient. Accessed

27 Nov 2017
39. Baun C, Kunze M, Schwab D, Kurze T (2013) Octopus-A Redundant Array

of Independent Services (RAIS). In: CLOSER 2013: Proceedings of the 3rd
International Conference on Cloud Computing and Services Science.
pp 321–328

40. Baun C (2016) Mobile Clusters of Single Board Computers: an Option for
Providing Resources to Student Projects and Researchers. SpringerPlus
5(1):360

41. Baun C, Cocos HN, Spanou RM (2017) Performance Aspects of
Object-based Storage Services on Single Board Computers. Open J Cloud
Comput (OJCC) 4(1):1–16

42. Minio Erasure Code Quickstart Guide. https://github.com/minio/minio/
tree/master/docs/erasure. Accessed 27 Nov 2017

43. Rackspace Cloud Files. https://www.rackspace.com/cloud/files/.
Accessed 27 Nov 2017

44. Google Drive. https://www.google.com/drive/. Accessed 27 Nov 2017
45. Microsoft OneDrive. https://onedrive.live.com. Accessed 27 Nov 2017
46. Dropbox. https://www.dropbox.com. Accessed 27 Nov 2017
47. Box. https://www.box.com. Accessed 27 Nov 2017
48. iCloud. https://www.icloud.com. Accessed 27 Nov 2017
49. Li Z, Jin C, Xu T, Wilson C, Liu Y, Cheng L, Liu Y, Dai Y, Zhang ZL (2014)

Towards Network-level Efficiency for Cloud Storage Services. In:
Proceedings of the 2014 ACM Conference on Internet Measurement
Conference. IMC ’14. pp 115–128

50. Drago I, Bocchi E, Mellia M, Slatman H, Pras A (2013) Benchmarking
personal cloud storage. In: Proceedings of the 2013 ACM Conference on
Internet Measurement Conference. IMC ’13. pp 205–212

51. Drago I, Mellia M, M. Munafo M, Sperotto A, Sadre R, Pras A (2012) Inside
Dropbox: Understanding Personal Cloud Storage Services. In: Proceedings
of the 2012 ACM Internet Measurement Conference. IMC ’12. pp 481–494

52. OSSperf. https://github.com/christianbaun/ossperf. Accessed 27 Nov
2017

https://github.com/minio/minio
https://github.com/basho/riak_cs
https://github.com/scireum/s3ninja/
https://github.com/jamhall/s3rver/
https://github.com/scality/S3
https://github.com/openstack/swift
https://curl.haxx.se/libcurl/
https://github.com/angl/cloudcmp
https://github.com/intel-cloud/cosbench
https://github.com/cloud-of-clouds/depsky
https://github.com/ross/s3-perf
https://github.com/boto/boto
https://github.com/jenshadlich/S3-Performance-Test
https://github.com/jenshadlich/S3-Performance-Test
https://lg.io/2015/10/25/real-world-benchmarking-of-s3-azure-google-cloud-storage.html
https://lg.io/2015/10/25/real-world-benchmarking-of-s3-azure-google-cloud-storage.html
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/Azure/azure-cli
https://github.com/GoogleCloudPlatform/gsutil
https://github.com/minio/mc
https://github.com/s3tools/s3cmd
https://github.com/openstack/python-swiftclient
https://github.com/minio/minio/tree/master/docs/erasure
https://github.com/minio/minio/tree/master/docs/erasure
https://www.rackspace.com/cloud/files/
https://www.google.com/drive/
https://onedrive.live.com
https://www.dropbox.com
https://www.box.com
https://www.icloud.com
https://github.com/christianbaun/ossperf

	Abstract
	Keywords

	Introduction
	Related work
	Development and implementation of OSSperf
	Analyzing the benchmark
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About the Authors
	Authors' contributions
	Competing interests
	Publisher's Note
	References

